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A COHOMOLOGICAL INTERPRETATION OF
BRION’S FORMULA

THOMAS HÜTTEMANN

(communicated by Nigel Ray)

Abstract
A subset P of Rn gives rise to a formal Laurent series with

monomials corresponding to lattice points in P . Under suit-
able hypotheses, this series represents a rational function R(P );
this happens, for example, when P is bounded in which case
R(P ) is a Laurent polynomial. Michel Brion [2] has discovered
a surprising formula relating the Laurent polynomial R(P ) of a
lattice polytope P to the sum of rational functions correspond-
ing to the supporting cones subtended at the vertices of P . The
result is re-phrased and generalised in the language of cohomol-
ogy of line bundles on complete toric varieties. Brion’s formula
is the special case of an ample line bundle on a projective toric
variety. The paper also contains some general remarks on the
cohomology of torus-equivariant line bundles on complete toric
varieties, valid over arbitrary commutative ground rings.

1. Introduction

The main result of this paper is a generalisation of a formula discovered by
Brion, relating the lattice point enumerator of a rational polytope to the lattice
point enumerators of supporting cones subtended at its vertices [2, §2.2]. (See [1]
for an introduction to the theory and an elementary proof based on “irrational
decompositions”.) In spirit the proof of the generalisation is similar to Brion’s orig-
inal exposition, but avoids the use of equivariant K-theory in favour of a more
elementary treatment of cohomology of line bundles on complete toric varieties.

Since line bundles are encoded by support functions defined on a fan, the result
can be re-formulated in combinatorial terms. This has been done for upper convex
support functions (corresponding to line bundles which are generated by global
sections) by Ishida [6, Theorem 2.3], generalising the original result of Brion. The
present paper goes one step further and includes the case of arbitrary, non-convex
support functions.

We will give a precise formulation of the result below. Roughly speaking, we
prove that a sum of certain rational functions, all given by infinite Laurent series,
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degenerates to a Laurent polynomial, and interpret the coefficients of the occurring
monomials as homogeneous parts of equivariant Euler characteristics of the sheaf
cohomology of a torus-equivariant (algebraic) line bundle.

The proof relies on a new non-standard computation of the cohomology of line
bundles on complete toric varieties (Theorem 2.2) which is similar to, but eas-
ier than, the standard result as given by Oda [7, Theorem 2.6] and Danilov [4,
Theorem 7.2]. This computation in turn depends on a variant of Čech cohomol-
ogy (Proposition 2.1) which should be well-known. Since it seems not to be well-
documented in available publications, we include a proof at the end of the paper
(§4).

Notational conventions and the main result
We have to introduce some notation first. Let M ∼= Zn be a lattice of rank n.

We call the set of maps S = map(M, C) the set of formal Laurent series. Given an
element b ∈ M , we let xb ∈ S denote the map which is zero on M \ {b}, and takes
the value 1 on b. We call xb the Laurent monomial with exponent b.

The terminology can be justified. Given a choice of basis e1, e2, . . . , en of M ,
we can write every element b ∈ M uniquely as b =

∑
j bjej with bj ∈ Z. Then for

f ∈ S the formal sum ∑
b∈M

f(b) · xb1
1 xb2

2 . . . xbn
n

is a Laurent series in the indeterminates x1, x2, . . . , xn. The map xb corresponds to
the product xb1

1 xb2
2 . . . xbn

n , i.e., a series with a single non-trivial summand.
Let P ⊂ S denote the subset of maps with finite support; in particular, it contains

the maps xb defined above. After choosing a basis of M , we can identify P with
the ring of Laurent polynomials in n indeterminates. On the level of maps, the
product is given by a convolution formula. The same formula equips S with the
usual structure of a P -module.

Set MR = M ⊗ R ∼= Rn. We consider M as a subset of MR using the natural
identification M = M ⊗ 1. Given a subset K ⊆ MR and an element b ∈ MR, we
define

b + K = {b + x |x ∈ K} and −K = {−x |x ∈ K}.
Definition 1.1. For a subset K ⊆ MR we define the formal Laurent series

R[K] =
∑

a∈M∩K

xa ∈ S.

A straightforward calculation shows R[b + K] = xbR[K] for any b ∈ M .
In favourable cases, for example, when K is a pointed rational polyhedral cone

in MR, the series R[K] represents a rational function (an element in the quotient
field Q(P ) of P ) which we will denote R(K) ∈ Q(P ).

As an explicit example, for

K = R62 = 2 + R60 ⊂ R

we have R[K] = x2R[R60] = x2
∑

a60 xa, so R(K) = x2/(1− x−1). See [1] for more
examples.
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Let N = homZ(M, Z) ∼= Zn be the dual lattice of M . Then NR = N ⊗ R ∼= Rn is
naturally the dual of the R-vector space MR. The duals of N and NR are canonically
isomorphic to M and MR, respectively.

