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SECONDARY COHOMOLOGY AND THE STEENROD SQUARE
HANS-JOACHIM BAUES
(communicated by Larry Lambe)

Abstract
We introduce and study various properties of the secondary
cohomology of a space. Certain Steenrod squares are shown to
be related to the action of the symmetric groups on secondary
cohomology.

To Jan—Erik Roos on his sixty—fifth birthday

For a field k we choose the Eilenberg-MacLane space Z" = K(k,n) by the
realization of the simplicial k—vector space generated by the non—basepoint singular
simplices of the n—sphere S™ = S'A...AS!. The permutation of the smash product
factors S! yields an action of the symmetric group o, on S™ and hence on Z".
Moreover the quotient map S™ x S™ — S™+t™ induces a cup product map u :
Z" X Z™ — Z™*" with n,m > 1; see the Appendix below.

It is well known that the (reduced) cohomology H™(X, k) of a path-connected
pointed space X is the same as the set [X, Z"] of homotopy classes {x} of pointed
maps x : X — Z". Moreover the cup product of the cohomology algebra H* =
H*(X,k) = H* @ k is induced by the map p, that is {«} U {y} = {u(x,y)}. The
cohomology algebra is graded commutative in the sense that

{z}U{y} = (-1)""{y} U{z}
In this paper we replace the homotopy set [X, Z"] by the groupoid [X, Z"]. The
objects of this groupoid are the pointed maps = : X — Z" and the morphisms
x = yin [X, Z"] are the homotopy classes of homotopies x ~ y termed tracks. The
set of path components of [X, Z"] is

mo[X, 2] = [X, 2" = H"
and the group of tracks 0 = 0 of the trivial map 0: X — %« — Z™ in [X, Z"] is
m[X, 2"] = [X,Q2"] = H"!
We associate with [X, Z™] the exact sequence H"™(X):
0— H" ' = H(X); -5 H (X)o — H" -0

Here H"™(X)o is the set of all pointed maps X — Z™ and H"(X); is the set of pairs
(x,H) with H : £ = 0 and d(x, H) = z.
The Eilenberg-MacLane spaces Z™ have the following basic properties:
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(a) Z™ is a k—vector space object in the category Top™ of pointed spaces.

(b) The symmetric group o, acts on Z™ via linear automorphisms inducing the
sign of a permutation on H,(Z").

(c) The cup product map p : Z" x Z™ — Z™t™ is k-bilinear and equivariant
with respect to the inclusion o, X 0, C 0ptm. Moreover p is associative in
the obvious sense and the following diagram commutes.

VAL SAL L> Zm—HL

Tl im

Zm X Zn L> Zm+n

The map T is the interchange map T'(z,y) = (y,x) and 7, € Optm is the
element interchanging the first n—block with the second m—block.
Properties (b) and (c) imply that {Z",n > 0} is a “symmetric spectrum” in the
sense of Hovey—Shipley—Smith [HSS] 1.2.5. We use the poperties (a), (b) and (c)
of Z™ to show that the graded object

HH(X) = {H"(X),n > 1}

has the structure of a “secondary algebra” which we call the secondary cohomology
of the space X. Using secondary algebras we introduce the third cohomology SH? of
a graded commutative algebra and we show that the secondary cohomology H*(X)
represents an element

(H* (X)) € SH(H*, H*[1])

which is an invariant of the homotopy type of X. There is a natural transformation
from the symmetric cohomology SH® to the Hochschild cohomology HH® which
carries the class (H*(X)) to the class

C*(X) € HH*(H*, H*[1])

defined by the algebra of cochains C*(X) of the space X. It is known that the class
C* (X)) determines all triple Massey products in the cohomology H*(X, k), see for
example Berrick Davydov [BD] or Baues—Minian [BM]. The new class (H*(X)) in
addition determines for k = Fy the Steenrod operations

Sq" ' H" - H™ 1 n>1.

The Hochschild cohomology HH* is defined for algebras and graded algebras in
general while the symmetric cohomology SH? is only defined for commutative graded
algebras.

1. Secondary modules

Motivated by properties of Eilenberg—MacLane spaces in topology we introduce
the algebraic concept of a secondary module. Later we will consider functors from
the category of spaces to the categories of secondary modules and secondary algebras
respectively.
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Let k be a field and let R be a k—algebra with unit i and augmentation e
k- R k. (1.1)

Here ¢ and ¢ are algebra maps with €z = 1. For example let G be a group together
with a homomorphism € : G — k* where k* is the group of units in the field k.
Then ¢ induces an augmentation

e k[G] — k (1)

where k[G] is the group algebra of G. Here k[G] is a vector space with basis G and ¢
carries the basis element g € G to £(g). In particular we have for the symmetric group
o, (which is the group of bijections of the set {1,...,n}) the sign-homomorphism

sign: o, — {1,—-1} — k* (2)
which induces the sign—augmentation
€ = Esign : k[on] — k (3)

These examples play a special role in applications to topology below.
For k—vector spaces A, B we use the tensor product

A®B=A®;B (1.2)

A homomorphism f: A — B is termed a k—linear map. If A and B are R—modules
then the map f is R-linear if in addition f(r-z) =1 f(z) for r € R,z € A. If R
and K are k—algebras then also R ® K is a k—algebra with augmentation

cROK =2, kok=kF

The multiplication in R® K is defined as usual by (a®)-(¢/ @ ') = (e )@ (80').
Moreover if X is an R—module and Y is a K—module then X®Y is an R® K-module
by (a® () (z®y) = (az) ® (By). The following definition of a secondary module is
motivated by the examples in section 3. Therefore the definition may be considered
as a result of calculation derived from these examples, see (2.6) and (2.10). Since,
however, secondary modules play a central role in this paper we define them right
away as follows.

Definition 1.3. Let R be a k—algebra as in (1.1). A secondary module X = Xpg
over R consists of a diagram

R® Xy — x, -% X,

where Xy and X are R—modules and 9 is R-linear and I" is k-linear such that for
r,7' € R,a € X1,z € Xy the following equations hold.

O(rez)=(r—c(r)z (1)
['(r®da) = (r—e(r))a (2)
L((r-r)yoz) =T @x)+e(r')I(rex) (3)
L((r-r)yoz)=Trerz)+er) (' @) (4)
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Now let Xg and Yx be secondary modules over R and over K respectively. A map
between secondary modules

f=Jfn:Xp— Yk (5)

consists of an augmented algebra map h : R — K and a commutative diagram

R®X0L>X1*8>XO (6)

h®fol lfl \Lfo
o]

KoYy—=v, —2+Y,

where f; and fy are k-linear and h—equivariant, i. e. fi(r - b) = h(r) - f;(b) for
re R,be X; and i = 0,1. Let secmod be the category of secondary modules and
let secmod(R) be the subcategory of secondary modules over R and R—equivariant
maps f = f, for which A is the identity of R.

One readily checks that secmod(R) is an additive category (in fact an abelian
category) with the direct sum Xp & Yy given by

Re(XooYy) 2 X, 0V 2% X, 0 Y0 (1.4)

Moreover for a map f : Xp — Yg in secmod(R) the secondary modules kernel(f)
and cokernel(f) are defined in secmod(R) by using kernel(f;) and cokernel(f;) for
1= 20,1 in the obvious way.

Remark 1.5. Let R = k[G] be a group algebra augmented by € : G — k* as in (1.1).
Then a secondary module Xg over R can be identified with a diagram

GXXOL)Xli)XQ

where X7, Xy are k—vector spaces with an action of G via k-linear automorphisms
and where 0 is k-linear and G—equivariant. Moreover G x X is the product set and
I' is a function between sets which is k-linear in Xy (i. e. for g € G the function
Xo — X1,z — T'(g,z) is k-linear). Moreover for g,¢" € G the following equations
hold.

(g, 2) = (9 —(9)= (1)
I'(g,0a) = (9 —e(9))a (2)
T(gg',z) = gT(g', ) + (g )T(g, 7) (3)
T(gg',x) =T(g,9'x) + e(9)T (g, x) (4)

Let I(R) = kernel(e : R — k) be the augmentation ideal considered as an R—
bimodule. For an R—module M the tensor product I(R) ®pr M over R is defined and
this tensor product is an R—module by r - (F®@m) = (r7) @ m for r € R,T € I(R)
and m € M. We have the equation (T-r)®@m =7® (r-m) in I(R) @ M.

