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ON THE FREYD CATEGORIES OF AN ADDITIVE CATEGORY
APOSTOLOS BELIGIANNIS

(communicated by Charles Weibel)

Abstract

To any additive category &, we associate in a functorial way two
additive categories A(C), B(€). The category A(C), resp. B(€), is the
reflection of € in the category of additive categories with cokernels,
resp. kernels, and cokernel, resp. kernel, preserving functors. Then the
iteration AB(C) is the reflection of € in the category of abelian cate-
gories and exact functors. We call A(€) and B(€) the Freyd categories
of € since the first systematic study of these categories was done by
Freyd in the mid-sixties. The purpose of the paper is to study further
the Freyd categories and to indicate their applications to the module
theory of an abelian or triangulated category.

1. Introduction

The notion of a contravariantly, resp. covariantly, finite subcategory of an additive cate-
gory, was introduced by Freyd [20] under the name ample, resp. coample, subcategory and
rediscovered later by Auslander and Smalp [9], see also [18]. Auslander and Smalg coined
the terminology contravariantly, resp. covariantly, finite, motivated by the fact that these cat-
egories admit certain finiteness conditions on their categories of functors. These notions play
an important role in relative homology and modern representation theory. Our main purpose
in this paper is to study certain factor categories of the category of morphisms of an additive
category, induced by nice contravariantly or covariantly finite subcategories, and to indicate
their applications to the module theory of an abelian or triangulated category.

Suppose throughout that € is an additive category and consider in the morphism category
€2 of €, the full subcategory X consisting of split monics and the full subcategory 9 of split
epics. The subcategory X, resp. ), is a primal example of a contravariantly, resp. covariantly,
finite subcategory in €2. We call the factor categories A(¢) = ¢2/9) and B(¢) = ¢%/X, the
Freyd categories of €. The category A(€) is obtained by killing the ideal of morphisms of €2
which factorize through split monics and the category B(€) is obtained by killing the ideal of
morphisms of €2 which factorize through split epics. These categories occur in the literature for
the first time in the work of Gabriel in the late fifties, see [23], [24]. Freyd used these categories
systematically in his study of the representation of an additive category, for instance the stable
homotopy category of finite CW-complexes, into an additive category with a more rich and
rigid structure, via nicely behaved embeddings, see [20], [21]. Since then the Freyd categories
have found important applications and they are omnipresent in representation theory, in stable
homotopy theory and homological algebra, see for instance [22], where the objects of a Freyd
category appear as the values of an L?—cohomology theory defined on Hilbert modules over
Von Neumann algebras.
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It is easy to see that B(€) is dual to A(€°P), so it is enough to study only A(€). The main
property of the Freyd category A(€) is deduced from the fact that A(€) is a special kind of a
right triangulated [10] or suspended [30] category: the triangulation of A(€) is induced by a
right homotopy pair (we refer to section 2 for definitions). For this reason we prove in section
2 a result which constructs in a universal way left, resp. right, triangulated categories from
given left, resp. right, homotopy pairs.

The paper roughly consists of two parts. In the first part (sections 2 to 6) we study the basic
properties of the Freyd categories and in the second part (sections 7, 8) we give applications
to module theory. More presicely in section 3 we obtain the Freyd categories as right or left
triangulated categories induced by suitable right or left homotopy pairs. The Freyd category
A(€) admits a nice description as the category mod—¢€ of contravariant finitely presented
additive functors from € to the category 2Ab of abelian groups and B(€) is equivalent to the
dual of the category €—mod of covariant finitely presented functors € — Ab. We prove that
A(€), resp. B(€), is the reflection of € in the category of additive categories with cokernels, resp.
kernels, and cokernel, resp. kernel, preserving functors. As a consequence the last categories
are tripleable over the category of additive categories.

By a result of Freyd [20] (which goes back to H. Cartan), the category A(€) is abelian iff €
is right coherent, that is any morphism in € admits a weak kernel. In section 4 we study other
homological consequences of the coherence of €, in particular we characterize when A(€) is a
module category. In section 5 using the universal properties of the Freyd categories A(€), B(€)
we construct a tensor product — ®¢ — : A(€) x B(€)°? — Ab which, in case € is skeletally
small, is the restriction of the usual tensor product between right and left €—modules. The
main result of this section is that for any coherent category € the abelian Freyd categories
A(€), B(€) have the same global dimension. In addition we prove that the classical formula of
Auslander [4] is valid in this setting.

In section 6 we construct in a simple way the free abelian category of an arbitrary category.
The free abelian category of the additive category € is the iterated Freyd category AB(C).
If € is small the first construction of the free abelian category is due to Freyd [20]. Later
Addelman [1] gave a more simple but still complicated construction. In case € is skeletally
small, an equivalent formulation of the fact that AB(€) is the free abelian category of €
was given independently by Krause [31]. We characterize the free abelian categories as the
Auslander categories, i.e. as the abelian categories H with enough projectives and injectives,
having global dimension gl.dimH < 2 and dominant dimension dom.dimH > 2. Hence we can
associate to any category its Auslander category. In this setting we generalize the well-known
correspondence between Auslander algebras and representation finite Artin algebras [3], to
abelian categories.

Section 7 is devoted to the study of modules over a skeletally small additive category
¢, using as main tools the concepts of contavariantly and covariantly finite subcategories
and the Freyd categories of €. We denote by Mod—¢€ the category of right €—modules with
objects the contravariant additive functors € — Ab. First we give necessary and sufficient
conditions for the full subcategories Flat(Mod—¢), resp. Proj(Mod—¢), of flat, resp. pro-
jective, modules to be covariantly, resp. reflective, finite subcategories and similarly for the
full subcategories FPInj(Mod—¢), resp. Inj(Mod—¢), of FP-injective, resp. injective, modules
to be contravariantly finite, resp. coreflective, subcategories of Mod—€. The main result of
this section characterizes when the categories Flat(Mod—¢€) and Proj(Mod—¢€) are abelian
(Grothendieck) categories, answering a question of Simson [43]. In particular we show that
the category Proj(Mod—¢€) is abelian iff the module category Mod—¢€ is a perfect Auslander
category. As a corollary we deduce that Mod—¢€ is pure semisimple [43] iff Proj(Mod—.A(<))
is an abelian category iff Mod—A(€) is an Auslander category over a left coherent category
iff Mod—A(€) is the Freyd category A(Mod—C¢). For any additive category €, we denote by
Ind(€), Pro(€), the associated categories of Ind-objects, Pro-objects [26], [45]. We give nec-
essary and sufficient conditions for the abelianness of Znd(€), Pro(¢), generalizing results of
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Stauffer [45]. If € is abelian we have as a corollary the classical result that the full subcategory
Lex(€°P 2b), resp. Rex(€°P Ab), of contravariant left, resp. right, exact functors, is a Giraud,
resp. co-Giraud, subcategory of Mod—¢€. Finally we prove that for a coherent category &, the
category Flat(Mod—¢) is abelian iff the category Flat(€—Mod) is abelian iff € is abelian. If in
addition any left and right flat €—module is projective then Mod—¢€ is Auslander iff €-Mod
is Auslander, hence in this case the Auslander condition is symmetric.

In section 8 we study weak abelian categories, a class of categories which contains the
triangulated categories. A weak abelian category, which can be thought of as an internal version
of a triangulated category, is a coherent category in which any morphism is a weak kernel and
a weak cokernel, see [20]. We characterize the weak abelian categories as the categories € for
which any left and right injective €—module is flat or equivalently as the full subcategories of
projective-injective objects of Frobenius abelian categories. Using this result we deduce that
the module category Mod—¢€ is Frobenius iff € is weak abelian and A(€) or B(€) is Noetherian.
In case € is a left, resp. right, triangulated category, the Freyd category A(C), resp. B(®), is
the free “homological” category of €. If € is triangulated or more generally weak abelian,
then € enjoys the nice property that its Freyd categories A(€) and B(€) are equivalent. The
main result of this section shows that if € is a weak abelian category such that its Auslander
category is Noetherian (Artinian), then the category of Ind-objects (Pro-objects) of the stable
category A(C) of the Freyd category A(€) modulo projectives or injectives, is a triangulated
category. This generalizes a recent result of Krause [33].

Some of the results of this paper are known in some version. We believe that the presen-
tation is new and more simple and conceptual. A fixed convention through the paper is that
the composition of morphisms in a given category is meant in the diagrammatic order: the
composition of f: A — B and g: B — C is denoted by f o g.

2. Homotopy Pairs and Triangulations

Throughout this section we fix a pair (€, X) consisting of an additive category € and a full
additive subcategory X C € of &, closed under direct summands and isomorphisms.

A morphism f : A — B in € is called an X—epic if the induced morphism €(X, f) :
¢(X,A) = ¢(X,B) in Ab is an epimorphism, VX € X. We denote by £ the full subcategory
of the morphism category €2, consisting of all ¥—epics. The subcategory ¥ is called con-
travariantly finite [9] iff VA € €, there exists a morphism x4 : X4 — A in €%, with X4 € X;
the morphism y 4 is called a right X— approximation of A. Dually we define X—monics, covari-
ant finiteness of X, and left X—approximations. The full subcategory of €2 consisting of all
X—monics is denoted by M*.

Definition 2.1. The pair (€, X) is called a left homotopy pair, if X is contravariantly finite
in ¢ and any X—epic has a kernel in €. The pair (&, X) is called a right homotopy pair if X is
covariantly finite in € and any X—monic has a cokernel in €. A left and right homotopy pairs
is called a homotopy pair.

If (¢, X) is a left homotopy pair, we denote by lex(X) the category of diagrams of the form

AL B C, where f € £¥ and g = ker(f). It is easy to see that lex(X) ~ £¥. Dually we
define the category rex(X) and the equivalence rex(%X) ~ M¥, if (¢, X) is right homotopy pair.
For any pair (¢, X) we consider the induced stable category €/X, which is the factor category
of € modulo the ideal of morphisms which factor through X. We denote by wx : € — €/X the
natural functor, and we set wx(A4) = A and wx(f) = f.

By [10] any left, resp. right, homotopy pair (¢, X) induces a left, resp. right, triangulated
structure on the stable category €/X. For the notion of a (left or right) triangulated category
we refer to [10], [30], [50]. We note only that a left, resp. right, triangulated category is a triple
(€,Q,A), resp. (¢,X,V) where € is an additive category, Q : € — €, resp. ¥ : € — €, is an



Homology, Homotopy and Applications, vol. 2, No. 11, 2000 150

additive functor and A, resp. V, is a class of diagrams in € of the form Q(C) - A - B —» C,
resp. A > B — C' — X(A), satisfying certain axioms (see [10], [30] for details). The diagrams
in A, resp. V, are called triangles. In case 2, resp. ¥, is an equivalence, (€,Q2, A), resp. (€, X, V)
is called a triangulated category [50], [51].

The aim of this section is to complete the main result of [10], by characterizing the left
triangulated category induced from a left homotopy pair, by a universal property. To this end
we need some definitions. Consider a pair (€, X) with X contravariantly finite in €. We denote
by e; : lex(X) — €, i = 1,2,3 the obvious functors e;(As — Ay — A1) = A;. A 9—functor
(F,0) : € = (9,0,A) to a left triangulated category ©, is a pair consisting of a functor
F: ¢ — D and a functor O : lex(X) — D2, where O(F) = 95 € D[QF (e1(E)), F(e3(E))],

VE € lex(X), such that: if £ = A3 & A, i> A € |ex(3e) then:

Let (€, %) be a left homotopy pair. Then the loop functor Qx : €/X — €/X is defined as
follows: if A € €, then consider the object K 4 LENS P IC lex(X), and set Qx(A) = K 4.
If f: A — Bis amorphism in €, then Qx(f) = k;, where k; : K4 — Kp is the unique
morphism such that: k4 oz = kf o kg, where 5 : X4 — Xp is an arbitrary morphism with
zgoxB = X4 © f. The morphism z; exists, since xp is a right X—approximation of B. It is
shown in [10] that Qx is a well defined additive functor.

Note that by [11], if X is in addition covariantly finite and any left X—approximation has
a cokernel in €, then the loop functor Qx admits a left adjoint, the suspension functor Xx. In
particular if (€, X) is a homotopy pair, then (Xx, %) is an adjoint pair in €/%.

Suppose now E = A % B ENYG) E lex(%); then the characteristic class ch(FE) of E is defined
as follows; consider the object K 4 LZN X4 X A€ lex(X). Since X4 € X and f € £%, there
exists § : X4 — AB, with: do f = x 4. Hence there exists a unique morphism v : K4 — C, with
vog =kaod. We deﬁne ch(E) = 7; it is shown in [10] that ch(E) : Qx(A) — C is independent
of the choice of 6. Finally we define Ay to be the class of diagrams Qx(C') - A' - B' — ('
in ¢/X which are isomorphic to diagrams of the form

f
Qx(0) 22 4 4 B 5 ¢
for some object E=A % B Lcoe lex(%).

Theorem 2.2. Let (€, X) be a left homotopy pair. Then there exists a left triangulated structu—
re (C/%,0x,Ax) on the stable category €/ %, and a 9—functor (wx,0) : € = (€/X,Qx, Ax),
satisfying the following universal property:
(t) If (F,®) : € = D is a 9—functor to a left triangulated category (D,Q, A) such that
F(%X) = 0, then there exists a unique ezact functor of left triangulated categories F" :
¢/X = D, such that: F'wx = F.

Proof. For the first part see [10]. Define O : lex(X) — (¢/%)? as follows: if E = A & B ERN
C € lex(X), then O(E) = ch(E), and if (a,b,¢) : By — E, is a morphism in lex(X), then
O(a,b,c) = (Qx(b),a) : ch(E,) — ch(E»):

Qx(b
2:(C)) 225 0r(Cy)
By Ch(Ez)J{
A, _* . A

It is easy to see that the above diagram commutes and the pair (wx,©) is a well defined
Y—functor. Consider now a left triangulated category (9,2, A), and let (F, ®) : € — (D,0Q,A)
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be a ¥—functor such that F(X) = 0. The last condition implies that there exists a unique
functor F' : €/X — @, such that: F'owy = F. We have to show that F"' is an exact functor
between left triangulated categories. For any A € €, let B4 = K4 LEN X4 X% Abein lex(%).

Om,

Since (F,®) is a 9—functor and F(X) = 0, the diagram 0 — TF(A) — F(K4) - 0is a
triangle in A, where ¢, = ®(E4). Since F'wy = F and wx (K 4) = Qx(A), it follows directly
that ¢p, is invertible and ¢p : QF' — F'Qy is a natural isomorphism. It remains to show
that F' maps Ax to A. Let Qx(C) <h(B),
the object E=A % B ENYoR= lex(X). Then we have a triangle:

F(g)

f
(4) EN B = C be a triangle in Ay induced from

F(f)

QF(C) 25 F'(4) —= F'(B) —= F'(C) € A

Consider the object Ec = K¢ LN Xo 2% 0 e lex(X) induced from the right ¥ —approxima—
tion of C'. Then we have a morphism Ex — E in lex(X):

kc

Ko sy Xo —< 5 ¢

dl 5| 1|
/R Ry S Ny

where v = ch(E). Since (F, ®) is a ¥—functor, the above diagram implies that ¢g, o F'(ch(E))
F'(H
— F

F(g)

= ¢p. Since ¢p, is invertible, the diagram TF'(C) LN F'(A) — F'(B) (C) is
F F'(f

isomorphic to the triangle QF*(C) dm—o) F'(4) ﬂ> F'(B) L} F'(C) in A, thus it is a

triangle. Hence F" is exact. The uniqueness of F' is trivial. |

Note that Theorem 2.2 and its dual, covers most of the known cases for which a stable
category is left or right triangulated. If (€, X), (D, %)) are left homotopy pairs, then F': € — D
is a homotopy functor, if F(lex(X)) C lex() and F(X) C Q). Trivially we have the following.

