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SEMIDIRECT PRODUCTS OF CATEGORICAL GROUPS.
OBSTRUCTION THEORY
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Abstract
By considering the notion of action of a categorical group <G

on another categorical group H we define the semidirect prod-
uct i « G and classify the set of all split extensions of G by HL
Then, in an analogous way to the group case, we develop an ob-
struction theory that allows the classification of all split exten-
sions of categorical groups inducing a given pair (ip, ip) (called
a collective character of G in H) where ip : TTO(<G) -¥ 7ro(£g(IHI))
is a group homomorphism and ip : TTI(G) -¥ iri(£q(W)) is a
homomorphism of TTO(G)-modules.

1. Introduction

An epimorphism of groups fj,: E —¥ G with kernel an abelian group H induces,
by conjugation in E, a G-module structure in H or, equivalently, a group homo-
morphism p : G —¥ Aut(H). The problem of classifying, up to equivalence, all such
extensions of G by H which induce p was solved in the 1930's by using factor sets
[1],[18], and later [11] by means of the 2-dimensional cohomology group of G with
coefficients in H.

If the group H is non-abelian, for any normalized set-theoretical section of fj,,
there is a pair of maps (/ : G x G —¥ H,a : G —¥ Aut(H)) satisfying certain
conditions, which is called a factor set (or 2-cocycle) of G with coeffcients in H. This
factor set determines, up to equivalence, the extension and in this way Schreier's
theorem [18] of classification of extensions of groups with non-abelian kernel assures
the existence of a natural bijection

-H2(G,H)^Ext(G,H)

between the set of equivalence classes of factor sets of G by H and the set of
equivalence classes of extensions of G by H. In particular, let us remark that, by
this bijection, split extensions correspond to the classes of factor sets of the form
(0, a) with a : G —¥ Aut(H) a group homomorphism ( classification of semidirect
product extensions).
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In §3 of this paper we give the corresponding version, of the theorem of classifica-
tion of split extensions of groups, in the more general setting of categorical groups.
The analysis of the developing, in the last decades, of results extending the classical
results on group extensions, their cohomological classification and their topological
interpretation (c.f. [9], [10], [8]) reveals that the key of such a developing lies in the
consideration of (internal) groupoids instead of groups. In this sense, the 2-category
of the categorical groups has joined (see [19], [3], [21], [6], [7]) as an adequate con-
text in which to approach problems of the same nature as the above-mentioned but
from a more general point of view, thus obtaining a wider range of applications. For
instance, the classification of split extensions of categorical groups is the algebraiza-
tion of a topological problem consisting of the classification of those fibrations of
spaces p : E -y B which admit a cross-section, where both the base space B and
the fiber of p, F, have the homotopy type of a categorical group [19].

In §2 we start by giving a summary of terminology, some significant examples
and recalling some known results of categorical groups. Then, in §3 we make the
transition to this context of main notions in group theory such as those of action
of a categorical group on another one, of the categorical group semidirect prod-
uct and the corresponding semidirect product extension. With the suitable notion
of equivalence, both for actions and extensions, we conclude in Theorem 3.9 the
classification of all split extensions of categorical groups. Using these notions, we
expect to develop in a forthcoming paper a study of derivations (or crossed homo-
morphisms) from a categorical group G to a G-categorical group H and its relation
with cohomology in this context.

Coming back again to the classical precedents, let us recall that, in the setting of
the group extensions theory, there exists (c.f. [1], [11], [9]) an "obstruction problem"
consisting of the classification of all group extensions 1-yH-yE-yG-yl
which induce a given group homomorphism p : G —y Out(H) where Out(H) =
"intiH) • Each extension certainly induces a homomorphism G -y Out(H) but such
a homomorphism p need not always be induced by an extension. The existence
of an extension inducing p is measured by a 3-cocycle of G with coefficients in
the G-module center of H, which is called the obstruction of p. Note that if 1 -y
H —y E —y G —>• 1 is a split extension (i.e., there is a group homomorphism s :
G —y E such that /is = ido) and v : E —y Aut(H) is the homomorphism given
by conjugation in E, then there is a homomorphism vs : G —y Aut(H). Thus the
problem in this case consists of measuring the obstruction of those homomorphisms
p : G -y Out(H) such that p = qa where a : G -y Aut(H) and q : Aut(H) -y
Out(H) is the projection. In this way, the obstruction theorems for group extensions
were formulated, providing on the other way and during years, the only known
interpretation of the third cohomology group of G with coefficients in a G-module
A.

In §4 we approach, in the context of the theory of extensions of categorical groups,
an analogous problem of obstruction in the case of considering split extensions of a
categorical group G by a categorical group H. Each split extension

j P
Trp ^~ (n

*" JtL ^ Hjr.
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induces what we call a collective character of G in H, that is, a pair (ip, ip) where
ip : 7ro(G) -»• TT0(£q(^}) is a group homomorphism and ip : TTI(G) -»• 7Ti(£g(IHI)) is a
homomorphism of TT0 (<G)-modules. However, such a pair (<p,ip) need not always be
induced (realized) by a split extension of G by H and its existence can be measured
by a 3-cocycle of 7ro(G) with coefficients in TTI (£q(M)) which is called the obstruction
of the collective character (<p,ip). We then conclude this section by formulating in
4.3 and 4.4 the corresponding obstruction theorems:

" A collective character (<p, ip) of a categorical group G in a categorical group H is
realizable if and only if its obstruction k(ip,ip) e H^(iro(<G>),Tri(£q(lS))) vanishes",

"If a collective character (ip, ip) is realizable then the set Ex t^ ' ^ / (G, H) of equiv-
alence classes of realizations of (<p, ip) is a principal homogeneous space under the
abelian group H^, (TTO (<G), TTI (£q(M))). In particular, there is a (non-natural) bisection

£$ ,^ (£q(M))T-

2. Categorical groups: Notation and preliminary results

In this preliminary section we recall the main definitions and first results con-
cerning the 2-category of categorical groups. We refer to [15], [17], [2], [3], [14],
[13], [19] for general background about them.

