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SECONDARY COHOMOLOGY AND THE STEENROD SQUARE

HANS–JOACHIM BAUES

(communicated by Larry Lambe)

Abstract
We introduce and study various properties of the secondary

cohomology of a space. Certain Steenrod squares are shown to
be related to the action of the symmetric groups on secondary
cohomology.

To Jan–Erik Roos on his sixty–fifth birthday

For a field k we choose the Eilenberg–MacLane space Zn = K(k, n) by the
realization of the simplicial k–vector space generated by the non–basepoint singular
simplices of the n–sphere Sn = S1∧ . . .∧S1. The permutation of the smash product
factors S1 yields an action of the symmetric group σn on Sn and hence on Zn.
Moreover the quotient map Sn × Sm → Sn+m induces a cup product map µ :
Zn × Zm → Zm+n with n,m > 1; see the Appendix below.

It is well known that the (reduced) cohomology ˜Hn(X, k) of a path-connected
pointed space X is the same as the set [X, Zn] of homotopy classes {x} of pointed
maps x : X → Zn. Moreover the cup product of the cohomology algebra H∗ =
H∗(X, k) = ˜H∗ ⊕ k is induced by the map µ, that is {x} ∪ {y} = {µ(x, y)}. The
cohomology algebra is graded commutative in the sense that

{x} ∪ {y} = (−1)nm{y} ∪ {x}

In this paper we replace the homotopy set [X, Zn] by the groupoid [[ X, Zn ]] . The
objects of this groupoid are the pointed maps x : X → Zn and the morphisms
x ⇒ y in [[X,Zn ]] are the homotopy classes of homotopies x ' y termed tracks. The
set of path components of [[ X, Zn ]] is

π0 [[ X,Zn ]] = [X, Zn] = ˜Hn

and the group of tracks 0 ⇒ 0 of the trivial map 0 : X → ∗ → Zn in [[ X,Zn ]] is

π1 [[ X, Zn ]] = [X, ΩZn] = ˜Hn−1

We associate with [[ X, Zn ]] the exact sequence Hn(X):

0 → ˜Hn−1 → Hn(X)1
∂−→ Hn(X)0 → ˜Hn → 0

Here Hn(X)0 is the set of all pointed maps X → Zn and Hn(X)1 is the set of pairs
(x,H) with H : x ⇒ 0 and ∂(x,H) = x.

The Eilenberg–MacLane spaces Zn have the following basic properties :
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(a) Zn is a k–vector space object in the category Top∗ of pointed spaces.
(b) The symmetric group σn acts on Zn via linear automorphisms inducing the

sign of a permutation on Hn(Zn).
(c) The cup product map µ : Zn × Zm → Zn+m is k–bilinear and equivariant

with respect to the inclusion σn × σm ⊂ σn+m. Moreover µ is associative in
the obvious sense and the following diagram commutes.

Zn × Zm µ
/ /

T
��

Zm+n

τn,m

� �

Zm × Zn µ
/ / Zm+n

The map T is the interchange map T (x, y) = (y, x) and τn,m ∈ σn+m is the
element interchanging the first n–block with the second m–block.

Properties (b) and (c) imply that {Zn, n > 0} is a “symmetric spectrum” in the
sense of Hovey–Shipley–Smith [HSS] 1.2.5. We use the poperties (a), (b) and (c)
of Zn to show that the graded object

H∗(X) = {Hn(X), n > 1}

has the structure of a “secondary algebra” which we call the secondary cohomology
of the space X. Using secondary algebras we introduce the third cohomology SH3 of
a graded commutative algebra and we show that the secondary cohomology H∗(X)
represents an element

〈H∗(X)〉 ∈ SH3(H∗, ˜H∗[1])

which is an invariant of the homotopy type of X. There is a natural transformation
from the symmetric cohomology SH3 to the Hochschild cohomology HH3 which
carries the class 〈H∗(X)〉 to the class

〈C∗(X)〉 ∈ HH∗(H∗, ˜H∗[1])

defined by the algebra of cochains C∗(X) of the space X. It is known that the class
〈C∗(X)〉 determines all triple Massey products in the cohomology H∗(X, k), see for
example Berrick Davydov [BD] or Baues–Minian [BM]. The new class 〈H∗(X)〉 in
addition determines for k = F2 the Steenrod operations

Sqn−1 : Hn → H2n−1, n > 1.

The Hochschild cohomology HH∗ is defined for algebras and graded algebras in
general while the symmetric cohomology SH3 is only defined for commutative graded
algebras.

1. Secondary modules

Motivated by properties of Eilenberg–MacLane spaces in topology we introduce
the algebraic concept of a secondary module. Later we will consider functors from
the category of spaces to the categories of secondary modules and secondary algebras
respectively.
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Let k be a field and let R be a k–algebra with unit i and augmentation ε

k i−→ R ε−→ k. (1.1)

Here i and ε are algebra maps with εi = 1. For example let G be a group together
with a homomorphism ε : G → k∗ where k∗ is the group of units in the field k.
Then ε induces an augmentation

ε : k[G] → k (1)

where k[G] is the group algebra of G. Here k[G] is a vector space with basis G and ε
carries the basis element g ∈ G to ε(g). In particular we have for the symmetric group
σn (which is the group of bijections of the set {1, . . . , n}) the sign–homomorphism

sign : σn → {1,−1} → k∗ (2)

which induces the sign–augmentation

ε = εsign : k[σn] → k (3)

These examples play a special role in applications to topology below.
For k–vector spaces A,B we use the tensor product

A⊗B = A⊗k B (1.2)

A homomorphism f : A → B is termed a k–linear map. If A and B are R–modules
then the map f is R–linear if in addition f(r · x) = r · f(x) for r ∈ R, x ∈ A. If R
and K are k–algebras then also R⊗K is a k–algebra with augmentation

ε : R⊗K ε⊗ε−−−−→ k ⊗ k = k

The multiplication in R⊗K is defined as usual by (α⊗β) ·(α′⊗β′) = (αα′)⊗(ββ′).
Moreover if X is an R–module and Y is a K–module then X⊗Y is an R⊗K–module
by (α⊗β) · (x⊗y) = (αx)⊗ (βy). The following definition of a secondary module is
motivated by the examples in section 3. Therefore the definition may be considered
as a result of calculation derived from these examples, see (2.6) and (2.10). Since,
however, secondary modules play a central role in this paper we define them right
away as follows.

Definition 1.3. Let R be a k–algebra as in (1.1). A secondary module X = XR

over R consists of a diagram

R⊗X0
Γ−→ X1

∂−→ X0

where X0 and X1 are R–modules and ∂ is R–linear and Γ is k–linear such that for
r, r′ ∈ R, a ∈ X1, x ∈ X0 the following equations hold.

∂Γ(r ⊗ x) = (r − ε(r))x (1)

Γ(r ⊗ ∂a) = (r − ε(r))a (2)

Γ((r · r′)⊗ x) = rΓ(r′ ⊗ x) + ε(r′)Γ(r ⊗ x) (3)

Γ((r · r′)⊗ x) = Γ(r ⊗ r′x) + ε(r)Γ(r′ ⊗ x) (4)



Homology, Homotopy and Applications, vol. 4(2), 2002 32

Now let XR and YK be secondary modules over R and over K respectively. A map
between secondary modules

f = fh : XR → YK (5)

consists of an augmented algebra map h : R → K and a commutative diagram

R⊗X0
Γ

//

h⊗f0

��

X1
∂

//

f1

��

X0

f0

� �

K ⊗ Y0
Γ

// Y1
∂

// Y0

(6)

where f1 and f0 are k–linear and h–equivariant, i. e. fi(r · b) = h(r) · fi(b) for
r ∈ R, b ∈ Xi and i = 0, 1. Let secmod be the category of secondary modules and
let secmod(R) be the subcategory of secondary modules over R and R–equivariant
maps f = fh for which h is the identity of R.

One readily checks that secmod(R) is an additive category (in fact an abelian
category) with the direct sum XR ⊕ YR given by

R⊗ (X0 ⊕ Y0)
Γ⊕Γ

// X1 ⊕ Y1
∂⊕∂

// X0 ⊕ Y0 (1.4)

Moreover for a map f : XR → YR in secmod(R) the secondary modules kernel(f)
and cokernel(f) are defined in secmod(R) by using kernel(fi) and cokernel(fi) for
i = 0, 1 in the obvious way.

Remark 1.5. Let R = k[G] be a group algebra augmented by ε : G → k∗ as in (1.1).
Then a secondary module XR over R can be identified with a diagram

G×X0
Γ−→ X1

∂−→ X0

where X1, X0 are k–vector spaces with an action of G via k–linear automorphisms
and where ∂ is k–linear and G–equivariant. Moreover G×X0 is the product set and
Γ is a function between sets which is k–linear in X0 (i. e. for g ∈ G the function
X0 → X1, x 7→ Γ(g, x) is k–linear). Moreover for g, g′ ∈ G the following equations
hold.

∂Γ(g, x) = (g − ε(g))x (1)

Γ(g, ∂a) = (g − ε(g))a (2)

Γ(gg′, x) = gΓ(g′, x) + ε(g′)Γ(g, x) (3)

Γ(gg′, x) = Γ(g, g′x) + ε(g)Γ(g′, x) (4)

Let I(R) = kernel(ε : R → k) be the augmentation ideal considered as an R–
bimodule. For an R–module M the tensor product I(R)⊗R M over R is defined and
this tensor product is an R–module by r · (r ⊗m) = (rr) ⊗m for r ∈ R, r ∈ I(R)
and m ∈ M . We have the equation (r · r)⊗m = r ⊗ (r ·m) in I(R)⊗R M .

Lemma 1.6. A secondary R–module X can be equivalently described by a commu-
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tative diagram of R–linear maps:

I(R)⊗R X1
1⊗∂

//

µ

� �

I(R)⊗R X0eΓ
w wn

n

n

n

n

n

n

n

n

n

n

n

n

µ

� �

X1
∂

// X0

Here µ is given by µ(r ⊗m) = r ·m for m ∈ X1 or m ∈ X0.

This characterization of a secondary R–module is more appropriate than defi-
nition (1.3) which is motivated by topological examples below. In [B] we consider
modules over crossed algebras generalising secondary modules in (1.6).