Corollary 2.3. If F : (€,X) — (9D,2) is a homotopy functor between left homotopy pairs,
then the induced functor F : (€/%,Qx, Ax) = (D/9,Qy, Ay) is ezact.

We refer to [13] for an interpretation of the stable category €/X as the homotopy category
of a co-Waldhausen, resp. Quillen closed model, category structure on €, if (€, X) is a left
homotopy pair, resp. homotopy pair.

3. The Freyd Categories

Throughout this section we fix an additive category € with split idempotents.

In the morphism category €2, we denote an object f : A — B by (4, f, B), and a morphism
by (a,b) : (A, f,B) = (C,g,D),ie.a: A — C,b: B — D withaog = fob. In €2 we
consider the full subcategories, X consisting of all split monics, and 2 consisting of all split
epics. Now X is contravariantly finite in €2 with right ¥—approximation of f : A — B the
morphism (14,%(f,18)) : (4, (14,0), A® B) — (A, f, B). Similarly 9) is covariantly finite. The
morphism (a,b) : (4, f,B) — (C, g, D) is X—epic iff a, b are split epics, and is §)—monic iff a, b
are split monics. Since in € idempotents split, split epics have kernels and split monics have
cokernels, and the same is true in 2. Hence in ¢2? any X—epic has a kernel and any §)—monic
has a cokernel. Thus (€2, X) is a left homotopy pair and (€2,9)) is a right homotopy pair. By
Theorem 2.2 the stable category €2 /X is left triangulated, and the stable category €2/9) is right
triangulated. By construction the loop, resp. suspension, functor in €2/X, resp. in €2/9), is
zero. For example the kernel of the right X —approximation (14, (f,15)) : (4, (14,0), A®B) —
(A, f, B) is the object (0,0, 4) € X.
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Definition 3.1. The Freyd categories of € are the stable categories
A(@) :=¢?/9, B(Q):=c¢?/X.

We denote by {4, f, B} the object (A, f, B) € €2, when considered as an object in A(€), and
by [A, f, B] when considered as an object in B(€). Similarly we denote by {a, b} the morphism
(@, b) when considered as a morphism in A(€), and by [a, b] when considered as a morphism in
B(€). It is easy to see that if (a,b) : (4, f, B) = (C,g, D) is a morphism in €2, then {a,b} =0
in A(C) iff 3h : B — C with hog = b, and [a,b] = 0 in B(€) iff 3h : B — C with foh = a.
In particular {4, f, B} = 0 iff f is split epic, and [A, f, B] = 0 iff f is split monic. Hence
A(€),B(€) are the homotopy categories introduced by Freyd in [20]. The category € is fully
imbedded in its Freyd categories A(C€), B(€) by the functors:

Pe:C— A(C), Q¢:¢C — B(Q)

defined as: P¢(A4) = {0,0, A}, Pe(a) = {0,a} and Qe(A4) =[A4,0,0], Qe(a) = [a,0].

If there is no confusion we write P, Q for P¢, Qe. Let Idem be the category of additive
categories with split idempotents with morphisms (equivalence classes of) additive functors.
We consider in Idem the subcategories Coker, resp. Ker, of additive categories with coker-
nels, resp. kernels, with morphisms (equivalence classes of) cokernel, resp. kernel, preserving
functors.

Corollary 3.2. A(C), resp. B(€), is the reflection of € in Coker, resp. Ker.

Proof. Since A(C) is a right triangulated category with zero suspension functor, A(€) is a
category with cokernels. Let F': € — ® be a functor to a category with cokernels. © can be
considered as a right triangulated category with zero suspension functor. Extend F' to a functor
F° : €2 — D by F°(A, f,B) = Coker(f). Obviously F°(9) = 0. By the dual of Theorem
2.2, there exists a unique exact functor F* : A(¢) — ® of right triangulated categories, with
F’wQ = F°. Since exact functors between right triangulated categories with zero suspension
functors are simply cokernel preserving functors, and since trivially F'P = F, we see that the
functor P : € — A(C) is the reflection of € in Coker. Similarly for B(¢). O

Thus we can consider the functors A : Idem — Coker and B : Idem — Ker, defined on
morphisms by A(F){a,b} = {Fa, Fb}, B(F)[a,b] = [Fa, Fb], for an additive functor F' : € —
®. A is the left adjoint of the inclusion 7 : Coker — Idem, and B is the left adjoint of the
inclusion J : Ker — Idem.

For any morphism f : A — B in € we have the exact sequences:

p4) 2D ppy L22h 14 7 BY 0 (3.1)
0— [4, f,B] 2% q(a) 2, q(B). (3.2)

Indeed {0,1p} : P(B) — {A, f,B} is always epic since if {0,1p} o {a,b} = 0, where
{a,b} : {4, f,B} = {C,g,D}, then {a,b} = 0 since b factors through g. Now obviously
P(f)o{0,15} =0, and if P(f) 0 {0,b} =0 for {0,b} : P(B) — {C, g, D}, then fob=aog for
a morphism a : A — C. Then {a,b} : {4, f, B} — {C,g,D} satisfies {0, 15} o {a,b} = {0, b}.
Hence {0,1p} = cokerP(f). Similarly for B(Z).

Lemma 3.3. The functor Pe : € — A(€), resp. Qe : € — B(€), preserves kernels, resp.
cokernels, and has a left, resp. right, adjoint ®¢, resp. Ve, iff € has cokernels, resp. kernels.

Proof. Let g: C — A be a kernel of f: A — B, and let {0,b} : {X,h,Y} — P(A) be such
that {0,b} o P(f) = 0. Then bo f =0 and hob = 0. Hence b = a o g for a unique morphism
a:Y = C,and hoaog =0 = hoa =0, because g is monic. Then {0,a}: {X,h, Y} = P(C)
is a morphism with {0,a} o P(g) = {0,b}, and is unique with this property, since if {0, c} is
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another such morphism, then {0,ao0g —cog} : {X,h,Y} — P(A) is zero = aog—cog
factors through 0 — A, and this implies that a = ¢, since g is monic. So P(g) = kerP(f). If
¢ has cokernels, then defining ®{A, f, B} = Coker(f), we see that (®,P) is an adjoint pair.
Conversely if ® exists, then since A(€) has and ® preserves cokernels, applying ® to the exact
sequence (1) and noting that ®P = Ide, since P is fully faithful, we have that the cokernel of
f:A— Bis ®{A, f, B}. Dually for B(¢). O

Theorem 3.4. (1) Consider the triple T generated by the adjoint pair (A,Z), where T :
Coker — Idem is the inclusion. Then: (i) (€, F) is a T—algebra iff € has cokernels and
F=9&; (ii) R: (¢, F) = (9,G) is a morphism of T—algebras iff R preserves cokernels. The
inclusion T is tripleable.

(2) Consider the triple T' generated by the adjoint pair (B, J), where J : Ker — Idem is
the inclusion. Then: (1) (€, F) is a T'—algebra iff € has kernels and F = ¥; (ii) S : (¢, F) —
(D,QG) is a morphism of T'—algebras iff S preserves kernels. The inclusion J is tripleable.

Proof. We prove the case of B(€). We denote by p = B(B(€)) — B(€), ¢ : Ididem —
B the multiplication and the unit respectively, of the triple generated by the adjoint pair
(B,J); p is given by pe = JV¥p(e), where Wy is the right adjoint of the full imbed-
ding Qpe) : B(€) — B(B(€)), which exists since B(€) has kernels. The unit § is given
by § = Qe. Suppose first that € has kernels. Then ¢ exists and ¥eQe = Ide. It suf-
fices to show that WeB(¥¢) = Vepe = Pe¥pe). But this follows directly from the def-
initions and the fact that Ve preserves kernels by construction. Conversely suppose that
(¢,G) is an algebra for the triple considered. By Lemma 3.3 it suffices to show that G is
a right adjoint of Qe. Choose an arbitrary [A, f, B] € B(€), and apply G to the exact se-

quence (3.2). The complex G[A, f, B] Glall, GQe(4) GQcl), G Q¢ (B) induces a morphism

[G[14,0],0] : Qe(G[A, f,B]) = [Qe(A), Qe(f), Qe(B)] in B(C). Since (€, G) is an algebra,
we have: GQe¢ = Ide. Thus we have a morphism [G[14,0],0] : Qe(G[A, f,B]) = [A4, f,B] in
B(€). We claim that [G[14,0],0] is the component of the counit of an adjoint pair (Q¢, G),
with unit the identification Ide = GQe. This is easy and is left to the reader.

Suppose now that S : (€, F) — (®,G) is a morphism of algebras. Then we have SF =

GB(S), and by part (i) we have F = U¢, G = Up. Let 0 - K % AL Bbea sequence with

g = ker(f). By construction we have an exact sequence 0 — B(S)[A4, f, B] = Q2 S(A) Qo5U),

Qo S(B) in ©. Applying the kernel preserving functor ¥ to the sequence above we have an
exact sequence 0 — UoB(S)[A4, f,B] - S(4A) — S(B) in ®. Since ¥5B(S) = S¥¢, and
UelA, f,B] = Ker(f), we have the exact sequence 0 — S(K) — S(A) — S(B) in ®. This
proves that S preserves kernels. Conversely if S : € — ® is preserves kernels it suffices to prove
that SUe = U5 B(S). This follows trivially from the construction of the functors ¥y, ¥, B(.5),
and the kernel preserving property of S. Obviously (i) and (ii) imply that the Eilenberg-Moore
comparison functor is an equivalence, thus 7 is tripleable. O

Remark 3.5. We use throughout additive categories with split idempotents. For the purpose
of this paper this is not very essential. We can assume that € is an arbitrary category or a
preadditive category or an additive category. Indeed if € is an arbitrary category, then we
can consider the free preadditive category Z (<) over €, then the free additive category &Z (<)
over Z(€), and finally the idempotent completion | @ Z(€) of @Z(€). Then we can apply the
constructions A, B to | & Z(€).

If an additive category © has enough projectives, resp. injectives, we denote by D =
D /Proj(D), resp. D = D/Inj(D), the stable category of ©® modulo projectives, resp. injec-
tives. We recall that the additive category € is called regular (in the sense of von Neumann) if

for any morphism f: A — B in € there exists a morphism g : B — A such that: fogo f = f.
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Proposition 3.6. (1) The category A(Z), resp. B(C), has enough projectives, resp. injectives,
and the functor P, resp. Q, induces an equivalence € = Proj(A(€)), resp. € =~ Inj(B(€)). €
is reqular iff P is an equivalence iff Q is an equivalence. If €, are two categories (with split
idempotents), then: € 8 ® & A(C) » A(D) & B(¢) =~ B(D).

(2) There are equivalences:

A(CP) x B(€)°P, B(€?) ~ A(€)? and Tr: A(¢) = B(Q).

Proof. (1) It is easy to see that P(A) is a projective object and {0,1p5} : P(B) — {4, f, B} is
epic. If {4, f, B} € Proj(A(€)), there exists {0,a} : {4, f, B} - P(B) with {0,a} 0 {0,15} =
114,7,By- Trivially this is equivalent to the existence of a morphism b : B — A with f = fobof.
Splitting the idempotent 1g — bo f as k ol through an object X, it is easy to see that
{0,k}: {4, f,B} - P(X) is an isomorphism. The remaining assertions are left to the reader.

(2) Defining D{A°P, f°r, B°?} = [B, f, A] and D{a®?,b°?} = [b,a], we obtain a well defined
functor D : A(€°P) — B(€)° which obviously is an equivalence. Now define Tr : A(€) — B(¢)

by Tr{A, f,B} = [A, f, B] and Tr{a, b} = [a, b]. The functor Tr is well defined. For if {a, b} = 0,
then {a,b} factors through {0,1p} : P(D) — {C,g,D}. Hence {a,b} = {0,m} o {0,1p} =
{a,m—-0b}=0=3¢:B - C withm—b=_¢og,and fom = 0. Then [a,b] = 0. Indeed since
(a—fof)og=aog—folog=aog— fom— fob=0, it follows that [a— fo&] : Q(A) — [C, g, D]
is a morphism in B(€). Then [a,b] — [14,0]0[a — fo&] = [f o &,b] = 0. Hence [a, b] factors
through Q(A), and this means [a,b] = 0. By construction Tr is full and surjective on objects.
The opposite direction of the proof that Tr is well-defined shows that Tr is faithful, hence an

equivalence. O

Lemma 3.7. Let © be a category with cokernels (kernels), and F' : € — ® an be additive
functor. Assume ® is a full subcategory closed under cokernels (kernels) of an abelian category
£, such that any object in the image of F is a projective (injective) object of £. Let F' :
A(C) = D (F* : B(€) — D) be the unique cokernel (kernel) preserving extension of F. Then
F' (F*) is an equivalence iff F is fully faithful and any object of ® is finitely ImF-presented
(ImF'-copresented).

Proof. If F' is an equivalence, then F is fully faithful as the composition of fully faithful
functors P, F', and by construction any object of ® appears as a cokernel of a morphism
F(A) — F(B). Conversely it suffices to show that F' is fully faithful. Let {a,b} : {4, f, B} —
{C,g,D} be a morphism in A(€), with F'{a,b} = 0. By construction F'{a,b} is the unique
morphism in ® with the property: ¢y o F'{a,b} = Fbo cp,, where ¢, = coker(a). Then
Fbocpy =0, hence Fb = koim(Fg) in €. Since F(B) is a projective object of &, there exists
l: F(B) = F(C) with l o coim(Fg) = k. Since F is full, | = Fh for some h : B — C. Then
Fho Fg = Fb, and since F is faithful, h o g = b. This means {a,b} = 0 and F" is faithful. A
similar argument shows that F" is full, using that F is full. O

Let (€,X) be a left (right) homotopy pair. In the additive category lex(X), resp. rex(X), we

consider the full subcategory lexo (%), rexo(X), consisting of all diagrams A % B ERN C, where
f, resp. g, is split epic, resp. split monic. We denote by lex(X), rex(X) the induced stable
categories. Let £% be the full subcategory of A(€) with objects the X—epics and M* be the
full subcategory of B(€) with objects the X —monics.

Proposition 3.8. There are equivalences:
E% ~ A@Q/2) M lex(X), M ~ B(€/X) ~ rex(X).
Proof. Considering the restriction of the functor A(w) : A(€) = A(C/%) to £F, where w :

¢ — €/X% is the projection functor, we obtain a functor F : £¥ — A(¢/X). If {A4, f,B} €

A(C/%), then consider the object {A ® Xp,!(f,x5), B} € £F, where x5 : Xp — B is a right
X—approximation of B. Then trivially F{A ® Xg,!(f,xB), B} = {4, f,B} and F is dense.
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Let {a,b}: {A, f,B} - {C,g,D} be a morphism in &£ with F{a,b} = 0. Then there exists a
morphism w : B — C with wo g = b. This means that w o g — b factors through the morphism
XD as wog—b = soxp. Since g is X—epic, we have that yp = tog for a morphism ¢t : Xp — D.
Then wog—b=sotog; hence b = (w— sot)og and this means that {a,b} = 0. We conclude
that F is faithful. Finally if {a,b} : {4, f,B} — {C, g, D} is a morphism in A(€/X), then the
morphism f o b— a o g factors through xp as fob—aog=zo0xp. Let yp =t o g with ¢ as
above. Then (a+z0t)og=aog+zo0tog=aog+zoxp =aog+ fob—aog= fob.
This means that {a 4+ z o t,b} : {A, f, B} = {C, g, D} is a morphism in £ with the property
F{a+zot,b} ={a+zot,b} = {a,b}. Hence F is full. We conclude that F' is an equivalence
of categories. Obviously the equivalence £¥ & lex(¥) induces an equivalence £* & lex(¥). The
second part follows by duality. [l

We recall that a functor F' : €°P — b is called finitely presented if there exists an exact
sequence €(—, A) = €(—,B) — F — 0. We denote the category of finitely presented functors
by mod—¢€. If € is skeletally small, let Mod—€ be the category of contravariant additive
functors from € to the category 2Ub of abelian groups and let Lex(€%P 2b), resp. Rex(€°P, 2Ab),
be the full subcategories of kernel, resp. cokernel, preserving functors. The next result follows
from Corollary 3.2 and Lemma 3.7.

