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MODEL STRUCTURE ON OPERADS IN
ORTHOGONAL SPECTRA

TORE AUGUST KRO
(communicated by Nicholas J. Kuhn)

Abstract
We generalize Berger and Moerdijk’s results on axiomatic
homotopy theory for operads to the setting of enriched sym-
metric monoidal model categories, and show how this theory
applies to orthogonal spectra. In particular, we provide a sym-
metric fibrant replacement functor for the positive stable model
structure.

1. Introduction

Operads (in topological spaces) were introduced in order to describe algebraic
structures where the constraints are relaxed up to a system of homotopies. The
definition of operads generalizes to any symmetric monoidal category. This raises the
question about axiomatic homotopy theory for operads, given that the base category
has a monoidal model structure. This question has answers when the base category
is simplicial sets by Rezk [15], complexes of a module over a ring by Hinich [5], a
cofibrantly generated symmetric monoidal model category by Spitzweck [18], and
k-spaces by Vogt [20]. Berger and Moerdijk [1] construct a Quillen model structure
on reduced operads (and their algebras) in a closed symmetric monoidal model
category given that the unit is cofibrant and that the base category comes equipped
with a symmetric monoidal fibrant replacement functor. This includes the case of
operads in spaces.

The aim of this article is to provide Quillen model structures on operads and their
algebras when the base category is some symmetric monoidal category of spectra,
for instance, orthogonal spectra; see [11, Example 4.4]. An argument of Lewis [9]
shows that no symmetric monoidal model category of spectra can simultaneously
have a cofibrant unit and a symmetric monoidal fibrant replacement functor. Thus
Berger and Moerdijk’s work does not apply directly.

We will weaken the assumptions on the unit in two different ways. It is sufficient to
make use of the idea of semicofibrant objects, as defined by Lewis and Mandell [10],
instead of cofibrant objects. Alternatively, one can assume that the base category
is enriched and cotensored over another monoidal model category, in which the
unit and Hopf intervals are nicer. The latter approach generalizes the hint given
in [1, Example 4.6.4]. We follow the strategy and proofs of Berger and Moerdijk’s
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paper [1] closely and advise the reader to keep a copy of this article at hand while
reading Section 2.

The category of orthogonal spectra, with the positive stable model structure
(see [11, Section 14]), satisfies a priori nearly all of the requirements of Section 2.
The only missing piece is a symmetric monoidal fibrant replacement functor. We
show in Section 3 that the second-most naive guess for a fibrant replacement functor
actually is symmetric. The analogous functor in symmetric spectra is not a fibrant
replacement.

To summarize, the results in Theorem 2.4, Theorem 3.1, and Theorem 3.5 to-
gether imply:

Theorem 1.1. The category of reduced operads in orthogonal spectra admits a
model structure where P — Q is a weak equivalence if and only if it induces an
isomorphism of homotopy groups m,P(n) — m,Q(n) for all ¢ and n.

Furthermore, we also get a model structure on algebras and modules under a
fixed reduced operad in orthogonal spectra, and we have a comparison theorem.
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2. Model structures on operads and their left modules

We assume that the reader is familiar with the basic notions of model categories;
see for example [4, 6, 7].

For the basic definitions of enriched categories, consult [8]. We recall a few facts:
Throughout, V denotes a closed symmetric monoidal category with product ®, unit
I, and internal hom [—, —]. Let £ be a symmetric monoidal category with product
A, unit S, enriched with hom objects £(—, —) in V, having tensor ©: V x & — &,
and cotensor written by exponentiation. For A, B in £ and Y in V, there are natural
isomorphisms

[Y,E(A,B)] 2 (Y ® A, B) = (A, BY).

We will assume that both V and the underlying category of £ are monoidal model
categories (see [7, 10, 16]); in particular, the pushout-product axiom holds. Relating
the model structures on ¥V and £, we assume the

Pullback-cotensor axiom: If p: A — B is an &-fibration and i: X — Y is a V-
cofibration, then pM*: AY — BY xzx AX is an E-fibration and, moreover, p/’ is
trivial if either p or 7 is trivial.

By adjunction this axiom has two equivalent reformulations, [10, Proposition 3.4],

one of them similar to Quillen’s axiom SM7. Moreover, our axiom implies that £
is a model enrichment by V), in the sense of [3, Section 3.1]. Let I. be a cofibrant
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replacement for I € V. We assume the unit aziom for V; i.e. if X is V-cofibrant,
then X ® I. — X ® I is a weak equivalence, and the cotensor unit axiom, i.e. if A
is &-fibrant, then A7 — Ale is a weak equivalence.