Lemma 1.6. A secondary R—module X can be equivalently described by a commu-
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tative diagram of R—linear maps:

4]
I(R) ®r X1 —% I(R) ®r X,

2 I
2 X,
Here u is given by p(F@m) =7-m form € Xy or m € Xo.

This characterization of a secondary R—module is more appropriate than defi-
nition (1.3) which is motivated by topological examples below. In [B] we consider
modules over crossed algebras generalising secondary modules in (1.6).

Proof of (1.6). Given (1.3) we observe that I'(1 ® ) = 0 for € X by (3). Hence
I"in (1.3) is determined by the restriction

I": I(R)® Xy C R® Xg — X
Now (4) shows that I induces a map
I:I(R)®r Xo— X,

which is R-linear by (3). By (1) and (2) we see that the diagram in (1.6) commutes.
Conversely given such a diagram we define T" in (1.3) by

Nrez)=T((r—c)ux)
Now it is easy to show that equations (1),...,(4) are satisfied. O

We use (1.6) for the following construction of free secondary R-modules.

Definition 1.7. Let d : V — X be an R-linear map. Then the free secondary
R-module X with basis (V,d) is obtained by the following push out in the category
of R—modules and R-linear maps:

I(R)®rV —2L I(R) ®r Xo

AN
~ N\
I \L push J/ N
AN
i N\ M

X 1 \

\%4

Xo
We also write X7 = X;(d) and X = X (d). Since u(1®d) = du the R-linear map
0 is well defined. Moreover we show that X is a well defined secondary R—module:

Proof. By (1.6) we have to show that I'(1®0) = pon I(R) ®r X1. This holds
frleid)(l®i) =p(l®i)on (R)@rV and T(1®9)(1®TI) = pu(1®T) on
I(R) ®r (I(R) ®r Xo). Now the first equation holds since

F1ed)1ei)=T1 @) =T1od) =it=pn(l i
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Here i = (1 ® 4) holds since ¢ is R-linear. For the second equation we get
Fr1®d)(1el)=T1e@)=T1eu =ul1xT)
Here the last equation holds since for r,7 € I(R),z € X, we have
Frlow(roror) =0 (7))
=T((r-7)®x)
=rT(F®z)
=p(1D)(ro7® )

Here we use the fact the T' is R-linear. O

One readily checks that the free secondary module X (d) has the following wuni-
versal property: Let X be an object in secmod(R) and let

|4 ! X1
DN
Xo

be a commutative diagram of R-linear maps. Then there is a unique map f : X (d) —
X in secmod(R) of the form

(1.8)

R) ®r Xo L X1(d) L>Xo

ifl
r s}

R) ®©p Xo —— X Xo

fo=identity

such that fi = f for i : V — X;(d) defined in (1.7).

2. Examples of secondary modules in topology

We describe examples of secondary modules which arise in topology. Let Top™
be the category of pointed topological spaces with base point. This is a groupoid
enriched category in the following sense. For objects X,Y in Top* the morphism
object [X;YT] is the groupoid given as follows. Objects in [X, Y] are the pointed
maps X — Y and for pointed maps f,g : X — Y the morphisms H : f = ¢ in
[X,Y] are the tracks from f to g, that is H is a homotopy class of homotopies
f =~ g. The composite of tracks

by L
is denoted by GOH where GOH is defined by adding homotopies in the usual way.

The inverse of the track H is denoted by H°P : g = f with H°POH = 0 ¢ where 0 £
denotes the identity track of f.
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If Y x Z is a product in Top* then
[X,Y x 2] = [X,Y] x [X, Z] (2.1)

is a product of groupoids. This shows that for an algebraic object Y in Top™ the
groupoid [X, Y] is a corresponding algebraic object in the category Grd of (small)
groupoids. For example if Y is an abelian group object in Top* (i. e. an abelian
topological group) then [X,Y] is a abelian group object in the category Grd. A
map between abelian group objects which is a homomorphism of the group structure
is termed a linear map.

Let C be a category. Then the category of pairs in C denoted by pair(C) is
defined. Objects are morphisms f : A — B in C and morphisms (o, ) : f — ¢ in
pair(C) are commutative diagrams in C

A—" A

|,k
B—>p

Let Ab be the category of abelian groups. The following result is well known.

Proposition 2.2. The category of abelian group objects in Grd and linear maps
is equivalent to the category pair(Ab).

In order to fix notation we give a proof of this result. Given an abelian group
object G in Grd we obtain the object

azG?HGo

in pair(Ab) as follows. Here Gy is the set of objects of G which is an abelian group
since G is an abelian group object in Grd. Let 0 € Gy be the neutral object in the
abelian group Go. Then GY is the set of all morphisms f :a = 0 in G with a € Gy
and df = a. The abelian group structure of GY is defined by

(fia=0)4+(g:0=0=(f+g:a+b—04+0=0)

where the right hand side is defined since G is an abelian group object in Grd.

Conversely given an object 9 : A; — Ag in pair(Ab) we define the abelian group
object G(0) in Grd as follows. The set of objects of G(0) is the set Ag. The set of
morphisms of G(9) is the product set Ay x Ag where (a1, z) € A; X Ag is a morphism
(a1,7) : 0a1 + & — x in G(9) also denoted by (a1,z) = a1 + x. The identity of = is
(0,z) : x = 90 + x — x. Composition of

(al 737)

b1,0
lr «———~ Oa1 +=x Lpdarte)

oby +0a1 +x

is (b1 + a1, ) for a;,b1 € Ay and z € Ag. Now it is readily seen that this way one
gets an equivalence of categories.

There are well known generalizations of (2.2). In particular the category of uni-
tal groups in Grd is equivalent to the category of crossed modules in the sense of
J.H.C. Whitehead, see for example Porter [P].
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Now given an abelian group object Y in Top™® the abelian group object G =
[X,Y] in Grd is given via (2.2) by a homomorphism

@Y = [X, Y] % Go = [X,Y]o (2.3)

where Gy is the set of all pointed maps f : X — Y and where GY is the set of all
tracks H : f = 0 with f € Gy and OH = f. The group structure of Y induces the
group structure on G and GY in the obvious way.

Definition 2.4. Let R be a k—algebra with augmentation € : R — k as in (1.1).
A topological track module Y over R is a R—module object Y in Top™ (i. e. a
topological R-module) for which each map r : ¥ — Y given by r € R admits
a unique track I',. : r = er where er : Y — Y is defined by the k—vector space
structure of Y.

Example 2.5. Let Z" = K(k,n) be an Eilenberg-MacLane space of the underlying
abelian group of the field & with the properties in the introduction, see Appendix
A. This shows that for R = k[o,] the space Z" is a topological R—module, in fact,
a topological track module over R since for r € R there is a unique track r = er
(with r,er : Z™ — Z™). Here ¢ is the sign—augmentation as in (1.1)(3).

Proposition 2.6. Let Y be a topological track module over R. Then for each X in
Top® one obtains canonically a secondary module over R
R® Gy —— G -% Gy
where 0 is given by the groupoid G = [X,Y] as in (2.3) and where T is defined by
the composite
F(?” & f) = Fr—srf
Here the track T'y_cp : 7 —er = 0 is given for r —er € R by (2.4).
Using (2.6) we obtain for each track module Y over R a functor
H(—;Y) : Top™ — secmod(R) (2.7)
which carries X to the track module H(X;Y) = (GY,Go,d,T') given by [X,Y] in
(2.6). Of course we have
moH(X,Y) = cokernel(9) = [X,Y] (1)
mH(X,Y) = kernel(9) = [X, QY] (2)
Here [X,Y] denotes the set of homotopy classes of pointed maps X — Y and QY
is the loop space of Y. The elements H € [X, QY] are identified with the tracks
H:0= 0 where 0: X — x — Y is the zero map. By (1) and (2) we see that the
functor (2.7) carries homotopy equivalences in Top™ to weak equivalences between

secondary modules as defined in the next section.
We are mainly interested in the secondary module

H(X) = H(X, Z") (2.8)

= kloy] given by (2.5) with moH™(X) = H™(X,k) and mH"(X) =

over R,
H"Y(X, k). This corresponds to the boundary map @ in the introduction.
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Proof of (2.6). By definition of 9 we have O(T',_c.f) = (r —er)f so that (1.3)(1)
is satisfied. Now let H : f = 0 be an element in G; with 0H = f. Then we get

0 0
[} [ ] [ ]
WHT %
[ ] [ ] [ ]
T—ET f

so that for I' =T",._.,
s H=0HOTf=T00(r —er)H
— 6OD1"f = 60D(r —er)H
=Tf=(r—er)H
and this implies (1.3)(2). Next we have by uniqueness of tracks in [Y, Y] the equa-
tions
Crpr—errry = Thr_er + ()T ey
=T’ +e(r)lp_ep
and these equations imply (1.3)(3),(4). O
Remark 2.9. Let Y be given as in (2.6) and let B C [Y, Y] be the full subgroupoid
with objects given by maps r : Y — Y for r € R. Then we obtain the action
pn: Bx [X,Y] € [V, Y] % [X,Y] - [X, V]

where the second arrow is composition in the groupoid enriched category Top®.
The action pp determines I' in the secondary module H(X,Y") given by (2.6) and
conversely 'H(X Y) determines uniquely the action pg. In this sense a secondary
module is a R-module in the category Grd of groupoids. Here R is the groupoid
with objects R, path components e~1(x) with z € k and all automorphism groups
in R are trivial. The algebra structure of R yields a corresponding structure of R.

