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Abstract
The holomorphic (or semi-topological) K-theory of a smooth

projective variety sits between the algebraic K-theory of
the variety and the topological K-theory of the underlying
topological space [6], [8]. We describe how to define a family of
∂̄ operators on holomorphic K-theory in a manner analogous
to Atiyah’s construction of a family of elliptic operators in
topological K-theory [2]. In the process, we prove a result akin
to Bott periodicity for holomorphic mapping spaces. These
results first appeared in the author’s Stanford University Ph.D.
thesis under the direction of Ralph Cohen [17].

1. Introduction

The holomorphic (or semi-topological) K-theory of a smooth projective variety
interposes between the algebraic K-theory of the variety and the topological
K-theory of the underlying topological space. Algebraic K-theory is often difficult
to compute. Topological K-theory is much better understood, in part because topo-
logical K-theory can be defined in terms of the space of continuous maps from
a topological space into the classifying space of the unitary group [1]. Cohen and
Lima-Filho defined holomorphic K-theory by considering an analogous construction
using holomorphic, rather than continuous, maps [6]. This paper describes how to
construct a family of ∂̄ operators in this holomorphic setting. Our approach is mod-
eled on Atiyah’s well-known proof of the Bott periodicity theorem using elliptic
operators.

For a smooth projective variety X, let Hol(X;Grn(CN )) denote the space of
holomorphic maps between the underlying complex manifold X and the Grass-
mannian of n-planes in CN . In [6], Cohen and Lima-Filho define the holomorphic
K-theory space of X to be the Quillen–Segal completion of the union of these map-
ping spaces. For a topological monoid M , the Quillen–Segal group completion of
M , denoted M+, is defined to be ΩBM , the loop space of the classifying space of
M . This group completion is necessary so that the holomorphic mapping space is
an infinite loop space.
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Definition 1.1. [6]

Khol(X) :=


⋃

n,N

Hol(X;Grn(CN ))




+

≡ Hol(X;Z×BU)+

As in topological K-theory, we will be interested in the homotopy types of these
mapping spaces.

Definition 1.2.

K−q
hol(X) := πqKhol(X)

The inclusion of the holomorphic mapping space into the continuous mapping
space induces a natural map ι : K−q

hol(X) → K−q
top(X).

We note that Cohen and Lima-Filho’s theory coincides with what Friedlander and
Walker termed “semi-topological K-theory.” In [6], Cohen and Lima-Filho proved
that K0

hol(X) is isomorphic to the Grothendieck group completion of the monoid of
algebraic bundles overX modulo algebraic equivalence, which is precisely how Fried-
lander and Walker defined Ksemi

0 (X) in [8]. Friedlander and Walker approached
semi-topological K-theory from an algebraic K-theoretic perspective. They proved
that the holomorphic, or semi-topological, K-theory of a variety sits between its alge-
braic K-theory and the topological K-theory of the underlying topological space, a
result which motivated their terminology.

One of the most important tools for calculating topological K-theory was the
Bott periodicity theorem, which establishes that K−2

top(X) ∼= K0
top(X), or, stated in

terms of mapping spaces,

π0

[
Map(X; Ω2(BU))

] ∼= π0 [Map(X;Z×BU)] .

In [2], Atiyah used the index of elliptic operators to give a proof of this theorem.
In particular, he defined a homomorphism from K0

top(X × CP1) to K0
top(X) using

the index of a family of ∂̄ operators. This paper extends Atiyah’s construction to a
families of ∂̄ operators on holomorphic mapping spaces.

Using a delicate refinement of Atiyah’s argument involving indices of elliptic
operators to the setting of holomorphic maps to Grassmannians, we obtain the
following:

Theorem 1.3. Let X be any smooth projective variety. The index of a family of ∂̄
operators defines a homotopy equivalence:

∂̄ : Hol(X;Hol•(CP1;BU))+ '→ Khol(X).

This homotopy equivalence has also been established using techniques of algebraic
K-theory: it arises as a special case of Friedlander and Walker’s projective bundle
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theorem [8] which states that there is a natural isomorphism

Ksemi
∗ (X)×n ∼= Ksemi

∗ (P(E)).

Here, X is a projective variety and E is a rank n vector bundle on X. In the case
of a trivial bundle, the Friedlander–Walker theorem becomes

Khol(X) ' Khol(X × CP1;X).

This paper interprets Friedlander–Walker’s projective bundle theorem in terms of
Bott periodicity. Furthermore, the use of the ∂̄ operator as a tool in the present
paper illustrates a connection between holomorphic K-theory and elliptic operators
that may be useful in other contexts.

Note that Theorem 1.3 does not imply that K−q
hol(X) ∼= K−q+2

hol (X), and in fact,
this stronger result fails in general. By studying the appropriate analogue of the
Chern character, Cohen and Lima-Filho showed that if a variety X has non-zero
Hodge cohomology groups Hp,q(X,C) for some p 6= q, then K∗

hol(X) is not Bott
periodic [5], [6]. Note that the holomorphic K-theory must be distinct from the
topological K-theory for any such X.

The outline of this paper is as follows: in Section 2, we define a family of ∂̄
operators indexed by spaces of continuous maps. We restrict this map to holomor-
phic mapping spaces in Section 3. In Section 4 we construct complex coordinates
for Hol•k(CP1;Grn(CN )), and use these to show the ∂̄ map is holomorphic in the
appropriate sense in Section 5. Section 6 contains the proof of Theorem 1.3.

2. Families of ∂̄ operators coupled to mapping spaces

Let Map•k(CP1;BU) denote the space of base-point preserving continuous maps
of degree k from CP1 to BU . Note that this is a connected component of Ω2(BU).
In this section, we explain how to associate an elliptic operator ∂̄f to each map f in
Map•k(CP1;BU). We describe how this family of elliptic operators describes a well-
defined homotopy class of maps from Ω2(BU) to Z×BU . Moreover, we show that
this construction yields an inverse to the homotopy equivalence Z×BU ' Ω2(BU)
originally proven by Bott [3].

We begin by reviewing the definition of the ∂̄ operator for any complex mani-
fold M . Recall that the complexified cotangent space to M at each point z ∈M ,
T ∗C,z(M), can be decomposed into the sum of the holomorphic cotangent space,
which we denote T 1,0

z (M), and the anti-holomorphic cotangent space, which we
denote T 0,1

z (M):

T ∗C,z(M) = T 1,0
z (M)⊕ T 0,1

z (M).

Let An(M) denote the space of complex-valued n-forms on M , and let Ap,q(M)
denote the forms of type (p, q); that is,

Ap,q(M) =
{
φ ∈ An(M) : φ(z) ∈ ∧pT 1,0

z (M)⊗ ∧qT 0,1
z (M) for all z ∈M}

.

Finally, let πp,q : Ap+q → Ap,q denote the projection from p+ q forms to forms of
type (p, q). The exterior derivative d defines a map from n-forms to n+ 1 forms.
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Restricted to forms of type (p, q), we see that

d : Ap,q(M) → Ap+1,q(M)⊕Ap,q+1(M).

Thus, d splits as ∂ + ∂̄, where

πp+1,qd ≡ ∂ : Ap,q(M) → Ap+1,q

and

πp,q+1d ≡ ∂̄ : Ap,q(M) → Ap,q+1.