Proof of (1.6). Given (1.3) we observe that Γ(1⊗ x) = 0 for x ∈ X0 by (3). Hence
Γ in (1.3) is determined by the restriction

Γ′ : I(R)⊗X0 ⊂ R⊗X0
Γ−→ X1

Now (4) shows that Γ′ induces a map

˜Γ : I(R)⊗R X0 → X1

which is R–linear by (3). By (1) and (2) we see that the diagram in (1.6) commutes.
Conversely given such a diagram we define Γ in (1.3) by

Γ(r ⊗ x) = ˜Γ((r − εr)⊗ x)

Now it is easy to show that equations (1),. . . ,(4) are satisfied. �

We use (1.6) for the following construction of free secondary R–modules.

Definition 1.7. Let d : V → X0 be an R–linear map. Then the free secondary
R–module X with basis (V, d) is obtained by the following push out in the category
of R–modules and R–linear maps:

I(R)⊗R V
1⊗d

//

µ push

� �

I(R)⊗R X0

eΓ
��

µ

��

V
i

//

d
- -

X1

∂

% %

K

K

K

K

K

K

K

K

K

K

K

X0

We also write X1 = X1(d) and X = X(d). Since µ(1⊗d) = dµ the R–linear map
∂ is well defined. Moreover we show that X is a well defined secondary R–module:

Proof. By (1.6) we have to show that ˜Γ(1 ⊗ ∂) = µ on I(R) ⊗R X1. This holds
if ˜Γ(1 ⊗ ∂)(1 ⊗ i) = µ(1 ⊗ i) on I(R) ⊗R V and ˜Γ(1 ⊗ ∂)(1 ⊗ ˜Γ) = µ(1 ⊗ ˜Γ) on
I(R)⊗R (I(R)⊗R X0). Now the first equation holds since

˜Γ(1⊗ ∂)(1⊗ i) = ˜Γ(1⊗ (∂i)) = ˜Γ(1⊗ d) = iµ = µ(1⊗ i)
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Here iµ = µ(1⊗ i) holds since i is R–linear. For the second equation we get

˜Γ(1⊗ ∂)(1⊗ ˜Γ) = ˜Γ(1⊗ (∂˜Γ)) = ˜Γ(1⊗ µ) = µ(1⊗ ˜Γ)

Here the last equation holds since for r, r ∈ I(R), x ∈ X0 we have

˜Γ(1⊗ µ)(r ⊗ r ⊗ x) = ˜Γ(r ⊗ (r · x))

= ˜Γ((r · r)⊗ x)

= r˜Γ(r ⊗ x)

= µ(1⊗ ˜Γ)(r ⊗ r ⊗ x)

Here we use the fact the ˜Γ is R–linear. �

One readily checks that the free secondary module X(d) has the following uni-
versal property : Let X be an object in secmod(R) and let

V
f

//

d
  

A

A

A

A

A

A

A

A

X1

∂
} }|

|

|

|

|

|

|

|

X0

(1.8)

be a commutative diagram of R–linear maps. Then there is a unique map f : X(d) →
X in secmod(R) of the form

I(R)⊗R X0
eΓ

// X1(d) ∂
//

f1

��

X0

f0=identity

I(R)⊗R X0
eΓ

// X1
∂

// X0

such that f1i = f for i : V → X1(d) defined in (1.7).

2. Examples of secondary modules in topology

We describe examples of secondary modules which arise in topology. Let Top∗

be the category of pointed topological spaces with base point. This is a groupoid
enriched category in the following sense. For objects X,Y in Top∗ the morphism
object [[ X; Y ]] is the groupoid given as follows. Objects in [[ X,Y ]] are the pointed
maps X → Y and for pointed maps f, g : X → Y the morphisms H : f ⇒ g in
[[ X, Y ]] are the tracks from f to g, that is H is a homotopy class of homotopies
f ' g. The composite of tracks

h G⇐= g H⇐= f

is denoted by G2H where G2H is defined by adding homotopies in the usual way.
The inverse of the track H is denoted by Hop : g ⇒ f with Hop2H = ̂0f where ̂0f

denotes the identity track of f .
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If Y × Z is a product in Top∗ then

[[ X, Y × Z ]] = [[ X, Y ]] × [[ X,Z ]] (2.1)

is a product of groupoids. This shows that for an algebraic object Y in Top∗ the
groupoid [[ X,Y ]] is a corresponding algebraic object in the category Grd of (small)
groupoids. For example if Y is an abelian group object in Top∗ (i. e. an abelian
topological group) then [[ X, Y ]] is a abelian group object in the category Grd. A
map between abelian group objects which is a homomorphism of the group structure
is termed a linear map.

Let C be a category. Then the category of pairs in C denoted by pair(C) is
defined. Objects are morphisms f : A → B in C and morphisms (α, β) : f → g in
pair(C) are commutative diagrams in C

A
α

//

f

��

A′

g

��

B
β

// B′

Let Ab be the category of abelian groups. The following result is well known.

Proposition 2.2. The category of abelian group objects in Grd and linear maps
is equivalent to the category pair(Ab).

In order to fix notation we give a proof of this result. Given an abelian group
object G in Grd we obtain the object

∂ : G0
1 → G0

in pair(Ab) as follows. Here G0 is the set of objects of G which is an abelian group
since G is an abelian group object in Grd. Let 0 ∈ G0 be the neutral object in the
abelian group G0. Then G0

1 is the set of all morphisms f : a ⇒ 0 in G with a ∈ G0

and ∂f = a. The abelian group structure of G0
1 is defined by

(f : a ⇒ 0) + (g : b ⇒ 0) = (f + g : a + b → 0 + 0 = 0)

where the right hand side is defined since G is an abelian group object in Grd.
Conversely given an object ∂ : A1 → A0 in pair(Ab) we define the abelian group

object G(∂) in Grd as follows. The set of objects of G(∂) is the set A0. The set of
morphisms of G(∂) is the product set A1×A0 where (a1, x) ∈ A1×A0 is a morphism
(a1, x) : ∂a1 + x → x in G(∂) also denoted by (a1, x) = a1 + x. The identity of x is
(0, x) : x = ∂0 + x → x. Composition of

1x
(a1,x)←−−−− ∂a1 + x

(b1,∂a1+x)←−−−−−−− ∂b1 + ∂a1 + x

is (b1 + a1, x) for a1, b1 ∈ A1 and x ∈ A0. Now it is readily seen that this way one
gets an equivalence of categories.

There are well known generalizations of (2.2). In particular the category of uni-
tal groups in Grd is equivalent to the category of crossed modules in the sense of
J.H.C. Whitehead, see for example Porter [P].



Homology, Homotopy and Applications, vol. 4(2), 2002 36

Now given an abelian group object Y in Top∗ the abelian group object G =
[[X, Y ]] in Grd is given via (2.2) by a homomorphism

G0
1 = [[ X, Y ]] 0

1
∂−→ G0 = [[ X, Y ]] 0 (2.3)

where G0 is the set of all pointed maps f : X → Y and where G0
1 is the set of all

tracks H : f ⇒ 0 with f ∈ G0 and ∂H = f . The group structure of Y induces the
group structure on G0 and G0

1 in the obvious way.

Definition 2.4. Let R be a k–algebra with augmentation ε : R → k as in (1.1).
A topological track module Y over R is a R–module object Y in Top∗ (i. e. a
topological R–module) for which each map r : Y → Y given by r ∈ R admits
a unique track Γr : r ⇒ εr where εr : Y → Y is defined by the k–vector space
structure of Y .

Example 2.5. Let Zn = K(k, n) be an Eilenberg–MacLane space of the underlying
abelian group of the field k with the properties in the introduction, see Appendix
A. This shows that for R = k[σn] the space Zn is a topological R–module, in fact,
a topological track module over R since for r ∈ R there is a unique track r ⇒ εr
(with r, εr : Zn → Zn). Here ε is the sign–augmentation as in (1.1)(3).

Proposition 2.6. Let Y be a topological track module over R. Then for each X in
Top∗ one obtains canonically a secondary module over R

R⊗G0
Γ−→ G0

1
∂−→ G0

where ∂ is given by the groupoid G = [[X, Y ]] as in (2.3) and where Γ is defined by
the composite

Γ(r ⊗ f) = Γr−εrf

Here the track Γr−εr : r − εr ⇒ 0 is given for r − εr ∈ R by (2.4).

Using (2.6) we obtain for each track module Y over R a functor

H(−;Y ) : Top∗ → secmod(R) (2.7)

which carries X to the track module H(X; Y ) = (G0
1, G0, ∂, Γ) given by [[ X,Y ]] in

(2.6). Of course we have

π0H(X,Y ) = cokernel(∂) = [X, Y ] (1)
π1H(X, Y ) = kernel(∂) = [X, ΩY ] (2)

Here [X,Y ] denotes the set of homotopy classes of pointed maps X → Y and ΩY
is the loop space of Y . The elements H ∈ [X, ΩY ] are identified with the tracks
H : 0 ⇒ 0 where 0 : X → ∗ → Y is the zero map. By (1) and (2) we see that the
functor (2.7) carries homotopy equivalences in Top∗ to weak equivalences between
secondary modules as defined in the next section.

We are mainly interested in the secondary module

Hn(X) = H(X, Zn) (2.8)

over Rn = k[σn] given by (2.5) with π0Hn(X) = ˜Hn(X, k) and π1Hn(X) =
˜Hn−1(X, k). This corresponds to the boundary map ∂ in the introduction.
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Proof of (2.6). By definition of ∂ we have ∂(Γr−εrf) = (r − εr)f so that (1.3)(1)
is satisfied. Now let H : f ⇒ 0 be an element in G1 with ∂H = f . Then we get

• •0
oo •0

oo

•

Γr−εr

KS

•
r−εr

oo

H

KS

•
f

oo

so that for Γ = Γr−εr

Γ ∗H = 0H2Γf = Γ02(r − εr)H

= ̂002Γf = ̂002(r − εr)H

= Γf = (r − εr)H

and this implies (1.3)(2). Next we have by uniqueness of tracks in [[ Y, Y ]] the equa-
tions

Γrr′−ε(rr′) = rΓr−εr′ + ε(r′)Γr−εr

= Γr−εrr′ + ε(r)Γr′−εr′

and these equations imply (1.3)(3),(4). �

Remark 2.9. Let Y be given as in (2.6) and let ̂R ⊂ [[Y, Y ]] be the full subgroupoid
with objects given by maps r : Y → Y for r ∈ R. Then we obtain the action

µR : ̂R× [[X, Y ]] ⊂ [[Y, Y ]] × [[ X,Y ]] ◦−→ [[X,Y ]]

where the second arrow is composition in the groupoid enriched category Top∗.
The action µR determines Γ in the secondary module H(X, Y ) given by (2.6) and
conversely H(X,Y ) determines uniquely the action µR. In this sense a secondary
module is a ̂R–module in the category Grd of groupoids. Here ̂R is the groupoid
with objects R, path components ε−1(x) with x ∈ k and all automorphism groups
in ̂R are trivial. The algebra structure of R yields a corresponding structure of ̂R.