There is a reduced cotensor (V/I)°P x (£/5) — £/S defined by sending X — I
and A — S to the pullback of S — SX « AX. We denote the reduced cotensor by
AX. Correspondingly, there is a reduced cotensor unit ariom saying that AL — Al
is a weak equivalence whenever A — S is an E-fibration.

Following Lewis and Mandell [10], X in V is called semicofibrant if the inter-
nal hom from X, [X, —], preserves V-fibrations and acyclic V-fibrations. We call X
in V cotensor-cofibrant if X is semicofibrant and cotensoring with X, (—)*, pre-
serves E-fibrations and acyclic £-fibrations. Observe that all cofibrant objects in
V are semicofibrant and cotensor-cofibrant. If the unit in V is cofibrant, then all
semicofibrant objects are cofibrant.

The natural isomorphisms [X ® X', —] 2 [X, [X’,—]] and ((—)¥)X = (—)X&X’
ensure that the class of cotensor-cofibrant objects is closed under tensor product. It
is a deep result, [10, Proposition 6.4(b)], that X ® I.. is cofibrant and X ® I. — X
is a weak equivalence whenever X is semicofibrant. We refer to this as the I.-trick,
and prove:

Lemma 2.1.

a) Suppose that X — X' is a weak equivalence between semicofibrant objects and
Y is semicofibrant; then X @ Y — X' ® Y is also a weak equivalence between
semicofibrant objects.

b) Suppose that X — X' is a weak equivalence between cotensor-cofibrant objects
and A is E-fibrant; then AX" — AX is a weak equivalence.

Proof. To prove b) we inspect the diagram

AX/ AX

(AX/)IC ~ AX’®Ici>AX®IC ~ (AX)IC.

Since X and X’ are cotensor-cofibrant, the vertical arrows are weak equivalences
by the cotensor unit axiom. The bottom map is a weak equivalence by the I .-trick.
The statement in part a) is proved by similar means. O

Remark 2.2.

a) If we take £ =V, we reduce to working in a closed monoidal model category.
Here, the classes of cotensor-cofibrant and semicofibrant objects agree. The
arguments below show that the unit axiom and the use of semicofibrant objects
allow us to construct model categories of reduced (resp. positive) operads in
V and their algebras.

b) In Section 3 we will take V to be compactly generated spaces and £ to be the
category of orthogonal spectra. Observe that the unit [ is a cofibrant space. In
this case the classes of cofibrant, semicofibrant, and cotensor-cofibrant spaces
agree.
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Let Hopf(V) be the category of commutative Hopf objects in V; see [1, Section 1].
Observe that any Abelian monoid M naturally gives rise to a commutative Hopf
object I[M] whose underlying object in V is [ [,, I. Consider Z/2 multiplicatively. If
the folding map I[Z/2] — I can be factored in Hopf(V) as I[Z/2] < H = I, where
the underlying maps in V are a cofibration and a weak equivalence respectively,
then we say that V admits a commutative Hopf interval.

Remark 2.3. Whereas the category of compactly generated spaces obviously admits
a commutative Hopf interval, it seems to be quite technical to construct one in the
positive stable model structure on orthogonal spectra.

For a finite group G, let £¢ denote the category of objects in £ with a right G-
action and G-equivariant maps. A collection in £ is a sequence of objects A(n) in &,
n > 0, such that A(n) has a right action of the symmetric group ¥,,. This category,
Coll(€), equals the product [[>2,E>". Assuming that & is cofibrantly generated,
there is a model structure on collections, where A — B is a weak equivalence (resp.
fibration) if each A(n) — B(n) is a non-equivariant weak equivalence (resp. fibra-

tion) in €. The subcategory Coll(£) (resp. Coll; (£)) of reduced collections (resp.
positive collections) consists of those A such that A(0) = S (resp. A(0) = ().

An operad in £ is a collection P, together with a unit S — P(1), and structure
maps

PE)APmL) A AP(ng) — P(ny+ -+ ng)

satisfying certain conditions; see [13]. Alternatively, one can define this category,
Oper (&), as the monoids for Smirnov’s non-commutative monoidal product on col-
lections in &; see [17] or [12, Section I.1.8]. We denote this product by o, and we
will define and study it more thoroughly later in this paper; see Definition 2.10. The
unit for o is the collection S with §(1) = S and S(n) = @ for n # 1. An operad P is
called reduced (resp. positive) if P(0) = S (resp. P(0) = §)). Denote these categories
656/1"(5) and Oper_ (€) respectively. Let Ass and Com denote the operads for
associative and commutative monoids respectively. Their n-ary parts are given by
Ass(n) = S[2,] and Com(n) = S. Observe that the category of reduced operads is
the subcategory of Oper(€)/Com consisting of a: P — Com with «(0) being the
identity of S. An operad P is called X-split if P is a retract of P A Ass.