Corollary 3.9. (i) The extension Y' : A(€) — Mod—€ of the Yoneda embedding Y : € —
Mod—¢ induces an equivalence A(€) =~ mod—C and further B(€)°? ~ €—mod. In particular
A(€), B(€) are exact categories in the sense of Quillen.

(ii) There are equivalences:

¢—Mod = Rex[A(€), Ab] = Lex[B(<), Ab],
Mod—¢€ ~ Lex[A(€)°, Ab] ~ Rex[B(€)°”, Ab].

If A is an associative ring, we denote by Pa the category of finitely generated projec-
tive right modules. By Corollary 3.9, A(Pa) =~ mod—A is the category of finitely presented
right A—modules and, using the well known duality Paer = (Py)°%, it follows that B(Py) ~
B((Pao»)°?) ~ A(Pper)? = (A—mod)°P. In this case the equivalence Tr of Proposition 3.6
is the Auslander-Bridger transpose duality functor between the stable categories mod—A,
A—mod modulo projectives [5].

For an abelian category € we denote by Sex(€) the stable category of the category Sex of
short exact sequences, modulo the split short exact sequences. The following is a consequence
of Lemma 3.7 and Proposition 3.8.

Corollary 3.10. If € is an abelian category with enough projectives, resp. injectives, then
there are equivalences:

¢~ A(Proj(¢)) and A(C/Proj(¢)) = Sex(¢)
resp. €= B(Inj(€)) and B(€/Inj(€)) ~ Sex(T).

4. Coherence

An additive category € is called right (left) coherent iff € has weak kernels (weak cok-
ernels), and is called coherent if € is left and right coherent. We recall that a weak kernel
of a morphism f: A — B in € is a morphism g : K — A with go f = 0, such that for any
morphism h : X — A with ho f =0, there exists ¢t : X — K with t o g = h. Weak cokernels
are defined as weak kernels in €°P.

Definition 4.1. A pair (¢,D) of additive categories is called a Morita pair if there exists an
equivalence A(C) =~ B(D). If (¢, D) is a Morita pair then €, resp. D, is called a right Morita,
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resp. left Morita category. An additive category € is called a dualizing category if the pair
(¢, €) is Morita , i.e. if € has equivalent Freyd categories.

Observe that by Proposition 3.6 the categories ocuuring in a Morita pair are uniquely
determined. We note that the pair (€,®) is Morita iff the pair (9°7,€°P) is Morita. Indeed
this follows from the dualities B(€°P) ~ A(€)P, A(D°PF) =~ B(D)°P.

Example 4.2. Let A, T be associative rings and Py, Pr be the categories of finitely gener-
ated projective right modules over A,T". Since A(Py) &~ mod—A, and B(Pr) = B((rP)?) ~
A(rP)°P = (I'-mod)°?, it follows that the pair (Pa,Pr) is Morita iff there exists a duality
mod—A — I'—mod. We recall that a ring A is called a right Morita ring if A is right Noetherian
and there exists a finitely generated injective cogenerator in Mod—A. It follows directly that
A is right Morita iff A is right Noetherian and P, is a right Morita category. The category Pr
is dualizing iff there exists a duality '—mod — mod—T". Hence if A is a Quasi-Frobenius ring,
QF-ring for short, or an Artin algebra, then the category P, is dualizing.

Example 4.3. If H is an abelian category with enough projective and injective objects,
then the pair (Proj(#),Inj(#)) is Morita. This follows from the equivalences A(Proj(H)) =~
H ~ B(Inj(#)). We recall that H is called Frobenius if Proj(#) = Inj(#H). It follows that the
category of projective (= injective) objects in a Frobenius abelian category # is dualizing. So
for any QF-ring A, the category Proj(Mod—A) of all projective right A—modules is dualizing.

Example 4.4. If € is a dualizing R—variety in the sense of [6], then it is easy to see that
¢ is a dualizing category. Note that important examples of dualizing R—varieties are the
categories of finitely generated projective right modules and the category of finitely generated
right modules over an Artin algebra.

Proposition 4.5. (1) The category A(€) is abelian iff € is right coherent. The category
B(€) is abelian iff € is left coherent.

(2) An additive category € is right, resp. left, Morita iff € is right, resp. left, coherent and
A(C), resp. B(€), has enough injectives, resp. projectives.

(3) Suppose that A(C) is abelian. Then gl.dimA(C) = 0 iff € is semisimple abelian, in which
case € =~ A(C). The same is true for B(Z).

(4) If € has kernels, resp. cokernels, then: gl.dimA(€) = 1, resp. gl.dimB(€) = 1, iff € is
not semisimple abelian and for any morphism f : A — B in €, ker(f), resp. coker(f),
1s split monic, resp. epic.

(5) If € is abelian non-semisimple, then: gl.dimA(€) = gl.dimB(€) = 2.

(6) The category € has kernels, resp. cokernels, iff the category A(C), resp. B(€) is abelian
and gl.dim A(¢) < 2, resp. gl.dimB(¢) < 2.

Proof. (1), (2) For a proof of (1) we refer to [20]. If € is right coherent and A(€) has injectives
then by (1), A(€) is abelian and if D is the full subcategory of injectives, then by Corollary
3.10 we have A(€) ~ B(®). Conversely if € is right Morita and A(€) ~ B(D), then since B(D)
has kernels and injectives the same is true for A(€). Then € is right coherent, since trivially
A(€) has kernels if and only if € has weak kernels. The parenthetical case is dual.

(3) If gl.dimA(€) = 0, then any object in A(€) is projective, so by Proposition 3.6, P :
¢ — A(C) is an equivalence. If € is semisimple abelian, then V{A, f, B} € A(€), choose
a:B — Im(f), b: Im(f) = A, with im(f) o a = 1py(s), b0 coim(f) = lppy(s), and consider
the morphism g =aob: B — A. Then f=fogo f, and {0,1p —go f}:{A, f,B} - P(B)
is a morphism in A(€) with {0,1p —go f}o{0,1} = 114 ¢ 5}- Hence {A, f, B} is projective,
and gl.dimA(¢) = 0. The last assertion follows from Proposition 3.6(1).
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(4) If € has kernels then A(€) is abelian by (1). Suppose that gl.dimA(¢) = 1, and let
0#{A,f,B} € A(€). If g : K — A is the kernel of f, since P preserves kernels, the following
is a projective resolution of {4, f, B}:

0 — P(K) 2 pay) 29 pep) 12220 c4 £ BY 0 (4.1)
Since gl.dimA(€) = 1, the first syzygy of {4, f, B} which as easily seen is {K, g, A}, is pro-
jective. Hence 3h : A — K with g = go h o g. Since g is monic, 1x = g o h, and g is split
monic. Conversely if V{4, f,B} € A(€), g = ker(f) is split monic, then 3h : A — K with
g = gohog. This implies that {K, g, A} is projective. Hence p.d{A4, f, B} < 1, and since A(¢)
is not semisimiple, gl.dimA(¢) = 1.

(5) Follows easily from (4). (6) If € has kernels then by (1), A(€) is abelian and the proof
of (4) shows that gl.dimA(€) < 2. Conversely if A(€) is abelian and gl.dimA(€) < 2, then
obviously the morphism g in the projective resolution (1) of part (4) above, is the kernel of f
since P is fully faithful. Dually for B(Z). O

i From the above Proposition and Lemma 3.3, we have directly the following.

Corollary 4.6. An additive category € has kernels and cokernels iff € is the full reflective
(coreflective) subcategory of all projective (injective) objects of an abelian category © with
enough projectives (injectives) and gl.dim® < 2.

Suppose now that f : A — B is a morphism in the additive category €. A weak kernel
sequence over f is a complex in €:

K®: K7 k}L anl KO k?’ A f B 4.9
b o KPS KY o o Kp— A5 (4.2)

in which each morphism is a weak kernel of the next. Dually a weak cokernel sequence under
f is a complex in €:

f of
cf: ALbpSclos.s0l oo (4.3)
in which each morphism is a weak cokernel of the preceding.

Corollary 4.7. (1) P[K}] — {A, f, B} is a projective resolution of {A, f, B} in A(Z), and
[4, f,B] = Q[C.f] is an injective resolution of [A, f, B] in B(C).

(2) If € is right (left) coherent and if F': € — D is an additive functor to an abelian category
D, then F' : A(€) = D (F* : B(¢) — D) is exact iff F sends weak kernel (weak cokernel)
sequences in € to exact sequences in 2.

(3) If € is right (left) coherent with cokernels (kernels), then the left (right) adjoint ® :
A(C) = € (T : B(C) = €) of P (Q) is ezxact.

Proof. (1) Since any projective in A(€) is of the form P(X), it is enough to prove that
A(O)[P(X),P[K?]] is exact in Ab, VX € €. Since P is fully faithful, A(¢)[P(X), P[K}]] =
¢[X, K7] which is exact by the definition of weak kernels.

(2), (3) If € right coherent, A(€) is abelian. Then F' is exact iff £;F' = 0,Vi > 1. But
L;F'({A, f,B}) = H,(F'P[K;]) = H;(F[K}]). Hence F' is exact iff F[K3}] is acyclic, from
which the assertion follows. Part (3) is trivial. O

Using the complexes K¢, C1, we see easily that the syzygy objects and the cosyzygy objects
of {4, f,B} € A(€),[C, g, D] € B(€) are respectively:

QYA BY = {KI Kl K Y Vn =1, QYA f, B}y ={K{/ k], A}

n''n? n

", 9, D = [Cy ey, Cgl,Vn > 1, EYC,g,D] = [D,cg, CYl.

»-g? ’-g)
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If ¢ is left coherent then B(€) is abelian, hence by the universal property of A(€), there exists
a unique cokernel preserving functor Q' : A(¢) — B(€) with Q'P = Q. If ¢ is right coherent
then A(€) is abelian, hence there exists a unique kernel preserving functor P* : B(¢€) — A(C)
such that P*Q = P.

In case € = Py, we have: A is right coherent iff Py has weak kernels, and A is left co-
herent iff Ppor has weak kernels iff Pp has weak cokernels. Then we have identifications
Q' = Homp(—,A) : mod—A — A—mod and P* = Homa(—,A) : A—mod — mod—A, and
the sequences of the next Corollary are generalizations of well known exact sequences in case
¢ = Pa (see [5]).

Corollary 4.8. We have an adjoint pair (Q',P*), exact sequences:
0— R'P*Tr — Idge) — P*Q — R’P*Tr — 0,

0— £’Q'Tr — Q'P* — Idge) — L£'Q'Tr — 0,

and natural isomorphisms: Ext’) o, [7,P-] = £,Q'(?7), Exty ey [Q—,7] = R"P*(?7), ¥n > 1,
where we view the objects R"P*(?), L, Q'(?) as objects of mod—¢€, €—mod respectively, under
the equivalences of Corollary 3.9.

Proof. Consider arbitrary objects {4, f, B} € A(®), [C, g, D] € B(€). By the construction of
Q',P*, we have exact sequences:

0= P*[C,g,D] — P(C) 2% p(p) 1224 104 DY S 0 (4.4)
0 [14,0] Q) !
— [A, f,B] —= Q(4) ——= Q(B) — Q{A,f,B} — 0 (4.5)
Applying to (4.5) the functor P* we have the complex:
0 — P*[A, f, B] — P(4) 29 p(B) % P*Q'{A, £, B} — 0 (4.6)

so there exists a unique morphism ¢ : {4, f, B} — P*Q'{A, f, B}, with {0,15} 0§ = a. Since
P* is left exact, Ker(a) = P*X[A, f, B], and the cokernel of the induced morphism P(A) —
P*Y[A, f,B] is R'P*[A, f, B] = R'P*Tr{A, f, B}. Moreover Coker(§) = Coker({0,15} o §)
= Coker(a) = R*P*[A, f,B] = R*P*Tr{A, f, B}. Similarly V[C, g, D] € B(€), there exists
a morphism ¢ : Q'P*[C, g, D] — [C, g, D], with Ker(e) = £L2Q'{C,g,D} = L2Q'Tx[C, g, D],
and Coker(e) = £:Q'{C,g,D} = £, Q'Tx[C, g, D]. It is easy to see that ¢,§ are natural and
¢ is the counit and § is the unit of an adjoint pair (Q', P*). Finally Exthy o [{A, f, B}, P~] =
H"[P(K?}),P(—)]. Since P is fully faithful, H"[P(K}), P(—)] is isomorphic to the complex:
0— &(B,—) = €(4,-) = eK])—---
in €—mod and £,Q'{A, f, B} is the homology of the complex:
= Q(K7) = Q(A) » Q(B) = 0
which is isomorphic to the complex above, using the duality B(¢)°? &~ ¢—mod. O

If € is a coherent category, consider the full subcategories

Refl(A@) = { {A,f,B} € AQ) | 6ga sy : {A f,B} = P*QY{A,f,B} }

o

Refl(B(Q:)) :{ [C’g7D] € B(Q:) | E[C,g,D] :Q!P*[CagaD] — [CvgvD] }

consisting of the reflexive objects. Then we have inclusions Proj(A(€)) C Refl(A()) and
Inj(B(€)) C Refl(B(2)), and the adjoint pair (Q', P*) induces inverse equivalences

Q' : Refl(A(€)) = Refl(B(€)), P*:Refl(B(€)) = Refl(A(C)).
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Corollary 4.9. Suppose that € is a coherent category.

(i) Q' is ezact < P* is full and faithful < any projective in A(€) is injective & Refl(B(€))
= B(€) & any morphism in € is a weak cokernel.

(ii) P* is evact & Q' is full and faithful < any injective in B(€) is projective < Refl(A(Z))
= A(€) & any morphism in € is a weak kernel.

(iii) P*, Q' are evact & P* Q' are equivalences < the abelian categories A(€), B(€) are
Frobenius & A(€) = Refl(A(€)) and Refl(B(€)) = B(€) & any morphism in € is a
weak kernel and a weak cokernel.

Proof. (i) Suppose that Q' is exact, let f : A — B be a morphism in €, and let g : K — A be

a weak kernel of f. Then P(K) P, P(A) — P,

Q'P = Q, the sequence Q(K) — RN Q(4) —= o), Q(B) is exact. This means that f is a weak
cokernel of g. Conversely if any morphism in € is a weak cokernel, let {4, f, B} € A(¢) and
consider the projective resolution K ; — {A4, f,B} — 0 arising from a weak kernel sequence

P(B) is exact; then since Q' is exact and

K} over f. Applying to this resolution the functor Q', we obtain the complex (x): --- —

0
Q(KY) k), Q(A4) s, Q(B). Since any morphism in € is a weak cokernel, let h : X — A
be a morphism in € with f as a weak cokernel. Then h = ao k:?, since k:? is a weak kernel of f.
Then if g : A — Y is a morphism with k?c og =0, we have hog = aOk?c og = 0. Then g factors
through f since f is a weak cokernel of h, and this means that f is a weak cokernel of its weak

kO
kernel k:?. Hence in the complex --- — K ? At B any morphism is a weak cokernel of its

preceding. This means that the complex (%) is exact and consequently the functor Q' is exact.
The other parts of (i) are direct consequences of the exact sequences and isomorphisms of
Corollary 4.8, part (ii) is dual and (iii) follows from (i), (ii). O

Assume now that ¢ is abelian. Then by Corollary 4.7, the left adjoint ® : A(€) — € is exact.
Hence Ker(®¢) := A (€) = {{4, f,B} € A( ) : f is epic} is a localizing subcategory of A(€)
and ® induces an equivalence A(€)/A(¢) = ¢. Similarly the right adjoint ¥ : B(¢) — € is
exact and Ker(¥¢) := B™(€) = {[A, f, B] € B(€) : f is monic} is a colocalizing subcategory
of B(¢) and ¥ induces an equivalence B(€)/B™(€) =5 €. The next result gives simple proofs
of the duality theorem of [3, p.154], and of a theorem of [20].