Let Σ be a finite complete fan in NR, consisting of strongly convex rational
polyhedral cones, and denote by XΣ the associated toric variety defined over C.
(See [7] for details on cones, fans, and the relation to varieties.) Let h : NR - R
be a support function on Σ. On each cone σ ∈ Σ, it coincides with a linear function
hσ ⊗ idR for some hσ ∈ homZ(N, Z) = M . Define the rational function

R(Σ, h) =
∑
σ∈Σ

dim σ=n

R(−hσ + σ∨)

where σ∨ = {x ∈ MR | ∀y ∈ σ : 〈x, y〉 > 0} is the dual cone, defined using the stan-
dard evaluation pairing 〈x, y〉 = y(x). Denote the torus-equivariant line bundle on
XΣ associated to h by Lh; see §2.2 below for an explicit description. The torus
Spec C[M ] acts naturally on the cohomology vector spaces Hk(XΣ;Lh) which con-
sequently acquire an M -grading (note that M is the character group of the torus).
Given a vector a ∈ M , we write Hk(XΣ;Lh)a for the homogeneous part of degree a
of the k-th sheaf cohomology of Lh. See §2.2 below for an elementary description.

Theorem 1.2. The rational function R(Σ, h) is a Laurent polynomial. The coeffi-
cient of the monomial xa in the polynomial R(Σ, h) is the Euler characteristic of
H∗(XΣ;Lh)a, so it is given by the alternating sum

χ(Lh)a =
n∑

k=0

(−1)k dimC Hk(XΣ;Lh)a.

In short, we have the equality

R(Σ, h) =
∑
a∈M

χ(Lh)a · xa. (1)

Brion’s formula for lattice polytopes
For an n-dimensional polytope K ⊂ MR with vertices in M , let ΣK denote the

inner normal fan of K. The support function of K, given by

hK : NR - R, x 7→ − inf{〈p, x〉 | p ∈ K}

defines a support function on ΣK . Explicit calculation of sheaf cohomology shows

Hk(XΣK
;LhK

) =
{

0 if k 6= 0⊕
M∩K C if k = 0.

(See [7, Corollary 2.9], or [5, Theorem 2.5.3] for an elementary proof.) If σ is an
n-dimensional cone in ΣK , and hσ is the linear function associated to hK and σ,
then −hσ + σ∨ is the support cone of K subtended at the vertex corresponding
to σ. Thus Theorem 1.2 reduces to the original theorem of Brion [2, §2.2]: The
rational function R(ΣK , hK) is a Laurent polynomial with terms corresponding to
the integral points of K.
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Similarly, by considering the support function −hK , and using the calculation

Hk(XΣK
;L−hK

) =
{

0 if k 6= n⊕
M∩int (−K) C if k = n

(see [4, §11.12.4], or [5, Theorem 2.5.3] for an elementary proof), we see that the
rational function R(ΣK ,−hK) is a Laurent polynomial with summands correspond-
ing to the integral points in the interior of −K, up to a factor of (−1)n [2, §2.5].

Finally, by considering a globally linear support function h = a ∈ M , so that
La

∼= OXΣK
, we see that Theorem 1.2, together with the calculation

Hk(XΣK
;La) =

{
0 if k 6= 0
C if k = 0

with H0 concentrated in homogeneous degree a (see [4, Corollary 7.4], or [5, Theo-
rem 2.5.3] for an elementary treatment), gives R(ΣK ,a) = xa (cf. [6, Corollary 2.4];
see [3, Proposition 3.1] for a Laurent series version).

The cohomology calculations in this subsection can be done with the aid of
Theorem 2.2 below; in essence, one has to check that certain subcomplexes of the
sphere Sn−1 are contractible. This is what is behind the calculations in the paper [5]
which, however, uses a dual point of view, using the fact that the fans considered
above are normal fans of polytopes. We omit the details.

Ishida’s formula
If the support function h is upper convex (equivalently, if the associated line

bundle is generated by global sections), then the negatives of the linear functions
hσ for n-dimensional cones σ ∈ Σ span a polytope Q in MR with vertices in M .
Since

Hk(XΣP
;Lh) =

{
0 if k 6= 0⊕

M∩Q C if k = 0

(see [7, Corollary 2.9]), our Theorem 1.2 specialises to [6, Theorem 2.3] for complete
fans.

An explicit example
Example 1.3. We consider the case n = 2, N = Z2 and NR = R2. Let Σ be the
unique complete fan in NR whose 1-cones are generated by the following four vectors:

v1 =
(

1
1

)
, v2 =

(
0
1

)
, v3 =

(
−1
1

)
, v4 =

(
0
−1

)
.