A monoidal category <G = (<G, <8>,a, / , l,r) consists of a category <G, a functor
(tensor product) <g> : G x G -»• G, an object I (unit) and natural isomorphisms
called, respectively, the associativity, left unit and right unit constraints

a = ax,v,z • (X ®Y) <g> Z —t X ® (Y ® Z)

I = lx : I ® X X r = rx • X <g> I -^> X ,

such that for any objects X,Y,Z,W e G the following diagrams (associativity
coherence and unit coherence) are commutative:

((X <B>Y)<B>Z)<B>W

'/
(X<B>Y)<B>(Z<B>W)

(X<B>(Y<B> Z)) <B> W

X
X<B>((Y<B>Z)<B>W) (1)

X (g) (Y ® (Z

^ ^ X®(I®Y)

X®Y

(2)
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Let us not that the naturality of / and r imply that, for any l € G , the following
equalities are satisfied:

I10X = li®lx ; rX0i = rx ® 1/ ,

and from the commutativity of (2) we have that

ri = h : I <g I -^ I ,

and also the commutativity of the following diagrams:

(X <g Y) (X <g Y) X <g (Y <g I)

In a monoidal category, an object X is termed invertible if the functors Y >->•
X ® 7 and F n - F ® ! are equivalences. The natural isomorphisms of left and right
unit say just that the unit I is an invertible object.

A (right) inverse for an invertible object X consists of an object X* and an
isomorphism ax '• X <g X* ^ I (this isomorphism exists since X <g — is an au-
toequivalence). For other choice of inverse (X°,a'x) there exists an isomorphism
ip : X* -3- X° determined uniquely by the commutativity of the diagram

X®X

A categorical group G is a monoidal small category where every object is invertible
and every morphism is an isomorphism (i.e., G is a groupoid). A categorical group
is termed strict when the isomorphisms of associativity and left and right unit are
identity arrows and the isomorphisms ax • X (g>X* -3- / can be chosen as identities.
Any categorical group is equivalent to a strict one. This fact, commonly assumed
in the literature, can be obtained for instance as a consequence of Proposition 1.5
and Theorem 2.6 in [5].

In a categorical group <G, once a system of (right) inverses (X*,ax) has been
chosen, the isomorphisms ax determine isomorphisms fix '• X* <g X ^ I by means
of the following commutative diagram:

X (g J .
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The isomorphisms (3 come to say that X* is also a left inverse for X and, actually,
the isomorphisms ax and j3x determine each other and (X, X*,ax,/3x) is a duality
in <G. The choice, for each X, of such a duality induces a contravariant endofunctor

o f G , I i - > r , ( l 4 y ) i - > (Y* %• X*) (where /* = lx* (PY ® 1 ) < V I F X ( 1 <g> / <g>
1)(1 <8> a^1)r^I), such that the isomorphisms ax and /?x are natural.

Let us remark that, once a system of inverses has been chosen, there are natural
isomorphisms:

X-^(X*)* ; (X®Y)* ^Y*®X*.

Suppose now that <G and H are categorical groups. A homomorphism T = (T, n) :
<G —y H consists of a functor T : <G —>• H and a family of natural isomorphisms

such that, for any objects I , F , Z e <G, the following diagram is commutative:

T(X ® (Y ® Z))
T(a)

T((X®Y)®Z)

+ T(X)®T(Y®Z)

T(X)®(T(Y)®T(Z)) (3)

•(T(X)®T(Y))®T(Z) .T(X ®Y)® T(Z) — M 0

If T : <G —¥ H is a homomorphism, there exists an isomorphism,

Mo : T(/) ^ > J,

determined uniquely by the commutativity of the two following diagrams:

(4)

(5)

The homomorphism (T, /x) is called stnct when each of the isomorphisms HX,Y
and no is an identity.

Let us note that, once a system of inverses (X*,etx) for X £ G and (y*,ay) for
F e i has been chosen, there exist unique isomorphisms

Ax : T(X*) ^ T{X)*

such that the following diagrams commute:
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T(X)®T(X*)+-

T(X)<B>T(X)

•T(X®X*)

T(X*)(g>T(X)

T(X)*®T(X)

•T(X*®X)

If (T, /x) : G ->• H and (T',fj,') : H ->• K are homomorphisms of categorical
groups, their composite is defined by (T",/x") : G ->• K, where T" = T'T : G ->• K
and /x" = /x^-y : T'T(X ® F) ->• T'T(X) ® T'T(y) is the isomorphism given by the
composition /j'TX TYT'(/JX,Y)•

Given homomorphisms of categorical groups (T,fj), (T'fj,') : G —¥ H, a morphism
from (T, /x) to (T',fi') consists of a natural transformation e:T^tT' such that, for
any objects X,Y € G, the following diagram is commutative:

T(X <g> Y) •T(X)®T(Y)

T'(X (g) Y) (6)

Observe that a natural transformation between two homomorphisms of categorical
groups is necessarily a natural isomorphism.

If e : (T,fi) -»• (T',fi') is a morphism, then the following diagrams are commuta-
tive:

T(X*) ex* (7)

(ex)*
T(xy

All the above considerations yield to the 2-category of categorical groups, whose
1-cells are the homomorphisms of categorical groups and whose 2-cells are the mor-
phisms between them.
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Examples

1. If G is a group, the discrete category it defines, denoted by G =t G, is a strict
categorical group where the tensor product is given by the group operation.
In the case that G is an abelian group, then the category with only one object
it defines, denoted by G =t 1, is also a strict categorical group where both the
composition and the tensor product are given by the group operation.

2. It is well known that strict categorical groups or, equivalently, groupoids in
the category of groups, are the same as Whitehead crossed modules, [4]. Recall
that a crossed module of groups is a system <i> = (H, n, <p, p), where p : H —¥ n
is a group homomorphism and <p : n —¥ Aut(H) is an action (so that H is a
7r-group) for which the following conditions are satisfied:

p(ah) = ap(h)a-1 ; p{h) ti = hti h'1 .

Given a crossed module <J>, the corresponding strict categorical group G($)
can be described as follows: The objects are the elements of the group n; an
arrow h : a —¥ b is an element h G H with a = p(h)b. The composition is
multiplication in H. The tensor product is given by

/ ft i \ ^ / h' 7\ / h h' 7 7\
(a —¥ b) <g> (c —¥ a) = (ac —¥ bd) .

3. Suppose T : <G —¥ H is an equivalence of groupoids. Then each categorical
group structure on <G transports along T to a categorical group structure on
H. This in particular applies to the case when G is a strict categorical group
and in this way one can obtain many algebraic examples of categorical groups.