For an arbitrary operad P we define categories pMod, pAlg, and pForm?. A left
P-module is a collection M together with a left action Po M — M. A P-algebra
A is a left P-module concentrated in arity 0, i.e. A(n) = * for n > 0. Explicitly,
we have structure maps P(n) A AN — A. More generally, we define a d’th order
P-form to be a left P-module truncated above arity d; i.e. M(n) = * for n > d.
A P-coalgebra is an object B of £ together with structure maps B A P(n) — B
satisfying conditions dual to those of a P-algebra.

Let D be one of the categories Oper, (£), 6}3&(5), pMod, pForm?, or pAlg. In all
cases we have forgetful functors to Coll(£). We say that D admits a transferred model
structure if there is a model structure on D where A — B is a weak equivalence
(resp. fibration) if and only if the underlying map in Coll(£) is a weak equivalence
(resp. fibration).
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Generalizing the main results of [1] we have:

Theorem 2.4. Assume thatV admits a commutative Hopf interval, € is cofibrantly
generated, £/S (resp. £) admits a symmetric monoidal fibrant replacement functor,
and the reduced cotensor axiom (resp. the unreduced cotensor axiom) holds. The cat-
egory of reduced operads in £ (resp. positive operads in £) then admits a transferred
model structure.

Theorem 2.5. Assume that £ is cofibrantly generated and admits a symmetric
fibrant replacement functor. Let P be an operad in € and Q an operad in V. If
there exists an operad map j: P — Q ® P and an interval in V with a Q-coalgebra
structure, then pMod, pForm?, and pAlg admit transferred model structures.

Corollary 2.6. Assume that £ is cofibrantly generated and admits a symmetric
fibrant replacement functor. If there exists an interval in V with a coassociative
comultiplication, then for all X-split operads P the categories pMod, pFormd, and
pAlg admit transferred model structures.

Corollary 2.7. Assume that £ is cofibrantly generated and admits a symmetric
fibrant replacement functor. If there exists an interval in V with a coassociative
and cocommutative comultiplication, then for all operads P the categories pMod,
pFormd, and pAlg admit transferred model structures.

Remark 2.8. Berger and Moerdijk construct functorial path-objects by convolut-
ing with an interval. They use the hypothesis of cofibrant unit together with Ken
Brown’s lemma to show that the first map of the path-object is a weak equiva-
lence. We can bypass this hypothesis in two ways: by placing the interval in another
category V, wherein £ is enriched, or by using Lewis and Mandell’s semicofibrant
objects and replacing Ken Brown’s lemma by their [10, Theorem 6.2].

Proof. We prove all four results simultaneously and follow Berger and Moerdijk
closely in their approach. Hence, we will only outline the arguments to the extent
it becomes obvious that everything they do also works in our enriched setting.

Since pAlg and pForm? are truncations of pMod, we will not mention them
again in this proof; i.e. the details are exactly as for left modules. Moreover, the
two corollaries follow from Theorem 2.5 by t/aki/ng Q = Ass and Com respectively.

To put model structures on Oper (&), Oper(£), and pMod, we consider free-
forgetful adjunctions

Coll, (&) = Oper_ (£),
Coll(€/8) = Oper(€), and
COH(((:) = pMOd .

Using the transfer principle and Quillen’s path-object argument, as explained in [1,

Sections 2.5 and 2.6], we have to check that Oper (&), (:7}2\)_6/1‘(5), and pMod have
small colimits and finite limits, the free functors preserve small objects, Oper (&),

6;51"(5), and »Mod have fibrant replacement functors, and Oper  (£), (5_[\)_6/1‘(5), and
pMod have functorial path-objects for fibrant objects. See also [6, Theorem 11.3.2].
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The functorial fibrant replacement functors of Oper, (&), (Sf)gr(é’), and pMod
are defined aritywise using the symmetric fibrant replacement functors of £, £/,
and & respectively. To get the functorial path-objects we use convolution pairings

Hopf(V)°? x Oper, (£) — Oper_ (£),
Hopf (V)P x (gl;e/r(é') — 6f)/er(5), and
Coalgy xpMod — gopMod .
To construct the first pairing, observe that each commutative Hopf object H
defines a cooperad TH with TH(n) = H®". The unreduced convolution pairing

PTH is then given by PTH (n) = P(n)"# (™). For a commutative Hopf interval H in
V and a fibrant positive operad P, we get a functorial path object

P = PTI i PTH _y PTI[Z/2] P xP.