As pointed out by the referee this remark corresponds to the followoing result
generalizing (2.2).

Proposition 2.10. Let R be the internal k-algebra in the category of groupoids
Grd given by R similarly as in (2.9). Then the category of R-internal modules in
Grd is equivalent to the category secmod(R) of secondary modules over R.

The proof of (2.10) uses similar arguments to the proof of (2.6). We leave details
to the reader. A generalization of (2.10) is proved in [B].

3. Weak equivalences

We can consider a secondary module X as a chain complex of k—vector spaces
concentrated in degree 0 and 1. The homology of this chain complex is denoted by

mo(X) = cokernel(d : X7 — Xj)

71 (X) = kernel(9 : X; — Xo) (3.1)
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A map F = Fj, : Xgr — Yx between secondary modules is a weak equivalence if
h: R — K is an isomorphism and f induces isomorphisms

We point out that mo(X) and m1(X) are also R-modules for which, however, by
(1.3)(1),(2) the R—module structure is induced by the augmentation ¢, that is - =
g(r) -z for r € R,z € mp(X),m1(X). Hence mo(X) and m1(X) are just k—vector
spaces with an action of R via . Such R-modules are termed e—modules. If Xg is
a secondary module with I' = 0 then Xy and X; are also e-modules. Hence in this
case Xpg is given by a chain complex 0 : X; — Xg of k—vector spaces. We say that
Xpg is of trivial type if I' = 0 and 9 = 0 so that in this case Xg = mp and X; = 7.

Two secondary modules Xg, Yr are weakly equivalent if there exists a chain of
R—equivariant weak equivalences

Xp e X| = X9 & ... X,, = Yg.

Proposition 3.2. Fach secondary module is weakly equivalent to a secondary mod-
ule of trivial type.

We prove this in (3) below. Hence the only invariants of the weak equivalence
class of a secondary module X are mpX and 71 X.

Remark 3.3. For the secondary module H"(X) over R,, = klo,] in (2.7) we know
by (3.2) that the weak equivalence type of H™(X) is trivial. This can also be seen
by the following topological argument. By Baues [B] there exists a sequence

7y Ly, My,

of topological R,—modules and R,,—linear maps f, g, h with the following properties.
The action of R,, an Y3 satisfies r-y = &(r) -y for r € R,, and y € Y3 where ¢ is the
sign augmentation of R,,. Moreover f, g and h are homotopy equivalences on Top™.
Hence we obtain weak equivalences of secondary modules over R,

HY(X) = H(X, Z") <= H(X; Y1) =5 H(X,Ys) < H(X,Y3)

where H(X,Y3) is easily seen to be weakly equivalent to a secondary module of
trivial type.

For the proof of (3.2) in (3) below we need the following pull back construction
for secondary modules. Let X be a secondary module and let Y be an R—module
and let f: Yy — Xy be a R-linear map. Then we obtain the following commutative
diagram in which the subdiagram ‘pull’ is a pull back in the category of vector
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spaces.
.
R®Y, /fif')ﬁ\‘ Yo
T )
RQf 7 pull f
R® X L X1 2 Xo

Here T is defined by 9T = v with y(r®y) = (r —er) -y and fT =T(R® f). Then
f*X7 is an R—module and 0 is R-linear. Moreover we get the following fact.

Lemma 3.4. The top row Yr = (0,T) = f*Xgr of the diagram is a secondary
module over R and (f,f) : Yo — Xgr is a map in secmod(R) which is a weak
equivalence if (0, f) : X1 ® Yo — Xo is surjective.

The map f*Xpr — Xpr has the following property. Let i : K — R be an aug-
mented map between k—algebras and let g : Zx — Xp be an i—equivariant map
between secondary modules for which a commutative diagram

Yo (1)

>y

20— Xo

is given. Here hg and gy are i—equivariant. Then there exists a unique i—equivariant
map h: Zxg — f*Xg for which the diagram

f*Xr (2)

h _
/ i(f,f)

Zx —5 = Xr

commutes in secmod.

Proof of (3.4). The elements of f*X; are pairs (z1,y) with dz; = fy. We define
r(x1,y) = (rz1,ry) so that 0 and f are R-linear with d(z1,y) = y and f(z1,y) = 21.
Moreover

I(rey) = e fy),(r—er)y)
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Hence (1.3)(1) holds for Y. Moreover

L(re@d(z,y) =T(rey)

=[T(r® fy),(r—er)y)

(I'(r ® 0z1), (r —er)y)
((r —er)xy, (r—er)y)
= (r—er)(z1,9)

This shows (1.3)(2) for Yi. Next we consider (1.3)(3) for Yz and we get

Lir-r'ey) =@ r' e fy),(r-r" —err’)y)

(MT(rey) =rTF' @ fy), (" —er')y) + () (T(r @ fy), (r —er)y)
= (T(rr' @ fy),r(r' —er’ )y +e(')(r —er)y)
= (L(rr' @ fg), (rr" = e(rr’))y).

Similarly one checks (1.3)(4) for Y. Hence (f, f) : Yr — Xg is a well defined map

between secondary modules. If (9, f) is surjective then the pull back is also a push
out and therefore (f, f) is a weak equivalence. O

(' @y) +e(r

Now given a secondary module X we can choose a k-linear section s : 79 — Xy
of the quotient map ¢q : Xo — Xo/im(09) = mp. Hence the R-linear map

fiR®m— Xo (3.5)
with f(r ® ) = r - sz is defined with ¢f(r ® x) g(r) - x. Here R ® m is a free
R-module with the action of R given by r- (' ® ) = (r-7') ® x and ¢f coincides
with the R-linear map

qf =e®1:R®7mg — k®mg=mg (1)

For I(R) = ker(e : R — k) we have ker(e ® 1) = I(R) ® mp. Using f in (3.5) we get
as in (3.4) an R-linear map between secondary modules

(f,f):Yr=f"Xp— Xr (2)

which is a weak equivalence since (9, f) : X1 &Yy = X1 ® R®my — X is surjective.
Here Yg is a secondary module which is special in the following sense. We say that
a secondary module X is special if for my = mgX one has

Xo=R®my and
1m(8 : X1 — Xo) = I(R) & .

Proposition 3.6. A special secondary R—module Xr admits an R-linear section
t:I(R)®@my— X1 of 0: X1 — I(R) ® mp.

Proof. We define ¢ by the map
IN'RXg=R® R®my — X1,
namely for 7' € I(R) and x € mg let
tr'er)=T0r 1)
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Then we have 0t(r' @z) = T (r @ 1®@z) = (r —er’)(1®@x) = ' @z since £(r') = 0.
Moreover ¢ is R-linear since for r € R
tr-rer)=Tr relear)

=rT(r'elez)+er)I(reole)

=rT(r'®le®)

=r-t(r'ez).

O
Remark 3.7. A converse of (3.6) is also true. Let mg and m; be k—vector spaces and
let
0:X; — I(R)®mg

be a surjective R-linear map for which m; = ker(9) is an e-module and let ¢ be an

R-linear section of 0. Then a special secondary R—module Xg is defined in terms
of J and ¢ as follows. Let Xy = R ® my and let

'R Xg=RQRRRm — X,
be given by (r,r’ € R,x € mg)
Freorez)=@r—e)t((r —er')@x)+c()t((r —er) ® )

Then one can check that T' satisfies all the axioms in (1.3) so that Xg is a well
defined special secondary module. Hence by (3.6) special secondary modules are up
to isomorphism determined by 7y and 71 with Xg = R®mp and X; = m1 ®I(R) ®m.