4. The categorical group of loops of a pointed space, Vi(X, *) (see [12]).
Let us denote by V\ (Y) the fundamental groupoid of a topological space Y.
If (X, *) is a pointed topological space with base point * € X, then Vi(X, *) =
Vi(Cl(X,*)), that is, the fundamental groupoid of the loop space Cl(X,*).
Thus, the objects are the maps ui : I —¥ X such that w(0) = * = w(l), and
the morphisms [/] : ui —¥ ui' are homotopy classes rel end loops of homotopies
/ : ui —¥ ui' rel end points. The composition of two morphisms in V2(X,*),
[f] : u) -¥ ui' and [g] : to' -¥ to" is defined by [g][f] = [gf], where gf : Ixl -¥ X

Since the functor V\ preserves products, the map /x : Cl(X,*) x Cl(X,*)
fl(X,*) defined by

0 ^ i ^ 1/2

induces a functor <g> : Vi(X, *) x Vi(X, *) -¥ V2(X,*) t ha t is given on ob-
jects by to <g> to' = IJ,(LO,LO') and, on morphisms, by [/] <g> [g] = [f <g> g] where

f

There is an associativity constraint a : (ui <S> w') <S> w" —¥ ui <S> (w' ® ui") which
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is defined as the homotopy class of the map A : I x I ^ X given by

A(s,t)={ w'(4a-*-l)
{ W

*±I

and there are a unit object *, which is the constant map from I to *, and unit
constraints

/ = [£,]:* <g> W ->• w , r = [i?] : w <g> * ->• w ,

where L,R : I x I —>• X are respectively defined by

MM) =

and

such that P2 (-X", *) = (V2 (X), <8>,a,*,l,r) is a categorical group.

5. The categorical group £q(G, c) of the equivalences of a categorical group.
An equivalence of a categorical group G is a homomorphism (T, n) : G -»• G
such that the endofunctor T : <G —>• G is an equivalence of categories. The ob-
jects of £q(&) are the equivalences of <G and the arrows are the morphisms
between them. The composition in £q(G) is given by the usual vertical com-
position of natural transformations, (e' • e)x = e'xex > which is again a mor-
phism in £q(&). It is clear that £q(G) is a groupoid. The composition of
the homomorphisms and the horizontal composition of the natural transfor-
mations define a tensor functor <g> : £q(G) x £q(G) ->• £q(G), that is, given
e : (T,n) => (T',/x') and e' : (T",/x") ^ (r'",/x'"), then e' ® e is defined by
(e' ® e)x = e'T,xT"(ex) = T'"(ex)e'TX. Thus, £q(<&) is a categorical group in
which I = 1G and an inverse for an object (T, /x) is obtained by taking a quasi-
inverse of T.

Let us remark that £q(&) has a categorical subgroup, Aut(&), whose objects,
called automorphisms, are the equivalences (T, JJL) that are strict and where T
is an isomorphism.

Suppose that G is a categorical group. Then, the set of connected components
of G, 7i"o(G), has a group structure where the operation is given by [X] • [Y] =
[X <s> Y]. This is a well defined operation as consequence of the functoriality of
<8>; the associativity is consequence of the associativity constraints and the unit
constraints assure that [J] is a neutral element; finally, since the translations are
autoequivalences, every element has an inverse. On the other hand, G has also
associated the abelian group TTI (G) = Aut<a(I). For instance, the group of connected
components of V2(X, *) is TTI(X, *) and the group of automorphisms in the unit
object is TT2(X, *).

For every object I e G there are maps

7 x , (5x:7ri(G) ^ AutG(X) (8)
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which are defined, for each u e TTI(<G), as the unique morphisms making commuta-
tive the following diagrams:

i ® x u 0 t d x i®x x ® i t d x 0 u x®i

h rx

7x(«) Sx(u)

that is,

jx(u) = lx(u® idx)^1 > $x(u) = rx(idx ® u ) ^ 1 •
These maps jx and 5x are group isomorphisms [19] and then, for any object I e G ,
the group Aut&(X) is abelian.

These isomorphisms are compatible with the functor ® in the sense that, for any
objects X,Y GG and any u £ TTI(G), the following equalities are satisfied:

{U) = idx®o~Y{u); 8x{u)®idY = idx®lY{u). (9)

Moreover, if / : X —>• Y is a morphism in G, the following diagrams are commu-
tative

1x(u) 6x(u)
X ~̂ X X ~̂ X

Y —^Y Y
1Y\U)

and then, the following diagram is also

7Ti(G) —
I

SY

Y j S

AutG(Y) -

SY(U)

commutative

-^*- AutG(X)

/^ 1--
—r*7n(G) ,

where the diagonal morphism is given by g i->- fgf 1. All these facts allow to show
[19] that for any two objects X,Y € G and morphisms f,g:X-¥Y there exists a
unique element u e TTI (G) such that the following equality is satisfied

9 = flx{u) = Jy(u)f , (10)

and therefore there is a map

7T0(<&) X 7Ti(G) -»• 7Ti(G) , ^

giving to TTI(G) a TTO (<G)-module structure.
Let us remark that, for any objects X, Y G G and any i; G TTI(G), the following

equalities are satisfied

idx ® JY(V) = Sx(v) ® idy =

lx(v) ® idY = Jx®y(jx
lsx(v)) = JX®Y([X]V) (12)
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and therefore, for any u, v G TTI(G), we have:

lx{u) <g JY(V) = (jx(u) <g idY)(idx <g Tr(-u)) =

= JX®Y(U)JX®Y([X]V) = JX®Y(U[X]V). (13)

If for each x G TTO (<G) we choose a representative .X^ G a; with X\ = I, where
1 = [I], and for any Y G x we choose a morphism iy : Y —y .X^ such that ix^ = idxx,
ii®xx = lxx and ixx®i = rx,., then, for any three elements x,y,z G 7To(<G), we can
consider the following automorphism of Xxyz:

Thus, as consequence of the coherence of the associativity constraint (1), the ele-
ment bx>y>z G TTI(G) determines a normalized 3-cocycle b of TTO(G) with coefficients
in the TTO (<G)-module TTI(G). Moreover, for any other choices of objects Xx G a; and
of morphisms jy '• Y —¥ Xx, the new 3-cocycle b is cohomologous to b (see [19]).

Finally, note that if <G and H are categorical groups and T = (T, JJL) : <G —>• H
is a homomorphism of categorical groups, then T induces a group homomorphism
7To(T) : 7T0(<G) -»• 7ro(H), [X] \-¥ [TX], and a homomorphism of TT0(<G)-modules
TTI(T) : 7Ti(<G) ->• 7ri(H), where 7ri(H) is a TT0 (G)-module via TTO(T), which is given
by w (->• HOT^HQ1 .