Corollary 4.10. For any abelian category € there are equivalences
A (@) 2 Sex(e) & B™(@).
In particular Sex(€) is abelian. If € has enough projectives and injectives, then:
A(€/Proj(€)) ~ A.(€) =~ Sex(€) ~ B™(€) ~ B(¢/Inj(C)).

Proof. The functor F : A.(€) — Sex(€) defined by F{A, f,B} = the class of the short
exact sequence 0 — Ker(f) - A — B — 0 and the functor G : B,,(€) — Sex(€) defined by
G[A, f, B] = the class of the short exact sequence 0 - A — B — Coker(f) — 0, are obviously
equivalences. The last assertion follows from Proposition 3.8 and Corollary 3.10. O

Remark 4.11. By the above result, we have a Morita pair (¢/Proj(¢), ¢/Inj(¢)). Hence if €

is Frobenius, the stable category €/Proj(€) is dualizing. More generally if (¢,D) is a Morita

pair, then the same is true for the pairs (A(€), B(D)), ( ( A(Qﬁ)) of the induced stable

categories. Indeed by Corollary 4.10, we have: A(A(€)) ~ A(€)) = A (B(D)) =~ B™(B(D))
AQ)).

~ B(B(D)). Similarly we have an equivalence: A(B(D)) ~

For any morphism f: A — Bin €, let Ky = Ker(f),Iy = Im(f),Cy = Coker(f), ks =
ker(f),e; = coim(f),iy = im(f),cy = coker(f). Then the canonical analysis of f, induces
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the following functorial exact sequences in A(€) and B(C€):

A0es3 {01c,}

0 —s {Aep, Ity 227 4 BY 2 poyy L (B e 0p) — 0 (4.7)

{1Kf7 8f713]

0—)[Kf)kf7A]—>Q( ) [A f) ]—>[If7if)B]_>0 (48)
where Im({0,cs}) = {Iy,is, B} and Im([ks,0]) = [4,e;, Iy].

[kf 0]

Corollary 4.12. The category Ae(€) is coreflective in A(€). If € has enough projectives, then
Ae(€) is also reflective. The category B™(€) is reflective in B(E). If € has enough injectives,
then B™(€) is also coreflective.

Proof. The exact sequences (4.7), (4.8), imply trivially that {A4,ey, Ir} is the coreflection of
{A, f,B} in A.(€) and [Iy,iy, B] is the reflection of [A, f, B] in B™(<). Suppose that € has
enough projectives. If {4, f, B} € A(€), let p : P — B be an epimorphism with P projec-
tive. Then the object {4 & P,!(f,p), B} belongs to A.(€) and the morphism {{(14,0),15} :
{A, f,B} - {A® P} (f,p), B} is the reflection of {4, f, B} in A.(€). Dually for B™(¢). O

By Corollary 3.9, the categories involved in Corollary 4.10 are equivalent to the module
categories mod—(€/Proj(€)) and ((¢/Inj(€))—mod)°?. Hence all these categories are abelian
with enough projectives and injectives, and using these equivalences we know their projective
and injective objects. In particular if € is Frobenius then the same is true for any one of the
these categories.

The following result is a relative version of Corollary 4.10.

Proposition 4.13. (1) If € is right coherent and X is a contravariantly finite in €, then the
sequence of additive categories 0 — X — € — €/X — 0, induces a short exact sequence of
abelian categories: 0 = A(€/X) — A(€) = A(X) - 0

(2) If € is left coherent and X is covariantly finite in €, then the sequence of additive
categories 0 — X — € — €/X — 0, induces a short exact sequence of abelian categories:
0— B(€/X)— B(¢) - B(X) >0

Proof. (1) If € is skeletally small, then using functor categories the result follows from [7].
We sketch a different proof in the general case. Since X is contravariantly finite in € and ¢
is right coherent it follows easily that ¥ and €/X are right coherent. Hence A(€), A(X) and
A(€/X) are abelian. Let A € €; then using the existence of weak kernels and the contravariant

1 0
finiteness of X in €, one can construct an X—exact complex X} REN X9 45450 (i.e. the
complex becomes exact when we apply to it the functor €(X, —), for any X € X). Using this
complex, define a functor Fy : € — A(X), by Fo(A) = {X}, 2z}, X%}. Since A(X) is abelian, by
the universal property of A(€), there exists a unique right exact functor F : A(€) — A(X) with
FPs = Fy. It is not difficult to see that Fj sends weak kernel sequences in € to exact sequences
in A(X), hence by Proposition 4.5, F' is exact. Moreover F'G = Id 4(x), where G : A(X) — A(€)
is the right exact functor induced by the inclusion X — €. Then A(€)/KerF ~ A(X) by [7].
Finally we see easily that KerF is the full subcategory of A(€) consisting of the X—epics in
¢. By Corollary 4.10, KerF is equivalent to A(€/X). Part (2) follows by duality. O

Corollary 4.14. Let € be a right Morita (left Morita) category and let X be a contravariantly
(covariantly) finite subcategory of €. Then X and the stable category €/ X are right Morita (left
Morita) categories.

Proof. If € be a right Morita and X is contravariantly finite then X is right coherent. Since
A(€) has injectives, and since by the previous Proposition A(€/X) is a localizing subcategory
of A(¢) with quotient A(X), we have that A(X) has injectives. If € is left Morita and X is
covariantly finite then €°P is right Morita and X°P is contravariantly finite in €°P. Hence X°P
is right Morita and consequently X is left Morita. The case of €/X is left to the reader. |
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We close this section studying when a Freyd category is a module category. We recall that
an object A € € is called compact [36] if the functor €(A4,—) : € — Ab preserves all small
coproducts. An object U € € is called a split generator if for any morphism f: A — B in €,
¢(U, f) is epic implies that f is split epic.

Proposition 4.15. For an additive category €, the following are equivalent:
(1) A(€) is a (functor) module category.
(2) € is right coherent with coproducts and a (set of) compact split generator(s).
If (1) or (2) is true, then there exists a ring A and an equivalence € =~ Proj(Mod—A).

Proof. (1) = (2) If there exists an equivalence A(€) ~ Mod—U, then we have trivially € ~
Proj(Mod—U). Hence the properties described in (2) are true.

(2) = (1) The right coherence of € implies that A(€) is abelian. Since € has coproducts, the
same is true for A(€) (the naive construction of coproducts in A(€) works). Hence A(€) is a
cocomplete abelian category. If U is a set of compact objects in €, then P (/) is a set of compact
projective objects in A(C€). It is easy to see that if moreover U consists of split generators, then
P(U) consists of generators in A(€). By [19], we have an equivalence A(€) &~ Mod—U. O

5. Tensor Products

We fix objects {4, f, B} € A(¢) and [C, g, D] € B(¢), where € is any additive category. For
any X € €, setting Fio 4 p)(X) = Coker(g,X) and F4 ¢ p)(X) = Coker(X, f), we obtain
additive functors Fic 4 p) : € — b and Fy4 5 py : €7 — 2Ab. By the universal property of
A(Q), there exists a unique cokernel preserving functor F[!ag,D] s A(C) — Ab with F{!C7g7D]P¢ =
Fic,g,p)- By the universal property of B(€), there exists a unique functor converting kernels
to cokernels, F{*AJ’B} : B(€)oP — b with F{*A’f’B}Qg = Fa,5,B)- We set

F[!C’g’D] =—®c[C,g,D] : A(€) — 2Ab,
F{*A,f,B} ={A,f,B}®c — : B(€)? — Ab.
In this way we obtain a tensor product bifunctor — ®¢ — : A(€) x B(€)°? — Ab between
the Freyd categories A(€), B(€) and by definition we have:
{4, f,B} ®¢ [C, g,D] = Coker(Coker(D, f) — Coker(C, f))
= Coker(Coker(g, A) — Coker(g, B)).
Remark 5.1. In case € is (skeletally) small and D is cocomplete abelian, then using the fact
that in Mod—¢&, €—Mod any object is a direct limit of finitely presented objects, and also using
the equivalences mod—¢€ ~ A(€),€—mod ~ B(€)°P, one can define easily the tensor product
functors — ®¢ — : [€?, D] x €—Mod — D and — ®¢ — : Mod—€ x [€, D] — D [19]. Conversely

the tensor product of [19] in case ® = Ab, restricted to finitely presented functors coincide
with the tensor product of the Freyd categories constructed above.

We are interested in case the Freyd categories A(C), B(€) are abelian. So from now on we
assume that the additive category € is coherent. In this case V{A4, f, B} € A(¢),V[C,g,D] €
B(€) the derived functors

TOTS(—,[C,g,D]) = Et(_ Xe [CagaD]) : A(Q:) — Q[b,
TOT%({A,f,B},—) :El({AafaB} Re _) : B(Q:)Op — 2b

are defined, and is easy to see that the bifunctor — ®¢ — is left balanced, hence the bifunctor
Torf(—,—) : A(€) x B(€)°? — 2Ab, Vi > 0, is defined. The flat objects (i.e. the — ®¢ — acyclic
objects) in A(€), B(€) are obviously the projectives, injectives objects respectively.



Homology, Homotopy and Applications, vol. 2, No. 11, 2000 162

Lemma 5.2. There are functorial morphisms
Y= 0 Q7) = A@)(7,-),  x:P*(?) ®e — = B(O)(=,7)
with Coker(y) = A(€)(?, —), Coker(x) = B(€)(—,7), inducing isomorphisms
-2 Q(7) = AWQ)(P(?),-), P(?) ©@e—=B(¢)(-,7),
P(-) ®e Q'(?) = A2, P(-)), P*(?) ®e Q(-) = BE)(Q(-),?).
Proof. The proof is standard and is left to the reader. O

L

Theorem 5.3. There are functorial isomorphisms

Tor®(Te(=),?) = B(€)(?,=), Torf(—, Tr(?)) S A@)(?,-).

Proof. We prove only the second isomorphism. Let {A, f,B} € A(€) and let h : B —» X
be a weak cokernel of f. Then we have an injective resolution of Tr{A, f, B} in B(&): 0 —

Te{4, £, B} — Q(4) 2 qB) 2 Q(X) = ---. I {C,g,D} € A(€), then the abelian
group Tor{({C,g,D}, Tr{A, f, B}) is the homology of the complex {C,g, D} ®¢ Q(X) —

{C,9,D} ®¢ Q(B) = {C,9,D} ®¢ Q(A). But by Lemma 5.2 this complex is isomorphic

to the complex A(€)(P(X),{C,g,D}) LA A(€)(P(B),{C,g,D}) EAN A(€)(P(A),{C,g,D}).
Let {0,b} : P(B) — {C,g,D} be in Ker(f*). Then there exists a : A — C with ao g = f o b.
Hence we obtain a morphism {a,b} : {4, f, B} — {C,g,D}, which obviously is uniquely
determined by b. If {0,b} is in Im(h*), then there exists m : X — D with {0, hom} = {0, b}.
This means that b — hom =t o g. Then the morphism {a,b} : {4, f, B} = {C,g,D} factors
through the projective P(X). Indeed {a,b} = {0,h} o {0,m} where {0,h} : {A, f, B} —
P(X) and {0,m} : P(X) — {C,g,D}. Thus we can define a morphism Ker(f*)/Im(h*) —
A@){A, f,B},{C, g, D}) in 2Ab. We leave to the reader the easy demonstration that the above

morphism is indeed an isomorphism. O

Corollary 5.4. V{A, f, B} € A(€), V[C, g, D] € B(€), there are isomorphisms:

N ——

A©)({4, f,B},{C,9,D}) = Tor{ ({4, f,B},[C,g,D]) — B()(4, f,B],[C,g, D).

Let Q be the syzygy functor in A(€) and ¥ be the cosyzygy functor in B(€).

Proposition 5.5. (1) There is an exact sequence

0 — A@)(2,2(-)) — — ®e Q(?) -5 A€)(?,—) — AQ)(?, =) — 0

and functorial isomorphisms Torf, (-, Q'(?)) = A(€)(27,Q2(=)), Vi 0.
(2) There is an exact sequence

0 — B(O)(Z(—),?) — P*(?) ®@e — = B(€)(—,?) — B(€)(—,?7) — 0
and functorial isomorphisms Torf, (P*(—),?) = B@©)(3H+2(2),-), Vi>O0.
(3) There are exact sequences

0 — Eatly ) (Tr(),?) — —®e? — A(Q)(P*(=),?) — Ext? ) (Tr(~),?) — 0

0 — Extpe) (=, Tr(?)) —? ®c — — B(&)(—, Q'(?)) = Extye)(—, Tr(?)) — 0.
Proof. (1) If X :={A, f,B},Y :={C,g9,D} € A(€), by Theorem 5.3 we have:
A(@)(Y,0%(X)) = Torf (Q*(X), Tr(Y)) =2 Tor§ (X, Tr(Y)) 2 Tor{ (X, 5*Tr(Y)).

Since ¥2Tr(Y) = Q'(Y), we have an isomorphism A(€)(Y,Q%(X)) = Torf(X,Q'(Y)). By
induction and dimension-shifting we get the isomorphism of part (1). Applying the functor




Homology, Homotopy and Applications, vol. 2, No. 11, 2000 163

— ®¢ Q'(Y) to the projective presentation 0 — Q(X) — P(B) — X — 0 and using Lemma
5.2, we have the commutative diagram

Q(X) ®e Q(Y) —2— P(B) ®¢ Q(Y) —— X ®¢ Q'(Y) —— 0

| ‘| g
0 —— AQ)(Y,Q(X)) — AQY,P(B) — AQ)(Y,X)

where the vertical morphisms are the natural morphisms of Lemma 5.2; in particular d is an

~

isomorphism. Then using the snake Lemma and Lemma 5.2, we have: Ker(a) =2 Ker(c) =
Torf (X, Q\(Y)), Ker(e) = Coker(c) = A(€)(Y,Q(X)). From these isomorphisms it fol-
lows that for the natural morphisms ’(/JX’)/—:X ®e Q'(Y) = A(€)(Y,X) and Ya(x),y :
QX) ®c Q(Y) = AQ)(Y,Q(X)) of Lemma 5.2, we have: Ker(vxy) = A(@)(Y, QX))

and Ker(Yox),y) = A(€)(Y,02%(X)). The desired exact sequence follows from the previous
Lemma. The proof of part (2) is dual and part (3) is similar to (1). O

Corollary 5.6. If € is a coherent category, then: gl.dimA(C) = gl.dimB(¢).

Proof. Suppose first that gl.dimB(€) =n < co. Then Torg,,(—,—) = 0, and by Proposition
5.5 we have, VX € A(€):

0= Torl,, (X, Q0" 2(X)) = A&)(Q"(X), 2" 2(X)).