Proof of (3.2). Let Xg be a secondary module. Then we obtain by (3.5) the special
secondary module Yz = f*Xp and the weak equivalence Yz — Xg. Moreover by
(3.6) and (3.7) we have Yo = R® mp and Y1 = m @ I(R) ® 7y and

0:Y1=maI(R)®@m —I(R)®@mm CR®m =Y

is given by the projection and the inclusion. Now we obtain a weak equivalence g
with

Y1*8>Y0

gll O lgo

T — T

where go = e®1 and g7 is the projection. By the definition of I' in (3.7) in terms of
the section ¢ : I(R) ® mop C Y7 we see that g1 = 0 so that g is a well defined map
between secondary modules where 0 : m; — 7y is the secondary module of trivial
type given by my and 7. |

4. Tensor products of secondary modules

Here we introduce the tensor product of secondary modules which is needed for
the definition of secondary algebras in the next section. For secondary modules X g
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and Yy the tensor product of the underlying chain complexes is given by the chain
complex of k—vector spaces
X190 L XiYodXo® Y L) Xo®Ys

d2(a®b) = (0a) @b —a® (Ob)

di(a®y) = (9a) @y

di(z ®b) =z ® ()
with x € Xg,y € Yp,a € X1,b € Y7. Hence d; induces the boundary map

Og: (X1 @Y ®Xo®Y7)/im(d2) — Xo®Y) (4.1)
Since k is a field we get by the Kiinneth formula
mo0g = cok(Og) = mo(X) @ mo(Y)
m10g = ker(dg) = m1(X) @ mo(Y) @ mo(X) @ m1(Y)

One readily checks that g is an R ® K-equivariant k-linear map.
Definition 4.2. We define the tensor product Xp®Yx = (X ®Y)rgx of secondary
modules Xr and Yk by the diagram

r . 7]

RIK®X,0Y), —— (X, 0Y,® Xo®Y))/imdy —— Xo®Yp
Here Jg is defined as in (4.1) and T'g is defined by the following formula
Fgla@forey)=Tlaoz)®@y)+ ((@z) @T(Bey)
=(ax)@T(Bey)+T(a®z)® (e(B)y)

Here the second equation is a consequence of the first equation since (9a) ® b =
a® (0b) by (4.1).

Lemma 4.3. The tensor product Xr ® Y of secondary modules Xr and Yk is a
well defined secondary module over R ® K.

Proof. The map Og is R ® K-linear and I'g is a well defined k-linear map. Hence
we have to check the equations (1)...(4) in (1.3): We first check (1).
Ielg(a®@f@r®y)=0T(a®r)® Py +c(a)z@ T (R Y)
= (0 —c(a))r ® By +=(@)z ® (B— <(B))y
ar ® By —e(a)e(B)z @y
=(a®f-el@ef)(zey)

Next we check (2) for I'g.
IFe(a®@fRiga®y)) =Tg(a® 88 Ja®y)
=TNa®0a) ® Py +e()0a T (B R y)
=(a—¢e(a))a® Py +e(a)a®dl(BRy) ,see (4.1),
=(a—e(a)a®Py+e(a)a® (B—e(B))y
=aa® Py —e(a)e(fla®y
=(a®pf—-cla®p))(a®y)
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I'g(a®pB®Ig(z®b)) =Tg(a®B®r®ob)

=T(a®z)® Pob+ c(a)r @T'(8 ® 0b)
=T(a®@z)® () +e(a)r® (B —e(B))b
=0l(a®z)RBb+e(a)z® (8—¢e(B8))b , see (4.1),
=(a—¢e(a))z®@pb+e(a)r® (8 —e(B))b
=ar® pb—c(a)e(B)z®b
=(@®@pf-ela®f)(zeb)

Now we check (3) for T'g.

I'g((a®p)(a'@f)wrey) =T(ad ® BB @z Y)
=T(ad ®2)® B0y +c(ad )z @T(BF @ y) = (i)

Now we get by (3) that (i)=(ii) coincides with

(ii) = (aI'(¢’ @ @) + (o )T (@ ® 7)) @ BBy +e(ad )z @ (BT(F' ®y) + (BT (B@y))

On the other hand we have

(iii) = (@ B)lg(d @B @ry) +e(d @ F)Ng(a®@BRrRY)
=al'(d/ ®@z)® pFYy +e(a)axr @ T (B @y)
+e(@ @) (aer) @ fy+e(a)z@T(Bey)
We have to check (ii)=(iii). But this is equivalent to
eI (a®z)2B6 y+e(ad ) z@pT (5 ®y) = e(a)az@BT (3 Qy)+e(d/ @6 ) (a®z)2By

This equation is equivalent to

MNa®z) @B —ef)y=—= (a—ea')z @ BI(B' ®y)

INa®z)® BT (f ®@y) Ma®z)® BT (B ®@y)
By (4.1) we know that
Na®z) @ pBIr(B' @y) =T(a®z)@dpr(3' @y)
=l(a®z)® LB @vy)
This completes the proof that (ii)=(iii) and hence (i)=(iii) and hence (3) holds for
X ® Y. Finally we have to check (4). For this we apply (4) to (i) above and we get
(i)=(iv) where
(iv) = (M(a@a'z) +e(a)l (o' @2)) ® B8y +e(aa)z @ (N(B& B'y) +(B)T(F @)
On the other hand we have
(V) =Tgla®Bedzefy) +e(a®f)lg(d @ @z ®y)
=T(a®ad)®pfy+e(a)d)zal(Be fy)
te(a@B)(I(d @)@ By +e()r@T (8 @y))
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We have to check (iv)=(v). This is the case if and only if the following equation
holds.

()l ®@z)® BBy +e(ad )z @T(B® By)
=e(a)dz@T(Befy)+e(ae Bl (d @) fy

This equation holds if and only if the following equation is true

I’ ©r)® (8 -ef)fly == (o’ —e(a’))z @T(B® 'Y)

o/ ®x)®@T (B [Y) (o @z)T (B LY)

Now again (4.1) shows that this equation is true. Hence we have shown (i)=(v) and
this corresponds to equation (4) for X ® Y. Now the proof of the lemma is complete.
O

Lemma 4.4. The tensor product of secondary modules is associative and bilinear,
that 1is:
(Xr®Yr)®Z, =Xr® (Y ® Z1)
(Xr®OYR)®Z, =Xr®ZL®YrR® ZL
7109 (Xp®YRr)=ZL@Xp®ZL ® YR
We point out that the chain complex k = (0 — k) is a unit for the tensor product,
that is
Xprk=Xpr=k® Xg (45)

Here we use the obvious identification V@ k =V =k ® V for a k—vector space V.
We shall use the tensor product of secondary modules mainly for the next result.

Proposition 4.6. The cup product map p: Z™ x Z™ — Z"™ induces an in m—
equivariant map between secondary modules

s HY(X) © ™ (X) — H ™ (X)

where ip m : klon) @ klom] — k[ontm] is induced by the inclusion o, X 0 C Opgm,
n>1.