3. Semidirect products and split extensions of categorical
groups

If G and H are groups, an action of G on i l is a group homomorphism G -»•
Aut(H) and, in such case, H is said to be a G-group. In the context of crossed
modules of groups, K. Norrie [16] introduced the notion of actor of a crossed module,
as the analogue of the automorphism group of a group, and then she considered
actions of a crossed module on another one. More generally, by considering the
categorical group £q(M) of the equivalences of a categorical group (see §2, Example
5), we have the following:

Definition 3.1. ([3],[7]) Let <G and H be categorical groups. An action o/G on H is
a homomorphism of categorical groups (T,/i) : <G —y £q(JS). When such a G-action
is given we shall say that H is a G-categorical group.

Proposition 3.2. Giving an action of a categorical group <G on another categorical
group H is equivalent to giving a functor

a c : G x i —y H , (X, A) (->• x A ,

together with natural isomorphisms

Vy)A^x(YA) (14)
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= <PO,A

X (A<B>B)
XA®XB

121

(15)

(16)

such that, for any objects X,Y,Ze<G and A,B,C eM, the following diagrams are
commutative:

XlYlZ(Y(ZA)) (17)

(18)

x.

x ((A ® B) <g> C)

X(A®B)

•XA®X(B®C)

XA®(XB®XC)

XlY(Y(A®B)) XlY A)- 'B). (20)

Proof. If T = (T, n) : G ->• £q(M) is an action of <G on H, we define a functor
a c : G x I —y H by letting, for any pair of objects l e G a n d i e H , ac(X, A) =
x A = T(X)(A), and for any pair of morphisms, u : X -y- Y in G and / : A -y- B
in H, ac(u, / ) = uf where uf is the diagonal morphism in the following diagram
(which is commutative due to the naturality of T(u) applied to / )
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X
T(X)(f)

T(Y)(f) B.

Also, by considering the natural isomorphisms (J>X,Y,A = {^X,Y)A '• (X®Y^A —y
X(YA), the commutativity of (17) is consequence of (3) and, by considering the
isomorphisms <f>o,A = (I^O)A '• 1A —y A, the commutativity of (18) is consequence of
(5). Moreover, if for any object l e G w e consider the equivalence of H (T(X), /ix),
we have the natural isomorphisms ipx,A,B = (HX)A,B '• x(A(g>B) -y- XA <g> XB.
These satisfy that (19) is commutative as consequence of (3) and (20) is so because
the commutativity of (6) for fix,Y-

Conversely, suppose given a functor ac : <G x H -y- H together with isomorphisms
(14), (15) and (16) satisfying that the diagrams (17), (18), (19) and (20) are com-
mutative. Then, each object I e G defines an equivalence of H (T(X),fj,x) where

T(X)(A) = XA, T(X)(A AB) = XA^AXB and nx = (HX)A,B :X{A®B)-^
xA <g>xB is the isomorphism ipx,A,B- In this way, we actually have an equivalence
of H because the property corresponding to (3) is given by (19). Also, each mor-
phism u : X -»• Y in <G defines a natural equivalence T(u) : T(X) ->• T(Y) given by

T(U)A = x A —y YA and so we have defined a morphism between the equivalences
(T(X),fj,x) and (T(Y),/zy) because (6) holds as consequence of the naturality of-0.
In this way we have a functor T : <G —¥ £q(M) and this determines, together with the
natural isomorphisms (J>X,Y,A '• (X®Y^ A —y X(YA), a homomorphism of categorical
groups since (3) and (6) hold as consequence of (17) and (20) respectively. •

Note that, for any I e G , there exists a unique isomorphism

determined by the commutativity of the following diagrams:

x (I ® A) •XI A

x

A®XI

A®I ,

and then the following diagram is also commutative:
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If G and H are groups and we consider the discrete categorical groups they define,
G =t G and H =t H, then £q(H =} H) = (Aut(H) =} Aut(H)) and a (G =} G)-
action on (H =t H) is a G-action, in the usual sense, on H, that is, a structure of
G-group on H.

Definition 3.3. / / <G and H are categorical groups, two actions of <G on H, T =
(T,fj,),T = (T',fj,') : <G —>• ̂ g(H) are termed equivalent if there exists a morphism

If T and T' are actions and, for each X e <G and A e H, we denote TX(A) = XA
and T'X(A) = Ax, the actions

(X,A) H-)-XA , (X,A)i-)- Ax

are equivalent if, and only if, there exist natural isomorphisms
X A . A X

ex,A • A —> A

such that, for any objects X, Y e <G and A, B e H, the following diagrams are
commutative:

(X®Y)A .

Y A

(A®B) X VX,A,B
\X

(21)
The existence of an equivalence between two actions of G on i determines an

equivalence relation in the set of all actions of G on I and we will denote by
Act(<G, H) the corresponding quotient set.

Now, using the definition of action of a categorical group on another one, we
formulate the notion of semidirect product for categorical groups.

Definition 3.4. Let H be a <G-categorical group via an action (X,A) i->- x A. We
define the semidirect product ofM by G as the categorical group, denoted by H x <G,
whose underlying groupoid is the product i x G with tensor functor given by:

(A,X)®(B,Y) = (A®XB,X®Y)

(u,f)®(v,g) = (u®fv,f(g)g).

The unit object is the pair (1,1) and the constraints of associativity and left and
right unit are given by:
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a(A,X),(B,Y),(C,Z) = ( (1 ® i'x^B^C^ ® 0- ® 4>X,Y,C'))aA,x

The following definition of extension of a categorical group G by a categorical
group H is due to Breen [3].

Definition 3.5. Let G and H be categorical groups. An extension of G by H is a
sequence of categorical groups and homomorphisms of categorical groups

H J v TT71 P v / p

SMC/J that p is an essentially surjective fibration and j establishes an equivalence
between H and E j , i/ie /i&er category of p on the unit object of <G ('i.e., p(A) = I if
A £ E/, and p( / ) = id/ if f : A ^ B is a morphism in Ki).

The extension is termed split if there exists a homomorphism of categorical groups
s : <G —>• E SMC/I tAat p s = ic?c-

Note that if <G and H are categorical groups, and we consider the product i x G ,
we have a split extension:

where j(A) = (A,I), p(A,X) = X and s(X) = (I,X), which is called the direct
product extension.