Let X, Y ∈ M = homZ(N, Z) denote the dual of the standard basis of N = Z2. Let
h : NR - R be the support function specified by the values

h(v1) = 0, h(v2) = −2, h(v3) = 0, h(v4) = −2,

given by extending linearly over cones. For example, on σ = cone(v1, v2) it agrees
with the linear function hσ = 2X − 2Y ∈ M which corresponds to a Laurent mono-
mial written x2y−2. Using Theorem 2.2 we can explicitly compute the cohomol-
ogy of Lh (see the end of §2 below). It turns out that H0(XΣ;Lh) = 0, and that
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dim H2(XΣ;Lh) = 1 concentrated in homogeneous degree −Y ∈ M . The vector
space H1(XΣ;Lh) is 4-dimensional, with a 1-dimensional contribution coming from
degrees 0, −X + Y , Y and X + Y . The right-hand side of equation (1) thus is
(denoting the indeterminates again by x and y)

−1− x−1y − y − xy + y−1.

The left-hand side is worked out easily as well. For example, the summand corre-
sponding to σ = cone(v1, v2) is the rational function represented by the lattice point
enumerator of the shifted cone

−hσ + σ∨ = (−2X + 2Y ) + cone ( X,−X + Y ) ⊂ MR

or, in coordinates of MR ∼= R2,

−hσ + σ∨ =
(
−2
2

)
+ cone

{ (
1
0

)
,

(
−1
1

) }
.

This lattice point enumerator is given by

x−2y2

(1− x−1y)(1− x)
.

In total, the left-hand side of equation (1) equals

x−2y2

(1− x−1y)(1− x)
+

x2y2

(1− x−1)(1− xy)

+
x−2y−2

(1− x−1)(1− x−1y−1)
+

x2y−2

(1− x)(1− xy−1)
,

which coincides with the Laurent polynomial −1− x−1y − y − xy + y−1, as an
explicit calculation shows.

2. Cohomology of line bundles

2.1. Čech cohomology of quasi-coherent sheaves
Let Σ be a finite complete fan in NR. By taking intersection of positive-dimen-

sional cones with the unit sphere Sn−1 (defined with respect to any inner product),
the fan induces the structure of a regular CW-complex on Sn−1. Given a cone
σ ∈ Σ, we write σ̄ = σ ∩ Sn−1 for the corresponding cell of Sn−1. This includes
the case of the empty cell 0̄. We fix once and for all orientations of the cells and
write [σ̄ : τ̄ ] for the incidence number of σ̄ and τ̄ . By convention, we have [τ̄ : 0̄] = 1
for all 1-dimensional cones τ ∈ Σ. Regularity of the CW-decomposition implies that
[σ̄ : τ̄ ] ∈ {−1, 0, 1} for all cones σ, τ ∈ Σ. Note that in the (augmented) cellular chain
complex of Sn−1 the empty cell corresponds to the augmentation (concentrated in
degree −1).

The computation of Čech cohomology does not depend on using the complex
numbers as a ground field, so let A denote a commutative ring, and let XΣ denote
the toric A-scheme associated to Σ. It is obtained by gluing the affine A-schemes
Spec A[M ∩ σ∨] where σ varies over the elements of Σ.
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Proposition 2.1. Let F be a quasi-coherent sheaf on XΣ. Then we can compute
the cohomology modules Hk(XΣ;F) as the cohomology of the Čech cochain complex
C• = (C•, d) which is defined by

Cd =
⊕
σ∈Σ

codim σ=d

Fσ,

with differential defined on direct summands by

Fσ [σ̄:τ̄ ]- Fτ .

Here Fσ denotes the module of sections of F over the affine open subset of XΣ

determined by the cone σ. In particular, Fσ is an A[M ∩ σ∨]-module. The family
(Fσ)σ∈Σ of modules determines F completely.

This variant of Čech cohomology should be well-known, but unfortunately there
seems to be no published proof available. For the reader’s convenience we give a
proof in §4 below.

2.2. Torus-equivariant line bundles
We will apply Proposition 2.1 in the case where F is a torus-equivariant line

bundle on XΣ. Recall [7, §2] that such a sheaf is specified by a support function
h : NR - R which is linear on each cone, and takes integral values on N . In
other words, for each σ ∈ Σ there exists hσ ∈ homZ(N, Z) = M such that h|σ =
(hσ ⊗ idR) |σ. The linear function hσ is well-defined up to the addition of a linear
function which vanishes on N ∩ σ; cf. [4, §6.2].

The line bundle Lh corresponding to a support function h has a very explicit
description: On the affine open set corresponding to σ ∈ Σ the space of sections is
the free A[M ∩ σ∨]-module of rank 1 with basis −hσ. Note that all these modules
are contained in the free A-module A[M ] with basis M ; hence we may consider
them as M -graded A-modules.