Now let E be a holomorphic vector bundle over CP1, and let Ap,q(E) denote the
space of E-valued (p, q) forms. If σ1, . . . , σn is a local holomorphic frame over an
open set U ⊂ CP1 and σ =

∑
gi ⊗ σi, where gi ∈ Ap,q(U), then

∂̄E : Ap,q(E) → Ap,q+1(E)

is defined by

∂̄(σ) =
∑ ∂gi

∂z̄
dz̄ ⊗ σi.

This definition of ∂̄(σ) does not depend on the choice of frame; see, for example,
[9]. In the case where p = q = 0, A0,0(E) is the space of smooth sections of E, and
we have:

∂̄E : Γ∞(E) → Γ∞(E ⊗ T 0,1(CP1))

where T 0,1(CP1) denotes the anti-holomorphic cotangent bundle of CP1.
If E is not holomorphic, then there is no canonically defined operator from

E-valued (p, q) forms to E-valued (p, q + 1) forms; however, the choice of a connec-
tion on E determines an exterior derivative d from E-valued sections to E-valued
1-forms. One may then define ∂̄E to be π0,1 ◦ d.

Recall that for a Fredholm operator T , the index is defined to be the difference
between the dimension of the kernel and the dimension of the cokernel:

indexT = dim kerT − dim cok T.

The index of ∂̄E is defined to be the index of any of its Fredholm extensions

ΓL2
s
(E) → ΓL2

s−1
(E ⊗ T 0,1(CP1))

where ΓL2
s(E) denotes the completion of the space of smooth sections of E in the

Sobolev s-norm. These extensions have a finite-dimensional kernel and cokernel
consisting of smooth sections. Furthermore, the kernel and cokernel are independent
of the choice of s. For the sake of concreteness, we take s = 1. See [14] or [11] for a
general reference on the index of elliptic operators and families of elliptic operators.

Now consider the space Map•k(CP1;BU(n)) of based continuous maps of degree k
from CP1 to BU(n). For each map f , associate the operator ∂̄f∗γn

∨⊗O(−1). The bun-
dle f∗γn

∨ ⊗O(−1) is the dual of the pullback of the universal bundle over BU(n),
tensored with O(−1), the universal bundle over CP1. Although f∗γn

∨ ⊗O(−1) is
not generally a holomorphic bundle if f is not holomorphic, it does come equipped
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with a connection, since we can pull back the canonical connection on γn. In this
way, we obtain a family of elliptic operators parametrized by f .

Using the Riemann–Roch theorem, we calculate the index of ∂̄f∗γn
∨⊗O(−1).

Note that while the dimension of the kernel and cokernel of ∂̄f∗γn
∨⊗O(−1) may

vary, the index is constant for each f in Map•k(CP1;BU(n)) since the space
Map•k(CP1;BU(n)) is connected:

index ∂̄f∗γn
∨⊗O(−1) = c1(f∗γn

∨ ⊗O(−1)) + dim (f∗γn
∨ ⊗O(−1))

= (k − n) + n

= k.

Since the index does not depend on n, we see the index is constant on each
connected component Map•k(CP1;BU) of Ω2(BU). This defines a map

index : Ω2(BU) = Map•(CP1;BU) → Z.

In fact a more careful analysis gives us, up to homotopy, a map

Map•(CP1;BU) ∂̄→ Z×BU.

Note that the evaluation map

F : Map•(CP1;BU)× CP1 → Z×BU

given by

F (f, p) = (index(f), f(p))

defines an element of K0
top(Map•(CP1;BU)× CP1). In [2], Atiyah uses the index of

a family of ∂̄ operators to define a homomorphism from K0
top(Y × CP1) to K0

top(Y ).
Applying Atiyah’s homomorphism here, we get

Index ∂̄F∗γn
∨⊗O(−1) ∈ K0

top(Map•(CP1;BU)) = [Map•(CP1;BU);Z×BU ].

Thus we obtain a well-defined homotopy class of maps from Map•(CP1;BU) to
Z×BU as desired.

Given any space X, ∂̄ extends to give

∂̄ : Map(X;Map•(CP1;BU)) → Map(X;Z×BU).

Again, this is only defined up to homotopy. We shall see it induces an isomorphism
on homotopy groups.

Lemma 2.1. The homotopy class of maps

∂̄ : Map(X;Map•(CP1;BU)) → Map(X;Z×BU)

as defined above induces an isomorphism on homotopy groups, and is therefore a
homotopy equivalence.
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Proof. Note that

πq

(
Map(X;Map•(CP1;BU))

)
= K−q−2

top (X)

and

πq (Map(X;Z×BU)) = K−q
top(X).

Therefore, we need to show that ∂̄ induces an isomorphism K−2
top(X) ∼= K0

top(X).
We appeal to the following theorem of Atiyah, which describes sufficient conditions
for such a map to be an isomorphism.

Theorem 2.2. ([2]) Suppose there exists an α : K−q−2
top (X) → K−q

top(X) defined for
all compact X such that α satisfies the following axioms:

1. α is functorial in X;

2. α is a K0
top(X)-module homomorphism;

3. α(b) = 1, where b ≡ [1]− [O(−1)] ∈ K̃0
top(CP1) = K−2

top(pt).

Then α is inverse to the Bott map β.

In [2], Atiyah verifies that for any elliptic operator d, the map defined by
Q 7→ Index dQ from K0

top(X × CP1) to K0
top(X) is functorial and is a K0

top(X) mod-
ule homomorphism, and so it follows immediately that ∂̄] : Kq−2

top (X) −→ Kq
top(X)

satisfies the first two axioms; however, ∂̄](b) = index ∂̄b∨⊗O(−1) = −1, by the
Riemann–Roch formula, so we actually have that −∂̄] satisfies all of Atiyah’s formal
properties. Thus, −∂̄ induces an isomorphism in homotopy groups in all dimensions,
and therefore is a homotopy equivalence. Certainly, ∂̄ is a homotopy equivalence as
well.

In terms of mapping spaces, the above result implies that −∂̄ is homotopy inverse
to the Bott map β : Z×BU → Ω2BU = Map•(CP1;BU).

3. Restricting ∂̄ to holomorphic mapping spaces

We now consider only those maps which are holomorphic. Let V be an infinite-
dimensional complex vector space, and let Grn(V ) be the Grassmannian of n-
dimensional subspaces of V . We take Grn(V ) as our model for BU(n). The topology
of Grn(V ) is determined by

Grn(V ) = lim−→
F

Grn(F )

where the limit is taken over all finite-dimensional subspaces F of V (cf. [7]),
and the complex structure of Grn(V ) can be described using Plücker coordinates,
analogous to the usual description for finite Grassmannians (cf. [9], [15]). Let
Hol•k(CP1;BU(n)) denote the space of holomorphic, base-point preserving maps of
degree k from CP1 to BU(n), and let Hol•k(CP1;BU) be the limit of those mapping
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spaces over the rank n:

Hol•k(CP1;BU) = lim
n→∞

Hol•k(CP1;BU(n)).