So Q"*2(X) is projective and this means gl.dim.A(€) = m < n + 1. Suppose that m = n + 1.
Then there exists X € A(€) with Q"1 (X) non projective. Hence A(€)(Q"1(X), Q*H1(X)) #
0. But this last group is isomorphic by Theorem 5.3, to Torf(Q"!(X), TrQ" (X)) =
Tors, ,(X, TrQ" (X)) which is trivial since gl.dimB(€) = n. Hence m # n + 1. We con-
clude that gl.dimA(¢) = m < n = gl.dimB(¢). By duality gl.dimB(¢) < gl.dim.A(¢). Hence
gl.dimA(€) = gl.dimB(€). This completes the proof observing that by the above arguments
gl.dimA(€) = oo & gl.dimB(¢) = oco. O

Remark 5.7. (1) In case € is a skeletally small coherent additive category, then Corollary 5.6
shows that gl.dimmod—¢ = gl.dim¢€—mod = the weak dimension of €. By [46], gl.dimmod—¢€
is also the FP-dimension of Mod—¢€.

(2) If Mod—¢€ and €—Mod are locally Noetherian [24], then we have the analogue of the
classical result of Auslander: gl.dimMod—¢€ = gl.dim&€—Mod since then € is coherent and the
finitely generated left and right € modules coincide with the finitely presented ones.

(3) By Theorem 5.3, for any morphism f in € we have:

Torf(?,Coker(f,—)) = mod—&(Coker(—, f),?)
Torf(Coker(—, f),?) = €—mod(Coker(f,—),?).

JFrom the proof of this result it is not difficult to see that the above formulas are true in
Mod—¢ if 7 is not necessarily finitely presented, and € not necessarily coherent. If we denote
by D : Mod—€ — €—Mod the character module functor defined by D(F) = Ab(F—,Q/Z),
then for any F' € mod—¢€, we have the formulas

Torf(—, TrF) = Mod—€(F, ), Torf(TrF,—) = &—Mod(F, ),

Extitoq_e(—, DTrF) = DMod—€¢(F, —), DExt\roq_e(F,—) = Mod—&(—,DTrF).

6. Free Abelian and Auslander Categories

Suppose that € is an additive category. A free abelian category over € is a pair (F,F)
consisting of an abelian category F, and an additive functor F' : € — F, satisfying the following
universal property:
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(t) for any additive functor G : € — D to an abelian category D, there exists a unique exact
functor G° : F — 9, such that: G°F = G.

Theorem 6.1. Let € be an additive category.

(1) The Freyd categories AB(€), BA(C) are abelian with enough projectives and injectives,
and the pair (B(Z), A(C)) is Morita, hence there is an equivalence:

AB(€) =5 BA(Q).

(2) If F(€) := AB(€), then gl.dimF(€) = 0 or 2, and the first alternative appears iff € is
semisimple abelian, in which case: € ~ F(C).

(3) F(€P) ~ F(O).

(4) F(C) is the free abelian category over €. Every abelian category is a Gabriel-quotient of
the free abelian category over its underling additive category.

(5) The additive category € is fully imbedded in F(€) as the full subcategory of projective-
injective objects of F(C), via the functors Ppe)Qe, Qa(e)Pe.

Proof. Consider the full imbeddings:
Pe: €= A(€), Q¢:C— B(C),

PB(@) : B(Q:) — AB(Q:), QA(Q) : A(Q:) — B.A(Q:)

(From section 4, AB(¢),BA(C) are abelian with enough projectives and injectives. If F :
¢ — ® is an additive functor to an abelian category, then by section 3 there exists a unique
kernel preserving functor F* : B(€) — D, with F*Q¢ = F, and a unique cokernel preserving
functor (F*)' : AB(¢) — D with (F*)'Pge) = F*. Then (F*)'Ppe)Qe = F. Since F*
preserves kernels, obviously (F*)' is exact. Let G : AB(¢) — © be another exact functor
with GPp(¢)Qe¢ = F'. Then since Pp(¢) preserves kernels, by the universal property of Qe,
we have GPpe) = F*, hence (GPge))' = (F*)'. Since G is exact we can see easily that
(GPp(e))' {4, f, B} = Coker(GPp(e)(f)) = GCoker(Py(e)(f)) = G{A, f, B}, V{4, f,B} €
AB(€), so (F*)' = (GPB(Q)! = G. We conclude that the pair (Pg¢)Qe, AB(€)) is the
free abelian category over €. A similar argument shows that the pair (Q4(¢)Pe, BA(Z)) is
the free abelian category over €. Hence there exists a unique equivalence D : AB(€) —
BA(€), with DPp(¢)Qe = Q4(¢)Pe. In particular the pair (B(<), A(€)) is Morita. We set
F(€) := AB(€). Since B(C) has kernels gl.dimF(€) < 2. If gl.dimF(¢) = 1, then any kernel
in B(¢) splits by Proposition 4.5. In particular [14,0] : [A, f,B] — Qe(A4) splits. As we
have seen this implies that Q¢,P¢ are equivalences. Hence € ~ F(€) is semisimple abelian,
and this is not the case. Thus gl.dimF (&) # 1. By Proposition 4.5, gl.dimF(¢) = 0 iff €
is semisimple abelian in which case € ~ F(€). Using Proposition 3.6, we have: F(€%) =
AB(CP) ~ A(A(€)P) ~ B(A(€))°? = F(€)°. Let now € be abelian. Then we have the
adjoint pairs (Qe, ¥e), (®5(¢), Pi(e)). Since Ve, ®p(¢) are exact and Qe, Pp(e) are fully
faithful, Ker®p¢) is a localizing subcategory of F (&), KerW¥¢ is a colocalizing subcategory of
B(Q:), and ]:(Q:)/Kertbg(@ ~ B(Q:), B(Q:)/K@’I”\I’g ~ Q:, see [39] Since ‘I’E@B(Q‘)PB(Q‘)QC = Id@,
we have by [7] that F(€)/Ker¥e®p¢) ~ €.

Finally we prove that the functor Pp(¢) Qe realizes € as the full subcategory W of projective-
injective objects of F(€). Clearly we have inclusions Im(Pp)Qe) C Proj(AB(€)) and
Im(Q4(e)Pe) C Inj(BA(€)). Using the unique equivalence D : AB(€) ~ BA(€) with the
property DPpg¢)Qe = Qu(¢)Pe, we deduce directly that Im( Pp)Qe) € Proj(AB(€)) N
Inj(AB(&)) = W. Now if X € W, then X is of the form X = Pg)(Y) for some Y =
[A, f,B] € B(€). Applying the kernel preserving functor Ppg(¢) to the exact sequence 0 —
(A, f,B] = Qe(A) = Qe(B) in B(€), we have the exact sequence 0 — Pp¢)[A4, f, B] —
Pp)Qe(4) = Ppe)Qe(B) in F(€). Since X = Pp¢)[4, f, B] is injective, the morphism



Homology, Homotopy and Applications, vol. 2, No. 11, 2000 165

Pp(e)[4, f, B] = Ppe)Qe(A) is split monic. Since Pp(¢) is fully faithful, [A, f, B] — Qe(A)
is also split monic. Hence [A, f, B] € Im(Q¢) and X € Im(Pp)Qe). We conclude that
Im(PB(Q-)QQ) =W. O

The following describes a relative version of the above Theorem.

Remark 6.2. Let € be an exact category in the sense of Quillen [40]. Let Fe¢ := Pp(¢) Qe :
¢ — F(€) be the full embedding of € in its free abelian category and consider the full
subcategory

L :={F € F(€) | there exists an exact sequence F¢(B) Feld), Fe(C) > F—0

in (&), where f: B — C is an admissible epic in €}

Using the axioms of an exact category, it is not difficult to see that £ is a Serre subcategory

of F(€). Consider the composite functor E : € LN F(€) I F(€)/L, where 7 is the (exact)
quotient functor. We leave to the reader to check that the functor E is fully faithful and
embedds € as an extension closed subcategory of F(€)/L. Moreover a sequence A -+ B — C
is an admissible short exact sequence in € iff 0 - E(A) - E(B) — E(C) — 0 is a short
exact sequence in F(€)/L. If H : € — H is an exact functor to an abelian category H, i.e.
H sends admissible short exact sequence in € to short exact sequences in H, then its unique
exact extension H® : F(€) — H via Fe, kills the objects of the Serre subcategory £. Hence
there exists a unique exact functor H : F(€) /L — H such that FOE = H. Tt follows that
the functor E : € — F(€)/L is the universal exact functor out of € to an abelian category. If
¢ carries the minimal exact structure, then £ = 0 and we recover part 4 of Theorem 6.1.

We denote by H?(®D) the bounded homotopy category of complexes over an additive cat-
egory ©, and by D’(D) the bounded derived category of an abelian category ® [50]. The
following is a direct consequence of Theorem 6.1.

Corollary 6.3. For any additive category € there exists a triangle equivalence H°(A(€)) ~
HP(B(€)). If € is coherent then the abelian categories A(E), B(€) are derived equivalent, i.e.
there exists a triangle equivalence D°(A(€)) ~ D*(B(€)). In particular there exists an isomor-

phism: Ko(A(€)) S Ko(B(€)).

Let Add be the category of additive categories and additive functors, and Abel be the
category of abelian categories and exact functors. Copying the arguments of the proof of
Theorem 3.4, we have the following result of [1].

Corollary 6.4. The forgetful functor U : Abel — Add is tripleable and admits as a left
adjoint the functor F := AB : Add — Abel. Further (¢, F) is a T—algebra for the triple T
generated by (F,U) iff € is an abelian category and F' = ¥e®@p ). Also T : (¢, F) = (D,G)
is a morphism of T —algebras iff T : € — D is exact.

If Cat is the category of (small) categories and functors, then by the above Corollary and
Remark 3.5, the forgetful functor ¥V : Abel — Cat has a left adjoint, which is obtained as

the composition of the following five functors Cat % PreAdd 2 Add -5 Idem 5 Ker 2
Abel, any one of which is a left adjoint of the corresponding forgetful functor (here PreAdd
is the category of preadditive categories and additive functors).

If ® is abelian, we denote by Ex(®,2(b) the category of exact functors from ® to the category
of abelian groups. A direct consequence of Theorem 6.1 is the following.

Corollary 6.5. For any additive category € there are equivalences:

Mod—¢ ~ Ex(F(€)°,2b), €—Mod ~ Ex(F(€), Ab).
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Let ‘H be an abelian category with enough projectives and injectives. We say that H has
dominant dimension > n, denoted by dom.dimH > n, if the first n—terms of an injective
resolution of any projective object are projective.

Recognizing free abelian categories we have the following.

Theorem 6.6. For any category F, the following are equivalent:
(1) F is a free abelian category.
(2) F°P is a free abelian category.

(3) F is an abelian category with enough projectives and injectives, and moreover:
gldimF <2 and dom.dimF > 2.

If F is free abelian, then F ~ F(&), where € is the full subcategory of projective-injective
objects. Moreover either gl.dimF = 0 or gl.dimF = 2 = dom.dimF.

Proof. (1) = (3) Suppose that F = F(€) = AB(C), for an additive category €. By Theorem
6.1 it suffices to prove that dom.dimF > 2. Let [A, f, B] € B(<). By Theorem 6.1(4) we
have an exact sequence 0 = Pp(¢)[4, f, B] = Pp¢)Qe(4) = Pp)Qe(B) in F(€), in which
Ppe)Qe(A), Pp(e)Qe(B) are projective-injective objects. Since any projective object of F is
in the image of Pp(¢), we have dom.dimF > 2.

(3) = (1) Let € be the full subcategory Proj(F) N Inj(F) of projective-injectives in F,
and let J : € — F be the inclusion. Consider the unique exact functor J° : F(€) —
F, with J°(Pg¢)Qc¢) = J. We recall from the proof of Theorem 6.1, that J° = (T,
where J* : B(€) — F is the unique kernel preserving functor, with 7*Q¢ = J, and J° =
(J*)" : F(€) — F is the unique cokernel preserving functor, with J°Ppe) = J*. Since by
construction J*[A, f, B] = Ker(f), and since € C Inj(F), it is trivial to see that J* is fully
faithful, and Im(J*) consists of all objects X € F having a copresentation 0 - X — A — B,
with A, B € €. Since gl.dimF < 2, we have Im(J*) C Proj(F). Since dom.dimF > 2, we
have Proj(F) C Im(J*). Hence Proj(F) = Im(J*). Identifying B(€) = Im(J*), Corollary
3.10 shows that J° is an equivalence.

If F is not semisimple, then by Theorem 6.1, gl.dimF = 2. If dom.dimF > 3, then the last
term of an injective resolution of any projective object of F is projective-injective. Hence the
injective resolution splits and any projective object of F is injective. This implies trivially that
gl.dimF = 0 and this is not the case. Hence gl.dimF = 2 = dom.dimF, if F is not semisimple.

(1) & (2) Follows from the equivalence F(€%P) ~ F(&)°P, O

i From now on we rename free abelian categories and we call them Auslander categories.
This terminology is justified by the fact that an Artin algebra A is called an Auslander algebra
iff gl.dimA < 2 and dom.dimA > 2, i.e. iff mod—A is an Auslander category [8]. Thus we see
that Auslander categories are universal objects: they are precisely the free abelian categories,
and there are enough of them: any additive category is embedded in its Auslander category.

Example 6.7. If A is a ring, then F(Ppor)?? x F((Paor)°?) ~ F(Pa). Hence there exist
a duality between the Auslander categories of the categories of finitely generated projective
left and right modules. But F(Pa)°? = (mod—A)—mod and F(Py) ~ (A—mod)—mod. So
there exists a duality between the Auslander categories (A—mod)—mod, (mod—A)—mod. The
existence of this last duality is a result of [27]; its explicit description is left to the reader.

Remark 6.8. (1) Obviously A(€) is an Auslander category iff € = B(®D) for an additive
category ©. Dually B(€) is an Auslander category iff € = A(®) for an additive category ©. If
¢ is abelian with enough projectives and injectives, then A4(Proj(€)) ~ € ~ B(Inj(¢)). Hence
A(€) is the Auslander category of Inj(€) and B(€) is the Auslander category of Proj(¢). If €
is Frobenius then by Theorem 6.1 we deduce that A(€) ~ B(€), so € is dualizing.
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(2) If ¢ is dualizing, then A(C), B(€), F(<), A(C°P), B(€°P), F(€°P) and also their induced
stable categories modulo projectives or injectives are dualizing.

(3) It is easy to see that if € is AB4 or AB4*, then so is F(€). However if € is AB5, then
F(€) is AB5 only if € is spectral, i.e. if any short exact sequence in € splits.

If X is an object in an additive category €, then we define the Auslander category F(X)
over X to be the Auslander category F(add(X)), where add(X) is the full subcategory of €
consisting of all direct summands of finite direct sums of copies of X. An arbitrary additive
category € is called representation finite iff € has a representation generator, i.e. an object X
such that ¢ = add(X). Consider now the following classes of abelian categories:

S is the class of equivalence classes of (representation-finite) abelian categories € with
enough injectives, such that Inj(¢) is right coherent.

R is the class of equivalence classes of (representation-finite) abelian categories € with
enough projectives, such that Proj(€) is left coherent.

T is the class of equivalence classes of Auslander categories F, such that Inj(F) N Proj(F)
is coherent (and Proj(F) is representation finite).

The next result generalizes the well-known correspondence between Morita equivalence
classes of representation-finite Artin rings and Auslander Artin rings, see [2], [3].

Corollary 6.9. There are bijections
X:S—=T and p:R—->T
defined by: x(€) = A(®), p(®)=B(D).