As pointed out by the referee this remark corresponds to the followoing result
generalizing (2.2).

Proposition 2.10. Let ̂R be the internal k-algebra in the category of groupoids
Grd given by R similarly as in (2.9). Then the category of ̂R-internal modules in
Grd is equivalent to the category secmod(R) of secondary modules over R.

The proof of (2.10) uses similar arguments to the proof of (2.6). We leave details
to the reader. A generalization of (2.10) is proved in [B].

3. Weak equivalences
We can consider a secondary module X as a chain complex of k–vector spaces

concentrated in degree 0 and 1. The homology of this chain complex is denoted by

π0(X) = cokernel(∂ : X1 → X0)

π1(X) = kernel(∂ : X1 → X0)
(3.1)
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A map F = Fh : XR → YK between secondary modules is a weak equivalence if
h : R → K is an isomorphism and f induces isomorphisms

f∗ : π0(XR) ∼= π0(YK)

f∗ : π1(XR) ∼= π1(YK)

We point out that π0(X) and π1(X) are also R–modules for which, however, by
(1.3)(1),(2) the R–module structure is induced by the augmentation ε, that is r ·x =
ε(r) · x for r ∈ R, x ∈ π0(X), π1(X). Hence π0(X) and π1(X) are just k–vector
spaces with an action of R via ε. Such R–modules are termed ε–modules. If XR is
a secondary module with Γ = 0 then X0 and X1 are also ε–modules. Hence in this
case XR is given by a chain complex ∂ : X1 → X0 of k–vector spaces. We say that
XR is of trivial type if Γ = 0 and ∂ = 0 so that in this case X0 = π0 and X1 = π1.

Two secondary modules XR, YR are weakly equivalent if there exists a chain of
R–equivariant weak equivalences

XR
∼←− X1

∼−→ X2
∼←− . . . Xn

∼−→ YR.

Proposition 3.2. Each secondary module is weakly equivalent to a secondary mod-
ule of trivial type.

We prove this in (3) below. Hence the only invariants of the weak equivalence
class of a secondary module X are π0X and π1X.

Remark 3.3. For the secondary module Hn(X) over Rn = k[σn] in (2.7) we know
by (3.2) that the weak equivalence type of Hn(X) is trivial. This can also be seen
by the following topological argument. By Baues [B] there exists a sequence

Zn f←− Y1
g−→ Y2

h←− Y3

of topological Rn–modules and Rn–linear maps f, g, h with the following properties.
The action of Rn an Y3 satisfies r · y = ε(r) · y for r ∈ Rn and y ∈ Y3 where ε is the
sign augmentation of Rn. Moreover f, g and h are homotopy equivalences on Top∗.
Hence we obtain weak equivalences of secondary modules over Rn

Hn(X) = H(X, Zn) ∼←− H(X;Y1)
∼−→ H(X, Y2)

∼←− H(X,Y3)

where H(X, Y3) is easily seen to be weakly equivalent to a secondary module of
trivial type.

For the proof of (3.2) in (3) below we need the following pull back construction
for secondary modules. Let XR be a secondary module and let Y0 be an R–module
and let f : Y0 → X0 be a R–linear map. Then we obtain the following commutative
diagram in which the subdiagram ‘pull’ is a pull back in the category of vector



Homology, Homotopy and Applications, vol. 4(2), 2002 39

spaces.

R⊗ Y0
Γ

/ /

R⊗f

��

γ

**f∗X1
∂

//

f

��

Y0

f

� �

pull

R⊗X0
Γ

// X1
∂

// X0

Here Γ is defined by ∂ Γ = γ with γ(r⊗ y) = (r− εr) · y and f Γ = Γ(R⊗ f). Then
f∗X1 is an R–module and ∂ is R–linear. Moreover we get the following fact.

Lemma 3.4. The top row YR = (∂, Γ) = f∗XR of the diagram is a secondary
module over R and (f, f) : YR → XR is a map in secmod(R) which is a weak
equivalence if (∂, f) : X1 ⊕ Y0 → X0 is surjective.

The map f∗XR → XR has the following property. Let i : K → R be an aug-
mented map between k–algebras and let g : ZK → XR be an i–equivariant map
between secondary modules for which a commutative diagram

Y0

f
��

Z0

h0

>>

|

|

|

|

|

|

|

|

g0
// X0

(1)

is given. Here h0 and g0 are i–equivariant. Then there exists a unique i–equivariant
map h : ZK → f∗XR for which the diagram

f∗XR

(f,f)
��

ZK

h
;;

x

x

x

x

x

x

x

x

g
// XR

(2)

commutes in secmod.

Proof of (3.4). The elements of f∗X1 are pairs (x1, y) with ∂x1 = fy. We define
r(x1, y) = (rx1, ry) so that ∂ and f are R–linear with ∂(x1, y) = y and f(x1, y) = x1.
Moreover

Γ(r ⊗ y) = (Γ(r ⊗ fy), (r − εr)y)
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Hence (1.3)(1) holds for YR. Moreover

Γ(r ⊗ ∂(x1, y)) = Γ(r ⊗ y)

= (Γ(r ⊗ fy), (r − εr)y)

= (Γ(r ⊗ ∂x1), (r − εr)y)

= ((r − εr)x1, (r − εr)y)

= (r − εr)(x1, y)

This shows (1.3)(2) for YR. Next we consider (1.3)(3) for YR and we get

Γ(r · r′ ⊗ y) = (Γ(r · r′ ⊗ fy), (r · r′ − ε(rr′))y)

rΓ(r′ ⊗ y) + ε(r′)Γ(r ⊗ y) = r(Γ(r′ ⊗ fy), (r′ − εr′)y) + ε(r′)(Γ(r ⊗ fy), (r − εr)y)

= (Γ(rr′ ⊗ fy), r(r′ − εr′)y + ε(r′)(r − εr)y)

= (Γ(rr′ ⊗ fg), (rr′ − ε(rr′))y).

Similarly one checks (1.3)(4) for YR. Hence (f, f) : YR → XR is a well defined map
between secondary modules. If (∂, f) is surjective then the pull back is also a push
out and therefore (f, f) is a weak equivalence. �

Now given a secondary module XR we can choose a k–linear section s : π0 → X0

of the quotient map q : X0 → X0/ im(∂) = π0. Hence the R–linear map

f : R⊗ π0 → X0 (3.5)

with f(r ⊗ x) = r · sx is defined with qf(r ⊗ x) = ε(r) · x. Here R ⊗ π0 is a free
R–module with the action of R given by r · (r′ ⊗ x) = (r · r′)⊗ x and qf coincides
with the R–linear map

qf = ε⊗ 1 : R⊗ π0 → k ⊗ π0 = π0 (1)

For I(R) = ker(ε : R → k) we have ker(ε⊗ 1) = I(R)⊗ π0. Using f in (3.5) we get
as in (3.4) an R–linear map between secondary modules

(f, f) : YR = f∗XR → XR (2)

which is a weak equivalence since (∂, f) : X1⊕Y0 = X1⊕R⊗π0 → X0 is surjective.
Here YR is a secondary module which is special in the following sense. We say that
a secondary module XR is special if for π0 = π0X one has

{

X0 = R⊗ π0 and
im(∂ : X1 → X0) = I(R)⊗ π0.

Proposition 3.6. A special secondary R–module XR admits an R–linear section
t : I(R)⊗ π0 → X1 of ∂ : X1 → I(R)⊗ π0.

Proof. We define t by the map

Γ : R⊗X0 = R⊗R⊗ π0 → X1,

namely for r′ ∈ I(R) and x ∈ π0 let

t(r′ ⊗ x) = Γ(r′ ⊗ 1⊗ x).
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Then we have ∂t(r′⊗x) = ∂Γ(r′⊗1⊗x) = (r′−εr′)(1⊗x) = r′⊗x since ε(r′) = 0.
Moreover t is R–linear since for r ∈ R

t(r · r′ ⊗ x) = Γ(r · r′ ⊗ 1⊗ x)

= rΓ(r′ ⊗ 1⊗ x) + ε(r′)Γ(r ⊗ 1⊗ x)

= rΓ(r′ ⊗ 1⊗ x)
= r · t(r′ ⊗ x).

�

Remark 3.7. A converse of (3.6) is also true. Let π0 and π1 be k–vector spaces and
let

∂ : X1 → I(R)⊗ π0

be a surjective R–linear map for which π1 = ker(∂) is an ε–module and let t be an
R–linear section of ∂. Then a special secondary R–module XR is defined in terms
of ∂ and t as follows. Let X0 = R⊗ π0 and let

Γ : R⊗X0 = R⊗R⊗ π0 → X1

be given by (r, r′ ∈ R, x ∈ π0)

Γ(r ⊗ r′ ⊗ x) = (r − εr)t((r′ − εr′)⊗ x) + ε(r′)t((r − εr)⊗ x)

Then one can check that Γ satisfies all the axioms in (1.3) so that XR is a well
defined special secondary module. Hence by (3.6) special secondary modules are up
to isomorphism determined by π0 and π1 with X0 = R⊗π0 and X1 = π1⊕I(R)⊗π0.