We can apply Proposition 2.1 to the line bundle Lh. The resulting cochain com-
plex of A-modules has a natural M -grading, and the differentials are homogeneous
of degree 0 with respect to this grading (in the language of free modules, all the
terms in C• have a basis consisting of a subset of M , and all structure maps are
induced by inclusion of subsets.) Hence the cohomology modules Hk(XΣ;Lh) have
a direct sum decomposition

Hk(XΣ;Lh) =
⊕
b∈M

Hk(XΣ;Lh)b

with Hk(XΣ;Lh)b being isomorphic to the cohomology of the degree-b sub-cochain
complex C•b = (C•b, d) of C•.

The cochain complex C•b itself admits a simple description: It is given by

Cd
b =

⊕
σ∈Σ, codim σ=d

b+hσ∈σ∨

A

with differential induced by incidence numbers as before. Now if τ is a face of
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σ ∈ Σ, then σ∨ ⊆ τ∨, so b + hσ ∈ σ∨ implies b + hσ ∈ τ∨. Hence b + hτ ∈ τ∨ (for
hτ − hσ ∈ τ∨, and τ∨ is closed under addition since it is a convex cone). Thus the
set

S(h,b) :=
⋃

σ∈Σ
b+hσ∈σ∨

σ̄ (2)

is a sub-complex of Sn−1, and C•b is nothing but the augmented cellular chain
complex of S(h,b), re-indexed suitably as a cochain complex. In other words, we
have shown:

Theorem 2.2. Suppose Σ is a complete fan in NR, and h : NR - R is a support
function on Σ. Let Lh denote the torus-equivariant line bundle on XΣ associated
to h, and define the space S(h,b) as in (2). For all b ∈ M there is an isomorphism
of A-modules

Hk(XΣ;Lh)b ∼= H̃n−1−k(S(h,b);A)

where H̃d( · ;A) denotes reduced cellular (or singular) homology with coefficients
in A.

For this to make sense, it is imperative to consider the augmented cellular chain
complex to compute H̃d with augmentation concentrated in degree −1. In other
words, H̃−1(∅) = A by convention, while H̃−1(X) = 0 whenever X 6= ∅.

The advantage of Theorem 2.2 over the standard result as given in [7, Theo-
rem 2.6] is that the former deals with the cell complex S(h,b) arising as the inter-
section of a sub-fan of Σ with Sn−1, whereas the latter relies on computing certain
subsets of NR with a rather more delicate combinatorial structure.

The theorem leads immediately to some general observations (which could also
be verified using Serre duality). For example, the remark following Theorem 2.2
implies:

Corollary 2.3. The top-dimensional cohomology is given by

Hn(XΣ;Lh)b =
{

0 if there exists σ ∈ Σ, σ 6= {0}with b + hσ ∈ σ∨,
A otherwise.

Moreover, if Hn(XΣ;Lh)b = A, then Hk(XΣ;Lh)b = 0 for all k 6= n.

Suppose now that K is a subcomplex of Sn−1. Then H̃n−1(K;A) 6= 0 if and
only if K = Sn−1. Indeed, if K 6= Sn−1, then K misses an (n− 1)-dimensional cell
of Sn−1; i.e., there exists an n-dimensional cone σ ∈ Σ such that K is contained in
Sn−1 \ int σ̄. Now Sn−1 \ int σ̄ is contractible; hence it has trivial reduced homology.
The homology long exact sequence of the pair (K, Sn−1 \ int σ̄) proves the assertion.

If there exists b ∈ M such that S(h,b) = Sn−1, then b is contained in the inter-
section of the closed half-spaces −hρ + ρ∨ where ρ varies over the 1-dimensional
cones in Σ. Since Σ is complete, this implies that for all a ∈ Zn there exists ρ ∈ Σ
with a ∈ −hρ + ρ∨; thus S(h,a) 6= ∅. Conversely, if S(h,b) = ∅ for some b ∈ M
then there is no a ∈ M with S(h,a) = Sn−1 (in fact, there is a 1-dimensional cone
ρ ∈ Σ with a /∈ −hρ + ρ∨). Together with Theorem 2.2, this shows that the line
bundle Lh cannot have global sections and n-th cohomology at the same time:
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Corollary 2.4. At least one of the A-modules H0(XΣ;Lh) and Hn(XΣ;Lh) is triv-
ial.

2.3. On Example 1.3
Recall the notation from Example 1.3; we will use the field A = C of complex

numbers. To work out the complex S(h,b) ⊆ S1 for given b ∈ M , one can start
from a sketch of the halfspace arrangement −hρj + ρ∨j , j = 1, 2, 3, 4 given by the
shifted duals of the 1-dimensional cones in Σ. Furthermore, it is enough to consider
those b which are contained in some bounded region of the resulting decomposition
of MR since H∗(XΣ;Lh) is finite-dimensional.