Proof. We use throughout that ® = Inj(F (D)) N Proj(F (D)), if F = F(D). Suppose that
¢ € S. Since € has enough injectives, by Corollary 3.10 we have € =~ B(Inj(¢)). Hence
x(€) = A(€) = A(B(Inj(¢))) = F(Inj(€)) is free. Since Inj(F) N Proj(F) ~ Inj(€), and since
Inj(€) is always left coherent (because € has enough injectives), we have that Inj(F(Inj(€))) N
Proj(F(Inj(¢))) is coherent. If € is representation finite, then Proj(F(Inj(¢)) = B(Inj(¢)) = ¢
is representation finite. Hence x(€) € 7. If F = F(®) € T, then define ¢ : T — S
by ¥(F) = B(Inj(F) N Proj(F)). Suppose that F = F(D). Since Inj(F) N Proj(F) ~ D
is coherent, by Proposition 4.5, B(®D) is abelian, and Inj(B(®)) =~ D is right coherent. If
Proj(F) is representation finite, then (F) = B(®) = Proj(F) is representation finite.
Hence :(F) € S. T € € S, then $x(©) = $[A@)] = $LABImI(®)] = YIF(Ii(€))] =
BlInj(F(Inj(€))) N Proj(F(Inj(¢)))] = B(Inj(¢)) = €. If F = F(D) € T, then xy(F) =
x[B(Inj(F) NProj(F))] = x[B(D)] = AB(D) = F(®) = F. We deduce that x is the inverse of
¥. The other part follows similarly. O

We close this section by introducing a new dimension for an abelian category. From now
on € will denote an abelian category. Let Fe¢ := Pp¢)Qe : € = F(&) be the full embedding
realizing € as the full subcategory of projective-injective objects in its free abelian category.
Then the functor Qe admits an exact right adjoint ¥¢ : B(€) — € with kernel B™(€), and the
functor Pp(e) : AB(€) — B(€) admits a left adjoint ®3(¢) : AB(€) — € with kernel A, (B(<)).
From now on we set Q(€) := A.(B(€)) =~ B™(A(€)) and Re := Ve Pp(¢), so that we have a
short exact sequence of abelian categories

0— Q©) — F@E) 2S¢ —o0
which we call a free presentation of the abelian category €. Since 2(€) is again an abelian

category the above procedure can be continued. In this way we obtain free presentations:

R

0 — QL) — F(€) 57 Q7€) — 0
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for any n > 0, where Q°(¢) := ¢ and F°(¢) = F(¢). Splicing the above exact sequences of
abelian categories we obtain the following diagram

s FE) B () — s FLUE) S F@) 2S5 ¢ — 0

where each F"(€) is free abelian and each F" : F*(¢) — F"~1(€) is an exact functor with
image the abelian category 2" (€). We call the above diagram a free resolution of the abelian
category €. The above considerations suggest that the following concept should be useful.

Definition 6.10. The Auslander dimension Dima C of an abelian category € is the small-
est integer n such that Q"(€) is free abelian. If no such integer exists, then we set Dima € = co.

Observe that by construction we have the folowing exact commutative diagram of abelian
categories and exact functors:

Ae(B(€)) —— A(B(9))

0 —— Qe —— F(© > € > 0
Ps(0) Il
0 —— B™E) —— BE) —2s ¢ )
0 0

Observe that if € has enough projectives and enough injectives, then A.(B(€)) =~ A(B(<))

and B™(€) ~ B(€). Hence the left column is isomorphic to

0 — A(B(¢)) — Q(¢) — B(€) — 0

It is easy to see that Dima€® = 0 iff gl.dim€ = 0. We refer to [14] for a discussion of
the Auslander dimension of an abelian category € and its connection with the Krull-Gabriel
dimension of € and the representation dimension in the sense of [2].

7. Modules over the Freyd Categories

Throughout this section we assume that € is a skeletally small additive category.

7.1. Flat and FP-Injective Functors

Let WIC(€°P, b), resp. WC(€°P,2(b), be the full subcategory of Mod—¢€ consisting of all
functors sending weak-kernel, resp. weak-cokernel, sequences to exact sequences. The cate-
gories WIC(&,Ab), WC (€, b) are defined dually. We recall [46] that a right €—module F is
called FP-injective iff Ext'(G,F) = 0,YG € mod—€. We denote by FPInj(Mod—¢), resp.
Flat(Mod—¢), the full subcategory of FP-injective, resp. flat functors [37].

Proposition 7.1. (1) If € is right coherent, there are equivalences:
Ex(A(€),2b) ~ WK(€,Ab) = Flat(€—Mod)

Ex(A(€)?, Ab) ~ WK (€, 2b) = FPInj(Mod—¢).
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(2) If € is left coherent, there are equivalences:
Ex(B(€)°P,Ab) = WC(€P Ab) = Flat(Mod—¢)
Ex(B(€),2b) ~ WC(¢,Ab) = FPInj(¢—Mod).

Proof. (1) The first equivalences are consequences of Corollary 4.7. Let F' be in Mod—¢, and let
G = Coker(—, f) be in mod—¢€, where f : B — C is a morphism in €. Consider the weak kernel
sequence K} over f as in section 4. Then G has a projective resolution --- — C(—,K}) —

¢(—,K9) = &(—,B) = ¢(—,C) - G — 0. By Yoneda’s Lemma, Ext};q_¢(G, F) = the
cohomology of the complex 0 — F(C) — F(B) — F(K}) — F(Kf) — ---. Hence F is an
FP-injective object iff F' is in WK (€?). Let now F be in ¢—Mod and let A % B I C be

a diagram in € with g a weak kernel of f. This diagram can be extended to a weak kernel
sequence K¢ since € is right coherent. If G = Coker(—, f), then G has a projective resolution

- = €¢(—,A4) - &(—,B) —» &(—,C) - G — 0. Then Tor®(G, F) = the homology of the
complex -+ — F(A) — F(B) — F(C) — 0. Since F is flat iff Tors(G,F) = 0,Yn > 1,
VG € mod—¢, the claim follows. Part (2) is similar. O

Consider now the full imbeddings P : € — A(¢), Q : € — B(C) of € in its Freyd categories.
The functors P, Q induce exact restriction functors

P : Mod—A(€) - Mod—€¢, P : A(€)—Mod — ¢—Mod
Q : Mod—B(¢) —» Mod—¢€, Q : B(¢)—Mod — ¢—Mod
defined in the obvious way: f’(F) = FP, and so on. Now consider the functors

R : Mod—¢ — Mod—A(¢), R:¢—Mod — A(¢)—Mod

L : Mod—¢ — Mod—B(¢), L :¢—Mod — B(€)—Mod
defined using the universal properties of A(C), B(QZ) as follows: (F) = F',L(F) = F* and
similarly for R, L. Clearly we have adjoint pairs (P, R), (L, Q), (Q, L), (R, ) and the functors

f{, f, 1~{, L are fully faithful, since obviously:
PR =Idyoa ¢, QL =Idyoa ¢, PR =1Ide mod, QL =Ide woa-

It is easy to see that Ker(P) = Mod—A(¢), Ker(Q) = B(€)—Mod which are localizing

subcategories and Ker(P) = A(€)—Mod, Ker(Q) = Mod—B(€) which are colocalizing sub-
categories. In particular we have the following exact sequences of Grothendieck categories:

- Q
Mod—A(€) < Mod—A(€) 2 Mod—¢€, B(€)—Mod — B(¢)—Mod = ¢€—Mod,

L

el

=~

_ P
Mod—B(€) — Mod—B(¢) = Mod—¢, A(¢€)—Mod — A(¢€)—Mod <= €—Mod.

T R

Q)

Corollary 7.2. (1) There are equivalences
Im(L) ~ €—Mod ~ Lex(B(€),2b) = Flat(B(¢)—Mod) ~ Ex(F(C), Ab),
Im(R) = €—Mod ~ Rex(A(€),2Ab) = FPInj(A(¢)—Mod) ~ Ex(F(€),Ab),
Im(R) ~ Mod—€ ~ Lex(A(¢)°P, 2Ab) = Flat(Mod—A(¢)) ~ Ex(F(¢)°?, Ab),

Im(L) ~ Mod—€ & Rex(B(€)°, Ab) = FPInj(Mod—B(¢€)) ~ Ex(F(€)°?, Ab).
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(2) If € is right coherent there are equivalences

FPInj(Mod—A(€)) ~ Ex(AA(€)°P, Ab), Flat(A(C)—Mod) ~ Ex(AA(E), Ab).
(3) If € is left coherent there are equivalences

Flat(Mod—B(€)) ~ Ex(BB(€)°?,Ab), FPInj(B(¢)—Mod) ~ Ex(BB(C), Ab).

Proof. (1) The first equivalences hold since the functors f{, ﬁ, R,L are fully faithful. The second
are true because of Corollary 3.9. The remaining equivalences of (1) as well as of (2) follow
from Proposition 7.1, if we replace € by its Freyd categories. |

Remark 7.3. (1) There are equivalences:
mod—B(€) = F(¢€), A(€)—mod ~ F(€)°? ~ F(CP),
mod—A(¢) = A(A(€)), B(€)—mod =~ B(B(€))? ~ A(A(CP)).
(2) For an additive category €, let [ (€—Mod,b) be the category of functors commuting

et
with direct limits and products. Let F(€) be the Auslander category of €. If € has weak
cokernels, then it follows from [31] that we have an equivalence

F(€) = T (¢—Mod, 2Ab).
—
(3) We observe that the Freyd categories are such that the flat, FP-injective modules over
them are abelian and reflective, coreflective respectively in their whole module categories. The
results of the next subsection generalize these observations.

7.2. Definable and Homologically Finite Subcategories

We recall [43] that a short exact sequence in the functor category Mod—¢€ is called pure if
any finite presented functor is a relative projective for it. A monic in a pure exact sequence
is called a pure monic. Let H C Mod—¢€ be a full subcategory. Following [32], H is called
definable if # is closed under direct limits, products and pure subobjects. In the following
we set X(€) to be the cardinality of the set Iso(€) of isomorphism classes of objects of €. Also
if M € Mod—€, we denote by |[M] the cardinality of [y ¢yso(ec) M (X).

Lemma 7.4. Let N — M be an inclusion in Mod—C. Then there exists a pure subobject
T < M such that: N — T — M and |T| < maz{Ro, R(E), |M]}.

Proof. In [34] it is proved that there exists a subobject T' of M which contains NV and satisfies
|T| < maz{Ro,R(&),|M]|}. Following the inductive construction of T" in [34], it is not difficult
to see that we can choose T' to be a pure subobject of M. O

Proposition 7.5. Let ‘H be a full additive subcategory of Mod—¢€, closed under direct limits
and pure subobjects. Then H is definable iff H is covariantly finite.

Proof. (<) Let H be covariantly finite and let {H;;¢ € I} be a family of objects of 7. Let
¢ : [l;c; Hi — H be a left H—approximation. Then the projections p; : [],.; Hi — H;
factor through ¢, i.e. there are morphisms ¢; : H — H; such that ¢ ot; = p;, Vi € I.
Let ¢ : H — [],c; Hi be the unique morphism such that ¢ o p; = ;. It follows directly
that ¢ o ¢p = 11—[' L S0 [I;c; Hi is a direct summand of H € H. Since H is closed under

i

direct limits, # is closed under direct summands. Hence [[;.;, H; € H and # is closed under
products. It follows that # is definable.

(=) Let H be definable and fix M € Mod—¢€. If a : M — H is a morphism with H €
H, by the above Lemma, there exists a pure subobject Ty C H such that Im(a) C Ty
and |Tg| < max{Ro,R(€),|M|}. Since H is definable, Ty € #H. Consider the set Hy =
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{G € H : |G| < maz{N,N(C),|M|}} and for G € Hpr, let Ipy := Mod—€(M,G). We set
HM :=Tlgep,, G™ - Since H is definable, the object H™ is in H and there exists a canonical

morphism w : M — HM . By construction w is a left { —approximation. O

Before we prove our first main result of this section we need to recall some well-known
concepts. Recall from [24] that a Grothendieck category G is called locally Noetherian, resp.
locally Artinian, resp. locally finite, if G has a set of generators consisting of Noetherian, resp.
Artinian, resp. finite length, objects. Let G be an additive category with direct limits. An
object A € G is called finitely presented if the functor G(A, —) : G — Ab commutes with direct
limits. We denote by f.p.(G) the full subcategory of finitely presented objects. Recall from [16]
that an additive category G is called locally finitely presented if G has direct limits, f.p.(G) is
skeletally small and any object of G is a direct limit of finitely presented objects. By [16], an
additive category G is locally finitely presented iff G &~ Flat(Mod—(f.p.(G)). A Grothendiek
category G is called locally coherent, if G is locally finitely presented and the full subcategory
of finitely presented objects form an abelian category. Finally recall from [42] that a functor
category is called perfect, if any flat functor is projective.

Parts (2) and (4) of the following result generalizes results of [18].

Theorem 7.6. (1) FPInj(Mod—¢) is covariantly finite.
(2) The following are equivalent:

() € is left coherent (has cokernels).

(8) €—Mod is locally coherent.

(v) Flat(Mod—¢) is covariantly finite (reflective) in Mod—¢€.

(0) FPInj(¢—Mod) is contravariantly finite (coreflective) in €—Mod.
(3) The following are equivalent:

(o) Mod—¢€ is perfect and € is left coherent (€ has cokernels).

(8) Proj(Mod—C€) is covariantly finite (reflective) in Mod—¢.

If the parenthetical case of part (8) is true, then gl.dimMod—¢€ < 2.
(4) The following are equivalent:

(a) Mod—¢€ is locally Noetherian (and gl.dimMod—¢€ < 2 ).
(8) Inj(Mod—€) is contravariantly finite (coreflective) in Mod—C¢.

Proof. (1) Since FPInj(Mod—¢) is closed under products and pure subobjects, the proof of
Proposition 7.5, shows that FPInj(Mod—¢) is covariantly finite.

(2) (o) & (v) Since obviously Flat(Mod—¢€) is closed under direct limits and pure subob-
jects, it follows that Flat(Mod—¢) is definable iff Flat(Mod—¢) is closed under products and
by [37], this happens iff € is left coherent. Hence the assertion case follows from Proposition
7.5. To prove the parenthetical case of part (a) < (), we proceed as follows (for a differ-
ent proof see [16]). If Flat(Mod—¢€) is a reflective subcategory, then clearly Flat(Mod—¢)
has cokernels. Let f : A — B be a morphism in € and consider the finitely presented func-
tor My = Coker€(—, f). Let 7 : My — F be the reflection of C; in Flat(Mod—¢). Then
the cokernel of €(—, f) in Flat(Mod—¢) is the composition ¢y o 7 : €(—,B) — F, where
¢y := coker€(—, f). Let {F; : i € I} be a filtered system of flat functors. Since the filtered

colimit limFj is a flat functor, the reflection 7 induces isomorphisms (F, lim F;) =N (Mg, imF;).
— — —
Since My is a finitely presented, the functor (M, —) commutes with filtered colimits. It follows
directly that the canonical morphism lim(F, F;) — (F,limF;) is an isomorphism. Hence F is
— —

a finitely presented object in the locally finitely presented category Flat(Mod—¢€). Hence by
[16] it is representable, so F' = €(—, ). By Yoneda there exists a morphism g : B — C such
that €(—, g) = ¢y o 1. It follows directly the g is the cokernel of f in €. Hence € has cokernels.

Conversely assume that € has cokernels. We first show that Flat(Mod—€) has cokernels. Let
a : F' — G be a morphism in Flat(Mod—¢). It is well-known that we can write F' = l'inP (X)),
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G = 1'£>nP(Y>\) and a = 1'£>nP(a>\). Consider the exact sequences Xy — Yy — Z\ — 0 in
¢. Since direct limits are exact, the sequence liLnP(XA) - l'inP(YA) — liLnP(ZA) — 0is
exact in Flat(Mod—¢€). Hence Flat(Mod—¢) has cokernels. Now let M be in Mod—¢€ and let
P, % Py 5 M — 0 be a projective presentation of M. Let § : Py — Fj; be the cokernel of
in Flat(Mod—¢). There exists a unique morphism 7 : M — F); such that § = eo 7. We claim
that 7 is the flat reflection of M. Indeed let f : M — G be a morphism with G flat. Then
aoeo f =0, hence there exists a unique morphism g : Fjy — G in Flat(Mod—¢), such that
eof=[Fog=¢€eoTog. Since € is epic, we have f = 7 0 g. Clearly g is the unique morphism
with this property. This shows that Flat(Mod—¢) is reflective in Mod—¢.