To see that the first map is a weak equivalence, use Lemma 2.1 and the fact that
each H®" — [®" ig a weak equivalence between cotensor-cofibrant objects. By [10,
Proposition 6.4] each map (I[Z/2])®" — H®™ is a cofibration. Hence, the middle
map is a fibration. The last map, PT![2/2l — P x P, is a projection, whence a
fibration since P is fibrant.

For the second pairing, we are given H € Hopf(V) and P — Com. Observe that
the counit, e: H — I, is a map of commutative Hopf objects. Thus, we can define

the reduced convolution pairing 7;7\"1/{ as the pullback of

o
Com < Com™ — pTH,

Let P be a fibrant reduced operad in &, and let I[Z/2] < H = I be a commutative
Hopf interval in V. By reduced convolution we get

p:ﬁ\fl EﬁﬁﬂpTI[Z/z] - P XCom P-

By the reduced cotensor unit axiom, Lemma 2.1 holds for the reduced cotensor.
Hence, the first map is a weak equivalence. The middle map is a fibration by
the cotensor-pullback axiom. Finally, the last map is, for n > 1, the projection

PILZ/2(n) = P(n)*s2" — P(n) xgs P(n) onto the first and last factor, whence a
fibration. This yields a functorial path-object for fibrant P.

The last convolution pairing, M7, between a coalgebra B under an operad Q in
V and a left P-module M, is defined by the formula M?(n) = M(n)?. Here, the
left @ ® P-module structure map

(QOP)(k) AMB(ny)A--- AMPB(ny) — MB(n)
is given as the adjoint of the composition
B®(QeP)(k) AMP(ny) A+ AMP (n)
~ (B® Q(k)) ® (P(k) AM(n1)? A+ A M(ng)?)
— B®* o (P(k) A M(n1)P A A M(ni)?)
= P(k)A(B®M(m)P)A- A (B Mng)?)
— P(k) AM(ny) A--- AN M(ng) — M(n).
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An interval T 11T < J = I with Q-coalgebra structure gives a path-object
M=M= M - M >0« M,

for fibrant M, where the first map is a weak equivalence by Lemma 2.1 and the
second map is a fibration by the cotensor-pullback axiom. O

The category of collections, Coll(£), is also known as the category of X-modules;
see [12, Section II.1.2]. An map of operads P — Q is therefore called a X-cofibration
if the underlying map of collections is a cofibration. Furthermore, P is called X-
cofibrant if the map from the initial operad into P is a X-cofibration. Observe that
extra care has to be taken if the unit S is not cofibrant in &£: The initial positive
operad is S, the unit for the o-product on collections, while the initial reduced
operad S is given by S(n) =S for n=0,1 and S(n) =0 otherwise. Therefore,
a reduced operad P is X-cofibrant if the unique map S — P is a Y-cofibration.
Similarly, a positive operad P is X-cofibrant if the unique map & — P is a -
cofibration. Observe that our notions of 3-cofibrant differs from the definition found
in [1, Section 4], but agrees with the definition in [2, Section 2.4]. However, all
notions coincide if S is cofibrant in &£.

Proposition 2.9. Any cofibrant reduced (resp. positive) operad is L-cofibrant.

Proof. We consider the case of reduced operads first. Since the initial reduced
operad, S, is X-cofibrant, it is enough to show that X-cofibrant reduced oper-
ads are closed under cellular extensions. We will now contemplate the difference
between reduced and unreduced operads. Let F: Coll(£) — Oper(€) be the free
operad functor, and let F': 651(5 /S) — 6_1;&(5 ) be the free reduced operad func-
tor. Given a reduced collection A in £/S, we observe that FA(n) = FA(n) for n > 0
while FA(0) = S.

[1, Corollary 5.2] says that, for any cofibration A < B of collections and any map
of operads F'A — P, the induced map P — P Upa F'B is a ¥-cofibration. So, if P is
a Y-cofibrant reduced operad, A < B a cofibration in Coll(£/S5), and u: A — U(P)
an arbitrary map, then the only difference between P Uz 4 FB and P Upy FB lies
in arity 0. Hence, the map P — P Uz 4 FB is a X-cofibration.

Next, we consider the case of positive operads. Observe that the free positive
operad functor is the restriction of F': Coll(£) — Oper(€) to the subcategory of
positive collections. Hence, [1, Corollary 5.2] immediately applies and yields the
result. O

We now turn towards Smirnov’s product on collections; see [17]. We begin with
the definition of the o-product and proceed by proving two technical results, namely
Propositions 2.11 and 2.12. Berger and Moerdijk prove technicalities of similar flavor
in [2, Section 2.5].