Proof of (3.2). Let XR be a secondary module. Then we obtain by (3.5) the special
secondary module YR = f∗XR and the weak equivalence YR

∼−→ XR. Moreover by
(3.6) and (3.7) we have Y0 = R⊗ π0 and Y1 = π1 ⊕ I(R)⊗ π0 and

∂ : Y1 = π1 ⊕ I(R)⊗ π0 → I(R)⊗ π0 ⊂ R⊗ π0 = Y0

is given by the projection and the inclusion. Now we obtain a weak equivalence g
with

Y1
∂

/ /

g1

� �

Y0

g0

��

π1
0

// π0

where g0 = ε⊗ 1 and g1 is the projection. By the definition of Γ in (3.7) in terms of
the section t : I(R) ⊗ π0 ⊂ Y1 we see that g1Γ = 0 so that g is a well defined map
between secondary modules where 0 : π1 → π0 is the secondary module of trivial
type given by π0 and π1. �

4. Tensor products of secondary modules

Here we introduce the tensor product of secondary modules which is needed for
the definition of secondary algebras in the next section. For secondary modules XR
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and YK the tensor product of the underlying chain complexes is given by the chain
complex of k–vector spaces

X1 ⊗ Y1
d2−−−−→ X1 ⊗ Y0 ⊕X0 ⊗ Y1

d1−−−−→ X0 ⊗ Y0

d2(a⊗ b) = (∂a)⊗ b− a⊗ (∂b)

d1(a⊗ y) = (∂a)⊗ y

d1(x⊗ b) = x⊗ (∂b)

with x ∈ X0, y ∈ Y0, a ∈ X1, b ∈ Y1. Hence d1 induces the boundary map

∂⊗ : (X1 ⊗ Y0 ⊕X0 ⊗ Y1)/ im(d2) → X0 ⊗ Y0 (4.1)

Since k is a field we get by the Künneth formula

π0∂⊗ = cok(∂⊗) = π0(X)⊗ π0(Y )

π1∂⊗ = ker(∂⊗) = π1(X)⊗ π0(Y )⊕ π0(X)⊗ π1(Y )

One readily checks that ∂⊗ is an R⊗K–equivariant k–linear map.

Definition 4.2. We define the tensor product XR⊗YK = (X⊗Y )R⊗K of secondary
modules XR and YK by the diagram

R⊗K ⊗X0 ⊗ Y0
Γ⊗−−−−→ (X1 ⊗ Y0 ⊕X0 ⊗ Y1)/ im d2

∂⊗−−−−→ X0 ⊗ Y0

Here ∂⊗ is defined as in (4.1) and Γ⊗ is defined by the following formula

Γ⊗(α⊗ β ⊗ x⊗ y) = Γ(α⊗ x)⊗ (βy) + (ε(α)x)⊗ Γ(β ⊗ y)

= (αx)⊗ Γ(β ⊗ y) + Γ(α⊗ x)⊗ (ε(β)y)

Here the second equation is a consequence of the first equation since (∂a) ⊗ b =
a⊗ (∂b) by (4.1).

Lemma 4.3. The tensor product XR ⊗ YK of secondary modules XR and YK is a
well defined secondary module over R⊗K.

Proof. The map ∂⊗ is R⊗K–linear and Γ⊗ is a well defined k–linear map. Hence
we have to check the equations (1). . . (4) in (1.3): We first check (1).

∂⊗Γ⊗(α⊗ β ⊗ x⊗ y) = ∂Γ(α⊗ x)⊗ βy + ε(α)x⊗ ∂Γ(β ⊗ y)

= (α− ε(α))x⊗ βy + ε(α)x⊗ (β − ε(β))y
= αx⊗ βy − ε(α)ε(β)x⊗ y

= (α⊗ β − ε(α⊗ β))(x⊗ y)

Next we check (2) for Γ⊗.

Γ⊗(α⊗ β ⊗ ∂⊗(a⊗ y)) = Γ⊗(α⊗ β ⊗ ∂a⊗ y)

= Γ(α⊗ ∂a)⊗ βy + ε(α)∂a⊗ Γ(β ⊗ y)

= (α− ε(α))a⊗ βy + ε(α)a⊗ ∂Γ(β ⊗ y) , see (4.1),

= (α− ε(α))a⊗ βy + ε(α)a⊗ (β − ε(β))y

= αa⊗ βy − ε(α)ε(β)a⊗ y

= (α⊗ β − ε(α⊗ β))(a⊗ y)
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Γ⊗(α⊗ β ⊗ ∂⊗(x⊗ b)) = Γ⊗(α⊗ β ⊗ x⊗ ∂b)

= Γ(α⊗ x)⊗ β∂b + ε(α)x⊗ Γ(β ⊗ ∂b)

= Γ(α⊗ x)⊗ ∂(βb) + ε(α)x⊗ (β − ε(β))b

= ∂Γ(α⊗ x)⊗ βb + ε(α)x⊗ (β − ε(β))b , see (4.1),

= (α− ε(α))x⊗ βb + ε(α)x⊗ (β − ε(β))b

= αx⊗ βb− ε(α)ε(β)x⊗ b

= (α⊗ β − ε(α⊗ β))(x⊗ b)

Now we check (3) for Γ⊗.

Γ⊗((α⊗ β)(α′ ⊗ β′)⊗ x⊗ y) = Γ⊗(αα′ ⊗ ββ′ ⊗ x⊗ y)
= Γ(αα′ ⊗ x)⊗ ββ′y + ε(αα′)x⊗ Γ(ββ′ ⊗ y) = (i)

Now we get by (3) that (i)=(ii) coincides with

(ii) = (αΓ(α′⊗x) + ε(α′)Γ(α⊗x))⊗ββ′y + ε(αα′)x⊗ (βΓ(β′⊗ y) + ε(β′)Γ(β⊗ y))

On the other hand we have

(iii) = (α⊗ β)Γ⊗(α′ ⊗ β′ ⊗ x⊗ y) + ε(α′ ⊗ β′)Γ⊗(α⊗ β ⊗ x⊗ y)

= αΓ(α′ ⊗ x)⊗ ββ′y + ε(α′)αx⊗ βΓ(β′ ⊗ y)

+ ε(α′ ⊗ β′)(Γ(α⊗ x)⊗ βy + ε(α)x⊗ Γ(β ⊗ y)

We have to check (ii)=(iii). But this is equivalent to

ε(α′)Γ(α⊗x)⊗ββ′y+ε(αα′)x⊗βΓ(β′⊗y) = ε(α′)αx⊗βΓ(β′⊗y)+ε(α′⊗β′)Γ(α⊗x)⊗βy

This equation is equivalent to

Γ(α⊗ x)⊗ β(β′ − εβ′)y (α− εα′)x⊗ βΓ(β′ ⊗ y)

Γ(α⊗ x)⊗ β∂Γ(β′ ⊗ y) ∂Γ(α⊗ x)⊗ βΓ(β′ ⊗ y)

By (4.1) we know that

Γ(α⊗ x)⊗ β∂Γ(β′ ⊗ y) = Γ(α⊗ x)⊗ ∂βΓ(β′ ⊗ y)

= ∂Γ(α⊗ x)⊗ βΓ(β′ ⊗ y)

This completes the proof that (ii)=(iii) and hence (i)=(iii) and hence (3) holds for
X ⊗ Y . Finally we have to check (4). For this we apply (4) to (i) above and we get
(i)=(iv) where

(iv) = (Γ(α⊗α′x)+ ε(α)Γ(α′⊗x))⊗ββ′y + ε(αα′)x⊗ (Γ(β⊗β′y)+ ε(β)Γ(β′⊗ y))

On the other hand we have

(v) = Γ⊗(α⊗ β ⊗ α′x⊗ β′y) + ε(α⊗ β)Γ⊗(α′ ⊗ β′ ⊗ x⊗ y)

= Γ(α⊗ α′x)⊗ ββ′y + ε(α)α′)x⊗ Γ(β ⊗ β′y)

+ ε(α⊗ β)(Γ(α′ ⊗ x)⊗ β′y + ε(α′)x⊗ Γ(β′ ⊗ y))
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We have to check (iv)=(v). This is the case if and only if the following equation
holds.

ε(α)Γ(α′ ⊗ x)⊗ ββ′y + ε(αα′)x⊗ Γ(β ⊗ β′y)

= ε(α)α′x⊗ Γ(β ⊗ β′y) + ε(α⊗ β)Γ(α′ ⊗ x)⊗ β′y

This equation holds if and only if the following equation is true

Γ(α′ ⊗ x)⊗ (β − εβ)β′y (α′ − ε(α′))x⊗ Γ(β ⊗ β′y)

Γ(α′ ⊗ x)⊗ ∂Γ(β ⊗ β′y) ∂Γ(α′ ⊗ x)⊗ Γ(β ⊗ β′y)

Now again (4.1) shows that this equation is true. Hence we have shown (i)=(v) and
this corresponds to equation (4) for X⊗Y . Now the proof of the lemma is complete.
�

Lemma 4.4. The tensor product of secondary modules is associative and bilinear,
that is:

(XR ⊗ YK)⊗ ZL = XR ⊗ (YK ⊗ ZL)

(XR ⊕ YR)⊗ ZL = XR ⊗ ZL ⊕ YR ⊗ ZL

ZL ⊗ (XR ⊕ YR) = ZL ⊗XR ⊕ ZL ⊗ YR

We point out that the chain complex k = (0 → k) is a unit for the tensor product,
that is

XR ⊗ k = XR = k ⊗XR (4.5)

Here we use the obvious identification V ⊗ k = V = k ⊗ V for a k–vector space V .
We shall use the tensor product of secondary modules mainly for the next result.

Proposition 4.6. The cup product map µ : Zn × Zm → Zn+m induces an in,m–
equivariant map between secondary modules

µ∗ : Hn(X)⊗Hm(X) → Hn+m(X)

where in,m : k[σn]⊗ k[σm] → k[σn+m] is induced by the inclusion σn× σm ⊂ σn+m,
n > 1.