In our example, this leaves us to check contributions from five elements of M
only. We will use coordinate notation for this paragraph. It is easily verified that
S(h, (0,−1)t) = ∅, so H2(XΣ;Lh)(0,−1)t = H̃−1(∅) = C. If b is one of the vectors
{(0, 0)t, (−1, 1)t, (0, 1)t, (1, 1)t}, then S(h,b) is a 0-sphere corresponding to the
intersection of the cones spanned by v1 and v3 with the unit sphere in NR = R2.
Thus H1(XΣ;Lh)b = H̃0(S0) = C in these cases.

3. Proof of Theorem 1.2

The proof of Theorem 1.2 proceeds by verifying a Laurent series identity first.
Let as before h : NR - R be a support function, and choose corresponding linear
functions hσ ∈ M for σ ∈ Σ (§2). Define a formal Laurent power series

R[Σ, h] =
∑
σ∈Σ

(−1)codim σR[−hσ + σ∨]. (3)

Fix a ∈ M ; we want to consider the coefficient of xa in R[Σ, h]. The summand
corresponding to σ ∈ Σ contributes 0 if a + hσ /∈ σ∨, and it contributes (−1)codim σ

otherwise. Since 0∨ = Rn, we get a contribution of (−1)n for σ = 0 always. In other
words, the coefficient of xa is the Euler characteristic of the chain complex C•a (§2.2);
using A = C again:

n∑
k=0

(−1)k dimC Ck
a = χ(C•a).

The Euler characteristic can be computed using the cohomology groups of the
cochain complex as well. Since Hk(C•a) = H̃n−1−k(S(h,a)) (cf. §2.2), the coefficient
of xa is given by

χ(C•a) =
n∑

k=0

(−1)k dimC H̃n−1−kS(h,a). (4)

Using Theorem 2.2, we see that this is equal to
∑n

k=0(−1)k dimC Hk(XΣ;Lh)a.
Since the cohomology of Lh is finitely generated (the variety XΣ is complete by
hypothesis), we see that this coefficient is zero for almost all a ∈ M . In particular,
R[Σ, h] is a Laurent polynomial.

Let Π denote the P -submodule of S generated by the rational functions corre-
sponding to rational polyhedral cones. According to [6, Theorem 1.2], there is a
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unique P -linear homomorphism ρ : Π - Q(P ) (here Q(P ) denotes the quotient
field of P as before) with ρ(R[b + σ]) = R(b + σ) for all b ∈ MR and all pointed
rational polyhedral cones σ ⊂ MR (see also [1, Theorem 2.4]). Note that ρ preserves
Laurent polynomials as they are finite sums of Laurent power series associated to
sets of the form a + {0}. In particular, ρ(xb) = xb ∈ P ⊂ Q(P ) for all b ∈ M . If the
rational polyhedral cone σ contains a line, then it can be shown that ρ(K[σ]) = 0;
cf. [6, Lemma 2.1] or [1, Lemma 2.5].

We now apply the homomorphism ρ to the Laurent power series R[Σ, h]. On the
one hand, we have

ρ(R[Σ, h]) =
∑
σ∈Σ

(−1)codim σρ(R[−hσ + σ∨])

=
∑
σ∈Σ

dim σ=n

(−1)codim σρ(R[−hσ + σ∨])

=
∑
σ∈Σ

dim σ=n

R(−hσ + σ∨)

= R(Σ, h).

(The second equality comes from the fact that if codim σ > 0, then the dual cone σ∨

contains a line.) On the other hand, we have already seen that R[Σ, h] is a Laurent
polynomial. Hence R(Σ, h) = ρ(R[Σ, h]) = R[Σ, h] is a Laurent polynomial as well,
and, as seen before, the coefficient of xa is given by χ(H∗(XΣ;Lh)a). This finishes
the proof.

As a final remark, we can also use equation (4) to identify the coefficients of the
monomials in R(Σ, h) as this is an intermediate step in the above proof. The result
then reads:

Corollary 3.1. The coefficient of xa in R(Σ, h) is equal to (−1)n−1χ̃(S(h,a)), the
reduced Euler characteristic of the cell complex S(h,a), up to sign. In other words,

R(Σ, h) = (−1)n−1
∑
a∈M

χ̃(S(h,a)) · xa.