Let rq,...,7r be an increasing sequence of non-negative integers that sum up
to n. They determine a partition Ry U---U Ry of {1,...,n}, where R; contains
the elements from rqy +7r9 + -+ 1,1+ 1tory +ro + -+ + r;41 + 7; inclusive. Let
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P(r.) be the subgroup of ¥ x X9 consisting of pairs (7, ) with the property that
p € R, ifandonlyif o(p) € R;.

For each T € 3, there is a unique Tpjock in 3P such that (7, Thiock) € P(r«) and, for
each i, the restriction of Tpoex to R; is order-preserving. Given (7,0) in P(r.), let
o € 2°P denote the unique permutation such that

(1,0.) (T, Thiock) = (7,0).

Observe that o, canonically corresponds to a k-tuple (o1,...,0%) in 3P x -+ x
3P, Let ¥(r,) abbreviate ¥, x --- x ,,. Denote by Aut(r,) the permutations in
Yk, that acts trivially on (r1, 7, ..., 7). This is exactly the image of P(r.) projected
into X, and we observe that P(r,) can be written as a semidirect product Aut(r,) x
(7 )°P.

Let X be a collection in £. By convention X (r) has a right ¥,-action. Abbreviate
X(r1) A+ AN X(rg) by X(ry). There is a left P(r,)-action on X (r) given by letting
(7, Thlock) Permute the factors X (r1), ..., X (ry) as 7 prescribes, whereas (1, 0,) acts
on each individual factor X (r;) by o;. Now induce up to a 3j x XoP-equivariant

object IndE'EX)Z" X (r4). Define

X xXOP
]_[1 ndpf " X (r),

where the coproduct runs over all increasing sequences r, of length k& and with sum
n. On X[k, n] we have a left ¥j-action and a right ¥,,-action.

Definition 2.10. For collections A and X in &€ define
H A /\Ek k‘ n]

We will now derive a few properties of this product, but before that let us intro-
duce a piece of terminology coming from Goodwillie’s calculus of functors: We call
the diagram

A—B
b
C—D

a cofibration square if the three maps A — B, A — C and BU4 C — D are cofi-
brations.

Proposition 2.11. Let A be cofibrant in the model category of reduced collection
under S (resp. positive collections under S), and let X — Y be a cofibration between
cofibrant collections. Then Ao X — AoY is also a cofibration.

Proof. Fix n, k, and r,. We have a chain of groups
P(ry) = Aut(ry) x ()P C Aut(r,) x TP C 3 x XoP.

This gives a natural isomorphism

A(E) As, (Indﬁ’gjj? X(r*)) 2 A(k) Aus(r) (Indz(,, oo X(m)) .
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In the following discussion we drop the superscript °® and take the view that the
action of 3, is a right action. By inspection of the definition of the o-product, it is
enough to show that each

A(k) Apusr) (Indggr ) X(r*)) — A(k) Anue(r) (Indggr 5 Y(r*))

is a 3,-equivariant cofibration. Clearly, X (r.) — Y (r.) is a X(r.)-equivariant cofi-
bration and Indg?m) preserves (equivariant) cofibrations. Observe that the map
above is tautologically an equivariant cofibration if A is the initial reduced operad

S (resp. the initial positive operad S). In general, we may assume that A(k) is
a cellular £Z+-object relative to S(k) (resp. rel S(k)), i.e. A(k) is a (transfinite)
sequential colimit where each step A(k), < A(k)q+1 is formed by gluing a generat-
ing cofibration ¥) x 0, <— X X D. By the pushout product axiom for £, we have
a cofibration square

S 3n
sz/Aut(r*) 0o N (Indz(m) X(T*)) I sz/Aut(r*) Do N (Indz(m) X(T*))

l l

3 Yin
Is:, /ut(r, 9o A (Indg(“) Y(r*)) | Y (Indg(m Y(r*)) .

Hence, also

A(K)a Aty (045 X () —= AK)as1 Ay (IndS, ) X))

| |

A(k)a /\Aut(r*) (Indgz}*) Y(T*)> - A(k)a-l-l /\Aut(r*) (Indga*) Y(T*))

is a cofibration square. The conclusion follows. O

Proposition 2.12. Let A =, B be a weak equivalence between cofibrant reduced
collections under S (resp. cofibrant positive collections under S), and let X be a
cofibrant collection. Then Ao X — B o X is also a weak equivalence.