The main goal of this section is to show that the construction described in Sec-
tion 2 yields a map from Hol•k(CP1;BU) to BU(k) when restricted to holomorphic
mapping spaces. Furthermore, we prove this map realizes the homotopy equivalence
Hol•k(CP1;BU) ' BU(k) originally proven in [7].

Theorem 3.1. When restricted to holomorphic maps, ∂̄ : Map•k(CP1;BU) → BU
defines a map ∂̄ : Hol•k(CP1;BU) → BU(k) that makes the following diagram homo-
topy commute:

Hol•k(CP1;BU) ∂̄−−−−→ BU(k)
y

y

Map•k(CP1;BU) ∂̄−−−−→ BU

Proof. We first show that if f is holomorphic, then Index ∂̄f∗γn
∨⊗O(−1) is a k-

dimensional vector space.
Recall that any holomorphic vector bundle over CP1 can be decomposed into a

sum of line bundles; that is, if E is an n-dimensional holomorphic vector bundle
over CP1, then

E = O(a1)⊕ · · · ⊕ O(an),

where O(ai) is a line bundle with first Chern class ai. A holomorphic bundle E
over CP1 is said to be negative if in the above decomposition, ai 6 0 for all i. We
will say E is strictly negative if ai < 0 for all i. Positive and strictly positive are
analogously defined. Finally, if E = f∗γn for some holomorphic map f , then we will
say E is representable.

Clearly any representable bundle can be holomorphically embedded in a trivial
bundle by pulling back the embedding γn ↪→ Grn(CN )× CN . Furthermore, embed-
dable holomorphic bundles are negative (as can be seen directly from the above
decomposition), and therefore f∗γn ⊗O(−1) is strictly negative. If j < 0, O(j) has
no holomorphic sections. This implies that if f is holomorphic, then f∗γn ⊗O(−1)
has no holomorphic sections and so H0(CP1,O(f∗γn ⊗O(−1))) = 0. It then follows
from Kodaira–Serre duality that H1(CP1,O(f∗γn

∨ ⊗O(−1))) = 0, and therefore
cok ∂̄f∗γn

∨⊗O(−1) = 0.
Since the cokernel is identically zero for all f ∈ Hol•k(CP1;BU), we have that

Index ∂̄ = Ker ∂̄ is a k-dimensional bundle over Hol•k(CP1;BU). Bundles of dimen-
sion k are classified by maps to BU(k), and so we obtain a well-defined homotopy
class of maps from Hol•k(CP1;BU) to BU(k) as claimed.

More concretely, we can think of ker ∂̄f∗γn
∨⊗O(−1) as a k-dimensional subspace

of a fixed infinite-dimensional space. For each f ∈ Hol•k(CP1;Grn(CN )), we know
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that f∗γn embeds holomorphically into an N -dimensional trivial bundle:

f∗γn ↪→ CP1 × CN .

This yields a holomorphic surjection of the dual bundles:

CP1 × (CN )∨ → f∗γ∨n .

Now tensor both bundles with O(−1):

(CN )∨ ⊗O(−1) → f∗γn
∨ ⊗O(−1).

This induces a surjection of the corresponding spaces of sections

ΓL2
1
((CN )∨ ⊗O(−1)) → ΓL2

1
(f∗γn

∨ ⊗O(−1)).

For any complex vector space V , the Grassmannian of co-dimension k vector spaces
of V , Grk(V ), may be thought of as a quotient of the space of linear surjections
from V onto Ck:

Grk(V ) = Lin Surj(V ;Ck)/GL(k).

It follows that a surjection W → V induces a contravariant map between the Grass-
mannians:

Grk(V ) → Grk(W ).

Thus, we have a map

ϕ : Grk
(
ΓL2

1
(f∗γn

∨ ⊗O(−1))
)
→ Grk

(
ΓL2

1
((CN )∨ ⊗O(−1))

)
.

Finally, Grk(V ) and Grk(V ) may be identified by sending a k-dimensional subspace
S ∈ V to S⊥ (similarly for Grk(W ) and Grk(W )). Composing this with ϕ yields a
map

Grk

(
ΓL2

1
(f∗γn

∨ ⊗O(−1))
)
↪→ Grk

(
ΓL2

1
((CN )∨ ⊗O(−1))

)
.

Let ∂̄(f) be the image of ker(∂̄f∗γn
∨⊗O(−1)) under this map. Then we have

∂̄ : Hol•k(CP1;Grn(CN )) → Grk

(
ΓL2

1
((CN )∨ ⊗O(−1))

)
.

Next, we take the limit as n and N approach infinity. We define

Hol•k(CP1;Grn(CN )) → Hol•k(CP1;Grn+1(CN+1))

using the inclusion Grn(CN ) → Grn+1(CN+1) given by V 7→ V ⊕ C and we define

Grk

(
ΓL2

1
((CN )∨ ⊗O(−1))

)
→ Grk

(
ΓL2

1
((CN+1)∨ ⊗O(−1))

)

by V 7→ V ⊕ 0. We have

lim
n,N→∞

Hol•k(CP1;Grn(CN )) = Hol•k(CP1;BU)

and

lim
N→∞

Grk

(
ΓL2

1
((CN )∨ ⊗O(−1))

)
= BU(k).
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The diagram

Hol•k(CP1;Grn(CN )) −−−−→ Hol•k(CP1;Grn+1(CN+1))

∂̄

y ∂̄

y
Grk

(
ΓL2

1
((CN )∨ ⊗O(−1))

)
−−−−→ Grk

(
ΓL2

1
((CN+1)∨ ⊗O(−1))

)

commutes, and so the ∂̄ map extends to the limit. Thus, we have explicitly defined

∂̄ : Hol•k(CP1;BU) → BU(k)

for each k. Furthermore, this construction of ∂̄ extends to the Quillen–Segal com-
pletion:

Proposition 3.2. There exists a well-defined extension of ∂̄ to the Quillen–Segal
group completion:

∂̄ : Hol•(CP1;BU)+ →
(∐

BU(k)
)+

= Z×BU.

Proof. The spaces ⋃

k,n,N

Hol•k(CP1;Grn(CN ))

and ⋃

k,N

Grk

(
ΓL2

1
((CN )∨ ⊗O(−1))

)

are monoids: If f ∈ Hol•k(CP1;Grn(CN )) and g ∈ Hol•l (CP
1;Grm(CM )), then

f + g ∈ Hol•k+l(CP
1;Grn+m(CN+M ))

and if V ∈ Grk

(
ΓL2

1
((CN )∨ ⊗O(−1))

)
andW ∈ Grl

(
ΓL2

1
((CM )∨ ⊗O(−1))

)
then

V ⊕W ∈ Grk+l

(
ΓL2

1
((CN+M )∨ ⊗O(−1))

)
.

Furthermore,

 ⋃

k,n,N

Hol•k(CP1;Grn(CN ))




+

= Hol•(CP1;BU)+

and 
⋃

k,N

Grk

(
ΓL2

1
((CN )∨ ⊗O(−1))

)



+

= Z×BU.

Recall that for any monoid M, the Quillen–Segal completion is ΩBM, the loop
space of the classifying space of M. Any map between two monoids M1 and M2

which preserves the monoid structure extends to a map of the classifying spaces
(using the simplicial bar construction), and subsequently extends to the loop spaces
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of the classifying spaces. Therefore, to prove Proposition 3.2, it suffices to show that
∂̄ preserves the monoid structure.