Proof. The map µ∗ carries f ⊗ g ∈ Hn
0 ⊗ Hm

0 with f : X → Zn, g : X → Zm to
the composite µ(f, g) : X → Zn × Zm → Zn+m. Since µ is k–bilinear and in,m–
equivariant µ∗ : Hn

0 ⊗ Hm
0 → Hn+m

0 is well defined. Moreover µ∗ is induced on
(Hn ⊗Hm)1 by the map

µ̄ : Hn
0 ⊗Hm

1 ⊕Hn
1 ⊗Hm

0 → Hn+m
1 (1)

which carries f ⊗ G with G : g ⇒ 0 ∈ Hm
1 to µ(f,G) : µ(f, g) ⇒ 0 and carries

H ⊗ g with H : f ⇒ 0 ∈ Hn
1 to µ(H, g) : µ(f, g) ⇒ 0. Here we use the fact that the

bilinearity of µ implies that µ(f, 0) = 0 = µ(0, g). If H : f ⇒ 0 and G : g ⇒ 0 are
given then in fact

µ̄(f ⊗G) = µ̄(H ⊗ g) (2)
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so that µ∗ is well defined and in,m–equivariant. In fact, we have for the track (H, G) :
(f, g) ⇒ (0, 0) with (f, g) : X → Zn × Zm given by the homotopy (Ht, Gt) the
formula

µ(H,G) = µ((0, G)2(H, g))

= µ((H, 0)2(f, G))
(4.6)

where 2 denotes addition of tracks. Hence we get

µ(H, g) = 02µ(H, g) = µ((0, G))2µ(H, g)

= µ((0, G)2(H, g)) = µ(H,G)

= µ((H, 0)2(f, G))

= µ(H, 0)2µ(f, G)

= 02µ(f, G) = µ(f,G)

and this proves (2). Finally we have to show that µ∗ is compatible with the Γ–
operator. For this let r ∈ Rn and s ∈ Rm and let

Γr−εr : r − εr ⇒ 0 : Zn → Zn

Γs−εs : s− εs ⇒ 0 : Zm → Zm

Γr�s−ε(r)·ε(s) : r � s− ε(r � s) ⇒ 0 : Zn+m → Zn+m

(4.6)

where r � s = in,m(r, s) ∈ Rn+m. We observe that in Rn+m we have the following
equations

(r − εr)� s + ε(r)(1n � (s− εs)) =

(r � s)− ε(r)(1n � s) + ε(r)(1n � s)− ε(r)ε(s)(1n � 1m)

= r � s− ε(r � s) ∈ Rn+m

(4.6)

Let Zn ∧ Zm = Zn × Zm/Zn × {0} ∪ {0} × Zm be the smash product. Then the
cup product map µ induces a map µ̃ : Zn∧Zm → Zn+m and we get the composites
a, b, c : Zn ∧ Zm → Zn+m by

a = µ̃(r − εr) ∧ s,

b = ε(r)µ̃(1n ∧ (s− εs)),

c = (r � s− ε(r � s))µ̃.
(4.6)

Then (5) shows that a + b = c. Hence

A = µ̃(Γr−εr ∧ s) + ε(r)µ̃(1n ∧ Γs−εs) and

B = Γr�s−ε(r�s)µ̃
(4.6)

are both tracks c ⇒ 0. Now obstruction theory shows that these tracks A and B
coincide since the set of homotopy classes [ΣZn∧Zm, Zn+m] is trivial. The equation
A = B implies that µ satisfies

µ∗Γ(r ⊗ s⊗ f ⊗ g) = Γ(r � s⊗ µ(f, g)) (8)

by definition on Γ in (2.6) and by formula (2.4), which exactly corresponds to A = B.
�
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5. Secondary cohomology

Using the tensor product of secondary modules we introduce the notion of a sec-
ondary algebra. We define a functor which associates with each space X a secondary
cohomology algebra H∗(X).

We consider a sequence R∗ of augmented k–algebras Rn, n > 0, together with
augmented algebra maps

in,m = � : Rn ⊗Rm → Rn+m (5.1)

carrying α⊗ β to α� β such that for γ ∈ Rk we have

(α� β)� γ = α� (β � γ)

in Rn+m+k. Since � is an algebra map we have

(α · α′)� (β · β′) = (α� β) · (α′ � β′)

where α ·α′ denotes the product in Rn. Let 1n ∈ Rn be the unit element of Rn with
1n�1m = 1n+m. For n = 0 we have R0 = k and 10 ∈ R0 satisfies 10�α = α�10 = α.
We call R∗ = (R∗,�) a coefficient algebra.

Of course we have the trivial coefficient algebra k with Rn = k for n > 0. On
the other hand we shall use the symmetric coefficient algebra k[σ∗] given by the
augmented group algebras Rn = k[σn] where σn is the symmetric group and Rn

has the sign augmentation (1.1)(3). Moreover � = im,n is induced by the inclusion
of groups σn × σm ⊂ σn+m.

Definition 5.2. An algebra V over a coefficient algebra R∗ is a sequence of Rn–
modules V n, n > 0, together with k–linear maps

V n ⊗ V m → V n+m

carrying x⊗ y to x · y. For z ∈ V k we have in V n+m+k

(x · y) · z = x · (y · z)

and for α ∈ Rn, β ∈ Rm we have

(αx) · (βy) = (α� β)(x · y).

We do not assume that the algebra V has a unit. Let V and W be such algebras
over R∗. Then a map f : V → W over R∗ is given by an Rn–linear map f = fn :
V n → Wn, n > 0, with f(x · y) = f(x) · f(y). This defines the category of algebras
over R∗.

If R∗ = k is the trivial coefficient algebras then V in (5.2) is just a graded algebra
over k. A graded algebra V is commutative if for x ∈ V n, y ∈ V m we have

y · x = (−1)nmx · y (5.3)

For example the reduced cohomology ˜H∗(X, k) of a pointed space X with coefficients
in k is a commutative graded algebra. We generalize this notion of commutative
algebras as follows.
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Definition 5.4. Let R∗ be a coefficient algebra and assume elements

τm,n ∈ Rn+m (n,m > 0)

are given with the following properties (m,n, k > 0).

τm,nτn,m = 1n+m

τm,0 = τ0,m = 1m

τn,m(α� β) = (β � α)τn,m for α ∈ Rn, β ∈ Rm

τm+n,k = (τm,k � 1n)(1m � τn,k)

ε(τm,n) = (−1)m,n ∈ k

Then we say that an algebra V over R∗ is τ–commutative if for x ∈ V n, y ∈ V m

y · x = τn,m(x · y)

in V n+m.

For example we have the interchange elements τn,m ∈ k[σn+m] with τn,m(1) =
m + 1 in the symmetric coefficient algebra for which a τ–commutative algebra is
the same as a “commutative twisted algebra” in the sense of Stover [St]. On the
other hand we can define the interchange elements τn,m = (−1)nm ∈ k in the trivial
coefficient algebra so that in this case a τ–commutative algebra is the same as a
commutative graded algebra in (5.3). We now are ready to introduce the notion of
a secondary algebra.

Definition 5.5. Let R∗ be a coefficient algebra. A secondary algebra H∗ over R∗
consists of a sequence of secondary modules Hn over Rn, n > 1, together with
in,m–equivariant maps

µ = µn,m : Hn ⊗Hm → Hn+m (1)

for n,m > 1 which are associative in the sense that the diagram

Hn ⊗Hm ⊗Hr 1⊗µ
//

µ⊗1
��

Hn ⊗Hm+r

µ

��

Hn+m ⊗Hr
µ

// Hn+m+r

(2)

commutes. Here we use the tensor product of secondary modules. If elements τn,m ∈
Rn+m are given as in (5.4) we say that the secondary algebra H∗ is τ–commutative
if the diagram

Hn ⊗Hm µ
//

T

9 9

Hn+m Hm ⊗Hnµ
oo (3)

commutes. Here T carries x⊗y to τn,m(y⊗x) for (x ∈ Hn
0 , y ∈ Hm

0 ) or (x ∈ Hn
0 , y ∈

Hm
1 ) or (x ∈ Hn

1 , y ∈ Hm
0 ). We study τ–commutative secondary algebras in more

detail in section §7 below.
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We say that the secondary algebra H∗ is w–closed if one has k–linear isomor-
phisms

w = wn : π1Hn ∼= π0Hn−1 (4)

for n > 1 which satisfy

wn+m(y1 · z) = wn(y1) · z
wn+m(y · z1) = (−1)ny · wm(z1)

(5.5)

for y ∈ π0Hn, z ∈ π0Hm, y1 ∈ π1Hn, z1 ∈ π1Hm. In (5) the multiplication is defined
by the maps (1). A map f : H∗ → G∗ between secondary algebras is given by a
sequence fn : Hn → Gn of Rn–equivariant maps between secondary modules such
that fn is compatible with µ in (1) and w in (4). Such a map f is a weak equivalence
if fn is a weak equivalence in secmod for n > 0.

Let secalg be the category of secondary algebras over the symmetric coefficient
algebra k[σ∗] which are τ–commutative and w–closed. For an object H∗ in secalg
we obtain a commutative graded algebra H∗ by

Hn = π0Hn for n > 0 (5)

with the multiplication Hn ⊗Hm → Hn+m induced by µ in (5.5)(1). We see that
H∗ is commutative since H∗ is τ–commutative. Assume sign(τn,m) = 1 in k then
µ : Hn ⊗Hn → H2n for n > 1 yields the squaring operation

Sqn−1 = w2n−1 Sq : Hn → H2n−1 (5.7)

with 2 Sqn−1 = 0 as follows. For this we use the assumption that H∗ is w–closed.
The k-linear map

Sq : π0Hn −→ π1H2n

carries the element {y} represented by y ∈ Hn
0 to the element

Sq{y} = Γ(τn,n, y · y)

wich satisfies ∂Γ(τn,n, y · y) = 0. One can check that Sq is well defined, see also
[B]. The next result describes the secondary cohomology algebra H∗(X) of a path-
connected pointed space X. Let Top∗0 be the category of path-connected pointed
spaces and pointed maps.

Theorem 5.8. There is a contravariant functor

H∗ : Top∗0 → secalg

which carries a space X to a secondary algebra H∗(X) which is τ–commutative and
w–closed. See (4.6). Moreover the algebra ˜H∗ = π0H∗(X) is (5.6) coincides with
the reduced cohomology algebra ˜H∗(X; k) and for k = F2 the squaring operation
Sqn−1 in (5.7) coincides with the corresponding Steenrod operation.
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Proof. This is a consequence of (3.7) and property (c) of the cup product maps
in the introduction. The result on Steenrod squares is a consequence of a result of
Kristensen, lemma 2.5 in [K]. Compare [B]. �

6. Crossed modules and Hochschild cohomology

we show that Hochschild cohomology can be deduced from the concept of sec-
ondary algebra in (5.5). More precisely, a secondary algebra over R∗ = k corresponds
to the notion of a “crossed module” which is used to define “crossed extensions”.
Moreover weak equivalence classes of crossed extensions are in fact the elements in
the Hochschild cohomology. In a similar way we shall deduce from the concept of
a τ–commutative secondary algebra in (5.5) the notion of symmetric cohomology;
see §9 below.

We introduce the concept of a crossed module in the context of algebras and we
show that (in the graded case) a crossed module is the same as a secondary algebra
over the trivial coefficient algebra R∗ = k. A crossed module and equivalently a
secondary algebra over k represent an element in the third Hochschild cohomology.
This leads to the notion of a characteristic class of a differential algebra.

We here consider the graded and the non–graded case at the same time. A graded
vector space V is assumed to be non-negatively graded, i. e. V i = 0 for i < 0.