Proof. By Ken Brown’s lemma, it is enough to consider the case where A — B
is an acyclic cofibration between reduced (resp. positive) collections. Fix n, k and
ry as above. We may assume that B(k) is cellular relative to A(k), i.e. we write
B(k) as a (transfinite) sequential colimit starting with B(k)o = A(k) and such that
each step B(k)o — B(k)a+1 is the pushout along a generating acyclic cofibration,
Yig X O — Xk X D,. We now get a pushout diagram

S 3
HZk/Aut(r*) 0o N (Indz(”) X(’”*)) - HEk/Aut(r*) Do A (Indz(r*) X(T*))

| |

B(k)a M) (0455 ) X (1)) ——= BlR)ar1 A (Ind, ) X(r)),



Homology, Homotopy and Applications, vol. 9(2), 2007 406

where the top map is an acyclic cofibration by the pushout-product axiom. Hence
the bottom map also is an acyclic cofibration. O

The free functor Fp: Coll(€) — pMod is given by the o-product, i.e. Fp(X) =
P o X. This extends the Schur functor defining the free P-algebra.

Theorem 2.13. Under the assumptions of Theorem 2.5, assume additionally that
& is left proper and that the domains of the generating cofibrations are cofibrant. If
¢: P — Q is a weak equivalence between Yi-cofibrant reduced (resp. positive) operads,
then the base-change adjunctions pMod = gMod, pAlg = gAlg, and pForm? =
QFormd are Quillen equivalences.

Proof. We prove this for left modules; the other cases are similar. The categories
pMod and gMod both carry transferred model structures. Hence, the base-change
adjunction is a Quillen pair by inspection. Since the forgetful functor ¢* reflects weak
equivalences, it is enough to show that the unit of the adjunction, M — ¢*¢/ M, is
a weak equivalence for each cellular left P-module M. Cellular means that M is
a (transfinite) sequential colimit starting from the initial left P-module and where
each M,y is the pushout of M, «— Pod, — Po D, for some generating cofi-
bration 9, — D, in Coll(£). Observe that ¢*¢ M inherits a similar description;
ie. ¢* 1M1 is the pushout of ¢p* M, «— ¢*(Q o0 dy) — ¢*(Q o D,). Recall from
Proposition 2.12 that Pod, —» Qod, and Po D, — Qo D, are weak equiva-
lences, while P o9, — P o D, and Qo d, — Qo D, are X-cofibrations by Propo-
sition 2.11. Thus, inductively, all M, — ¢*¢; M, are weak equivalences, and the
conclusion follows. O

3. The case of orthogonal spectra

It is convenient to replace the category of all topological spaces by compactly
generated spaces (= weak Hausdorff k-spaces; see [14]). We define the reduced

homotopy colimit of a sequence X; ELN X ELN X3 — -+ of based spaces as the
reduced mapping telescope. hocolim,, X,, has the topology of the union UZOZO F,,
where the n’th space of the filtration is

Fo= (X1 ALy) Uy, (Xa AL Upy (Xs AL U U (Xpoy AL Up, | X

Since each X, is compactly generated, all base points * € X, are closed, so any com-
pact subset of hocolim,, X, is contained in some Fj; see [19, Lemma 9.3]. Using the
projections F;, — X,, it is easy to prove that we have natural group isomorphisms

co}lim T Xn — Ty hocglim X,

An orthogonal spectrum X consists of a based O(V')-equivariant space X (V), for
every finite-dimensional real inner product space V', together with O(V)) x O(W)-
equivariant suspension maps o: X (V) A S" — X(V @ W) satisfying the obvious
coherence condition; see [11, Example 4.4]. Fix orthogonal spectra X and Y. Now
consider pairs (Z,u) where Z is an orthogonal spectrum and p is a family of
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maps u(V,W): X(V)ANY (W) — Z(V @ W) such that u(V,W) is O(V) x O(W)-
equivariant and the following diagram commutes for all U, V and W

X(U)AY (VW) *)
% \me\m
w w
X(U)AY (V)AS SOV > Z(UV)ASY ———— > Z(UaVeW)
twistl TE
ox Al w(UeW,V)

X(UASWAY (V) ——————— X(UBW)AY (V) —————————> Z(UsWaV).