4. Proof of Proposition 2.1

Let A denote a commutative ring with unit. For a complete fan Σ in NR we
let XΣ denote the associated toric scheme defined over A. A quasi-coherent sheaf
of modules F on XΣ determines, by evaluation on affine pieces, a diagram of A-
modules

D(F) = D : Σop - A-Mod, σ 7→ Dσ = Fσ

(where as before Fσ denotes the A-module of sections of F over the open affine
subset of XΣ determined by σ, cf. Proposition 2.1). The functor F 7→ D(F) is exact:
A short exact sequence of quasi-coherent sheaves yields a short exact sequence of
diagrams. We need the fact that we can compute sheaf cohomology by higher derived
limits of the associated diagram:
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Lemma 4.1. There are canonical isomorphisms

Hj(XΣ;F) ∼= lim
←

jD(F).

Proof. Given a cone σ ∈ Σ, write Uσ for the open affine subset of XΣ determined
by σ. Then by construction D(F)σ = Γ(Uσ;F), and the case j = 0 of the lemma
is just the sheaf axiom: A global section is uniquely determined by a collection of
compatible local section.

Recall now that sheaf cohomology can be computed with flasque resolutions.
That is, considering F as a sheaf of abelian groups, choose a resolution

F - G0
- G1

- · · · (5)

with all the Gi being flasque. Let U ⊆ XΣ be an open subset; then Gi|U is flasque,
and Hj(U ;F) is isomorphic to the cohomology groups of the cochain complex

Γ(U ;G0|U ) - Γ(U ;G1|U ) - · · · . (6)

Passing to associated diagrams of abelian groups, the resolution (5) gives rise to a
cochain complex

D(F) - D(G0) - D(G1) - · · · . (7)

We claim that this is in fact a resolution of D(F), considered as a diagram of abelian
groups. Indeed, given a cone σ ∈ Σ the cochain complex

D(G0)σ - D(G1)σ - · · ·

is nothing but the cochain complex (6) for U = Uσ. Hence its j-th cohomology group
is isomorphic to Hj(Uσ;F), but Uσ is affine and F quasi-coherent, so these groups
vanish for j > 1, proving the claim.

We observe that the resolution (7) is flasque in the sense that the canonical
restriction maps

D(Gi)σ - lim
τ⊂σ

D(Gi)τ (8)

are surjective. Indeed, using the definition of associated diagrams, the map (8)
corresponds to the restriction map

Γ(Uσ;Gi) - Γ(
⋃
τ⊂σ

Uτ ;Gi)

which is surjective since Gi is flasque. Hence we can use the resolution (7) to compute
higher derived inverse limits of D(F) by applying the functor lim to (7), then
taking cohomology groups. However, applying lim to (7) yields precisely the cochain
complex (6) for U = XΣ, which computes Hj(XΣ;F). Taking into account the well-
known fact that the higher derived inverse limits of a diagram of A-modules can be
computed in the category of diagrams of abelian groups, we have thus proved the
lemma.
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The proof of Proposition 2.1 thus reduces to proving the following claim:

Proposition 4.2. Let D : Σop - A-Mod, σ 7→ Dσ be a diagram of A-modules,
where A is an arbitrary ring with unit. Form the cochain complex C• = C(D)• by
setting

Ck = C(D)k =
⊕
σ∈Σ

codim σ=k

Dσ,

with differential defined on direct summands by

Dσ [σ̄:τ̄ ] - Dτ .

Then the Čech cohomology modules Ȟk(D) = hk(C(D)•) are naturally isomorphic
to the higher derived inverse limits limk(D).

The proof of the proposition will occupy the rest of this section. First, for n = 1
we know that Σ consists of the zero-cone, R>0 and R60. The cochain complex C•
has the form

DR>0 ⊕DR60
+- D{0},

and the result is well-known in this case.
We can thus restrict to the case n > 2. We extend the cell structure on Sn−1

introduced in §2.1 to a regular cell structure on Bn with a single n-cell denoted B̄.
The canonical maps lim(D) - Dσ, modified by the incidence numbers [B̄ : σ̄],
assemble to a map

ι : lim(D) -
⊕
σ∈Σ

dim σ=n

Dσ = C0

which is, by the properties of incidence numbers, a co-augmentation of the cochain
complex C•.

Lemma 4.3. The map ι is injective and induces an isomorphism lim(D) ∼= Ȟ0(D).

Proof. An element of lim(D) is determined by its images in the Dσ where σ ranges
over all n-dimensional cones of Σ. Conversely, an element of C0 lies in the kernel
of C0 - C1 if and only if its components in Dσ and Dτ agree in Dσ∩τ where
σ, τ ∈ Σ are n-dimensional cones with (n− 1)-dimensional intersection. Such an
element thus determines a unique element of lim D mapping to the given element
of C0.

Observe now that the functor D 7→ Ȟ∗(D) is a δ-functor [8, §2.1]. Indeed, a short
exact sequence of diagrams

0 - D - E - F - 0 (9)

gives rise to a short exact sequence of cochain complexes, hence by the Snake Lemma
to an associated natural long exact sequence in cohomology. Since D 7→ lim∗(D) is
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a universal δ-functor [8, §2.1 and §2.5], it follows that we have uniquely determined
natural maps

νk : limk(D) - Ȟk(D)

such that ν0 is the isomorphism of Lemma 4.3, and such that the νk give rise to a
commutative ladder diagram in cohomology for every short exact sequence of the
form (9).