If f ∈ Hol•k(CP1;Grn(CN )) and g ∈ Hol•l (CP
1;Grm(CM )), then we see that

Γhol((f ⊕ g)∗γ∨n+m ⊗O(−1)) = Γhol(f∗γn
∨ ⊗O(−1))⊕ Γhol(g∗γ∨m ⊗O(−1)).

This implies that the following diagram commutes:

Hol•k(CP1;Grn(CN ))×Hol•l (CP
1;Grm(CM ))

⊕ ,,XXXXXXXXXXXXXXXXXXXXXXX

∂̄×∂̄

²²

Hol•k+l(CP
1;Grn+m(CN+M ))

∂̄

²²

Grk

(
ΓL2

1
((CN )∨ ⊗O(−1))

)
×Grl

(
ΓL2

1
((CM )∨ ⊗O(−1))

)

⊕ ++WWWWWWWWWWWWWWWWWWWW

Grk+l

(
ΓL2

1
((CN+M )∨ ⊗O(−1))

)

Thus, ∂̄ preserves the monoid structure and therefore extends to the Quillen–
Segal completion as required.

In fact, ∂̄ is a homotopy equivalence:

Proposition 3.3. Let

∂̄ : Hol•k(CP1;BU) → BU(k)

be as defined above. Then ∂̄ is a homotopy equivalence.

Note this proposition immediately implies that Hol •(CP1;BU )+ ' Khol(pt), a
result which originally follows from work of Kirwan, who proved that the map
Hol•(CP1;BU)+ → Map•(CP1;Z×BU) induced by the inclusion of the space of
holomorphic maps into the space of continuous maps is a homotopy equivalence
[10].

Proof. The result that Hol•k(CP1;BU) is homotopy equivalent to BU(k) was first
proved in [7]; what is new here is that the homotopy equivalence can be realized
by the ∂̄ operator. In [7], Cohen, Lupercio, and Segal constructed a homotopy
equivalence

γ : Hol•k(CP1;BU) → BU(k)

using the Mitchell–Segal filtration Fk,n of ΩSU(n); see [13]. Their result immedi-
ately implies that γ realizes the homotopy equivalence Hol•(CP1;BU)+ ' Khol(pt).
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Furthermore, their map γ fits into the following commutative diagram:

∐
k Hol•k(CP1;BU)

+

²²

γ // ∐
k BU(k)

+

²²
Hol •(CP1;BU )+

'
²²

γ // Z×BU

=

²²
Map•(CP1;Z×BU)

' //
Z×BU

β
oo

By Theorem 3.1 and the proof of Lemma 2.1, this diagram also commutes if we
replace γ by −∂̄. (Recall that we must use −∂̄ rather than ∂̄ since the index of ∂̄b

is −1 rather than 1.) It follows that the compositions

Hol•k(CP1;BU)
γ→ BU(k) ↪→ BU

and

Hol•k(CP1;BU) −∂̄→ BU(k) ↪→ BU

are homotopic. We also note that after the Quillen–Segal completion, −∂̄ and γ are
homotopic; that is,

Hol •(CP1;BU )+

∂̄ ((PPPPPPPPPPPP

φ // Z×BU

−1

²²
Z×BU

homotopy commutes. We conjecture that the maps ∂̄ and γ are also closely related
before group completion, but we shall not need that here. It suffices to observe that

∂̄ : Hol•k(CP1;BU) → BU(k)

must induce a map which is injective in homology. Since Hol•k(CP1;BU) and BU(k)
are known to be homotopy equivalent, this map must be isomorphism in homology,
and so ∂̄ is a homotopy equivalence.

4. Complex coordinates for Hol•
k(CP

1; Grn(Cn+m))

The based holomorphic mapping space Hol•k(CP1;Grn(Cn+m)) is a connected,
complex manifold of complex dimension (n+m)k [4]. In this section, we explicitly
describe how to obtain complex coordinates on open sets of this manifold. We use
this result in Section 5 to prove that

∂̄ : Hol•k(CP1;Grn(Cn+m)) → Grk

(
ΓL2

1
((Cn+m)∨ ⊗O(−1))

)

is holomorphic.
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Mann and Milgram [12] proved that given any f ∈ Hol•k(CP1;Grn(Cn+m)), f
may be expressed as a matrix of polynomials in the following unique normal form:

[P,Q] =




p11(z) p12(z) . . . p1n(z) q11(z) . . . q1m(z)
0 p22(z) . . . p2n(z) q21(z) . . . q2n(z)
...

. . . . . .
...

...
. . .

...
0 . . . pnn(z) qn1(z) . . . qnm(z)




where P is an upper triangular n× n matrix of polynomials and Q is an n×m
matrix of polynomials such that the polynomials pii are monic. Let ki denote the
degree of pii. Then

∑n
i=1 ki = k, deg pij < kj if i < j, and deg qnj < kn.

For each f ∈ Hol•k(CP1;Grn(Cn+m)), we have that

f(∞) = Cn ⊕ 0 ∈ Grn(Cn+m).

This base point condition imposes additional constraints on the qij . In terms of the
above normal form, this implies that the elements of the matrix P−1Q must tend
to 0 as z tends to infinity. In particular, this condition forces the polynomials qnj

to have degree less than kn since
qnj

pnn
→ 0.

More generally, the condition that each component of P−1Q tends to zero deter-
mines each polynomial qij in terms of the matrix of polynomials P and the polyno-
mials qkj for k > i, up to an arbitrary polynomial sij of degree less than ki.

From the above description, we note that the jth column of P has jkj degrees of
freedom, and each column of Q has k degrees of freedom (the ith row of Q has mki

degrees of freedom). Given a partition K = (k1, k2, . . . , kn) such that
∑n

i=1 ki = k,
Mann and Milgram showed that the collection of f ∈ Hol•k(CP1;Grn(Cn+m)) such
that the normal form of f satisfies deg pii = ki is a complex submanifold of
Hol•k(CP1;Grn(Cn+m)) of dimension dK = km+

∑n
j=1 jkj .

We are interested, however, not in the complex coordinates of this submanifold,
but rather in an open set of dimension k(n+m). Let f ∈ Hol•k(CP1;Grn(Cn+m)),
and suppose the normal form of f satisfies deg pii = ki for some fixed partition
K = (k1, k2, . . . , kn). In order to define an open set UK containing f , we consider
matrices of polynomials P and Q, where P is n× n and Q is n×m, with the
following conditions:

1. The diagonal terms pii of P are monic with deg pii = ki.
2. All off-diagonal terms in a given column of P must have degree smaller than

that of the diagonal term; that is, deg pij < kj for all i 6= j.
3. The elements qij of Q must be compatible with the basepoint condition as

described above; that is, the entries of the matrix of rational functions P−1Q
must tend to 0 as z tends to infinity.