The smash product, X AY, is initial among such Z. Thus, any such pair (Z, u)
determines a unique map X AY £ Z. We denote the category of orthogonal spec-
tra by Sp®. The smash product, A, is symmetric monoidal with unit the sphere
spectrum S. Moreover, Sp® is enriched, tensored and cotensored over compactly
generated spaces. The stable homotopy groups of an orthogonal spectrum X are
defined, for all integers ¢, in terms of homotopy groups of spaces by the formula
mgX = colim,, mg4+, X (R"). A map X — Y of orthogonal spectra is a weak equiva-
lence if it induces isomorphisms 7, X = m,Y" of all g. This definition of weak equiv-
alence is part of a model structure on Sp©:

Theorem 3.1 ([11, Section 14]). There is a model structure on Sp®, called the
positive stable model structure, where the weak equivalences are as above. The model
structure is cofibrantly generated, left and right proper, topological, and satisfies
the pullback-cotensor and pushout-product axioms. Furthermore, the domains of the
generating cofibrations are cofibrant. The fibrations are characterized as the maps
E — B such that for all V of positive dimension E(V) — B(V) is a Serre fibration
and the diagram

E(V)—QE(V & R)

I |

B(V)—=QB(V ®R)
is homotopy pullback.

Definition 3.2. Abbreviate R*" @V ZV eV @& ---®V by nV. Define the functor
T by the formula TX (V) = hocolim,, Q"Y' X ((n+1)V).

In order to see that T is a functor from spectra to spectra, we need a precise
understanding of both suspension maps and the structure maps of the homotopy
colimit. The key point is that the latter maps comes from adding copies of V' to the
left side of the spectrum index, whereas suspension occurs on the right.

Given an orthogonal spectrum X, we are interested in the spaces QY X (W) as
V and W varies. Moreover, we will describe the functorality induced by the adjoint
of the suspension 6: X(W) — QUX(W @ U).

Let 2 be the topological category with objects pairs (V, W) and morphisms
(U,a,8): (V,WW) — (V',W’) consisting of a finite-dimensional real inner product
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space U together with linear isometric isomorphisms
oa: VU=V and B:WaoU=W.

In # we identify two morphisms if they only differ by the choice of U up to iso-
morphism. If V, W, V', W’ and U are oriented, then we call a morphism in ¢
positively oriented if o and ( are of the same orientation. This gives a topological
category 4 of pairs of oriented inner product spaces and positively oriented mor-
phisms. It is easily seen that the space £ ((V, W), (V/,W’)) is connected whenever
dimV < dim V’.

Now observe that each orthogonal spectrum X gives rise to a continuous functor
from J# to spaces by sending (V, W) to QY X(W). The induced map of (U, o, ) is
given as

Qv x(w) 2, Vel x(w e U) = Q¥ X (W)

where the homeomorphism is induced by « and S.
To get the structure maps of the homotopy colimit defining 7', we consider the
pair (nV, (n+1)V') and add a copy of V to the left. This specifies a morphism

(V. m+1)V) = (V& nV,V & m+1)V) = (1), n42)V),
which induces the homotopy colimit structure map
AV X ((n+1)V) — QDY X (n42)V).

To get the spectrum suspension maps, we add n + 1 copies of W to the right side
of (nV, (n+1)V') and shuffle:

(n‘/, (n+1)V) — (nV @D (n+)W, (n+1)V & (n+1)W)
2n(VeW)o W, aty(V e Ww)).
When shuffling the W’s into the V’s we match the copies of V' with copies of W

starting from the left. Thus the rightmost copy of W is unmatched in the left
component of the pair. We get an induced map

QVX ((n+1)V) — Q' VEMQW X (1) (V @ W)).

The suspension-loop adjunction can be performed partially, and with our conven-
tions this gives a bijection between maps A — QUQWY and A A SW — QUY. Thus
the rightmost and unmatched copy of W gives us the suspension

QX ((+)V)) ASY — Q VIV X (i) (V @ W)).

This entitles us to call the assignment V Q”VX((n+1)V) a spectrum, and we
denote it by Q%" X.

Now observe that these suspension maps commutes with the homotopy colimit
structure maps. Hence, T'X is a spectrum as claimed.

Next, we want to specify the symmetric monoidal structure of 7T'. Fix orthogonal
spectra X and Y. Given that k > max(m,n), we will define spectrum maps

[ QFX AQOTY — QFF(X AY).

To do this we will specify a family uﬁ%n(\/7 W) satisfying (*). The idea is first to go
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from Q™Y X ((m+1)V) and Q"WYY ((n+1)W) to QFV X ((k+1)V) and QWY ((k4+1)W)
respectively, using the homotopy colimit structure maps and then to shuffle V’s and
W’s. To be precise we define pf, , (V, W) as the composition
Q™ X (m+1)V) A QY ()W)

— OV X (e+)V) A VY (k1) W)

— QYW (X (e )V) AY (k1) W)

— QFVEW) (X AY) (e )(V @ W)).
Observe that the ufj%n’s commute with the homotopy colimit structure maps as

follows:
k

m,n

QPmX A QY —— QFF(X AY)
QemHLX A QO"Y

and

k
QEmY A QENY s QER(X AY)

N

k+1
Homt1,n

QMY A QOny —> QEFFL(X AY).