Definition 3.6. Suppose H -^ E -^> G and H -̂ ->- E' -̂ ->- G are extensions of
G by H. 4̂ morphism between them consists of a pair (T,j) where T : E —>• E' is a
homomorphism of categorical groups with p T = p , and 7 : Fj —>• j ' is a morphism
such that P'(JA) = idi for every object A G H.

Note that if H >• E c " G is split and H -̂ ->- E' -£->• G is equiv-
s

alent to it by means of morphism extensions ( r , 7 ) , then p T s = ps = IOIG and so
Fs is an splitting of p ' .

The existence of a morphism (T,j) determines (see ([6], Proposition 3.4) an
equivalence relation between extensions and we will denote by Ext(G, H) the cor-
responding quotient set and by Extsp;jt(G, H) the subset of the classes of the split
extensions of G by HL These sets are pointed by the class of the direct product
extension.

Proposition 3.7. / / G and H are categorical groups, each action of G on M de-
termines, by considering the semidirect product with this action, a split extension
(semidirect product extension)

Moreover, equivalent actions determine equivalent semidirect product extensions.
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Proof. Let (X,A) \-y x A be an action of G on H. Then we consider the semidirect
product I K G and the homomorphisms of categorical groups j : i 4 i K G,
p : H K G -y G and S : G - * I K G defined as follows: j = (j,fi) is given by
j(A) = (A,I), j(u) = (u,l) and /IA,B = (1 ® i/fojj,/?1); P = (p,0) is given by
p(A,X) = X, p(u,f) = f and 9(A,X),(B,Y) = idx®Y] s = (s,T)) is given by s(X) =
(I,X), s(f) = (1,/) and T]X,Y = ((1 ® ipo^lj1 ,idx®Y)- With these definitions, it

j p

is now straightforward to see that, H >• M K G < ' G is actually a split
s

extension of G by H.
Moreover, if (X, A) \-y xA and (X,A) \-y Ax are two equivalent actions of G

on H, there must exist natural isomorphisms ex,A '• xA —y Ax satisfying (21), and
then the semidirect product extensions associated to both actions are equivalent
since there exists a morphism of extensions (r,7) where F = (F,£) is given by
r = idmxG and C(A,X),(B,Y) '• (A<g>xB,X<g>Y) —> (A®Bx, X®Y) is the morphism
(idA <S> £x,B,idx0Y)- Thus it is clear that p T = p. On the other hand, 7 : Fj —>• j '
is the identity since Fj = j ' as consequence of the equality <j>'0 B • eitB = <PO,B which
can be deduced from (7). •

Now, suppose H - ^ E -^ G is an extension of G by HL Then, for each i e E /
and each l e E , once an inverse X* of X has been chosen, we have a morphism
(which is the composite of canonical morphisms) p((X <g> A) <g> X*) —y I. Thus,
since p is a fibration, there exists a morphism in E, 5A,X , with source (X <g> A) <g> X*
that is mapped by p in the above morphism. The target of this morphism 5A,X
belongs to E/ and, since j is an equivalence, it is of the form J(£A,X) for a unique
object £A,X G HL Then we can define a functor T : E -y £q(M) as follows: For any
X e E, T(X) = (Tx,fix) : H ->• H is defined by TX(A) = Zj{A)tx, A e H, and if
/ : A —y B is a morphism in H, Tx(f) '• £j(A),x ~̂  €j(B),x ls the unique morphism
determined by the commutativity of the following diagram:

3(Tx(f))

Note that Tx is an equivalence of categories with quasi-inverse Tx* • On the other
hand, given A,B e H, we have to define {HX)A,B :TX(A®B)^ TX(A) ® TX(B),
that is, (HX)A,B '• €J(A®B),X ->• €j(A),x ®€j(B),x and this morphism is the uniquely
determined by the commutativity of the following diagram:

(X ® j ( A ® B ) ) ® X * 3 ( A ® B ) ' X , j ( ^ ) "x A'B

((X ®j(A)) ® X*) ® ((X
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To check that diagrams (3) commute for these morphisms (HX)A,B is routine.
Moreover, T = (T, fi) : E -»• £q(M) is a homomorphism of categorical groups where
HX,Y • T(X ® Y) ->• T(X) ® T(F), X ,F e E, is the morphism in £g(M) de-
fined by the natural tansformation determined by the morphism in H {HX,Y)A •
TX®Y{A) ->• TXTY(A), that is, {HX,Y)A • €J(A),X®Y ~> €J(ZHA),Y),X, which is the
morphism uniquely determined by the commutativity of the following diagram:

Y)

J((I*X,Y)A)

x ® ((y ® j{A)) ®Y*)®X* '-^ ». (x ® ̂ (A),y) ® x* L± ^i(^« i (A) ,y),

All these facts allow now to show the following:

Proposition 3.8. If <G and H are categorical groups, each split extension of <G 6t/

i p

H *• F. <
 > G ,

s

determines an action of G on H. Moreover, any other equivalent extension of G by
H determines an equivalent action.

Proof. If we compose the splitting s : G —¥ E with the homomorphism T : E —>•
£q(M) above described, then we have an action of G on H, F = Ts : G ->• £q(M),
denoted by xA , which is given by xA = £J(A),S(X)-

If H -^-¥ E' -^-¥ G is another extension of G by H, that is equivalent to the
given one by means of morphism extensions (I\7), then Ts is an splitting of p'.
This splitting determines, by composing it with the corresponding homomorphism
T" : E' ->• £q(M), another action of G on H, denoted by Ax, and given by Ax =

Thus, the actions xA y Ax, determined by both split extensions, are equiva-
lent by means of the isomorphisms ex,A '• X A -»• Ax determined uniquely by the
commutativity of the following diagrams:

T{s{X)®j{A) ® 8{X)*) '' 7

Now it is straightforward to check that these isomorphisms satisfy the commu-
tativity of (21) and therefore we have that the two actions are equivalent. •
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Propositions (3.7) and (3.8) assure that we have well-defined maps

A : Act(G, H) ->• E x t ^ t (G, H) , # : Ex ten t (<&, H) ->• Act(G, H)

and actually we have:

Theorem 3.9. The map

A : Act (G, H) ->• ExtspHt (G, H) (22)

is a bijection with inverse the map * .

j p

Proof. If E : H *• E < > G. is a split extension of G by H, then we have
s

( y pl \
that E and A*(E) = H — ^ M K G ^ ^ G. are equivalent. To see this, we de-