We use the following notation. An algebra ˜A is given by a (graded) k–vector
space ˜A and a multiplication map ˜A ⊗ ˜A → ˜A which is associative. On the other
hand a k–algebra A is an algebra with unit k → A and augmentation ε : A → k.
Hence a k–algebra A is an algebra under and over k. Then the augmentation ideal

˜A = kernel(ε : A → k)

is an algebra which determines the k–algebra A = ˜A ⊕ k completely. Moreover an
˜A–module is also an A–module and vice versa.

Let A be a (graded) k–algebra. An A–bimodule V is a (graded) k–vector space
which is a left and a right A–module such that for a, b ∈ A, x ∈ V we have (a·x)·b =
a · (x · b). For example A can be considered as an A–bimodule via the multiplication
in A.

Definition 6.1. A crossed module is a map of A–bimodules

∂ : V → A

satisfying ε∂ = 0 and (∂v) · w = v · (∂w) for v, w ∈ V .
Let π0(∂) = cokernel(∂) and π1(∂) = kernel(∂) in the category of (graded) vector

spaces. Then the algebra structure of A induces an algebra structure of π0(∂) and
the A–bimodule structure of V induces a π0(∂)–bimodule structure of π1(∂). In fact
for {a} ∈ π0(∂) the multiplication {a} · v = a · v with v ∈ π1(∂) is well defined since
(a + ∂w) · v = a · v + (∂w) · v = a · v + w · ∂v = a · v where ∂v = 0. Hence a crossed
module yields the exact sequence

0 −→ π1(∂) i−→ V ∂−→ A
q−→ π0(∂) −→ 0
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in which all maps are A–bimodule morphisms. Here the A–bimodule structure of
π0(∂) and π1(∂) is induced by the algebra map q.

Lemma 6.2. A secondary algebra H∗ over the trivial coefficient algebra k as defined
in (5.5) is the same as a crossed module ∂.

Proof. Given H∗ we obtain

∂ : H∗1 → H∗0
where H∗0 is an algebra by the multiplication µ in (5.5)(1). Moreover H∗1 is a H∗0–
bimodule by the multiplication (5.5)(1). Using (4.1) we see that ∂ yields the crossed
module

∂ = (∂, 0) : H∗1 → H∗0 ⊕ k

where H∗0 ⊕ k is the k–algebra given by H∗0. Conversely it is easy to see that a
crossed module (6.1) defines a secondary algebra over k. �

We now use crossed modules (or equivalently secondary algebras over k) for the
definition of Hochschild cohomology.

Definition 6.3. Let H be a (graded) k–algebra and let M be an H–bimodule.
A crossed extension of H by M is an exact sequence in the category of (graded)
k–vector spaces

E : 0 −→ M
γ−→ V ∂−→ A

q−→ H −→ 0

where ∂ is a crossed module. Moreover all maps are A–bimodule maps with the
A–bimodule structure induced by the algebra map q : A → H. A weak equivalence
between two such extensions is a commutative diagram

M // V //

f1

� �

A / /

f0

� �

H

M // W // B // H

where f0 is an algebra map and f1 is a f0–biequivariant homomorphism.

induces an isomorphism kernel(q′) = kernel(q) and hence we get for an n–fold
extension (6.3) the following diagram of G by f∗M . Now f∗ in (6.4) carries the
weak–equivalence class of the extension E to the weak–equivalence class of the ex-
tension f∗E in the top row of the diagram. (n > 2) weak equivalence class of the
extension E to the weak equivalence class of the extension g∗E in the bottom row
of the diagram.

M,n > 2.

Proposition 6.4. The third Hochschild cohomology HH3(H, M) of H with coeffi-
cients in M coincides naturally with the set of weak equivalence classes of crossed
extensions of H by M .

This result is proved in [BM], see also Loday [L] or Lue [Lu]. The proposition
holds in the graded and in the non–graded case.in order to define a crossed resolution
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of a k–algebra A. tensor product of V . Given a (graded) k–algebra A and a k–
linear map d : V → A with εd = 0 we obtain the free crossed modul with basis
(V, d) as follows. Let is the free crossed module with basis (V, d). Finally we define
for a k–algebra H the free H–bimodule with basis V by H ⊗ V ⊗ H. choose a
commutative diagram (n > 2) this surjection we define the k–vector space structure
of HHn+1(H,M) so that addition of crossed extensions in HHn+1(H, M) is given by
the “Baer sum” of extensions. 0
h0(v) = 1 ⊗ v ⊗ 1 for v ∈ V0 and h0(a · b) = (qa) · h0(b) + h0(b) · q(a) for a, b ∈ T .
One can check that there is a unique H–bimodule map d2 for which

We have seen in (6.2) that each secondary algebra H∗ over k yields a canonical
crossed extension

0 −→ π1(H∗) −→ H∗1
∂−→ H∗0 ⊕ k −→ π0(H∗)⊕ k −→ 0

Here H = π0(H∗) ⊕ k is a k–algebra and M = π1(H∗) is an H–bimodule. Hence
the crossed extension represents an element

〈H∗〉 ∈ HH3(H, M) (6.5)

which is termed the characteristic class of the secondary algebra H∗. On the other
hand a differential algebra C (like the cochain algebra of a space) as well yields a
crossed extension representing a characteristic class 〈C〉 as in the following example.

Example 6.6. Let C be a differential graded k–algebra, that is, C = {Ci, i > 0}
with CiCj ⊆ Ci+j and d : C → C of degree +1 satisfying d(xy) = (dx)y +
(−1)|x|xd(y) and dd = 0 and εd = 0. Then d induces the map of graded k–vector
spaces

V = coker(˜d)[1] ∂−→ ker(d) = A (1)

Here we define for a graded vector space W the shifted graded vector space W [1]
by

Wn = (W [1])n+1, w 7→ s(w), (2)

Hence for the cokernel of the differential coker(d) = ˜C/ im(˜d) we obtain the shifted
object V = coker(˜d)[1]. Since d is of degree +1 the boundary induces ∂ by ∂s{v} =
d(v) for {v} ∈ coker(d), v ∈ C. The algebra C induces an algebra structure of
A = ker(d). Moreover it induces the structure of an A–bimodule on V by setting

a · (s{v}) = (−1)|a|s{a · v}
(s{v}) · b = s{v · b}

(6.6)

One can check that ∂ : V → A is a crossed module in the sense of (6.1), see [BM].
This proves that ∂ : V → A is crossed module and therefore we obtain by (6.2)
a secondary algebra ∂ : V → ˜A over k which is, in fact, w–closed (see (5.5)) by
defining

w : π1(∂) = ˜H∗(C)[1] ∼= ˜H∗(C) = π0(∂) (4)

with ws(x) = x for x ∈ H∗(C) = ker(d)/ im(d). The equations in (3) for the
A–bimodule structure of V correspond exactly to the equations in (5.5)(5).
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According to (3) we define for a graded algebra H∗ the H∗–bimodule ˜H∗[1] by
setting

a · (sx) = (−1)|a|s(a · x)

(sx) · b = s(x · b)
(6.6)

Then we obtain by (1) and (4) the crossed 2–extension

0 −→ ˜H∗[1] −→ V ∂−→ A −→ H∗ −→ 0

which by (6.4) represents an element

〈C〉 ∈ HH∗(H∗, ˜H∗[1]) (6)

where H∗ = H∗C is the cohomology algebra of the differential algebra C. A cocycle
θ representing 〈C〉 is considered in Berrick–Davydov [BD].

As a special case we obtain for a pointed space X the augmented algebra of
cochains on X denoted by C∗X for which

H∗(C∗X) = H∗(X)

is the cohomology algebra of X. Hence we get by (6.6)(6) the class

〈C∗(X)〉 ∈ HH∗(H∗(X), ˜H∗(X)[1]) (6.7)

which is an invariant of the homotopy type of X in the sense that a pointed map
f : X → Y satisfies

(f∗)∗〈C∗(X)〉 = (f∗[1])∗〈C∗(Y )〉

in HH3(H∗(Y ), ˜H∗(X)[1]) where f∗ : H∗(Y ) → H∗(X) yields the structure of an
H∗(Y )–bimodule on ˜H∗(X)[1].

We now compare the class (6.7) with the secondary cohomology algebra H∗(X)
in (5.8).

Proposition 6.8. By forgetting structure we obtain from the secondary cohomology
H∗(X) a secondary algebra over k denoted by H∗(X)(k). Then the classes

〈C∗X〉 = 〈H∗(X)(k)〉 ∈ HH3(H∗(X), ˜H∗(X)[1])

given by (6.5) and (6.7) coincide.

Proof. Using (3.3) and the definition of Y3 in Baues [B] we see that 〈H(X,Y3)〉 =
〈C∗X〉 for a simplicial set X. Here we use the universal property of Y3 which says
that a simplicial map X → Y3 can be identified with a cocycle in C∗X. �

7. τ–crossed modules for commutative graded algebras
directly be obtained by crossed n–fold extensions of H by M . A crossed module

which by (6.2) is the same as a secondary algebra over k was the crucial ingre-
dient of a crossed extension. We now simply replace the “secondary algebra over
k” in a crossed extension by a “τ–commutative secondary algebra” and we then
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obtain τ–crossed extensions which represent elements in the symmetric cohomology
SH∗(H, M).

We have seen in §7 that a secondary algebra over the trivial coefficient algebra k is
the same as a crossed module. We here show that in a similar way a τ–commutative
secondary algebra over R∗ is the same as a τ–crossed module. Weak equivalence
classes of τ–crossed modules yield an abelian group generalizing the Hochschild
cohomology in (6.4).

Let R∗ be a coefficient algebra with interchange elements τm,n ∈ Rm+n, for
example let R∗ = k[σ∗] be the symmetric coefficient algebra. An R∗–module V is a
sequence of (left) Rn–modules V n, n > 0. A map or an R∗–linear map f : V → W
between R∗–modules is given by a sequence of Rn–linear maps fn : V n → Wn for
n > 0. The field k (concentrated in degree 0) is an R∗–module. Moreover using
the augmentation ε of Rn, n > 0, we see that each graded k–vector space M is an
R∗–module which we call an ε–module. For x ∈ Mm we write |x| = m where |x| is
the degree of x.