() & (0) We prove only the parenthetical case. First suppose that € has cokernels.
Then according to Proposition 7.1, M is FP-injective iff M preserves cokernels. It follows
directly that the cokernel of a morphism between FP-injective functors is FP-injective. Since
FPInj(€—Mod) is closed under coproducts, it follows easily that FPInj(€—Mod) has colim-
its and the inclusion I : FPInj(€—Mod) — €—Mod preserves them. A cardinality argument
as in [19] p.119, shows that FPInj(€¢—Mod) has also a generating set. So by the Special
Adjoint Functor Theorem, FPInj(¢—Mod) is coreflective. Conversely let FPInj(€—Mod) be
coreflective. Then FPInj(€—Mod) is closed under direct limits, so by [46] € is left coher-
ent. Let 0 — F i) F, % F, be an exact sequence where Fp, Fy are flat right modules.

Then we have the exact sequence D(Fp) Dla), D(Fy) D), D(F;) — 0 in €—Mod, where

D(M)(—) =2Ab(M(—),Q/Z). Obviously D(Fp), D(Fy) are FP-injective. Since FPInj(€—Mod)
has cokernels, D(F) is FP-injective. Using Proposition 7.1 we see that Fb is flat. This im-
plies that w.gl.dim€—Mod < 2 or equivalently that for the abelian category B(€) we have
gl.dimB(¢) < 2. Then by Proposition 4.5, € has cokernels. Finally the equivalence (a) < ()
follows from the fact that €—mod & B(€)°P which is abelian iff € is left coherent.

(3) If Proj(Mod—¢) is covariantly finite, then as in the proof of Proposition 7.5, it follows
that Proj(Mod—¢) is closed under products. By Chase’s Theorem (which by standard argu-
ments is true in our setting), € is left coherent and Mod—¢€ is perfect. Conversely if Mod—¢€
is perfect and € has weak cokernels, then the assertion follows from (2) since any flat module
is projective.

(4) If Mod—¢ is locally Noetherian, then € is right coherent and the injective modules
coincide with the FP-injective ones. So by (2), Inj(Mod—¢) is contravariantly finite. Conversely
if this holds, then it is easy to see that Inj(Mod—¢) is closed under coproducts. Hence by [24],
Mod—¢ is locally Noetherian. The parenthetical case is easy and is left to the reader. [l

7.3. Auslander Categories, the Abelianness of Flat Functors and Consequences

We recall that Mod—¢ has weak dominant dimension greater or equal than n, notation
w.dom.dimMod—¢€ > n, if in any injective resolution of any flat module, the first n terms are
flat. The next result generalizes results of Stauffer [45] and answers a question of Simson [43],
see also [25] for a similar result obtained indepedently.

Theorem 7.7. The following statements are equivalent:
(1) Flat(Mod—C€) is an abelian category.
(2) FPInj(¢—Mod) is an abelian category.
(3) The following conditions are true:

(a) € is left coherent.
(b) w.gl.dimMod—¢€ < 2.
(¢) w.dom.dimMod—¢€ > 2.
Moreover if one of the above equivalent statements is true then Flat(Mod—¢€) is a Grothendieck

category (hence has injective envelopes and an injective cogenerator) and the injective objects
of Flat(Mod—¢€) are the flat-injective right modules.
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Proof. (1) & (2) By Theorem 7.6, Flat(Mod—¢) is reflective in Mod—€ iff FPInj(€—Mod) is
coreflective in €—Mod. Using this remark the rest is easy and is left to the reader.

(1) = (3) Suppose that Flat(Mod—¢) is abelian. Since Flat(Mod—¢) has coproducts and
a set of generators, and the direct limits are exact since they are computed in Mod—C,
Flat(Mod—¢) is in fact a Grothendieck category. Consider the functor he : € — Flat(Mod—¢),
given by he(X) = €(—,X) and let I : Flat(Mod—¢€) — Mod—¢€ be the functor defined
by I(F) = Mod—¢€(he(—), F). Obviously I is (isomorphic to) the inclusion Flat(Mod—¢)
— Mod—¢€. By [49], the functor I has a left adjoint S : Mod—€ — Flat(Mod—¢). Hence
Flat(Mod—¢) is a reflective subcategory of Mod—¢€ and by Theorem 7.6, the category € has
cokernels. Then by Proposition 4.5 the category B(€) is abelian and gl.dimB(¢€) < 2. Since
B(€) ~ (€—mod)°?, we have that w.gl.dimMod—¢€ < 2. Now let f : A — B be a €—morphism,

and consider the exact sequence 0 — F LN ¢(—, A) LoD, ¢(—, B) in Flat(Mod — €).
Since F is flat, F' can be written as a direct limit F' := lim€(—, X;). Consider the natu-
—

ral epic a : ®€(—, X;) — lim€(—, X;) — 0. Setting v = a o 3, we have an exact sequence
—

ae(—, X)) 5 ¢(—,A) 229 ¢(~ B) in Mod—¢. By Ulmer’s Flatness Criterion [49], the
left adjoint S of the inclusion I : Flat(Mod—€) < Mod—¢ is exact. Then U := Ker(S) is a
localizing subcategory of Mod—¢€, and (Mod—¢)/U =~ Flat(Mod—¢€). Then the flat modules
are exactly the U/ —closed objects, with respect to the localizing subcategory U. By [39] for
any flat module F', w.dom.dimF > 2. Hence w.dom.dimMod—¢€ > 2.

(3) = (1) Suppose that the conditions (a), (b), (¢) are true. Since € has weak cokernels, as
in the proof of Theorem 7.6, we have that any product of flat functors in Mod—¢ is flat. Let
W = Sub(Flat(Mod—¢)) be the full subcategory of Mod—¢€ generated by the submodules
of flat modules. Let 0 — G % F be an inclusion, where F € Flat(Mod—¢), and let 3 :
G — E(G), v : F — E(F) be injective envelopes in Mod—€. Then there exists a morphism
0 : E(G) - E(F) with a0y = f04. Since 8 is an essential monic, § is monic. Hence E(G) is a
direct summand of E(F'). By condition (¢), E(F') is flat; hence E(G) is flat. We conclude that
W is closed under injective envelopes. Obviously W is closed under subobjects and since any
product of flat functors is flat, W is closed under products. Using that W is also closed under
injective envelopes, it is easy to see that }V is also closed under extensions. Hence W is the
torsion free subcategory of a torsion theory (7,W) in Mod—¢€, in which the torsion part T is
a localizing subcategory of Mod—¢, (see [39]), and in which obviously any flat-injective is a
T —closed object. Since any flat module has weak dominant dimension greater or equal to two,
we have by [39], that any flat module is a T —closed object. Now let F' be a T —closed object.
Then obviously F € W, hence there exists a short exact sequence (1) 0 = F % Qo YN H S0
with Qo a flat module. Consider the canonical short exact sequence 0 — H; — H 4, Hy; — 0
with Hy € T and Hy € W. Then the pull-back of (1) along the morphism ¢ factors through b
since F' is T —closed and Hy € 7. Let e : Hy — Q9 be a morphism with e o b = ¢; since c is
monic also e is monic and then since H; € T and 9 € W, we have H; = 0. Hence H € W,
and thus there exists a short exact sequence (2) 0 — H ER Q1 L L — 0 with Q; a flat module.
Since w.gl.dimMod—¢ < 2, from the exact sequence 0 — F % Qg % ()1 we have that F' is
flat. We conclude that Flat(Mod—¢) coincides with the full subcategory of T—closed objects.
Hence Flat(Mod—¢€) is an abelian category.

If Flat(Mod—C¢) is abelian then, as observed above, Flat(Mod—¢) is in fact a Grothendieck
category which is a Giraud subcategory of Mod—€. It follows that Inj(Flat(Mod—¢)) consists
of all flat-injective modules by [47]. O

As a direct consequence of the above result we have the following, see also [44].

Corollary 7.8. A locally finitely presented additive category G is abelian (Grothendieck) if and
only if £.p.(G) is left coherent, w.gl.dimMod—{.p.(G) < 2 and w.dom.dimMod—{f.p.(G) > 2.
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Further a locally finitely presented additive category G is a module category iff £.p.(G) ~ A(C)
for an additive category €. In this case G =~ Mod—¢.

There is up to equivalence a bijective correspondence between locally finitely presented abelian
categories G and skeletally small left coherent additive categories € with split idempotents such
that w.gl.dimMod—¢€ < 2 and w.dom.dimMod—¢€ > 2. The correspondence is given by:

G —f.p.(G) and €~ Flat(Mod—C).

Corollary 7.9. A skeletally small additive category € is abelian iff Flat(Mod—¢) is locally
coherent iff € is coherent, w.gl.dimMod—¢C < 2 and w.dom.dimMod—¢€ > 2. If this is the case,
then € is Noetherian iff Flat(Mod—¢€) is locally Noetherian. Moreover the maps

¢ — Flat(Mod—¢) and G — f.p.(G)

are mutually inverse bijections between skeletally small, resp. Noetherian, abelian categories
and locally coherent, resp. locally Noetherian, Grothedieck categories.

Proof. This follows from our previous results and the fact that if Flat(Mod—¢) is locally
coherent, then € = f.p.(Flat(Mod—¢)) is abelian. O

If ¢ is a locally finitely presented, then following [41], [31], the conjugate category of € is
defined by € = Flat(f.p.(€)—Mod). It is easy to see that ¢ =¢and f.p.(@) =fp.(€)°r. If Cis
skeletally small, then Mod—¢€ = Flat(A(€)—Mod) and €—Mod = Flat(Mod—B(€)). We recall

from section 4, that a pair (€,D) of additive categories is called a Morita pair if there exists
an equivalence A(¢) = B(®) and a category € is called dualizing if (€, €) is a Morita pair.

Lemma 7.10. (i) (¢,D) is a Morita pair iff ©—Mod ~ Mod—¢ iff Mod—€ ~ D—Mod. In
particular € is dualizing iff €—Mod ~ Mod—C iff Mod—¢€ ~ €—Mod.
(ii) Let (€,D) be a Morita pair. Then Mod—C€ is locally Noetherian iff Mod—2 is perfect iff

D—Mod is locally Artinian. Similarly ©—Mod is locally Noetherian iff €—Mod is perfect
iff Mod—¢ is locally Artinian. In particular Mod—¢€ is locally finite iff so is D—Mod.

(iil) If € is dualizing, then Mod—¢ is perfect (locally Noetherian) iff Mod—€ is locally Noethe-
rian (perfect) iff €—Mod is locally Artinian. In particular Mod—¢€ is locally finite iff
¢—Mod is locally finite.

Proof. If (€,®) is a Morita pair, choose an equivalence D : A(¢) = B(D). Then Mod—¢ =
Flat(A(€)—Mod) = Flat(B(®)—Mod) ~ ®—Mod, where the last equivalence follows from
Corollary 7.2. Similarly ®—Mod ~ Mod—€. If Mod—€ ~ D—Mod, then f.p.(Mod—¢) ~
f.p.(®—Mod) = A(€)? =~ B(D)° = A(€) ~ B(D), so the pair (¢, D) is Morita. If this is the
case, then @ is left coherent, so by [41], Mod—¢ is locally Noetherian iff Mod—¢ = D—Mod
is coperfect. Then by [43], ®—Mod is coperfect iff Mod—D is perfect. Since A(€) ~ B(D), we
have that Mod—¢ is locally Noetherian iff D —Mod is locally Artinian. The proof of the other
assertions is similar. |

The next result generalizes parts of a theorem of Tachikawa [48].

Corollary 7.11. The following statements are equivalent:
(i) Proj(Mod—¢€) is an abelian category.
(i) Mod—¢€ is a perfect Auslander category.
If condition (1) or (ii) is true, then Proj(Mod—¢) is a Grothendieck category.
Proof. If Proj(Mod—¢) is an abelian category, then using the same arguments as in the pre-
vious Theorem, we have that Proj(Mod—¢) is a reflective subcategory of Mod—¢€. Hence by

Theorem 7.6, Mod—¢€ is perfect. By Theorem 7.7, Mod—¢€ is a perfect Auslander category.
The converse also follows from Theorem 7.7. O
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For the notion of pure semisimplicity we refer to [43].

Corollary 7.12. The following statements are equivalent:
(i) Mod—€ is pure semisimple.
) There exists an equivalence A(Mod—¢€) ~ Mod—A(€).
(iii) Mod—A(€) is an Auslander category over a left coherent category.
) Proj(Mod—A(€)) is an abelian category.
(v) The Auslander category F(€) of € is Noetherian.

In particular Mod—¢€ and €—Mod are pure-semisimple iff the Auslander category F (&) of €
is finite length category, i.e. is Artinian and Noetherian.

Proof. (i) = (ii) First note that by [43], Mod—€ be pure-semisimple iff Mod—A(€) is per-
fect. If this holds then Mod—¢€ = Flat(Mod—.A(¢)) = Proj(Mod—.A(€)). Hence Mod—A(¢) =
A(Proj(Mod—A(¢))) ~ A(Mod—¢€). (ii) = (iii) The equivalences Mod—A(¢) ~ A(Mod—¢€) ~
AB(Inj(Mod—¢)) show that Mod—.A(€) is the Auslander category of Inj(Mod—¢), which is ob-
viously left coherent. (iii) = (iv) If Mod—.A(€) is Auslander, then it is of the form AB(D) where
® = ProjInj(Mod—.A(€)). Since Proj(Mod—.A(€)) = Proj(AB(D)) = B(D), and since by hy-
pothesis D is left coherent, we have that B(®) and consequently Proj(Mod—.4(€)) is abelian.
(iv) = (i) By Corollary 7.11, Mod—.A(€) is perfect and by [43], Mod—€ is pure semisimple.
(i) = (v) Since the pair (B(¢), A(¢)) is Morita, Lemma 7.10 implies that Mod—B(¢) is lo-
cally Noetherian iff Mod—.A(€) is perfect iff Mod—¢ is pure semisimple. Then the equivalence
(i) & (v) follows using that f.p.(Mod—B(¢)) = mod—B(€) =~ F(¢€). O

As an easy consequence we have the following result of Auslander [3].

Corollary 7.13. The following are equivalent
(i) F(€) ~ f1.Mod—-T', where f1.Mod—T are the finite length modules over a ring T.
(ii) () € is a Krull-Schmidt category and Y € €: € = add(Y).
(8) The ring A := Ende(Y) is representation finite.
(v) T =2 Endp (@7, X;)°?, where {X1,..., X} is a complete set of non-iso-morphic in-
decomposable finitely presented right A—modules.

Combining Corollaries 7.11 and 7.12 with the above result we have the following.

Corollary 7.14. There is up to equivalence a bijective correspondence between locally finitely
presented pure semisimple abelian (Grothendieck) categories and perfect Auslander module
categories. The correspondence is given by:

G — Mod—f.p.(G) and Mod—¢€ — Proj(Mod—¢).

This correspondence induces a bijection between Morita equivalence classes of rings of finite
representation type and Artinian Auslander rings.

For any additive category € we denote by Znd(€) the category of Ind-objects over € and
by Pro(€) the category of Pro-objects over € [26], [45]. It is well known that Znd(¢) ~
Flat(Mod—¢) and Pro(€) ~ Flat(€—Mod)°?, so there exists a duality Pro(€)°? ~ Ind(C°P) =

Ind(€). Hence Theorem 7.7 gives necessary and sufficient conditions for Znd(€) to be an
abelian (Grothendieck) category. Moreover we have the following consequence.

Corollary 7.15. The following conditions are equivalent:
(i) Pro(€) is an abelian category.
(ii) Pro(€) is a CoGrothendieck category, i.e. its dual is Grothendieck.