To prove that the maps νk are isomorphisms, we consider a decreasing filtration
of the diagram D. For 0 6 j 6 n we write

κjD : Σop - A-Mod, σ 7→
{

Dσ if codim σ 6 j
0 else.

Lemma 4.4. The maps νk are isomorphisms for all diagrams of the form κ0D.

Proof. The diagram κ0D has non-zero values only on n-dimensional cones; hence
Ȟk(κ0D) = 0 for k > 0. It is easy to check that limk(κ0D) = 0 for k > 0 (for exam-
ple, examine the cochain complex of [8, Vista 3.5.12] which computes higher derived
inverse limits). Thus νk : limk(κ0D) - Ȟk(κ0D) is an isomorphism for all k.

We proceed by induction on j and state the induction hypothesis: The maps
νk : limk(κj−1D) - Ȟk(κj−1D) are isomorphisms for all k > 0 and all dia-
grams D. The case j = 1 is covered by the previous lemma.

We have a sequence of epimorphisms of diagrams

D = κnD
en- κn−1D

en−1- . . .
e1- κ0D

and consequently a collection of short exact sequences (for 1 6 j 6 n)

0 - ker(ej) - κjD - κj−1D - 0 .

Consider the associated ladder diagram for some fixed k > 1:

limk−1(κj−1D) - limk(ker ej) - limk(κjD) - limk(κj−1D) - limk+1(ker ej)

Ȟk−1(κj−1D)

νk−1

?
- Ȟk(ker ej)

νk

?
- Ȟk(κjD)

νk

?
- Ȟk(κj−1D)

νk

?
- Ȟk+1(ker ej).

νk+1

?

By our induction hypothesis we know that the first and fourth vertical arrows are
isomorphisms. In view of the Five Lemma it is enough to show that the second
and fifth vertical arrows are isomorphisms as well. Since κnD = D, this proves the
assertion of Proposition 4.2.

We are left to show that the maps νk : limk(ker ej) - Ȟk(ker ej) are isomor-
phisms for all k, and all j > 1. Now the diagram ker ej has non-trivial entries only on
cones of codimension j, and can thus be written as a direct sum of atomic diagrams
with a single non-trivial entry. Since both limk and Ȟk commute with direct sums
of atomic diagrams (the former by [8, Vista 3.5.12], the latter by direct inspection),
the induction step is completed if we can verify the following assertion:
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Lemma 4.5. Let C be an A-module. Let τ ∈ Σ be a cone of codimension j > 0, and
let Cτ denote the atomic Σop-diagram with non-trivial value C attained at τ . Then
the maps νk : limk(Cτ ) - Ȟk(Cτ ) are isomorphisms for all k > 0.

(Note that by uniqueness of the natural maps νk the direct sum decomposition
of the diagram ker ej carries over to a direct sum decomposition of the correspond-
ing νk.)

The lemma will follow from a brute-force calculation. By construction, Ȟk(Cτ )
= 0 for k 6= j, and Ȟj(Cτ ) = C. We have lim(Cτ ) = 0 since τ has positive codimen-
sion. To compute the higher derived inverse limits, we embed the diagram Cτ into
a short exact sequence

0 - Cτ
- C>τ

- C>τ
- 0 (10)

where we write

C>τ : Σop - A-Mod, σ 7→
{

C if σ ⊇ τ
0 else

(with non-trivial structure maps identities), and the diagram C>τ is defined simi-
larly.

Lemma 4.6. The higher derived inverse limits remain unchanged when the dia-
gram C>τ is restricted to the subcategory τ ↓ Σ = {σ ∈ Σ |σ ⊇ τ}. More precisely,
the canonical restriction maps limk

Σop C>τ
- limk

(τ↓Σ)op (C>τ |(τ↓Σ)) are isomor-
phisms.

Similarly, the higher derived inverse limits remain unchanged when the diagram
C>τ is restricted to the subcategory τ ⇓ Σ = {σ ∈ Σ |σ ⊃ τ}.

Proof. This can be read off from the usual cochain complex computing higher
derived inverse limits as given in [8, Vista 3.5.12].

Definition 4.7 (Oda [7, Corollary 1.7]). Given Σ and τ as before, we define the
j-dimensional quotient fan Σ/τ as the complete fan in the vector space NR/span(τ)
with cones given by the images of σ ∈ τ ↓ Σ under the map NR - NR/span(τ).