4. The rows of the n× (n+m) matrix [P,Q] must be linearly independent for
all z.

This description differs from the normal form in that the matrix P is no longer
required to be upper triangular, so we obtain in this way an open set rather than
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one of the complex submanifolds considered by Mann and Milgram. While each
element of the open set as defined above certainly has an equivalent description
in the Mann–Milgram normal form, we will find this description more convenient.
Note that the determinant of P is a monic polynomial of degree k. The jth column
of P has nkj degrees of freedom given by the coefficients of the pij , and, as in the
case of the normal form, each element qij has ki degrees of freedom since we shall
see that qij is completely determined by the base point condition up to a polynomial
sij of degree less than ki.

Theorem 4.1. Let K = (k1, k2, . . . , kn) be a fixed partition of k =
∑n

i=1 ki and let
[P,Q] be an element of UK . There exist polynomials sil with deg sil < ki for all
1 6 i 6 n and 1 6 l 6 m such that the coefficients of the polynomials in the matrix
Q are polynomial in the coefficients of the polynomials {pij} and {sil}. The map

UK −→ V ⊂ Ck(n+m)

defined by sending an element of UK to the coefficients of the polynomials {pij} and
{sil} is a biholomorphic map onto an open set V in Ck(n+m).

Before proving Theorem 4.1, we consider the following example.

Example 4.2. Suppose that f ∈ Hol•2(CP
1;Gr2(C3)), and that the normal form of

f corresponds to the partition K = (0, 2), so that k1 = 0, k2 = 2, k = k1 + k2 =
2, n = 2,m = 1. Then we have that Hol•2(CP

1;Gr2(C3)) is six-dimensional, and
C6 ⊃ V −→ UK by:

(a, b, c, d, e, f) 7→
[

1 az + b
0 z2 + cz + d

∣∣∣∣
ae

ez + f

]

Here, V is the open set of C6 such that z2 + cz + d and ez + f have no common
roots; that is, cef 6= f2 + de2. To understand how we obtained q11 and q21 as above,
note that once the matrix P is determined, we have

[
1 az + b
0 z2 + cz + d

]−1 [
q11(z)
q21(z)

]
=



q11(z)− (az + b)q21

z2 + cz + d
q21

z2 + cz + d




Since each element of the resulting matrix must go to zero as z goes to infinity,
we see that q21 = s21 can be any polynomial of degree less than 2, but then q11 is
completely determined by the polynomials pij and q21.

Proof of Theorem 4.1. It suffices to consider the case when m = 1, so that the
matrix Q consists of a single column vector. Define

eij = (−1)i+jdet Pji

where Pji denotes the (n− 1)× (n− 1) matrix obtained by removing the jth row
and ith column from P . Then eij/detP denotes the ijth component of P−1. Note
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that we have the following constraints on the degree of eij :

deg eij 6 k − ki − 1 if i 6= j

deg eii = k − ki

Furthermore, the polynomials eii are monic.
Using the above notation, the condition that the elements of P−1Q tend to zero

as z tends to infinity is equivalent to the following restriction for all i:

deg (ei1q1 + ei2q2 + · · ·+ einqn) < k.

Isolating qi in the ith such inequality, we obtain

qi = polynomial part of
{−∑

i 6=l eilql

eii

}
+ s′i

where s′i is an arbitrary polynomial of degree less than ki. This implies that

deg qi 6 maxl 6=i(deg eil + deg ql − deg eii, ki − 1) 6 max (deg ql − 1, ki − 1).

Let S denote the set of i for which ki ≡ kmax > kj for all 1 6 j 6 n. Then it
follows immediately that deg qi 6 kmax − 1 for all i, with equality possible only if
i ∈ S. Consequently, for any i ∈ S, qi = si can be an arbitrary polynomial of degree
less than ki = kmax.

In the case when i /∈ S, then we may have that ki − 1 < deg qi < kmax − 1. We
want to show that the coefficients of the terms of degree greater than ki − 1 are
completely determined by those that are already known. Consider the polyno-
mial ei1q1 + ei2q2 + · · ·+ einqn. The highest possible degree of any of the terms
is k − ki + kmax − 2, and the only summands which possibly contain terms of this
degree are eiiqi and eijqj for j ∈ S. Therefore, we must have that the coefficient for
zkmax−2 in qi is equal to the negative of the sum of the coefficients for zk−ki+kmax−2

in eijqj , since eii is monic. Note that this coefficient will certainly be polynomial in
the coefficients for the pij and sj , for j ∈ S.

Similarly, the coefficient for zkmax−3 in qi is determined using the terms of order
k − ki + kmax − 3 in the polynomial ei1q1 + ei2q2 + · · ·+ einqn. Coefficients of the
terms of order k − ki + kmax − 3 are obtained from the coefficients of zkmax−2 in qj
for j /∈ S, which have already been determined, from the coefficient of zkmax−1 in
qj = sj for j ∈ S, and from the coefficients of the eij . Again, since eii is monic, the
coefficient for zkmax−3 will be a polynomial combination of the previously determined
coefficients.

In general, for i 6= n, the coefficients of zl in qi for l > ki will be a polynomial
combination of the coefficients of the eij and the coefficients of zr for r > l in
qj , where 1 6 j 6 n. For l < ki, the coefficients are arbitrary; that is, they agree
with the coefficients of the arbitrary polynomial si. Therefore, by induction, the
coefficients of zl in qi are polynomial in the coefficients of the pij and sj , which
completes the proof of the theorem.
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5. The ∂̄ map is holomorphic

We have seen that the map

∂̄ : Hol•k(CP1;Grn(Cn+m)) → Grk

(
ΓL2

1
((Cn+m)∨ ⊗O(−1))

)

yields a homotopy equivalence Hol•k(CP1;BU)+ ' BU(k). In this section, we prove
the following theorem:

Theorem 5.1. The map

∂̄ : Hol•k(CP1;Grn(Cn+m)) → Grk

(
ΓL2

1
((Cn+m)∨ ⊗O(−1))

)

is holomorphic.

As we have seen, the holomorphic mapping space Hol•k(CP1;Grn(Cn+m)) is a
connected, complex manifold of complex dimension (n+m)k. The Grassmannian
Grk

(
ΓL2

1
((Cn+m)∨ ⊗O(−1))

)
is a complex Hilbert manifold; the complex struc-

ture of Grk

(
ΓL2

1
((Cn+m)∨ ⊗O(−1))

)
is obtained by thinking of it as a colimit of

finite Grassmannians, for which the complex structure is well-understood.
Let the space G be defined by:

G =
{

(f, V ) : f ∈ Hol•k(CP1;Grn(Cn+m)) and V ∈ Grk(ΓL2
1
(f∗γn

∨ ⊗O(−1)))
}
.

We will show that G → Hol•k(CP1;Grn(Cn+m)) is a holomorphic fibration with fiber
over f = Grk(ΓL2

1
(f∗γn

∨ ⊗O(−1))). Then the map ∂̄ is the composite

Hol•k(CP1;Grn(Cn+m)) −→ G −→ Grk

(
ΓL2

1
((Cn+m)∨ ⊗O(−1))

)

where the first map is given by

f 7→ Γhol(f∗γn
∨ ⊗O(−1)) = ker ∂̄f∗γn

∨⊗O(−1)

and the second map is the map

Grk

(
ΓL2

1
(f∗γn

∨ ⊗O(−1))
)
↪→ Grk

(
ΓL2

1
((CN )∨ ⊗O(−1))

)

defined in Section 3. We want to show that each of these maps is holomorphic, and
hence the composition is holomorphic.