Proof. The map p, carries f® g € Hf @ Hy* with f : X — Z™,g: X — Z™ to
the composite p(f,g) : X — Z" x Z™ — Z"t™. Since y is k-bilinear and i, ,,,—
equivariant p, @ Hy @ H{* — Hg"’m is well defined. Moreover p, is induced on
(H™ ® H™); by the map

i Hy @ H' © HY @ H — HY™™ (1)
which carries f ® G with G : g = 0 € H to u(f,G) : u(f,g) = 0 and carries
H®gwith H: f=0¢&H} to u(H,g): u(f,g) = 0. Here we use the fact that the

bilinearity of p implies that u(f,0) =0=u(0,9). f H: f = 0and G: g = 0 are
given then in fact

p(f®G) = p(H®g) (2)
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so that . is well defined and 4,, ,,—equivariant. In fact, we have for the track (H, G) :
(f,9) = (0,0) with (f,g) : X — Z™ x Z™ given by the homotopy (H;,G;) the
formula

u(H, G) = p((0,G)O(H, g))
= u((H,0)8(f,G))

where O denotes addition of tracks. Hence we get

w(H, g) = 00u(H, g) = pu((0,G))0u(H, g)
=pu((0,G)0(H, g)) = w(H,G)
= u((H,0)0(f,G))
= p(H,0)0u(f, G)
=00u(f,G) = u(f,G)

and this proves (2). Finally we have to show that p. is compatible with the I'-
operator. For this let » € R,, and s € R,,, and let

Iier:ir—er=0:2"—-2"
I'y cs:85—es=0:2"—=27™ (4.6)
Dros—c(rye(s) 17O s — e(ros)=0: zZnrm — zntm

(4.6)

where 1 © § = iy m (7, s) € Ryym. We observe that in R,,4,, we have the following
equations

(r—er)Os+e(r) (1, (s—es)) =
(ros)—e(r)(ln©s)+e(r)(l, ©s) —e(r)e(s)(1n © 1)
=rOs—¢e(r®©s) € Rutm
(4.6)

Let Z" N Z™ = Z™ x Z™/Z™ x {0} U{0} x Z™ be the smash product. Then the
cup product map p induces a map fi : Z* A Z™ — Z™™ and we get the composites
a,b,c: Z" N Z™ — Z"T™ by

a=p(r—er)As,
b=ce(r)pn(l, A (s —es)), (4.6)
c=(ros—e(ros)m.
Then (5) shows that a + b = ¢. Hence
A= Ty aq A 8) + (r)fi(Ly ATy _zq) and
B =T\'0s—c(ros)h

are both tracks ¢ = 0. Now obstruction theory shows that these tracks A and B
coincide since the set of homotopy classes [LZ" A Z™, Z"+t™] is trivial. The equation
A = B implies that p satisfies

pl(r@s® fog)=Troseu(fg) (8)

by definition on I" in (2.6) and by formula (2.4), which exactly corresponds to A = B.
O

(4.6)
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5. Secondary cohomology

Using the tensor product of secondary modules we introduce the notion of a sec-
ondary algebra. We define a functor which associates with each space X a secondary
cohomology algebra H*(X).

We consider a sequence R, of augmented k—algebras R,,n > 0, together with
augmented algebra maps

Z.n,m =0:'R,®R,, — Rn+m (51)
carrying a ® 0 to a ® 3 such that for v € Ry we have
(@a0pf)oy=a0(807)

in Ry4m+k- Since © is an algebra map we have
(@-a)o(B-8)=(a0f)- (o)

where o - o’ denotes the product in R,,. Let 1,, € R,, be the unit element of R,, with
1,01 = 1y4m. For n = 0 we have Ry = k and 19 € Ry satisfies 1o0a = a®1lg = a.
We call R, = (R.,®) a coefficient algebra.

Of course we have the trivial coefficient algebra k& with R, = k for n > 0. On
the other hand we shall use the symmetric coefficient algebra klo.] given by the
augmented group algebras R,, = k[o,] where o, is the symmetric group and R,

has the sign augmentation (1.1)(3). Moreover ® = i, ,, is induced by the inclusion
of groups o, X 0y C Trgmm-

Definition 5.2. An algebra V over a coefficient algebra R, is a sequence of R,—
modules V™, n > 0, together with k-linear maps

VAT S A
carrying  ® y to x - 3. For z € V¥ we have in V+m+k
(@-y)-z=2-(y-2)
and for a € R,,, 3 € R,, we have
(ax) - (By) = (@ © B)(x - y).

We do not assume that the algebra V has a unit. Let V and W be such algebras
over R,. Then a map f:V — W over R, is given by an R,-linear map f = f" :
V- Wn" n >0, with f(z-y) = f(z) - f(y). This defines the category of algebras
over R,.

If R, = k is the trivial coefficient algebras then V in (5.2) is just a graded algebra
over k. A graded algebra V' is commutative if for x € V"™ y € V™ we have

y-x=(-1)""z-y (5.3)

For example the reduced cohomology H* (X, k) of a pointed space X with coefficients
in k is a commutative graded algebra. We generalize this notion of commutative
algebras as follows.
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Definition 5.4. Let R, be a coefficient algebra and assume elements
Tm,n € Rn+m (nam 2 0)
are given with the following properties (m,n,k > 0).

TmnTn,m = Lntm
Tm,0 = To,m = Lm
Tom(@®B) = (80 a&)Tm for « € R, € Ry,
Tmtnk = (Tmke © 1n) (1 © Took)
e(Tmn) =(=1)™" ek

Then we say that an algebra V over R, is 7—commutative if for x € V', y € V™

Yy-xr= Tn,m(m'y)

in yntm,

For example we have the interchange elements 7, y, € k[optm] With 7, (1) =
m + 1 in the symmetric coefficient algebra for which a 7—commutative algebra is
the same as a “commutative twisted algebra” in the sense of Stover [St]. On the
other hand we can define the interchange elements 7, ,, = (—1)™™ € k in the trivial
coefficient algebra so that in this case a T—commutative algebra is the same as a
commutative graded algebra in (5.3). We now are ready to introduce the notion of
a secondary algebra.

Definition 5.5. Let R, be a coefficient algebra. A secondary algebra H* over R,
consists of a sequence of secondary modules ‘H" over R,, n > 1, together with
in,m—€quivariant maps

W= L Hn ® Hm N Hn+m (1)

for n,m > 1 which are associative in the sense that the diagram

H™ @ H™ @ HT — P yn g pymtr (2)

Hn+m ® H" # Hn+m+r

commutes. Here we use the tensor product of secondary modules. If elements 7, ,,, €
R, 1 are given as in (5.4) we say that the secondary algebra H* is T—commutative
if the diagram

H* @ H™ L> Hrtm 4 H™ @ H™ (3)

\/

T

commutes. Here T carries @y t0 Ty, m (y@x) for (x € HY,y € Hi') or (x € Hi,y €
HT) or (z € HY,y € H{"). We study 7—commutative secondary algebras in more
detail in section §7 below.
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We say that the secondary algebra H* is w—closed if one has k-linear isomor-
phisms

w=w":mH" = meH" " (4)

for n > 1 which satisfy

Ty - z) = w" () - 2

Wy - 2) = (~1)"y - w™ (21)

fory € moH™, z € meH™,y1 € mH"™, 21 € myH™. In (5) the multiplication is defined
by the maps (1). A map f : H* — G* between secondary algebras is given by a
sequence f™ : H"™ — G" of R,—equivariant maps between secondary modules such
that f™ is compatible with g in (1) and w in (4). Such a map f is a weak equivalence
if f is a weak equivalence in secmod for n > 0.

v (5.5)

Let secalg be the category of secondary algebras over the symmetric coefficient
algebra k[o.] which are 7—commutative and w—closed. For an object H* in secalg
we obtain a commutative graded algebra H* by

H" = myH" for n > 0 (5)

with the multiplication H" @ H™ — H"™+t™ induced by p in (5.5)(1). We see that
H* is commutative since H* is 7-commutative. Assume sign(7,) = 1 in k then
Wi H @ H® — H?" for n > 1 yields the squaring operation

Sq"t =w?'Sq: H" — H*"! (5.7)

with 28q™ ™! = 0 as follows. For this we use the assumption that H* is w—closed.
The k-linear map

Sq : 71'07‘(” — 7T1H2n

carries the element {y} represented by y € H{} to the element

Sq{y} = INCARNRET)

wich satisfies O(7,, n, ¥y - y) = 0. One can check that Sg¢ is well defined, see also
[B]. The next result describes the secondary cohomology algebra H*(X) of a path-
connected pointed space X. Let Top( be the category of path-connected pointed
spaces and pointed maps.

Theorem 5.8. There is a contravariant functor
H* : Top, — secalg

which carries a space X to a secondary algebra H*(X) which is T—commutative and
w-closed. See (4.6). Moreover the algebra H* = moH*(X) is (5.6) coincides with
the reduced cohomology algebra H* (X5k) and for k = Fy the squaring operation
Sq" ! in (5.7) coincides with the corresponding Steenrod operation.
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Proof. This is a consequence of (3.7) and property (c) of the cup product maps
in the introduction. The result on Steenrod squares is a consequence of a result of
Kristensen, lemma 2.5 in [K]. Compare [B]. O

6. Crossed modules and Hochschild cohomology

we show that Hochschild cohomology can be deduced from the concept of sec-
ondary algebra in (5.5). More precisely, a secondary algebra over R, = k corresponds
to the notion of a “crossed module” which is used to define “crossed extensions”.
Moreover weak equivalence classes of crossed extensions are in fact the elements in
the Hochschild cohomology. In a similar way we shall deduce from the concept of
a T—commutative secondary algebra in (5.5) the notion of symmetric cohomology;
see §9 below.