V /
fine a functor T : H K G ->• E as follows. Given (A, X) e I « G we consider
the object of E j(A) <g> s(X) and the morphism p(j(A) ® s(X)) - ^ I ® X -^
X where p = (p, fj,); then, since p is a fibration, there exists a morphism in
E with source j(A) <g> s(X) which is carried by p in the morphism l/j; if A^x
is such a morphism, we define T(A,X) as the target of XA,,X, and this mor-
phism satisfies that pT(A,X) = X. Given (u,f) : (A,X) 4 (Y,B) we define
T(u,f) : T(A,X) ->• F (B ,y ) as the morphism \B,Y(j(u) ® s(f))X^x and, in this
way, it is clear that V is actually a functor. Moreover, T = (V, 9) is a homomorphism
of categorical groups where 9(A,X),(B,Y) • T((A,X) ® (B,F)) ->• F(A,X)
is defined as follows: (A,X) ® (B ,y ) = (A® X B , X <g>y) = (A(g)^ i (B)>s(x

and F((A, X) ® (B, Yj) is then the target of the following morphismx) ® s(X (g) y ) -»• r((A, X) ® (

also, we have the morphism A^x <g> \B,Y : j(A) ® s(X) ®j{B) ® s(Y) ->• F(A,
) and if C is the following isomorphism, given by composition of canonical

isomorphisms,

(g s(y)

(g s(y)
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we define 6{A,X),(B,Y) = &A,X ® AB,y) C XAmHB):,(x),X0Y- T h u s P r = P'- More-
over, there exists a morphism 7 : F j ' —>• j that is given, for any object A G H, as
the following composition:

Note that 7 is natural since, for any morphism it : A —>• A', we have that

and to check the commutativity of (6) is straightforward.
Conversely, given an action T : <G —¥ £q(M), denoted by x A, we have

and we denote this action by Ax that is given in the target of the following mor-
phism:

Now, since (I,X)®(A,I)®(I,X)* = (I(g>xA(g>X0II,X(g>I(g>X*), this new action
is equivalent to the first one by means of the isomorphisms ex,A '• x A —y Ax which
are defined as the following composition of canonical isomorphisms:

(XA,I) ->• (J ® XA ® I, I) ->• (I®XA®XI,X®X*) ->•

Finally it is straightforward to check that diagrams (21) are commutative and the
proof is finished. •

4. Obstruction theory

Let H be a categorical group and £q(M) the categorical group of the equivalences
of H (see §2, Example 5). We consider the group 7ro(£g(IHI)) whose elements are the
isomorphism classes of equivalences of H with product induced by the composition
of equivalences, that is, [T][T'] = [TT'], for any equivalences T = (T,/x),T' =
(T", fj,') : H —¥ HL Also, we will consider the abelian group TTI (£q(M)) whose elements
are the morphisms u : IOIM —>• idm • Thus, an element u £ ni(£q(M)) consists of a
family of automorphisms UA '• A —¥ A, A G H, such that JUA = UBJ for any
morphism / : A —¥ B in H, and such that UA®B = UA ® UB for any objects
A,B G HL

Let us note that, for any u £ ni(£q(M)) and any morphism e : T —>• T ' , where T
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and T' are equivalences of H, we have the equality

uT' -e = e-uT (23)

and therefore, as consequence of (10), we have the following:

Lemma 4.1. Let T, T' : H —¥ H be equivalences of the categorical group H. Then,
for any two isomorphisms 0,e : T -¥ T ' , there exists a unique u £ -K\(£q(M)) such
that

e = uT' -6 = 6-uT .

Let us recall that, according to (11), iri(£q(W)) is a 7T0(£g(IHI))-module, that is,
there exists a group homomorphism p : no(£q(M)) —¥ Aut(ni(£q(M))) given by
P[T](U) = Tu, where Tu is the unique element of ni(£q(M)) such that

TuT = Tu. (24)

Now, keeping the Baer notion of "kollektivcharacter" in mind, we shall define a
collective character of a categorical group G in a categorical group H as a pair
(<p,ij>) where ip : iro(G) -¥ 7ro(£g(IHI)) is a group homomorphism and ip : TTI(G) -»•
7ri(f g(HI)) is a homomorphism of TT0(<G)-modules, where iri(£q(W)) is so via ip, that
is, through the induced homomorphism

HomGp(ir0(G),ir0(£q(U))) -^ HomGp(TT0(G),.

Thus, given x £ TTO(G) and u £ ni(£q(M)), we have that, for any T £ (p(x),

If (ip,-0) is a collective character of G in H we will denote by H™(no(
n Jj 0, the n-th cohomology group of TTO(G) with coefficients in the TTO (<G)-module
(via ip) ni(£q(M)). Next we will show that (y>,ip) has canonically associated with
it a cohomology class k((p,ip) £ H^,(no(G),7ri (£q(M))) whose construction is analo-
gous to a classic construction by Teichmller [20] for a similar situation with linear
algebras, and to that by Eilenberg-Mac Lane [11] for the study of obstructions to
group extensions with non-abelian kernels.

Any collective character has associated a functor T : G —¥ £q(M) which is defined
as follows. If X £ G let us consider x = [X] £ TTO(G) and ip(x) £ no(£q(^)) and
let us choose an equivalence Tx : H -¥ H. In particular, if 1 = [I], select Xi = idm-
Then we define T(X) = Tx. To define T on morphisms, let us choose, in each class
x £ TTo(G), an object Xx £ x with X\ = I and for any l e i w e select a morphism
ix : X -¥ Xx in <G such that iXl = idxx, ii®xx = lxx and ixx®i = r i« • Then, given
any morphism / : X -¥ Y in G, if x = [X] = [Y], we consider the automorphism of
Xx

Y %x > Y * > V ' y v YA.x r y\. ——¥ I ¥ J\.X

and using the isomorphism (8) jxx '• TTIOG) —¥ Auta{Xx) we define T(f) =
(ipJx1 i^Yfij^)) Tx '• Tx —¥ Tx which is actually a morphism in £q(M) from Tx

toTx*.
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In this way T is a functor since:

T{idx) = (ipJxliixidxix1)) Yx = (VTx!(**O TX =

ididmTx = idTsc = idT(x),

and given morphisms in <G, X —>• Y A- Z, we have that

Tx

(izgi^lt (irfix1)) Tx

= T(g)T(f).