Lemma 5.2. The map

G → Hol•k(CP1;Grn(Cn+m))

which sends (g, V ) to g is a holomorphic fibration.

Proof of Lemma 5.2. First, we construct an open cover of CP1 so that the bundle
f∗γn

∨ ⊗O(−1) is trivial over each open set and the transition functions are as
simple as possible. We do this by pulling back an open cover of Grn(Cn+m). Recall
that the finite Grassmannian Grn(Cn+m) of n-dimensional subspaces of Cn+m is a
quotient of the Stiefel manifold of linear monomorphisms from Cn into Cn+m. The
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Stiefel manifold can be thought of as the collection of (n+m)× n matrices of rank
n, and the column space of such a matrix represents the corresponding element of
Grn(Cn+m). Given an (n+m)× n matrix A and a multi-index a = (a1, a2, . . . , an)
with 1 6 a1 < a2 < . . . < an 6 n+m, one may consider the n× nmatrix Aa, where
the ith row of Aa is the aith row of A. Let Ua be the subset of Grn(Cn+m) such that
if A is any matrix with image V ∈ Ua, then the determinant of Aa is non-zero. In
other words, if {e1, e2, . . . , en+m} is the standard basis for Cn+m, then Ua consists
of those subspaces of Cn+m such that the projection onto the span of {ea1 , . . . , ean

}
is an isomorphism:

Ua = {V ∈ Grn(Cn+m)| pra : V
∼=−→ span{ea1 , . . . , ean

}}.
Given a particular f ∈ Hol•k(CP1;Grn(Cn+m)), the sets f−1(Ua) cover CP1. Fur-
thermore, the bundle f∗γn is trivial when restricted to such an open set.

From here on, we will identify f with the (n+m)× n matrix [f ] which is the
transpose of its matrix description [P,Q] in the Mann–Milgram normal form. Let
K = (k1, · · · , kn), where ki = deg pii. As we have seen in Section 4, we can describe
an open set UK ⊂ Hol•k(CP1;Grn(Cn+m)) in terms of matrices of polynomials with
certain relations among the coefficients and restrictions on the degrees. We identify
g ∈ UK with the matrix [g] which is the transpose of the matrix description given
in Section 4. Since we will think of [f ] and [g] as linear monomorphisms from Cn to
Cn+m, it is more convenient to use the transpose of the previously described normal
form. Consider the n× n matrices [f(z)a]. We can describe a local trivialization φa

of f∗γn as follows:

φa : f∗γn |f−1(Ua)

∼=→ f−1(Ua)× Cn

(z, v) 7→ (z, [f(z)a][f(z)]−1v).

Here, v ∈ Cn+m is an element of the subspace f(z) ∈ Grn(Cn+m), or equivalently
of the column space of the matrix [f(z)]. Although the transformation [f(z)] is not
invertible, it is injective, therefore [f(z)]−1v is well-defined. Essentially, the above
trivialization takes an element v of the column space of [f(z)] and maps it to the
row space of [f(z)] (which is precisely Cn, since the matrix [f(z)] is rank n), so we
may think of this trivialization as giving an explicit isomorphism from the column
space of [f(z)] to the row space, with inverse

φ−1
a : f−1(Ua)× Cn ∼=→ f∗γn |f−1(Ua)

(z, w) 7→ (z, [f(z)][f(z)a]−1w).

Note that both φa and its inverse are holomorphic.
Consider the decomposition of CP1 as the union of two disks,D0 = CP1 −∞ = C

andD∞ = CP1 − 0 = {C− 0} ∪∞. Then we have holomorphic trivializations of the
bundle O(−1) over each disk. Recall that

O(−1) = {(z, (w1, w2)) ∈ CP1 × C2| w1/w2 = z ∈ CP1 = C ∪∞}
and so the trivialization O(−1)|D0

∼= D0 × C is given by (z, (w1, w2)) 7→ (z, w1), and
the trivialization O(−1)|D∞ ∼= CP1 × C is given by (z, (w1, w2)) 7→ (z, w2).
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Thus, we may cover CP1 with open sets f−1(Ua) ∩Di so that the bundle
f∗γn

∨ ⊗O(−1) is trivial when restricted to one of these open sets. Actually, we
wish to replace each of these open sets with a smaller open set such that the col-
lection still covers CP1. The determinant of [f(z)a] is a polynomial in z of degree
at most k, and therefore it has at most k distinct zeros. This implies that the set
f−1(Ua) = {z : det[f(z)a] 6= 0} is either empty (if det[f(z)a] ≡ 0) or consists of CP1

with finitely many punctures. It follows that there exists some ε > 0 so that the open
sets

Vf,a = f−1(Ua)−{closed ε ball around each puncture}
will cover CP1.

Proposition 5.3. Let N = (n+m)!
n!m! , and let the open sets Vf,a and Di be defined as

above. Then an element of ΓL2
1
(f∗γn

∨ ⊗O(−1)) can be expressed in the following
way as a 2N-tuple of functions and relations:

ΓL2
1
(f∗γn

∨ ⊗O(−1)) = {(σ1, . . . , σN , τ1, . . . , τN )|

σj : Vf,aj ∩D0 −→ Cn∨

τj : Vf,aj ∩D∞ −→ Cn∨

σi(z) ◦ [f(z)ai ] = σj(z) ◦ [f(z)aj ], z ∈ Vf,ai ∩ Vf,aj ∩D0

τi(z) ◦ [f(z)ai ] = τj(z) ◦ [f(z)aj ], z ∈ Vf,ai ∩ Vf,aj ∩D∞
σi(z) = 1/zτi(z), z ∈ Vf,ai ∩D0 ∩D∞}

The proposition follows immediately from the above description of the local triv-
ializations of the bundle f∗γn

∨ ⊗O(−1).
Define

Uf = UK ∩ {g ∈ Hol•k(CP1;Grn(Cn+m)) : Vf,a ⊂ g−1(Ua) ∀ a}.
Note that for every g ∈ Uf , the space of sections of the bundle associated to g can be
described as above, in terms of 2N-tuples of functions from Vf,aj ∩Di to C, which
leads to the following lemma:

Lemma 5.4. The space of L2 sections ΓL2
1
(f∗γn

∨ ⊗O(−1)) is isomorphic to the
corresponding space of L2 sections associated to g, ΓL2

1
(g∗γn

∨ ⊗O(−1)), with iso-
morphism ψg given by (σ1, . . . , σN , τ1, . . . , τN ) 7→ (σ′1, . . . , σ

′
N , τ

′
1, . . . , τ

′
N ) where

σ′i(z) = σi(z) ◦ [f(z)ai ][g(z)ai ]
−1

and
τ ′i(z) = τi(z) ◦ [f(z)ai ][g(z)ai ]

−1.

Furthermore, ψg restricts to the space of holomorphic sections to give an isomor-
phism

ψg : Γhol(f∗γn
∨ ⊗O(−1)) → Γhol(g∗γn

∨ ⊗O(−1)).
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Using the map ψg, we see that the spaces Uf ×Grk(ΓL2
1
(f∗γn

∨ ⊗O(−1))) and
G|Uf

are in bijective correspondence. The complex structure on G is induced locally
by the complex structure of the product spaces Uf ×Grk(ΓL2

1
(f∗γn

∨ ⊗O(−1))), so
that G a holomorphic fibration. This completes the proof of Lemma 5.2.