We introduce the concept of a crossed module in the context of algebras and we
show that (in the graded case) a crossed module is the same as a secondary algebra
over the trivial coefficient algebra R, = k. A crossed module and equivalently a
secondary algebra over k represent an element in the third Hochschild cohomology.
This leads to the notion of a characteristic class of a differential algebra.

‘We here consider the graded and the non—graded case at the same time. A graded
vector space V is assumed to be non-negatively graded, i. e. V¥ = 0 for i < 0.

We use the following notation. An algebra A s given by a (graded) k—vector
space A and a multiplication map A® A — A which is associative. On the other
hand a k—algebra A is an algebra with unit £ — A and augmentation € : A — k.
Hence a k—algebra A is an algebra under and over k. Then the augmentation ideal

A = kernel(e : A — k)

is an algebra which determines the k-algebra A = Ask completely. Moreover an
A-module is also an A-module and vice versa.

Let A be a (graded) k-algebra. An A-bimodule V is a (graded) k—vector space
which is a left and a right A—module such that for a,b € A, 2 € V we have (a-2)-b =
a-(x-b). For example A can be considered as an A-bimodule via the multiplication
in A.

Definition 6.1. A crossed module is a map of A—bimodules
0: V- A

satisfying e = 0 and (Ov) - w = v - (Qw) for v,w € V.

Let m(9) = cokernel(9) and 71 (9) = kernel(9) in the category of (graded) vector
spaces. Then the algebra structure of A induces an algebra structure of my(9) and
the A-bimodule structure of V induces a mo(9)-bimodule structure of 71 (9). In fact
for {a} € mp(9) the multiplication {a} v = a-v with v € m1(0) is well defined since
(a+0w) - v=a-v+ (Ow)-v=a-v+w-0v=a-v where dv = 0. Hence a crossed
module yields the exact sequence

OHm(@)L'»VLALMTO(a)HO
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in which all maps are A-bimodule morphisms. Here the A-bimodule structure of
mo(0) and m1(9) is induced by the algebra map q.

Lemma 6.2. A secondary algebra H* over the trivial coefficient algebra k as defined
in (5.5) is the same as a crossed module 0.

Proof. Given H* we obtain
0:Hi — H;
where H{ is an algebra by the multiplication p in (5.5)(1). Moreover Hj is a H{—

bimodule by the multiplication (5.5)(1). Using (4.1) we see that 0 yields the crossed
module

0=(0,0):H} > Hi Dk

where Hg @ k is the k-algebra given by Hg. Conversely it is easy to see that a
crossed module (6.1) defines a secondary algebra over k. O

We now use crossed modules (or equivalently secondary algebras over k) for the
definition of Hochschild cohomology.

Definition 6.3. Let H be a (graded) k—algebra and let M be an H-bimodule.
A crossed extension of H by M is an exact sequence in the category of (graded)
k—vector spaces

£0—M21v-2L A H S0
where 0 is a crossed module. Moreover all maps are A-bimodule maps with the

A-bimodule structure induced by the algebra map ¢ : A — H. A weak equivalence
between two such extensions is a commutative diagram

M 1% A—>H
e
M——>W—>B—>H

where fy is an algebra map and f; is a fy—biequivariant homomorphism.

induces an isomorphism kernel(¢’) = kernel(q) and hence we get for an n—fold
extension (6.3) the following diagram of G by f*M. Now f* in (6.4) carries the
weak—equivalence class of the extension £ to the weak—equivalence class of the ex-
tension f*& in the top row of the diagram. (n > 2) weak equivalence class of the
extension &£ to the weak equivalence class of the extension ¢,€ in the bottom row
of the diagram.

M,n > 2.

Proposition 6.4. The third Hochschild cohomology HH3(H, M) of H with coeffi-
cients in M coincides naturally with the set of weak equivalence classes of crossed
extensions of H by M.

This result is proved in [BM], see also Loday [L] or Lue [Lu]. The proposition
holds in the graded and in the non-graded case.in order to define a crossed resolution
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of a k—algebra A. tensor product of V. Given a (graded) k-algebra A and a k-
linear map d : V — A with ed = 0 we obtain the free crossed modul with basis
(V,d) as follows. Let is the free crossed module with basis (V| d). Finally we define
for a k—algebra H the free H-bimodule with basis V by H @ V ® H. choose a
commutative diagram (n > 2) this surjection we define the k—vector space structure
of HH" "1 (H, M) so that addition of crossed extensions in HH" ™ (H, M) is given by
the “Baer sum” of extensions. 0
ho(v) =1®v®1 for v € Vy and ho(a - b) = (ga) - ho(b) + ho(b) - g(a) for a,b € T.
One can check that there is a unique H—bimodule map ds for which

We have seen in (6.2) that each secondary algebra H* over k yields a canonical
crossed extension

O—>7r1('H*)%Hfng@k—»ﬂo(H*)@k%O

Here H = mo(H*) @ k is a k—algebra and M = 71 (H*) is an H-bimodule. Hence
the crossed extension represents an element

(H* € HH3(H, M) (6.5)

which is termed the characteristic class of the secondary algebra H*. On the other
hand a differential algebra C' (like the cochain algebra of a space) as well yields a
crossed extension representing a characteristic class (C) as in the following example.

Example 6.6. Let C be a differential graded k—algebra, that is, C = {C* i > 0}
with C'C7 C C™J and d : C — C of degree +1 satisfying d(xy) = (dx)y +
(=1)*lzd(y) and dd = 0 and ed = 0. Then d induces the map of graded k-vector
spaces

V = coker(d)[1] -% ker(d) = A (1)
Here we define for a graded vector space W the shifted graded vector space W1l]
by

W= W) w e s(w), (2)
Hence for the cokernel of the differential coker(d) = C'/ im(d) we obtain the shifted
object V' = coker(d)[1]. Since d is of degree +1 the boundary induces 9 by ds{v} =
d(v) for {v} € coker(d),v € C. The algebra C induces an algebra structure of
A = ker(d). Moreover it induces the structure of an A-bimodule on V' by setting

a- (s{v}) = (~1)s{a- v}
(s{v}) - b=s{v-b}
One can check that 9 : V — A is a crossed module in the sense of (6.1), see [BM].
This proves that 9 : V' — A is crossed module and therefore we obtain by (6.2)

a secondary algebra & : V — A over k which is, in fact, w—closed (see (5.5)) by
defining

(6.6)

w:m(9) = H*(C)[1] = H*(C) = mo(9) (4)

with ws(z) = x for x € H*(C) = ker(d)/im(d). The equations in (3) for the
A-bimodule structure of V' correspond exactly to the equations in (5.5)(5).
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According to (3) we define for a graded algebra H* the H*~bimodule H*[1] by
setting

a-(sz) = (-1)s(a - x)

(sz)-b=s(z-b) (6.6)
Then we obtain by (1) and (4) the crossed 2—extension
0— H[1] — V-5 A4—H —0
which by (6.4) represents an element
© e HH*(H", H*[1]) (6)

where H* = H*(C'is the cohomology algebra of the differential algebra C. A cocycle
6 representing (C) is considered in Berrick-Davydov [BD].

As a special case we obtain for a pointed space X the augmented algebra of
cochains on X denoted by C*X for which

H*(C*X)=H"(X)

is the cohomology algebra of X. Hence we get by (6.6)(6) the class

(X)) € HH"(H*(X), H*(X)[1]) (6.7)
which is an invariant of the homotopy type of X in the sense that a pointed map
f: X — Y satisfies

(frex) = ().t y)

in HH3(H*(Y), H*(X)[1]) where f* : H*(Y) — H*(X) yields the structure of an
H*(Y)-bimodule on H*(X)[1].

We now compare the class (6.7) with the secondary cohomology algebra H*(X)
in (5.8).

Proposition 6.8. By forgetting structure we obtain from the secondary cohomology
H*(X) a secondary algebra over k denoted by H*(X)y. Then the classes
C*X) = (H* (X)) € HH(H*(X), H*(X)[1])
given by (6.5) and (6.7) coincide.
Proof. Using (3.3) and the definition of Y3 in Baues [B] we see that (H(X,Y3)) =

C*X) for a simplicial set X. Here we use the universal property of Y5 which says
that a simplicial map X — Y3 can be identified with a cocycle in C* X. ([l

7. T1—crossed modules for commutative graded algebras

directly be obtained by crossed n—fold extensions of H by M. A crossed module
which by (6.2) is the same as a secondary algebra over k was the crucial ingre-
dient of a crossed extension. We now simply replace the “secondary algebra over
k” in a crossed extension by a “r—commutative secondary algebra” and we then
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obtain T7—crossed extensions which represent elements in the symmetric cohomology
SH*(H, M).