Clearly, we have a natural map TX A TY — hocolim,y, , (2" X A Q®"Y). By send-
ing the pair (m,n) to k = max(m,n) and applying ufn’n, the diagrams above ensure
that we have a well-defined map

hocolim (¥ X A Q®"Y) — hoc](c)lim QPF(XAY)=T(X AY).

Hence, we have defined the monoidal structure p: TX ATY — T(X AY). To verify
associativity we observe that the following diagram commutes:

IAL2
Q®n1 x A QO®n2y A QO®ns 7 28 O®nL Y A Q®k2 (Y A Z)
J//inll,nQ/\l i#il,@
k
Hiyon
Q®k1 (X AY) A Q8 Z e Q2F(X AY A Z).

Furthermore, the symmetry of T comes from commutativity of the diagram

k

QEmx A QEnY s QBR(X AY)

ltwist \Ltwist
k
1%

n,m

QOny A QOmY —— Q®F(Y A X).
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Theorem 3.3. T is a symmetric fibrant replacement functor for the positive stable
model structure on orthogonal spectra.

Proof. We have already argued that 7" is a symmetric monoidal functor. It remains
to show that T'X is fibrant, for all X, and that the coaugmentation X — TX is a
weak equivalence.

Because of Theorem 3.1 we only consider V' of positive dimension. The ¢’th
homotopy group of TX (V) is calculated as colim,, m,Q"" X ((n+1)V'). Now consider
the following solid diagram in JZ, :

(n‘/, (n+1)V) ((2n+1)‘/, (27L+2)V)

(n(VeR)&R,m+1)(VaR)) — (2nt+1)(V @ R) @ R, 2n+2)(V & R)).

Here, the horizontal maps induces homotopy colimit structure maps, whereas the
vertical maps correspond to suspension by R. For dimensional reasons, the dotted
map exists in %, making the upper-left triangle commute. Since the morphism
spaces of %, are connected, the lower-right triangle will commute up to homotopy.
Thus, the induced diagram of homotopy groups

TV X ((n41)V) T QDY X (2nt2)V)

]

T VEROR X (n41)(V B R)) —— m QEHDVEROR X (2n49)(V @ R))

commutes. This shows that TX (V) — QT X (V @ R) is a weak equivalence. Hence,
TX(V) is fibrant in the positive stable model structure.
A similar argument shows that the map X — TX is a weak equivalence. O

Remark 3.4. The construction of the functor T can also be a carried out in the
category of symmetric spectra. However, in this case TX will in general not be a
positive Q-spectrum. For a counterexample consider X = F1S!, the free symmetric
spectrum generated by a circle S' in level 1. The reason that the proof fails for
symmetric spectra is that the category corresponding to J#, is discrete and, hence,
allows no non-trivial homotopies.

In order to comnstruct a symmetric fibrant replacement functor for symmetric
spectra, other techniques are required. Perhaps a modified version of the small
object argument would do this.

Theorem 3.5. For an orthogonal spectrum X over S, let TX be the levelwise homo-
topy pullback of S — T'S «— T'X. This defines a symmetric fibrant replacement func-
tor, T, for the positive stable model structure on orthogonal spectra over S.

Proof. The natural transformation ji: TX ATY — T(X A'Y) is the canonical map
into the pullback for the diagram
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m

TXATY TX ATY T(X AY)
SAS = S T(S) = T(SAS).

It is straightforward to verify that this gives a symmetric monoidal structure on 7.
By construction TX — S is a level fibration. Fix some positive dimensional V.
Consider the diagram

TX(V)—=TX(V)—=QI'X(V&R)

L |

S(V) TS(V) —=QTS(V ®R).

The left square is homotopy pullback by definition of TX, while the right square is
homotopy pullback since the top and bottom maps are weak equivalences. Conse-
quently, the outer square is homotopy pullback. Now look at the diagram

TX(V) —=QTX(VaR) — QTX(V &R)

l | |

S(V) QS(V & R) — QTS(V & R).

The outer squares of this and the previous diagram are the same. Since Q(—) com-
mutes with homotopy pullback, and by the definition of TX, the right square is
homotopy pullback. It follows that the left square is homotopy pullback; hence we
are done. O
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