In order to prove Theorem 5.1, it remains to show the map

G → Grk

(
ΓL2

1
((Cn+m)∨ ⊗O(−1))

)

induced by the surjection

πg : (Cn+m)∨ ⊗O(−1) → g∗γn
∨ ⊗O(−1)

is holomorphic.
Again, we may work locally, so our goal is to show that

Uf ×Grk(ΓL2
1
(f∗γn

∨ ⊗O(−1))) → Grk

(
ΓL2

1
((Cn+m)∨ ⊗O(−1))

)

is holomorphic, or equivalently, that the adjoint map

Uf → Hol
(
Grk(ΓL2

1
(f∗γn

∨ ⊗O(−1)));Grk

(
ΓL2

1
((Cn+m)∨ ⊗O(−1))

))

is holomorphic.
We shall need the following lemma:

Lemma 5.5. The map

Uf → Lin Surj
(
ΓL2

1
((Cn+m)∨ ⊗O(−1)); ΓL2

1
(f∗γn

∨ ⊗O(−1))
)

induced by the composition

g 7→
{

ΓL2
1
((Cn+m)∨ ⊗O(−1))

πg→ ΓL2
1
(g∗γn

∨ ⊗O(−1))
∼=→ ΓL2

1
(f∗γn

∨ ⊗O(−1))
}

is holomorphic.

A linear surjection between vector spaces immediately yields a holomorphic map
between Grassmannians of fixed codimension:

Uf −−−−→ Lin Surj
(
ΓL2

1
((Cn+m)∨ ⊗O(−1)); ΓL2

1
(f∗γn

∨ ⊗O(−1))
)

y
Hol

(
Grk(ΓL2

1
(f∗γn

∨ ⊗O(−1)));Grk
(
ΓL2

1
((Cn+m)∨ ⊗O(−1))

))

Therefore, Lemma 5.5 yields a holomorphic map

Uf ×Grk(ΓL2
1
(f∗γn

∨ ⊗O(−1))) → Grk(ΓL2
1
((CN )∨ ⊗O(−1))).

For any Hilbert spaceH, there is an anti-holomorphic map from Grk(H) to Grk(H).
Letting H = ΓL2

1
(f∗γn

∨ ⊗O(−1)) produces an anti-holomorphic map

Uf ×Grk(ΓL2
1
(f∗γn

∨ ⊗O(−1))) → Grk(ΓL2
1
((Cn+m)∨ ⊗O(−1))).
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Letting H = ΓL2
1
((Cn+m)∨ ⊗O(−1)) yields an anti-holomorphic map

Grk(ΓL2
1
((Cn+m)∨ ⊗O(−1))) → Grk(ΓL2

1
((Cn+m)∨ ⊗O(−1))).

Since the composition of two anti-holomorphic maps is holomorphic, the result is a
holomorphic map

Uf ×Grk(ΓL2
1
(f∗γn

∨ ⊗O(−1))) → Grk(ΓL2
1
((Cn+m)∨ ⊗O(−1))),

as required.

Proof of Lemma 5.5. We will treat elements of ΓL2
1
(f∗γn

∨ ⊗O(−1)) as local sec-
tions (σ1, · · · , σn, τ1, · · · , τn) with relations as described in Proposition 5.3. Let V
be one of the open sets Vf,aj ∩D0, and let

sj : V → CN∨

be the local trivialization of some section s ∈ ΓL2
1
((Cn+m)∨ ⊗O(−1)) restricted to

V . (The case for V = Vf,aj ∩D∞ is analogous.)
We map sj to σ′j , a local section of g∗γn

∨ ⊗O(−1), as follows:

s 7→ {z 7→ σ′j(z) = sj(z) ◦ [g(z)][g(z)aj
]−1.

By Lemma 5.4, we know that ΓL2
1
((f∗γn

∨ ⊗O(−1))|V ) ∼= ΓL2
1
((g∗γn

∨ ⊗O(−1))|V )
with isomorphism

σ(z) 7→ σ′(z) = σ(z) ◦ [f(z)a][g(z)a]−1},
therefore the composite

ΓL2
1
((Cn+m)∨ ⊗O(−1)) → ΓL2

1
(f∗γn

∨ ⊗O(−1))

is given locally by

s 7→ {z 7→ σj(z) = s(z) ◦ [g(z)][f(z)aj
]−1}.

This is clearly holomorphic as g varies, and furthermore yields a well-defined sec-
tion of f∗γn

∨ ⊗O(−1) as can be immediately verified from the description of
ΓL2

1
(f∗γn

∨ ⊗O(−1)) given in Proposition 5.3.

This completes the proof of Theorem 5.1, and so we have that

∂̄ : Hol•k(CP1;Grn(Cn+m)) → Grk

(
ΓL2

1
((Cn+m)∨ ⊗O(−1))

)

is holomorphic, as required. We can immediately extend ∂̄ for all smooth projective
varieties X to

∂̄ : Hol
(
X;Hol•k(CP1;Grn(Cn+m))

) → Hol
(
X;Grk

(
ΓL2

1
((Cn+m)∨ ⊗O(−1))

))

for all k,m, and n.

Proposition 5.6. There exists a well-defined extension of ∂̄ to the Quillen–Segal
group completion:

∂̄ : Hol(X;Hol•(CP1;BU))+ → Hol(X;Z×BU)+.
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Proof. The spaces
⋃

k,n,m

Hol
(
X;Hol•k(CP1;Grn(Cn+m))

)

and ⋃

k,n+m

Hol
(
X;Grk

(
ΓL2

1
((Cn+m)∨ ⊗O(−1))

))

are monoids, and so this follows immediately from the proof of Proposition 3.2.

6. Proof of Theorem 1.3

In this section, we prove that

∂̄ : Hol(X;Hol•k(CP1;BU))+ → Hol(X;Z×BU)+

is a homotopy equivalence, proving Theorem 1.3. We do this by first showing that
−∂̄ ◦ β is homotopic to the identity and then proving that β (and therefore ∂̄)
induces an isomorphism in homology, where β is the Bott map

β : Hol(X;Z×BU)+ → Hol(X;Hol•k(CP1;BU))+.

We may view the Bott class b as an element of Hol •(CP1;BU )+ by thinking of
b as the difference of two holomorphic maps, f0 and f1, fi : CP1 → BU(1), such
that f∗0 γ1 = [1] and f∗1 γ1 = O(−1). Then the Bott map is defined as before (up to
homotopy) by tensoring with b.

Khol(X)
β−−−−→ Hol(X;Hol•(CP1;BU))+

y
y

Ktop(X)
β−−−−→ Map(X; Ω2(BU))

The vertical maps are induced by the obvious inclusions.

Proposition 6.1. The composition

−∂̄ ◦ β : Hol
(
X;Hol•(CP1;BU)

)+ → Hol
(
X;Hol•(CP1;BU)

)+

is homotopic to the identity.