Note that the posets τ ↓ Σ and Σ/τ are isomorphic. Similarly, τ ⇓ Σ is isomorphic
as a poset to (Σ/τ) \ {0}.

Lemma 4.8. If P is any poset, regarded as a category, and F : P op - A-Mod is a
constant functor with value C, then limk(F ) ∼= Hk(NP ;C) for all k > 0, where NP
denotes the nerve of P , and Hk(NP ;C) is the cohomology of NP with coefficients
in C.

Proof. The cochain complex computing limk(F ) given in [8, Vista 3.5.12] is identical
to the usual cochain complex used to compute Hk(NP ;C). The latter is the cochain
complex associated to the cosimplicial A-module homZ(Z[NP ], C), where Z[NP ] is
the simplicial free abelian group obtained from NP by applying the functor Z[ · ] in
each simplicial degree.
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Lemma 4.9. We have lim(C>τ ) = C and limk(C>τ ) = 0 for k > 1.

Proof. By Lemmas 4.6 and 4.8 we have isomorphisms

limk(C>τ ) ∼= Hk(N(τ ↓ Σ)op;C)

for all k > 0, where N denotes the nerve of the category. But τ ↓ Σ has an initial
object; hence it is contractible.

Lemma 4.10. We have limk(C>τ ) = Hk(Sj−1;C). In particular, limk(C>τ ) = 0
for k 6= 0, j − 1.

Proof. By Lemmas 4.6 and 4.8 we have isomorphisms

limk(C>τ ) ∼= Hk(N(τ ⇓ Σ)op;C)

for all k > 0, where N denotes the nerve of the category. By Definition 4.7, the
poset τ ⇓ Σ is isomorphic to the j-dimensional fan Σ/τ with the 0-cone removed.
Clearly N((Σ/τ) \ {0}) = Sj−1, which implies the lemma.

Lemma 4.11. We have limk(Cτ ) = 0 for k 6= j, and limj(Cτ ) = C.

Proof. The long exact sequence associated to the short exact sequence (10) and the
calculations in the previous two lemmas give a short exact sequence

0 - C
f- H0(Sj−1) - lim1(Cτ ) - 0.

In case j = 1, we have H0(S0) = C ⊕ C, and the map marked f above is the diagonal
map. Hence lim1(Cτ ) = C in this case. If j > 2 we have H0(Sj−1) = C and f = id,
so lim1(Cτ ) = 0 in this case.

The long exact sequence associated to the short exact sequence (10) and the
previous two lemmas also yield isomorphisms limk(Cτ ) ∼= limk−1(C>τ ) for k > 2.
Together with Lemma 4.10 again this proves the assertion.

As a consequence we are reduced to consider the case k = j > 0 in Lemma 4.5.

Lemma 4.12. We have Ȟk(C>τ ) = 0 for k > 0.

Proof. In short, this follows from the fact that the cochain complex C(C>τ )• is a
re-indexed variant of the cellular chain complex computing the reduced homology
of a (j − 1)-sphere with coefficients in C, so Ȟk(C>τ ) ∼= H̃j−1−k(Sj−1;C).

In more detail, recall that the poset τ ↓ Σ is isomorphic to the j-dimensional
quotient fan Σ/τ ; cf. Definition 4.7. The fan Σ/τ induces a cell structure on some
unit sphere Sj−1 in NR/span(τ), and taking the incidence numbers coming from the
fan Σ as defined before, we see that C(C>τ )• is, up to re-indexing, an augmented
cellular chain complex of Sj−1. This chain complex is slightly non-standard: The
augmentation maps are given by idC or −idC , depending on the incidence numbers
[σ̄ : τ̄ ]. However, it is not difficult to show that this chain complex is isomorphic to
a standard chain complex for any choice of orientations of the cones in Σ/τ , with
the required isomorphism being constructed by induction on the dimensions of the
cones, starting with τ . We omit the details.
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We are now ready to prove Lemma 4.5. Consider the following piece of the ladder
diagram relating lim∗ and Ȟ∗:

limj−1(C>τ ) - limj−1(C>τ )
f - limj(Cτ ) - limj(C>τ ) = 0

Ȟj−1(C>τ )

∼= νj−1

?
- Ȟj−1(C>τ )

∼= νj−1

?
g - Ȟj(Cτ )

νj

?
- Ȟj(C>τ ) = 0.

(11)

Both rows are exact. The entries on the right are trivial by Lemmas 4.9 and 4.12,
respectively. The first vertical map is an isomorphism. For j = 1 it is the map
ν0, and for j > 1 it follows from Lemmas 4.9 and 4.12 that the source and target
are trivial. The second vertical map is an isomorphism in view of our induction
hypothesis (note that C>τ = κj−1C>τ ). From the Five Lemma we conclude that
the third vertical map is an isomorphism as desired. This finishes the proof.
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