Let us note that, if / : X —>• y is a morphism in <G and Z 6 G, by using (9), we

have that a = 7 ^ {iy®z{f ® idz)«x®z) = TxL ((^/^jf1) ® *dJf J = T x ! ^ ^ / ^ 1 )
and thus

T(f ® idz) = %l>{a)TXI , T(f) = ^{a)Tx. (25)

Likewise, if X G <G and / : y —>• Z is a morphism in <G, by using (2), we have
that 13 = jx]y (iX0z(idx ® /)«x®r) = lxly (idx* ® (izfiy1)) = xlx](izfiy1) a n d

so, since %p is a homomorphism of 7r0(<G)-modules,

' ' ( ' 'u. Thus, if T(f) = uTy, we have that

T(idx ® / ) = ^ ( ^ ) r a s = ^ ^ u T ^ . (26)

Suppose now I . Y e G . If a; = [X] and y = [Y] then [X ® y] = [X] [Y] = xy and
so, since <p is a group homomorphism, <-p(xy) = (p(x)(p(y). Taking into account that
in £q(M) the tensor on objects is given by the composition of equivalences, we have
that the equivalences Txy and TxTy belong to the same class in 7ro(£g(IHI)). Then
we can select isomorphisms

lix,y : Txy -»• TxTy (27)

with fj,ltX = fj,Xtl = idrx, x e TTO(<G).

For any three objects X, Y, Z e <G, if x = [X], y = [Y] and z = [Z], the following
diagram need not be commutative

1x(yz)

Tx(TyTz)) (28)

TxyTz ^ ^ (TxTy)Tz ,

but, by Lemma 4.1, there exists a unique element k%$tZ £ ni(£q(M)) such that:
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Vx,yTz • nxy,z = TxfiytZ • fj,x<yz • T(aXa!,xy,xz) • k%'^zT(xy)z . (29)

According to the choices we have made, we have clearly that k%^z determines a
normalized 3-dimensional cochain of TTO(G) with coefficients in ni(£q(M)). Even
more:

Proposition 4.2. The cochain W^ : TTO(<G)3 ->• Tn(£q(M)) is a 3-cocycle O/TT0(<G)

with coefficients in the TTO(G)-module ni(£q(M)). Moreover:

i) If the choice of {Xx,ix} (for the definition of T on morphisms) is modified,
then kv'^ changes to a cohomologous 3-cocycle.

ii) If the choice of /i in (27) is modified, then kv'^ changes to a cohomologous 3-
cocycle and, by suitably changing ji, kv'^ may be changed to any cohomologous
3-cocycle.

Hi) If the choice of the equivalences Tx (for the definition of T on objects) is
modified, then a suitable new selection of /i leaves the 3-cocycle kv<^ unaltered.

Proof. To prove that kv<^ is a 3-cocycle, let (x, y, z, w) e TT0(<G)4. Then we compute
the isomorphism

J '. -*• xyzw ^ -̂  xyz-^-w ^ -*• xy-*- z-*- w ^ -*• x-*- y-*- z-*- w

in two ways. On the one hand, we have:

" = l^x,y->-z-Lw ' ->-xyHz,w ' l^xy,zw ' •*• {Ox^^y ,XZ ) " kxyzw± ((xy)z)w

— -̂  x-L y/^z,w ' I^x,y-L zw ' l^xy,zw ' -*• \^Xxy ,XZXW ) ' ^xy,z,w ((xy)z)w

= J-xJ-y^z,w ' J-x^y,zw ' Hx,y(zw) ' ^ \aXa! ,Xy,Xzm) " kx'yzwl(xy}(zw

= TxTy/

™x,y,zw-L((xy)z)w ' ">xy,z,wJ-((xy)z)w
= TxTy/j,ZtW • Tx/j,y<zw • nXyV(zw T(

\^x,y,zw ' hxy,z,w) -L((xy)z)wi

and on the other hand:
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(29) ,

(23) j

(23^25) ^

(29) j

7
j.

(23) j

( M S . I / ^ • ^

-i /T-T r r

xh*y,z-L w ' -*-

ydJCx X Xz

-i rp rj

-.,yz • T(aXx

,x ZTW • T(

i

i

,xy,x.)-K fidzT(xv)z)Tw) • ,(x
' VJ ' x v z (xy~)z VJ

\rT~l i» L*1^ ftp

JXX ,Xyz ,XW ) ' "Jx,yz,v.

\z)w

ixx,xyz,xw) -T(aXx

••V)z,w

z^ ((xy)z)w

!•*• (x(yz))w'

v v 6?) i

I^x,yz,w-L((xy)z)w " h'x,y,z-L((xy)z)w
= Tx(/j,ytZTw • nyZtW) • fix,(yZ)w •T{

'x,yz,w±((xy)z)w ' "1x,y,z

= J-x-LyfAz,w ' J-xl^y,zw ' J-x-L K<^Xy,Xz,Xv>) ' J- x™y^ZtW-L (yZ)w

T(aXa!,xyz,xJ • T{aXx,xy,xz ® idXw) $

= TxTy/iz,w • Tx/iy,zw • TxT(axy,xz,xw) •

T(aXa!,xyz,xJ • T{aXx,xy,xz ® idXw)

y , y, y ,(y) $ ; t ( ( y ) )

T(ax.,xy,,xJ • T(ax.,xy,x, ® idxj • (k*;*ZtW • k%;*z)T{{xy)z)w

— -Lx-Lyh*>z,w ' -Lxh*>y,zw ' 1 \aXy ,XZ,XW )-*-x ' fJlx,(yz)w ' ^y,z,w x((yz)w)'

T(ax.,xy,,xJ • T(aXl,xy,xz ® idxj • (k*;*ZtW • k%;*z)T{{xy)z)w

— TxTy/iz,w • Tx/iy,zw • fj,Xt(yz)w • T(idXx ® axy,xz,xw) • xky'XwTx((Vz)
T(ax.,xy.,xJ • T(aXx,xy,xz ® idxj • ^ ±

(23)
= TxTy/j,ZtW • Tx\xy%zw • \xx%{yZ)w • T{idX y y

T(ax.,xy,x, ® idxj • xk^wT{{xy)z)w) • {k%*ZtW • k%*z)Tiixy)z)

T {{idXl ® aXy,xz,xw) • ax*,xyz,x
(xL(p,tp , uip,ii> . uip,tp \ rpll . .
I ^y,z,w ^x,yz,w I^x,y,z)-L((xy)z)w

= T T / i W • Tx/iytZW • nx(yZ)w • T [ay ,(y)