Proof. The argument at the end of Section 3 proves that −∂̄ ◦ β ' 1 when X is a
point. For general X, we note that ∂̄ satisfies the following module homomorphism-
like property.

Lemma 6.2. The diagram

Khol(X)×Hol •(CP1;BU )+ ⊗−−−−→ Hol(X;Hol•(CP1;BU))+

1×∂̄

y ∂̄

y
Khol(X)×Khol(pt)

⊗−−−−→ Khol(X)

commutes up to homotopy.
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Proof of Lemma 6.2. Recall that Khol(X) ≡ Hol(X;Z×BU)+. Since the tensor
product and ∂̄ both extend to the group completion, it suffices to consider the
analogous diagram for maps to finite Grassmannians. On the level of finite Grass-
mannians, we have defined

∂̄ : Hol
(
X;Hol•k(CP1;Grn(CN ))

) → Hol
(
X;Grk

(
ΓL2

1
((CN )∨ ⊗O(−1))

))
.

Since there exist natural biholomorphic equivalences

Hol•k(CP1;Grn(CN )) ∼= Hol•k(CP1;GrN−n(CN ))

and

Grk

(
ΓL2

1
((CN )∨ ⊗O(−1))

) ∼= Grk
(
Γ∗L2

1
((CN )∨ ⊗O(−1))

)

we can equivalently think of ∂̄ as

∂̄ : Hol
(
X;Hol•k(CP1;GrN−n(CN ))

) → Hol
(
X;Grk

(
Γ∗L2

1
((CN )∨ ⊗O(−1))

))
.

It follows from the definition of ∂̄ that the following diagram commutes:

Grm(CM )×Hol•k(CP1;GrN−n(CN ))
⊗

++XXXXXXXXXXXXXXXXXXXXXX

1×∂̄

²²

Hol•mk(CP1;Grm(N−n)(CM ⊗ CN ))

∂̄

²²

Grm(CM )×Grk
(
Γ∗

L2
1
((CN )∨ ⊗O(−1))

)

⊗ ++WWWWWWWWWWWWWWWWWWW

Grmk
(
Γ∗

L2
1
((CM ⊗ CN )∨ ⊗O(−1))

)

Since all maps involved are holomorphic, we can apply Hol(X;−) to the above
diagram. Taking the Quillen–Segal completion of all spaces leads to the desired
result.

Recall that β is defined by tensoring with the Bott class b ∈ Hol •(CP1;BU )+.
The above lemma implies that

−∂̄ ◦ β : Khol(X) −→ Khol(X)

is homotopic to tensoring with −∂̄(b) ∈ Khol(pt):

Khol(X)
⊗−∂̄(b)−−−−−→ Khol(X).

Since −∂̄ ◦ β ' 1 on Khol(pt), we see that tensoring with −∂̄(b) is homotopic to the
identity, and therefore −∂̄ ◦ β ' 1 on Khol(X) as claimed.
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Next, we prove that β induces an isomorphism in homology. We approach this
indirectly, by defining a map η with well-defined homotopy type

η : Hol(X;Hol•(CP1;BU))+ → Khol(X)

such that

β ◦ η : Hol(X;Hol•(CP1;BU))+ → Hol(X;Hol•(CP1;BU))+

is homotopic to the identity. Since −∂̄ ◦ β is also homotopic to the identity, β is
a homotopy equivalence. Consequently, ∂̄ must also be a homotopy equivalence,
completing the proof of Theorem 1.3.

Proposition 6.3. There exists a homotopy class

[η] ∈ π0Map
(
Hol(X;Hol•(CP1;BU))+;Khol(X)

)

such that if η is any representative of [η], then

(β ◦ η)∗ : H∗
(
Hol(X;Hol•(CP1;BU))+

) → H∗
(
Hol(X;Hol•(CP1;BU))+

)

is an isomorphism.

We define [η] using the projective bundle theorem for algebraic K-theory:

Theorem 6.4. ([16]) Let Y be a smooth quasi-projective scheme, let E be a vec-
tor bundle of rank r over Y , and let P(E) be the associated projective bundle. If
z ∈ K0

alg(P(E)) is the class of the canonical line bundle O(−1), then we have an
isomorphism

(K0
alg(Y ))r ∼=→ K0

alg(P(E))

given by

[xi]06i<r 7→
r−1∑

i=0

zif∗xi

where f : P(E) → Y is the structural map.

In the case when E is the two-dimensional trivial bundle, this theorem states
that K0

alg(Y × CP1) ∼= K0
alg(Y )2. In turn, this yields an isomorphism

β : K0
alg(Y ) → K0

alg(Y × CP1, Y ×∞)

for any smooth quasi-projective scheme Y , where β is precisely the Bott map.
Let Y = Hol•k(CP1;Grn(CN )). Then the evaluation map

Y × CP1 → BU

defines a canonical element [e] in K0
alg(Y × CP1, Y ×∞).

Define [η] by [η] = β−1[e], and consider the images of [e] and [η] in holomorphic
K-theory. By definition, we have that

[η] ∈ π0Hol (Y ;Z×BU)+ = K0
hol(Y ).

We know that the set of path components of the Quillen–Segal group completion of a
monoid is the Grothendieck group completion of the monoid of path components [6].
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Therefore, [η] can be represented as the difference of two classes

[η] = [η1]− [η2]

where each ηi ∈ Hol
(
Hol•k(CP1;Grn(CN ));Z×BU

)
. Composing with β yields

maps

β ◦ ηi : Hol•k(CP1;Grn(CN )) → Hol•(CP1;BU)+.

Finally, since Hol•(CP1;BU)+ is an infinite loop space (see [6]), subtraction of ele-
ments is well-defined, and so β ◦ η1 − β ◦ η2 = β ◦ η represents a well-defined homo-
topy class:

β ◦ η ∈ π0Hol
(
Hol•k(CP1;Grn(CN ));Hol•(CP1;BU)

)+
.

Since [β ◦ η] is adjoint to the class β[η] = [e], and [e] is clearly adjoint to the
element [ι] representing the inclusion of Hol•k(CP1;Grn(CN )) into Hol•(CP1;BU):

[β ◦ η] = [ι] ∈ π0Hol
(
Hol•k(CP1;Grn(CN ));Hol•(CP1;BU)

)+
.

Up to homotopy, this induces a map

β ◦ η ' ι : Hol(X;Hol•k(CP1;Grn(CN ))) → Hol(X;Hol•(CP1;BU))+

for all smooth projective varieties X.
Since the diagram

Hol(X;Hol•k(CP1;Grn(CN )))

²²

β◦η // Hol(X;Hol•(CP1;BU))+

Hol(X;Hol•k(CP1;Grn(CN+1)))

β◦η

33hhhhhhhhhhhhhhhhhhh

commutes, we obtain

β ◦ η ' ι : tn>0Hol(X;Hol•(CP1;BU(n))) → Hol(X;Hol•(CP1;BU))+

which extends to the group completion
(tnHol(X;Hol•(CP1;BU(n)))

)+ =−→ Hol(X;Hol•(CP1;BU))+.

Thus, β ◦ η is homotopic to the identity as required, and β, and hence ∂̄, are homo-
topy equivalences, completing the proof of Theorem 1.3.
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