We have seen in §7 that a secondary algebra over the trivial coefficient algebra k is
the same as a crossed module. We here show that in a similar way a 7—commutative
secondary algebra over R, is the same as a 7—crossed module. Weak equivalence
classes of 7—crossed modules yield an abelian group generalizing the Hochschild
cohomology in (6.4).

Let R, be a coefficient algebra with interchange elements 7,,, € Ry,in, for
example let R, = k[o,] be the symmetric coefficient algebra. An R.—module V is a
sequence of (left) R,—modules V™",n > 0. A map or an R.—linear map f:V — W
between R,—modules is given by a sequence of R,—linear maps f™ : V" — W™ for
n > 0. The field k (concentrated in degree 0) is an R,—module. Moreover using
the augmentation € of R,,n > 0, we see that each graded k—vector space M is an
R,—module which we call an e-module. For x € M™ we write |z| = m where |z| is
the degree of x.

Given R,—modules Vi,..., Vi we define the R,—tensor product V1®...RQVy by

(V1®. i @Vk)n = @ R, ®R,L1®...®R

ni+...+ng=n

Vit®...eV™* (7.1)

n

where we use the algebra map ©: R, ® ...® R,, — R, given by the structure of
the coefficient algebra R, in (5.1). One readily checks associativity

V11®...0V15)®... (Vs 1®...0Vek,) =V11®...0V1,®...0Vs18...®V,k,
(1)

Compare Stover [St] 2.9. Moreover the interchange element 7 in R, yields the
isomorphism

T: VW =WV (2)
which carries v ® w to T, ,w ® v where
Twow = Tm,n S Rm+n

for w € W™, v € V™. Of course we have kQV =V = VQk.

Definition 7.2. An algebra A over R, is given by an R,-linear map u : AQA —
A, p(a ®b) = a- b, which is associative in the sense that the diagram

ATATA 2 AmA
u®1l lu
ATA—E s 4

commutes. Moreover A is T—commutative if

ATA > A

],

ARA——A
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commutes. One readily checks that this coincides with the notation in (5.2) and

(5.3). We say that A is a k—algebra over R, if algebra maps k —— A —— k are
given with i = 1. Such a k-algebra A over R, is completely determined by the
algebra A over R, with A =kernel(e : A — k) and A=k & A.

For an R.-module V let V() be the underlying graded k—vectorspace. If A is a
k-algebra over R, then A is a k-algebra (over k) in the sense of §7 above.

Definition 7.3. Given an algebra A over R, we say that an R,—module V is an
A-module if a map m : AQV — V is given such that

ABABY —= ATV
l@ll lu
ARV ———V
commutes. Hence for a -z = p(a ® ) with a € A,z € V we have (aa) - (fz) =
(a@B)(a-z)and (a-b) -z =a-(b-z). If Aisa k-algebra over R, we also assume

that 1-z = x for 1 € k,x € V. Then the A-module V is an A-module and vice
versa. In particular the algebra A is also an A-module in the obvious way.

Lemma 7.4. Let A be a T—commutative k—algebra over R, and let V be an A-
module. Then V{ is a A)~bimodule by defining

a-x-b=a-Tp.(b-x)
fora,be A,z e V.
Proof. We write 1, = 1,, € R, for x € V™. Now we have for a,b € A
(@-2) b=Tpazb  (a - 2) =Tpau(b-a) z
= Thaz(Tapa-b) @

=Thaz(Tap ©1g)(a-b-x)
a-(x-b)=a -Tpab-z)=(1,O0m)(a-b-x)

Here we have 7y 4.4(Ta,p @ 1) = 14 @ Tp 5 by one of the equations in (6.4). g

If Aand V in (7.4) are e-modules then (7.4) corresponds to the following special
case.

Lemma 7.5. Let H be a commutative graded k—algebra and let M be an H-module.
Then M is an H-bimodule by defining

a-x-b= a.(,l)\bllm\b.z
fora,be H and x € M.
For an R,—module V' we obtain as in (1.6) the R,—linear map
I(R.) Or, V =V

Here the left hand side is the R,—module given in degree n by I(R,) ®g, V" ond
W carries a ® x to a - x.



Homology, Homotopy and Applications, vol. 4(2), 2002 55
Definition 7.6. Let A be a 7—commutative k—algebra over R,. A 7—crossed module
0 is given by a commutative diagram of R,—linear maps

I(R) Or V2% [(R)op A

i 2 l

|4 A

with the following properties (1) and (2). The R,~module V is an A-module and
0 is an A-module morphism, that is d(a - ) = a - (0z) for a € A,z € V. Moreover
€0 =0 and for z,y € V

(0x) - y = Toy,«(Oy) - x. (7.7)
The R.-linear map [ satisfies for 8 € I(R,) and a,b € A the equation
a-T(Bb)=T1oA®a-b) (2)

Equation (2) shows that I is a map of left A-modules. Moreover (1) and (2) imply
that for a € I(R,) the following equation holds.

Fa®a)-b=T(a®1®a-b) (3)

Here the right hand action of b on # = ['(a ® a) € V is defined as in (7.4) by
x-b=T1,b-x. Using this notation (1) is equivalent to (0z) -y = z - (Jy), compare
(6.1).
Proof of (3). For z € I'(a ® a) we have |z| = |a| and hence Thx = Tb,a- Therefore
we get

Ta®a) -b=m.b-T'(a®a)

ZTb)xf(1®O[®b'CL)

Ta(lOa)®@b-a)
a® )71, ®b-a)
a®l)®@mab-a)

—~ o~

O

Lemma 7.8. A 7—crossed module O as in (7.6) yields for the underlying k—vector
spaces a crossed module in the sense of (6.1)
0 : Vi — A

where we use (7.4). Moreover mo(9) = H is a commutative graded k—algebra and
m1(0) is an H-module with the H-bimodule structure in (7.5).

The lemma is based on the crucial property of a 7—crossed module, namely that
mo(0) = cokernel(9) and 71 (9) = kernel(9) are only e-modules though V and A are
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R,—modules. A 7—crossed module yields the exact sequence
0—m(d) =V -2 4L (0 — 0 (7.9)

in which all maps are A-module morphisms. Here the A-module structures of m(9)
and 71 (0) are induced by the algebra map ¢. Moreover for the underlying k—vector
spaces this is by (7.8) a crossed extension as in (6.1), (6.3).

The next result generalizes lemma (6.2) on crossed modules.

Lemma 7.10. A T—commutative secondary algebra H* over the coefficient algebra
R, as defined in (5.5) is the same as a T—crossed module O in (7.6).

Proof. Given ‘H* we obtain
0:-H —mHyok=A

where A is a 7-commutative k—algebra by the multiplication p in (5.5)(1). Moreover
‘H} = V is an A-module and one now readily checks by (4.2) and (1.6) that 0 satisfies
the properties of a 7—crossed module. Conversely given (8,T) as in (7.6) we obtain
the secondary module H™ over R,, by the commutative diagram (see (1.6))

9 ~
I(R,) ®r, V" =% [(R,) ©p, A"

|

V n A"Tl

which we deduce from the diagram in (7.6). Moreover we define
p:H@H™ — HET
by the multiplication
A" @ A™ = Hy @ HE - AnEm = gt
of the algebra A over R, and by the map

(H*®@ H™),

(V@ Am @ A% V) imdy —m prem

n—+m
H

with p(zr ® a) =z -a and p(b®y) = b-y where - a = 7, 4a - . By (7.6)(1) this
map is trivial on im(ds). Now it is easy to show that the multiplication p on H*
is associative (compare the proof on (7.4)) and 7-commutative. Finally we have
to check that p on H* is compatible with the equation in (4.2). This follows from
(7.8)(2),(3) since for o/ = a+ay € I(R")®k=R"and 3 =3+ 0, € I[(R™)dk =
R™ we have

e ©f roy)=T(aofor-y)+ Al aclor y)+ L1 0z y)
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Here we have a ® 8= (¢ ® 1)(1 ® 8) and hence in I(R"™™) @ gntm V™ we have

a0fer-y=@ol)(lopf)ez-y
=a0le(1of)z- vy
=a®l®x- Oy
Therefore we get by (7.8)(2),(3)

Wl ©f @roy) =Taor) (By+By) + oz -T(Eoy)
= ul( ®z)@ fy + (e(a)z) @ T(F @ y))
Hence p is compatible with the equation in (4.2). O

We now use 7-crossed modules (or by (7.10) equivalently 7—commutative sec-
ondary algebras) for the following definition of symmetric cohomology which is a
symmetric analogue of Hochschild cohomology in (6.3).