( . hf,1p . hf,1p \ rp
\ "'y,z,w ™x,yz,w ™x,y,z)J-((xy)z)w

Hence, comparison and Lemma 4.1 give

y,z,w x,yz,w ™x,y,z x,y,zw xy,z,w

that is, kv'^ is a 3-cocycle.
i) If the choice of {Xx,ix} is changed by {Yx,jx}, we know (see the end of §2)

that the two following elements of TTI (G),

bx,y,z = lXxyz [h

and

h,y,z =1YIVZ \JYI®(Yy®Yz) • aYtc,Yy,Yz • J(Y^®Yy)®Yz)
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determine cohomologous 3-cocycles of TTO(<G) with con coefficients in TTI(G). The
first choice gives kv'^ satisfying

Vx,yTz • Hxy,z = TxfJ,y<z • fJ,x<yz • T(aXx,Xy,Xz) • k%lt,zT(xy)z ,

and the second choice gives kv^ satisfying

Hx,yTz • Hxy,z = Tx[lytZ • Hx,yz ' T\ayx,Yy,YZ) ' kx'ty<zT^xy)zy >

where T(ax.,xv,x.) = ^(bx,y,z)T(xy)z and T(aY.,Yv,Y.)_= ip(Ky,z)T(xy)z. Then,
comparison and Lemma 4.1 give ip(bXtVtZ) • k%'^z = ip(bx,y,z) • k%$,z- Now, since
ip is a homomorphism of 7r0(<G)-modules, ip(bXtVtZ) and ip(bXtVtZ) are cohomologous
3-cocycles of TTO(<G) with coefficients in the 7r0(<G)-module, via ip, iri(£q(M)) and
therefore it is clear that kv'^ and kv'^ are also cohomologous.

ii) By Lemma 4.1, any other choice 6XtV : Txy ->• TxTy has the form 0x<y =
Hx,y " hXtVTxy where h : 7To(<G)2 —¥ ni(£q(M)) is a normalized 2-cochain. Then, for
any objects X,Y,Z G G, we obtain the following expressions of the isomorphism
J : Txyz -»• TxTyTz given by:

J = Tx9x<y • 9x<yz • T(axxtxytxz) • k'x,y,zT(xy)z-

On the one hand,

J = Tx/iVtZ • TxhVtZTyz • fiXtyz • hXtyzTx(yz^ • T(aXtc,xy,xJ • K,y,z
T(xy)z

= Txfj,y>z • Txhy,zTyz • /jXtVZ • T(axx,xy,xz) • hx,yzT^xy)z • k'x^<zT^xy-)z

= TxfiytZ • xhVtZTxTyz • fiXtyz • T(aXtc,xy,xJ • {hx,yz • k'xyz) T(xy)z

= Txfj,y>z • fj,x>yz • xhy^Txi<v£) • T(aXlc,xy,xz) • (hx,yz • K,y,z)
 T(xy)z

= TxflytZ • flXtyz • T(aXtc,Xy,xJ • X^y,zT{Xy)z • (hx,yz • K,y,Z) T(xy)z
= Txfj,y>z • fj,x>yz • T(axx,xy,xz) • {xhy,z • hx,yz • k'xyz) T(xy)z

and on the other hand,

i-z " C
/ z ' ilx.yi xy-L z ' l^xy,z ' l^xy.z^- (xy)z

T ( - ) ft T ftJ — "x^y-'-z ' "xy,z

— M»,3/ ^ ' l^xy,z ' ilx.yi (xy)z ' 'llxy,z-'-(xy)z
(29)= LH H 1 ( f l ) k L ) l(xy)z
= Txfj,y>z • fj,x>yz • T(axx,Xy,xz) • (kx,y,z • hx,y • hxy>z) T(

Comparison and Lemma 4.1 give

'^y,z ' '^x,yz ' *^x,y,z — x,y,z ' '^x,y ' '^xy,z i

an equality which asserts that the 3-cocycles k and k' are cohomologous.
iii) If Fx £ y>(x), x = [X] G TTO(G), is another selection of equivalences, then we

can select isomorphisms ex : Tx —¥ Fx and choose, for any x = [X], y = [Y] G TTO(G),

&x,y '• Fxy -^ FxFy the isomorphism making the following diagram commutative:
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p 'l-'.̂ ff
-1 xy ^ -1 x1- y

134

T T • FXTy .

Thus we have,

' *' xy €Xy-L z ' l^xy,z

— r x r y 0 T T
Ux,y-Lz ' ^xy-1 z '
^x^-yJ-z ' ̂ x-'-y-'-z

• exT
yz

FXFy6Z • FX6ylZ • 6XTylZ

Kx,y,z-*-(xy)z
n-2^ T? T? s- TP ,- T< TP ,,

— rxrytz • rxtylz • rx/J,y^z

Kx,y,z-L(xy)z
J? A TP c c T1 it

— -^x"y,z ' •*- x^-yz ' ^•x-'-yz ' f-^x
— rx"y,z ' "x,yz ' tx(yz) '

( - ) F 9 9
— rxuy,z ' ux,yz

( - ) F 9 9
— rxuy,z ' ux,yz

Therefore 9x,yFz-9xy,z = Fx9y>z-9x>yz-F(axa!,xy,xz)-kx,y,zF^xy-)z and the 3-cocycle
k is unchanged. •

If G and H are categorical groups and Char(G, H) denotes the set of collective
characters of G in H, there is a diagram of maps

Act(G,H) (30)

Char(G,H)

where \ carries the class of an action of <G on H, T = (T, n) : G ->• £q(M), to
the collective character (y>,r/>) where ip : 7ro(T) : TTO(<G) ->• iro(£q(lty) and ip =
TTI(T) : TTI(<G) ->• Tn(£q(M)) (see last paragraph in §2), A is the bijection (22) and
X = xA" 1 . Therefore, \ '• ExtspHt(<S, H) ->• Char(G,H) associates a collective
character with each equivalence class of split extensions of G by HL We refer to a
collective character (ip, -0) of G in H as realizable if it is in the image of %, that is,
if it is induced, as explained above, from a split extension of G by HL The map \
produces a partition of the set of equivalence classes of split extensions

Extsp,i4(G,H)= JJ Ext^(G,H)

where, for any collective character (ip, tp) e Char(G, H), E x t ^ ? (G, H) = \~x (ip, tp)
denotes the fiber over (ip, -0) of \. Hence, a collective character (ip, -0) is realizable