Given R∗–modules V1, . . . , Vk we define the R∗–tensor product V1⊗ . . .⊗Vk by

(V1⊗ . . .⊗Vk)n =
⊕

n1+...+nk=n

Rn ⊗Rn1⊗...⊗Rnk
V n1

1 ⊗ . . .⊗ V nk
k (7.1)

where we use the algebra map � : Rn1 ⊗ . . .⊗Rnk → Rn given by the structure of
the coefficient algebra R∗ in (5.1). One readily checks associativity

(V1,1⊗ . . .⊗V1,k1)⊗ . . .⊗(Vs,1⊗ . . .⊗Vs,ks) = V1,1⊗ . . .⊗V1,k1⊗ . . .⊗Vs,1⊗ . . .⊗Vs,ks

(1)
Compare Stover [St] 2.9. Moreover the interchange element τ in R∗ yields the
isomorphism

T : V⊗W ∼= W⊗V (2)

which carries v ⊗ w to τw,vw ⊗ v where

τw,v = τm,n ∈ Rm+n

for w ∈ Wm, v ∈ V n. Of course we have k⊗V = V = V⊗k.

Definition 7.2. An algebra A over R∗ is given by an R∗–linear map µ : A⊗A →
A,µ(a⊗ b) = a · b, which is associative in the sense that the diagram

A⊗A⊗A
1⊗µ

/ /

µ⊗1
��

A⊗A

µ

��

A⊗A
µ

/ / A

commutes. Moreover A is τ–commutative if

A⊗A
µ

/ /

T
� �

A

A⊗A
µ

/ / A
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commutes. One readily checks that this coincides with the notation in (5.2) and
(5.3). We say that A is a k–algebra over R∗ if algebra maps k i−→ A ε−→ k are
given with εi = 1. Such a k–algebra A over R∗ is completely determined by the
algebra ˜A over R∗ with ˜A = kernel(ε : A → k) and A = k ⊕ ˜A.

For an R∗–module V let V(k) be the underlying graded k–vectorspace. If A is a
k–algebra over R∗ then A(k) is a k–algebra (over k) in the sense of §7 above.

Definition 7.3. Given an algebra A over R∗ we say that an R∗–module V is an
A–module if a map m : A⊗V → V is given such that

A⊗A⊗V

µ⊗1
��

1⊗µ
/ / A⊗V

µ

��

A⊗V
µ

// V

commutes. Hence for a · x = µ(a ⊗ x) with a ∈ A, x ∈ V we have (αa) · (βx) =
(α� β)(a · x) and (a · b) · x = a · (b · x). If A is a k–algebra over R∗ we also assume
that 1 · x = x for 1 ∈ k, x ∈ V . Then the A–module V is an ˜A–module and vice
versa. In particular the algebra A is also an A–module in the obvious way.

Lemma 7.4. Let A be a τ–commutative k–algebra over R∗ and let V be an A–
module. Then V(k) is a A(k)–bimodule by defining

a · x · b = a · τb,x(b · x)

for a, b ∈ A, x ∈ V .

Proof. We write 1x = 1n ∈ Rn for x ∈ V n. Now we have for a, b ∈ A

(a · x) · b = τb,a·xb · (a · x) = τb,a·x(b · a) · x
= τb,a·x(τa,ba · b) · x
= τb,a·x(τa,b � 1x)(a · b · x)

a · (x · b) = a · τb,x(b · x) = (1a � τb,x)(a · b · x)

Here we have τb,a·x(τa,b � 1x) = 1a � τb,x by one of the equations in (6.4). �

If A and V in (7.4) are ε–modules then (7.4) corresponds to the following special
case.

Lemma 7.5. Let H be a commutative graded k–algebra and let M be an H–module.
Then M is an H–bimodule by defining

a · x · b = a · (−1)|b||x|b · x

for a, b ∈ H and x ∈ M .

For an R∗–module V we obtain as in (1.6) the R∗–linear map

I(R∗)�R∗ V
µ−→ V

Here the left hand side is the R∗–module given in degree n by I(Rn) ⊗Rn V n ond
µ carries a⊗ x to a · x.
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Definition 7.6. Let A be a τ–commutative k–algebra over R∗. A τ–crossed module
∂ is given by a commutative diagram of R∗–linear maps

I(R∗)�R∗ V

µ

� �

1�∂
// I(R∗)�R∗ AeΓ

vvm

m

m

m

m

m

m

m

m

m

m

m

m

m

µ

��

V
∂

// A

with the following properties (1) and (2). The R∗–module V is an A–module and
∂ is an A–module morphism, that is ∂(a · x) = a · (∂x) for a ∈ A, x ∈ V . Moreover
ε∂ = 0 and for x, y ∈ V

(∂x) · y = τ∂y,x(∂y) · x. (7.7)

The R∗–linear map ˜Γ satisfies for β ∈ I(R∗) and a, b ∈ A the equation

a · ˜Γ(β ⊗ b) = ˜Γ(1� β ⊗ a · b) (2)

Equation (2) shows that ˜Γ is a map of left A–modules. Moreover (1) and (2) imply
that for α ∈ I(R∗) the following equation holds.

˜Γ(α⊗ a) · b = ˜Γ(α� 1⊗ a · b) (3)

Here the right hand action of b on x = ˜Γ(α ⊗ a) ∈ V is defined as in (7.4) by
x · b = τb,xb · x. Using this notation (1) is equivalent to (∂x) · y = x · (∂y), compare
(6.1).

Proof of (3). For x ∈ ˜Γ(α ⊗ a) we have |x| = |a| and hence τb,x = τb,a. Therefore
we get

˜Γ(α⊗ a) · b = τb,xb · ˜Γ(α⊗ a)

= τb,x˜Γ(1� α⊗ b · a)

= ˜Γ(τb,a(1� α)⊗ b · a)

= ˜Γ((α� 1)τb,a ⊗ b · a)

= ˜Γ((α� 1)⊗ τb,ab · a)

= ˜Γ((α� 1⊗ a · b).

�

Lemma 7.8. A τ–crossed module ∂ as in (7.6) yields for the underlying k–vector
spaces a crossed module in the sense of (6.1)

∂ : V(k) → A(k)

where we use (7.4). Moreover π0(∂) = H is a commutative graded k–algebra and
π1(∂) is an H–module with the H–bimodule structure in (7.5).

The lemma is based on the crucial property of a τ–crossed module, namely that
π0(∂) = cokernel(∂) and π1(∂) = kernel(∂) are only ε–modules though V and A are
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R∗–modules. A τ–crossed module yields the exact sequence

0 −→ π1(∂) i−→ V ∂−→ A
q−→ π0(∂) −→ 0 (7.9)

in which all maps are A–module morphisms. Here the A–module structures of π0(∂)
and π1(∂) are induced by the algebra map q. Moreover for the underlying k–vector
spaces this is by (7.8) a crossed extension as in (6.1), (6.3).

The next result generalizes lemma (6.2) on crossed modules.

Lemma 7.10. A τ–commutative secondary algebra H∗ over the coefficient algebra
R∗ as defined in (5.5) is the same as a τ–crossed module ∂ in (7.6).

Proof. Given H∗ we obtain

∂ : H∗1 → H∗0 ⊕ k = A

where A is a τ–commutative k–algebra by the multiplication µ in (5.5)(1). Moreover
H∗1 = V is an A–module and one now readily checks by (4.2) and (1.6) that ∂ satisfies
the properties of a τ–crossed module. Conversely given (∂, ˜Γ) as in (7.6) we obtain
the secondary module Hn over Rn by the commutative diagram (see (1.6))

I(Rn)⊗Rn V n 1⊗∂
//

µ

� �

I(Rn)⊗Rn
˜AneΓ

vvm

m

m

m

m

m

m

m

m

m

m

m

m

m

µ

��

V n ∂
//

˜An

which we deduce from the diagram in (7.6). Moreover we define

µ : Hn ⊗Hm → Hn+m

by the multiplication

˜An ⊗ ˜Am = Hn
0 ⊗Hm

0
µ−→ ˜An+m = Hn+m

0

of the algebra ˜A over R∗ and by the map

(Hn ⊗Hm)1
µ

// Hn+m
1

(V n ⊗ ˜Am ⊕ ˜An ⊗ V m)/ im d2
µ

// V n+m

with µ(x ⊗ a) = x · a and µ(b ⊗ y) = b · y where x · a = τa,xa · x. By (7.6)(1) this
map is trivial on im(d2). Now it is easy to show that the multiplication µ on H∗
is associative (compare the proof on (7.4)) and τ–commutative. Finally we have
to check that µ on H∗ is compatible with the equation in (4.2). This follows from
(7.8)(2),(3) since for α′ = α+αk ∈ I(Rn)⊕k = Rn and β′ = β +βk ∈ I(Rm)⊕k =
Rm we have

µΓ⊗(α′ ⊗ β′ ⊗ x⊗ y) = ˜Γ(α� β ⊗ x · y) + βk˜Γ(α� 1⊗ x · y) + αk˜Γ(1� β ⊗ x · y)
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Here we have α� β = (α� 1)(1� β) and hence in I(Rn+m)⊗Rn+m V n+m we have

α� β ⊗ x · y = (α� 1)(1� β)⊗ x · y
= α� 1⊗ (1� β)x · y
= α� 1⊗ x · βy

Therefore we get by (7.8)(2),(3)

µΓ⊗(α′ ⊗ β′ ⊗ x⊗ y) = ˜Γ(α⊗ x) · (βy + βky) + αkx · ˜Γ(β ⊗ y)

= µ(Γ(α′ ⊗ x)⊗ β′y + (ε(α′)x)⊗ Γ(β′ ⊗ y))

Hence µ is compatible with the equation in (4.2). �

We now use τ -crossed modules (or by (7.10) equivalently τ–commutative sec-
ondary algebras) for the following definition of symmetric cohomology which is a
symmetric analogue of Hochschild cohomology in (6.3).

Definition 7.11. Let R∗ be a coefficient algebra with interchange elements τ for
example let R∗ = k[σ∗] be the symmetric coefficient algebra. Let H be a commuta-
tive graded k–algebra and let M be an H–module. A τ–crossed extension E of H
by M is an exact sequence of graded k–vector spaces

E : 0 −→ M −→ V ∂−→ A
q−→ H −→ 0

Here ∂ is a τ–crossed module as in (7.6). Moreover all maps are A–module mor-
phisms with the A–module structure induced by the algebra map q : A → H. A
weak equivalence between two such τ–crossed extensions is a commutative diagram

0 / / M // V //

f1

� �

A / /

f0

� �

H / / 0

0 // M // W // B // H / / 0

Here f0 is a morphism of k–algebras over R∗ and f1 is a f0–equivariant homo-
morphism such that (f0, f1) is compatible with ˜Γ. Let SH3(H,M) be the set of
weak equivalence classes of τ–crossed extensions of H by M . Below we show that
SH3(H,M) is a well defined set with the structure of a k–vector space.

homomorphism
At this moment we do not know a “cohomology theory” for commutative graded

algebras H which yields the cohomology SH3(H,M) above.
We have the canonical natural homomorphism

SH3(H, M) → HH3(H, M) (7.12)

which carries the weak equivalence class of the τ–crossed extension E to the weak
equivalence class of the underlying crossed extension E(k) given by (7.8), (7.4) and
(7.5). We need the following “free” objects.