Definition 7.11. Let R, be a coefficient algebra with interchange elements 7 for
example let R, = k[o,] be the symmetric coefficient algebra. Let H be a commuta-
tive graded k—algebra and let M be an H—module. A 7—crossed extension € of H
by M is an exact sequence of graded k—vector spaces

E:O—>M—>V1>AL>H—>O

Here 0 is a 7—crossed module as in (7.6). Moreover all maps are A-module mor-
phisms with the A—module structure induced by the algebra map q : A — H. A
weak equivalence between two such 7—crossed extensions is a commutative diagram

0—> M v A——>H—>0
I
0—>M—>W—>B—>H—>0

Here fy is a morphism of k-algebras over R, and f; is a fo—equivariant homo-
morphism such that (fo, f1) is compatible with I'. Let SH*(H, M) be the set of
weak equivalence classes of 7—crossed extensions of H by M. Below we show that
SH®(H, M) is a well defined set with the structure of a k—vector space.

homomorphism

At this moment we do not know a “cohomology theory” for commutative graded
algebras H which yields the cohomology SH*(H, M) above.

We have the canonical natural homomorphism

SH3(H, M) — HH3(H, M) (7.12)
which carries the weak equivalence class of the 7—crossed extension £ to the weak

equivalence class of the underlying crossed extension £ given by (7.8), (7.4) and
(7.5). We need the following “free” objects.

Definition 7.13. Let V be a graded k—vector space. Then the free R,—module
R, ®V generated by V is given by

(R, ®V)" =R, ® V"
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For an R,—module W we obtain the tensor algebra over R, by
(W) =P wen
n=0

where W& = k and W®" is the n—fold @ product W&...®@W defined in (7.1).
For the tensor algebra T'(V) over k we get

T(R,®V)=R,0T(V)

so that R, ® T'(V) is the free k—algebra over R, generated by V with the multipli-
cation

(a®z) (Boy)=a0fer-y
for a, 8 € R, and z,y € T(V). Let
K,CR.0T(V)=A

be the R,—submodule generated by elements 1 ®y -z — 7, , ® x -y for z,y € T(V).
Then K, generates the ideal A - K, - A and the R.—quotient module

A=A/A K, A
is the free T—commutative k—algebra over R..

Given a T—commutative k—algebra A over R, and a k-linear map d : V' — A with
ed = 0 we obtain the following push out diagram in the category of R,—modules

I(R) OV 2% [(R) o A
N
i@ll push \Li’ \\
R, OV

\\)

Here d” is defined by d”(a ® x) = « - d(x). The pair (u,d"”) induces the R,-linear
map d’ which thus determines the map of A-modules &’ and 0 in the following
commutative diagram

I(R*) OR. A$—A

]l

X (d) =———= ABY/U —2 > A
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with T' = i"i’ and T = pf = pi"i’. Here " is defined by i"(y) = 1 ®@ y and 9’ is
defined by 9'(a ® y) = a - d'(y). Let U be the A-submodule of AQY generated by
the elements

(@'%) -y = Tory,2('y) -,
a-T(Bab)—~T(1oA®a-b),

with z,y € AQY and a,b € A, 8 € I(R,). One readily checks that U is in the kernel
of & so that @ induces the A-module map 9 on the quotient X;(d) = AQY/U.
We claim that (0,T") is a well define 7—crossed module which is the free T—crossed
module with basis (V,d).

Finally we define for a commutative graded k—algebra the free H-module with
basis V by H® V.

Definition 7.14. Let H be a commutative graded k—algebra and consider a long
exact sequence

ROy —C 2N Lg%

Here A is a free T—commutative k—algebra over R, and (8,f) is a free T—crossed
module and C;,7 > 2, is a free H—module. All maps in the sequence are A—module
morphisms where C; and H are A—modules via the algebra map ¢. Then we call R
a free T—crossed resolution of H.

It is easy to see that free T—crossed resolutions exist. Moreover given a 7—crossed
extension £ as in (7.11) we can choose a commutative diagram (n > 2)

Cs 9 Cy Ch A H 0
L
E: 0 M 1% A H 0
so that one gets a weak equivalence
(f2)sR2 — &

where Rs is the 7—crossed extension
0—Cy/0C3—C; —A—H—0
given by R. This implies that SH*(H, M) is actually a set. In fact, the function
¥ : Homp (Cy/8Cs, M) — SH3(H, M) (7.15)

which carries fo : C3/0C5 — M to the weak equivalence class of (f2).Rg2 is sur-
jective. Using this surjection it is possible to define the k—vector space structure of
SH®(H, M).

Appendix: Eilenberg—MacLane spaces

Let k£ be a commutative ring, for example a field. For the definition of Z" =
K (k,n) in (2.5) we shall need the following categories and functors; compare Goerss—
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Jardine [GJ]. Let Set and Mod be the category of sets and k—modules respectively
and let ASet and AMod be the corresponding categories of simplicial objects in
Set and Mod respectively. We have functors

» _Sing (ASet)* ——— Top”*

Top

given by the singular set functor Sing and the realization functor | |. Moreover we
have

ASet —%— AMod —2— (ASet)*

where k carries the simplicial set X to the free k—module generated by X and where
® is the forgetful functor which carries the simplicial module A to the underlying
simplicial set. Moreover we need the Dold—Kan functors

Ch, —— AMod —Y— Ch,
where Ch, is the category of chain complexes in Mod concentrated in degree
> 0. Here N is the normalization functor which by the Dold—Kan theorem is an
equivalence of categories with inverse I'. For a pointed space V let
_ kSing(V)
~ kSing()
Hence K : Top®™ — Top™ carries a pointed space to a topological k—module. We
define the binatural map

& :K(V)x K(W)— KV AW) (*)

K(V) = |®S(V)| with S(V)

as follows. We have
Sing(V x W) = Sing(V') x Sing(W)
and this bijection induces a commutative diagram in AMod

RSing(V) ® RSing(W) —— RSing(V x W)

i i

S(V)®S(W) —2 = S(VAW)

The vertical arrows are induced by quotient maps. For k—modules A, B let ® :
Ax B — A®y B be the map in Set which carries (a, b) to the tensor product a ® b.
Of course this map ® is bilinear. Moreover for A, B in AMod the map ® induces
the map @ : (A x B) — ®(A ® B) in Set and the realization functor yields

|@]:|®A| x |®#B| = |®(A x B)| — |®(A ® B)|
Hence for A = S(V) and B = S(W) we get the composite

@S(V)| x [BS(W)] —Z |a(5(V) @ S()] —22 @SV A W)

and this is the map ® above. One readily checks that ® is bilinear with respect
to the topological k—module structure of K(V), K(W) and K(V A W) respectively.
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Moreover the following diagram commutes

®

K(V) x K(W) K(VAW) (*%)
Thxh Th
[SingV| x |SingW| == |Sing(V x W)| —— |Sing(V A W)|

Here the Hurewicz map h is the realization of the map in ASet
Sing(V) — ®kSing(V) — ®S(V)

which carries an element z in Sing(V') to the corresponding generator in k Sing(V').

Let S = S'A...AS?! be the n—fold smash product of the 1-sphere S'. Then the
symmetric group o, acts on S™ by permuting the factors S*. It is well known that
this action of o, on S™ induces the sign—action of o,, on the homology H,(S™) = k.
We define the Eilenberg-MacLane space Z™ by

kSing(S™)
kSing(x)

Since K is a functor we see that o, also acts on K (S™) via k-linear automorphisms.
We define the multiplication map fty, , by

7" = K(S") = ’@

piZMx Z0 = K(S™) x K(8") —2— K(S™ A S") = Zm+n

where S™ A 8™ = S™F" and where we use (*). Diagram (**) implies that p induces
the cup product in cohomology. The Eilenberg-MacLane spaces Z™ together with
the multiplication map p satisfy the axioms of Karoubi [Kal].
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