Definition 7.13. Let V be a graded k–vector space. Then the free R∗–module
R∗ � V generated by V is given by

(R∗ � V )n = Rn ⊗ V n.
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For an R∗–module W we obtain the tensor algebra over R∗ by

T (W ) =
⊕

n>0

W⊗n

where W⊗0 = k and W⊗n is the n–fold ⊗–product W⊗ . . .⊗W defined in (7.1).
For the tensor algebra T (V ) over k we get

T (R∗ � V ) = R∗ � T (V )

so that R∗ � T (V ) is the free k–algebra over R∗ generated by V with the multipli-
cation

(α⊗ x) · (β ⊗ y) = α� β ⊗ x · y

for α, β ∈ R∗ and x, y ∈ T (V ). Let

Kτ ⊂ R∗ � T (V ) = A

be the R∗–submodule generated by elements 1⊗ y · x− τx,y ⊗ x · y for x, y ∈ T (V ).
Then Kτ generates the ideal A ·Kτ ·A and the R∗–quotient module

Λ = A/A ·Kτ ·A

is the free τ–commutative k–algebra over R∗.

Given a τ–commutative k–algebra A over R∗ and a k–linear map d : V → A with
εd = 0 we obtain the following push out diagram in the category of R∗–modules

I(R∗)� V
1�d

//

i�1 push

��

I(R∗)�R∗ A

i′

� �

µ

� �

R∗ � V / /

d′′
- -

Y
d′

%%

K

K

K

K

K

K

K

K

K

K

K

K

A

Here d′′ is defined by d′′(α ⊗ x) = α · d(x). The pair (µ, d′′) induces the R∗–linear
map d′ which thus determines the map of A–modules ∂′ and ∂ in the following
commutative diagram

I(R∗)�R∗ A

eΓ

���

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

i′

� �

µ
/ / A

Y

i′′

��

d′
// A

A⊗Y

��

∂′
// A

X1(d) A⊗Y/U ∂
// A
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with
≈
Γ = i′′i′ and ˜Γ = p

≈
Γ = pi′′i′. Here i′′ is defined by i′′(y) = 1 ⊗ y and ∂′ is

defined by ∂′(a ⊗ y) = a · d′(y). Let U be the A–submodule of A⊗Y generated by
the elements

(∂′x) · y − τ∂′y,x(∂′y) · x,

a ·
≈
Γ(β ⊗ b)−

≈
Γ(1� β ⊗ a · b),

with x, y ∈ A⊗Y and a, b ∈ A, β ∈ I(R∗). One readily checks that U is in the kernel
of ∂′ so that ∂′ induces the A–module map ∂ on the quotient X1(d) = A⊗Y/U .
We claim that (∂, ˜Γ) is a well define τ–crossed module which is the free τ–crossed
module with basis (V, d).

Finally we define for a commutative graded k–algebra the free H–module with
basis V by H ⊗ V .

Definition 7.14. Let H be a commutative graded k–algebra and consider a long
exact sequence

R : . . . −→ C2 −→ C1
∂−→ Λ

q−→ H 0−→

Here Λ is a free τ–commutative k–algebra over R∗ and (∂, ˜Γ) is a free τ–crossed
module and Ci, i > 2, is a free H–module. All maps in the sequence are Λ–module
morphisms where Ci and H are Λ–modules via the algebra map q. Then we call R
a free τ–crossed resolution of H.

It is easy to see that free τ–crossed resolutions exist. Moreover given a τ–crossed
extension E as in (7.11) we can choose a commutative diagram (n > 2)

C3
∂

//

� �

C2 //

f2

��

C1 //

f1

��

Λ / /

f0

��

H / / 0

E : 0 // M / / V // A // H / / 0

so that one gets a weak equivalence

(f2)∗R2 → E

where R2 is the τ–crossed extension

0 → C2/∂C3 → C1 → Λ → H → 0

given by R. This implies that SH3(H, M) is actually a set. In fact, the function

ψ : HomH(C2/∂C3,M) → SH3(H, M) (7.15)

which carries f2 : C2/∂C3 → M to the weak equivalence class of (f2)∗R2 is sur-
jective. Using this surjection it is possible to define the k–vector space structure of
SH3(H, M).

Appendix: Eilenberg–MacLane spaces
Let k be a commutative ring, for example a field. For the definition of Zn =

K(k, n) in (2.5) we shall need the following categories and functors; compare Goerss–



Homology, Homotopy and Applications, vol. 4(2), 2002 60

Jardine [GJ]. Let Set and Mod be the category of sets and k–modules respectively
and let ∆Set and ∆Mod be the corresponding categories of simplicial objects in
Set and Mod respectively. We have functors

Top∗
Sing−−−−→ (∆Set)∗

| |−−−−→ Top∗

given by the singular set functor Sing and the realization functor | |. Moreover we
have

∆Set R−−−−→ ∆Mod Φ−−−−→ (∆Set)∗

where k carries the simplicial set X to the free k–module generated by X and where
Φ is the forgetful functor which carries the simplicial module A to the underlying
simplicial set. Moreover we need the Dold–Kan functors

Ch+
Γ−−−−→ ∆Mod N−−−−→ Ch+

where Ch+ is the category of chain complexes in Mod concentrated in degree
> 0. Here N is the normalization functor which by the Dold–Kan theorem is an
equivalence of categories with inverse Γ. For a pointed space V let

K(V ) = |ΦS(V )| with S(V ) =
k Sing(V )
k Sing(∗)

Hence K : Top∗ → Top∗ carries a pointed space to a topological k–module. We
define the binatural map

⊗̄ : K(V )×K(W ) → K(V ∧W ) (*)

as follows. We have

Sing(V ×W ) = Sing(V )× Sing(W )

and this bijection induces a commutative diagram in ∆Mod

R Sing(V )⊗R Sing(W )

��

R Sing(V ×W )

� �

S(V )⊗ S(W ) Λ
// S(V ∧W )

The vertical arrows are induced by quotient maps. For k–modules A,B let ⊗ :
A×B → A⊗k B be the map in Set which carries (a, b) to the tensor product a⊗ b.
Of course this map ⊗ is bilinear. Moreover for A,B in ∆Mod the map ⊗ induces
the map ⊗ : Φ(A×B) → Φ(A⊗B) in Set and the realization functor yields

| ⊗ | : |ΦA| × |ΦB| = |Φ(A×B)| → |Φ(A⊗B)|

Hence for A = S(V ) and B = S(W ) we get the composite

|ΦS(V )| × |ΦS(W )| |⊗|−−−−→ |Φ(S(V )⊗ S(W ))| |ΦΛ|−−−−→ |ΦS(V ∧W )|

and this is the map ⊗̄ above. One readily checks that ⊗̄ is bilinear with respect
to the topological k–module structure of K(V ),K(W ) and K(V ∧W ) respectively.
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Moreover the following diagram commutes

K(V )×K(W )
⊗̄

// K(V ∧W )

|SingV | × |SingW |

h×h

OO

|Sing(V ×W )| // |Sing(V ∧W )|

h

O O

(**)

Here the Hurewicz map h is the realization of the map in ∆Set

Sing(V ) → Φk Sing(V ) → ΦS(V )

which carries an element x in Sing(V ) to the corresponding generator in k Sing(V ).
Let Sn = S1∧ . . .∧S1 be the n–fold smash product of the 1–sphere S1. Then the

symmetric group σn acts on Sn by permuting the factors S1. It is well known that
this action of σn on Sn induces the sign–action of σn on the homology Hn(Sn) = k.
We define the Eilenberg–MacLane space Zn by

Zn = K(Sn) =
∣

∣

∣

∣

Φ
kSing(Sn)
kSing(∗)

∣

∣

∣

∣

Since K is a functor we see that σn also acts on K(Sn) via k–linear automorphisms.
We define the multiplication map µm,n by

µ : Zm × Zn = K(Sm)×K(Sn) ⊗̄−−−−→ K(Sm ∧ Sn) = Zm+n

where Sm ∧Sn = Sm+n and where we use (*). Diagram (**) implies that µ induces
the cup product in cohomology. The Eilenberg–MacLane spaces Zn together with
the multiplication map µ satisfy the axioms of Karoubi [Ka].
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lag, Progress in Math. 174, (1999) 510 pages

[H] Huebschmann, J.: Crossed n–fold extensions of groups and cohomology.
Comment. Math. Helvetici 55 (1980) 302–314

[HSS] Hovey, M. and Shipley, B. and Smith, J.: Symmetric spectra. Journal of
the AMS 13 (2000) 149–208

[K] Kristensen, L.: On secondary cohomology operations, Math. Scand. 12
(1963) 57–82

[L] Loday, J.–L.: Cyclic Homology, Springer Verlag (1992)



Homology, Homotopy and Applications, vol. 4(2), 2002 62

[Lu] Lue, S.–T.: Cohomology of algebras relative to a variety. Math. Z. 121
(1971) 220-232

[Ka] Karoubi, M.: Formes differentielle non commutatives et operation de Steen-
rod. Topology 34 (1995) 699–715

[P] Porter, T.: Extensions, crossed modules and internal categories in cate-
gories of groups with operations. Proc. Edinburgh Mayh. Soc. (2) 30 (1987)
373-381

[St] Stover, C. R.: The equivalence of certain categories of twisted Lie and Hopf
algebras over a commutative ring. Journal of pure and applied Algebra 86
(1993) 289–326

[W] Whitehead, J. H. C.: Combinatorial homotopy II, Bull. AMS 55 (1949)
213–245

This article may be accessed via WWW at http://www.rmi.acnet.ge/hha/
or by anonymous ftp at

ftp://ftp.rmi.acnet.ge/pub/hha/volumes/2002/n2a2/v4n2a2.(dvi,ps,pdf)

Hans–Joachim Baues baues@mpim-bonn.mpg.de

Max–Planck–Institut für Mathematik
Vivatsgasse 7
D–53111 Bonn
Germany