(iii) The following conditions are true:
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(a) € is right coherent.

(b) w.gl.dim€—Mod < 2.

(¢) w.dom.dim€—Mod > 2.
If one of the above statements is true then Pro(€) is a bicomplete abelian category with projec-
tive covers and exact inverse limits and admits a projective generator. Moreover the category
Proj(Pro(€)) coincides with the dual of the full subcategory of flat-injective left €—modules.

Proof. Obviously (i) & (ii). If (i) is true, then Pro(€)°? = Flat(€—Mod) is abelian and (iii)
follows from Theorem 7.7. If (iii) holds, then by Theorem 7.7, Flat(€¢—Mod) is Grothendieck,
so its dual Pro(€) is abelian and the remaining assertions follow. O

Corollary 7.16. A skeletally small additive category € is abelian iff Pro(€)°P is locally co-
herent iff € is coherent and w.gl.dim€—Mod < 2 and w.dom.dim&€—Mod > 2. If this is the
case, then € is Artinian iff Pro(€)°P is locally Noetherian. Moreover the maps

¢ — Pro(€)°? and G — f.p.(Pro(€)°P)

are mutually inverse bijections between skeletally small, resp. Artinian, abelian categories and
locally coherent, resp. locally Noetherian, categories.

Remark 7.17. If ¢ is an abelian category, then by Theorem 7.7 the Ind-category Znd(€) is
abelian. If moreover € is Noetherian then by an old result of Oort, see [38], the inclusion € —
Ind(€) induces bijections Exty (A, B) = Extgnd(c) (A,B),Vn > 0,VA, B € €. This implies by
devissage that the inclusion ¢ < Znd(€) induces a full exact embedding D°(€) — D (Znd(¢))
between the corresponding bounded derived categories. Dually if € is an Artinian abelian
category, then the inclusion € — Pro(€) of abelian categories induces a full exact embedding
Db(€) < DP(Pro(¢)). These observations can be used to define right derived functors of
additive functors € — @, if € and D are Noetherian without injectives, resp. Artinian without
projectives. For instance let € and ® be Artinian categories and F' : € — D be an additive
functor. Since Pro(€) has enough projectives, the induced functor Pro(F) : Pro(€) — Pro(D)
admits a left derived functor L~ (Pro(F)) : D~ (Pro(€)) — D (Pro(®)), see [51]. If the
cohomology objects H* (L™ (Pro(F)(X))) lie in the Serre subcategory D of Artinian objects of
Pro(®), VX € ¢, then F admits a left derived functor L* (F) : Db(¢) — Db(D). Dual remarks
are applied for functors between Noetherian categories, see [29].

This procedure can be used to define “right derived” functors of additive functors F': &€ —
b, in case the additive category € satisfies the conditions of Theorem 7.7, since any such F
extends uniquely via the inclusion € < Znd(€), to an additive functor F* : Znd(€) — b which
commutes with filtered colimits. Since Znd(€) is a Grothendieck category, the sequence of right

derived functors R*F" exists, and we can consider the composite € < Znd(¢) R b as a
sequence of right derived functors of F. Dual remarks are applied for left derived functors.

Another direct consequence of Theorems 7.6, 7.7, Corollary 7.15 and its dual, is the following
classical result which leads to the full imbedding theorem.

Corollary 7.18. If € is an abelian category, then the categories Lex(€°P, 2Ab), Lex(&,2Ab) are
Giraud and the categories Rex(€°P 2Ab), Rex(€,2b) are co-Giraud subcategories of Mod—¢,

¢—Mod respectively. The category € has full exact imbeddings and is closed under extensions
in Lex(€°P,2Ab), Lex(€,2Ab).

More generally any additive category € which satisfies the conditions of Theorem 7.7, resp.
of Corollary 7.15, admits a full embedding into a module category, which preserves the existing
exact structure.

We close this section showing that in case € is coherent, the abelianness of the category of
flat modules over € is a symmetric condition, see also [44].
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Theorem 7.19. If € is a skeletally small additive category, then the following are equivalent:
(i) € is right coherent and Flat(Mod—¢) is abelian.

(ii) < s left coherent and Flat(€—Mod) is abelian.

(iii) The categories Ind(€) and Pro(€) are abelian.

(iv) € is an abelian category.

Proof. (i) & (iii) If € is right coherent and Flat(¢—Mod) is abelian, then by Corollary 7.9,
¢ is abelian. Conversely if € is abelian, then obviously € is left and right coherent. Moreover
is this case Flat(Mod—C¢) is identified with the category Lex(€°P 2b) of left exact functors
¢°P — 2Ab. Hence Flat(Mod—¢) is is abelian by Corollary 7.9. The proof of (ii) < (iv) follows
by duality and the proof of (iii) < (iv) follows by our previous results. O

(From Corollaries 7.9 and 7.11, we have the following, see also [44] for a related result.

Corollary 7.20. Let € be a coherent category. If €—Mod and Mod—C are perfect, then the
following conditions are equivalent:

(i) Mod—¢ is an Auslander category.
(ii) €—Mod is an Auslander category.

We leave to the reader to state and prove the analogous results of Corollary 7.9, Theorem
7.11, for the case of FP-injective or injective modules, and we refer to the work of Simson and
Garcia [44] for further related results.

8. Free Homological, Triangulated and Weak Abelian Categories

In this section we study the Freyd categories of (left or right) triangulated, and more
generally, of weak abelian categories.

8.1. Free Homological Categories
Suppose that (€, Q, A) is a left triangulated category. We recall that an additive functor H :

¢ — D to an abelian category D is called homological, if for any triangle Q(C) LNYRENY; JEN

C € A, the sequence H(A) ), H(B) LICIN H(C) is exact in D. A cohomological functor

is a contravariant homological functor. (Co-)homological functors from (right) triangulated
categories are defined similarly.

A free homological category over a left (right) triangulated category (€,Q, A), is a pair
(H,H) where H is an abelian category and H : € — # is a homological functor, satisfying the
following universal property:

(f) if F': € —» ® is homological functor to an abelian category ©, then there exists a
unique exact functor F* : H — 2, with the property F*H = F.

Theorem 8.1. If € is a left (resp. right) triangulated category then the pair (Pe, A(€)) (resp.
(Qe, B(T)) ) is the free (co)-homological category over €. Any left (resp. right) triangulated cat-
egory is fully embedded via a homological functor to an abelian category with enough projectives
(resp. injectives) as the full subcategory of projective (resp. injective) objects.

Proof. Since € is left triangulated, any morphism f : B — (' is embedded in a triangle

Q(C) hatplicoe A, which trivially can be extended to a weak-kernel sequence over
the morphism f. Hence any morphism in € has a weak kernel and by Proposition 4.5, A(¢)
is abelian. By Corollary 4.7, the functor P¢ : € — A(€) is homological. If F' : € — D is
a homological functor to an abelian category ©, then from Corollary 4.7, the functor F' :
A(€) = D is the unique exact functor with F'P¢ = F. The rest follows from Proposition 3.6
(¢ as always has split idempotents). The parenthetical case is dual. O
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Corollary 8.2. Let (€,Q,A) be a left triangulated category. If Q™ = 0, then gl.dimA(€) <
3-n — 1. More generally if € is Q—regular in the sense that VA € €,3ng > 0: Q"4 (A) =0,
then A(€) is homologically regular in the sense that any object has finite projective dimension.
If Q is full and faithful, then gl.dimA(€) = 0 or co. In particular if € is abelian with enough
projectives (injectives), and gl.dim® < n, then gl.dimA(¢) = gl.dimB(¢) < 3-n — 1.

Proof. Consider the exact endofunctor
A(2) - A(Q) = A(Q),  A(w){A, f, B} = {Q(A), Q(f), UB)}-

¢ From the projective resolution of {4, f, B} induced by a triangle with base morphism f, we
see that {Q(A4),Q(f),Q(B)} is a third syzygy. Inductively A(Q)"*{A4, f, B} is a 3 - n—syzygy
of {A, f,B}. Hence if Q™ = 0, then gl.dimA(¢) < 3 -n — 1. Obviously p.d{4, f, B} < oo
< dn > 0: {Q"(A), Q" (f), Q"(B)} is projective. But {Q"(A4), Q"(f), Q2" (B)} is projective <
dg : Q"(B) — Q"(A) with Q"(f) o go Q" (f) = Q"*(f). If Q is fully faithful this implies that
foho f=f, where Q"(h) = g and this means that {A, f, B} is projective. Since any object
of finite projective dimension is projective, we see that gl.dimA(€) = 0 or co. O

Corollary 8.3. If (¢,Q,A) is triangulated, then the pairs (Pe, A(®)), (Qe, B(E)) are free
homological categories over €, and there exists a unique equivalence D : A(€) a B(€) with
DP¢ = Qe¢. The Freyd category A(€) is Frobenius, and any triangulated category is imbedded
via a homological functor to a Frobenius abelian category as the full subcategory of projective-
injective objects.

Proof. Since € can be considered as a left and right triangulated category, the first part
follows from Theorem 8.1. From the universal property of the free homological category, it
follows that there exists a unique equivalence D : A(€) = B(¢) with DP¢ = Q. Since A(€)
has projectives and B(€) has injectives, the equivalence D and the relation DP¢ = Q¢ show
that A(€) has projectives and injectives, and the projectives and the injectives coincide. O

. From Corollary 8.3 we see that a triangulated category is dualizing with Frobenius abelian
Freyd categories. Hence gl.dimA(€) = gl.dimB(€) = 0 or oo. Trivially gl.dimA(€) = 0 iff
the triangulation A of € consists only of split triangles, where a triangle is called split if it is
isomorphic to a triangle of the form Q(C) %A AeB-B.

Let Ag C A be the full subcategory of split triangles. The next result describes the stable
category A/Ay.

Proposition 8.4. If (€,Q,A) is triangulated, then (A, Ag) is a homotopy pair, the stable
category AJ/Ag is triangulated and there are triangle equivalences:

Al@) = A/A, & B(0).

Proof. We leave to the reader the proof that (A, Ag) is a homotopy pair, noting only that the
loop functor of A/Ag is the first rotation of the triangles in A, when we view these in A/Ay.
Now define a functor F': A — A(€) as follows. F(E) = {B, f,C}, if E := Q(C) LNJEN B~i>
C € A, and F(a,b,c) = {b,c}. From the axioms of a triangulated category, the functor F' is
full and dense. Hence composing F' with the functor @ : A(€) = A(C), we obtain a full and

surjective on objects functor F' : A — A(€). Suppose that (a,b,c) : (E1) — (F2) is a morphism

of triangles, where (E;) : Q(C}) LINIINY ;3 ELN C;,i = 1,2, and let F(a,b,c) = 0. Then
the morphism {b,c} : {Bi, f1,C1} — {Ba, f2,C2} factors through the morphism {0,1¢,} :
P(C3) = {Bs, f2,C2}. Analyzing this situation we see that In : C; — Cy,m : C1 — Ba, such
that: c —n =mo fo, fion = 0. Hence c = mo fo +n. Then fioc= fromo fo + fron =
bofo= fiomofo=(b—fiom)=0=b— fiom =togs, since g2 is a weak kernel of
f2- Hence b = f; om + t o go. This implies that the morphism (a,b,¢) is homotopic to zero,
when we view the triangles (E;) as complexes. It is not difficult to see that this implies that
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(a,b,c) factors through the right Ag—approximation of (E3). Thus (a,b,c) is zero in A/Ay.
Since F' vanishes on Ay, there is an induced full dense functor F' : A/Ag — A(€), and the

above argument shows that F' is an equivalence. Since A(€) is Frobenius, the stable category
A(@) is triangulated [10]. The easy proof that F' preserves triangles is left to the reader. O

In [35] it is proved that if we consider the triangles of a triangulated category as (short)
3—periodic complexes, then the cone of a morphism of triangles is not necessarily a triangle.
However from Proposition 8.4 we deduce easily the following.

Corollary 8.5. If (€,Q,A) is triangulated and (E1) — (E3) is a morphism of triangles,
then there exists a split triangle (Ey), such that (Ep) ® Cone{(E1) — (E»)} is a triangle. If
F:¢ — D is a (co—)homological functor to an abelian category, then F induces a long exact
sequence in D, if we apply F' to Cone{(E,) — (E»)}.

8.2. Weak Abelian Categories
Definition 8.6. An additive category € is called weak abelian if € is coherent and any
morphism in € is a weak kernel and a weak cokernel.

A sequence --- — A;4 LN A; LN Aiy1 — -+ in a weak abelian category € is called
weak exact iff f;_q is a weak kernel of f; and f; is a weak cokernel f; 1. A homological functor
H : ¢ — D from a weak abelian category € to an abelian category ®, is an additive functor
sending weak exact sequences in € to exact sequences in D. If €, are weak abelian categories,
then a functor F' : € — D is called weak ezxact if F' preserves weak exact sequences.

If ¢ is a weak abelian category, then a free homological category over € is a pair (H, ®(¢))
consisting of a homological functor H : € — ®(€) to an abelian category ®(¢), such that
for any homological functor F' to an abelian category ®, there exists a unique exact functor
G : ®(¢) —» D such that GH = F.

The following theorem contains a simple proof of a result of Freyd [20], (see also [28]). We
note that Freyd’s description of the free homological category of a weak abelian category is
slightly different.

Theorem 8.7. (i) If € is a weak abelian category, then the pairs (P¢, A(€)), (Qe,B(€)) are

free homological categories over € and there exists a unique equivalence D : A(C) = B(C) with
DP¢ = Qe¢. In particular € is dualizing and the free homological category over € is Frobenius
abelian. Moreover for an arbitrary category ® the following are equivalent:

(o) @ is a free homological category.
(B) @ is a Frobenius abelian category.

If one of the above equivalent statements is true, then ® ~ A(€) =~ B(C), where € is the full
subcategory of projective-injective objects of .
(ii) For an additive category € the following are equivalent:
(o) A(€) is a Frobenius (functor) module category.
(B) € is a weak abelian category with coproducts and a (set of) compact split generator(s).
)

(v) There exists a QF-ring A and an equivalence € = Proj(Mod—A).

Proof. Part (i) follows from the previous results and part (ii) follows from Proposition 4.15.
We note only that the category of projectives = injectives in a Frobenius abelian category
trivially form a weak abelian category. O

By the above Theorem, any triangulated category is weak abelian.

Corollary 8.8. Any weak abelian category is balanced.



Homology, Homotopy and Applications, vol. 2, No. 11, 2000 180

Proof. Let f: A — B be monic and epic. Then P(f) is monic and Q(f) is epic. By Theorem
8.7, there exists an equivalence D : A(¢) = B(€) with DP¢ = Q¢. This implies that P(f) is
a bimorphism in A(€), hence P(f) is an isomorphism, since A(€) is abelian. Since P is fully
faithful, f is an isomorphism in €. O

.From the full exact embedding Theorem, we have the following.

Corollary 8.9. If € is a skeletally small weak abelian category, then there exists a ring A and
a full homological embedding H : € — Mod—A.

Lemma 8.10. Let € be a skeletally small additive category.
(1) If € is left coherent, the following are equivalent:

(i) Any morphism in € is a weak kernel.
(ii) Flat(€—Mod) C FPInj(€—Mod).
(iii) FPInj(Mod—¢) C Flat(Mod—¢)

(iv) Inj(Mod—¢) C Flat(Mod—¢).

(2) If € is right coherent, the following are equivalent:

(i) Any morphism in € is a weak cokernel.
(i) Flat(Mod—€) C FPInj(Mod—¢).
(iii) FPInj(¢—Mod) C Flat(¢—Mod).
(iv) Inj(€—Mod) C Flat(€—Mod).

Proof. (1) We fix a morphism f: A — B in € with weak cokernel g : B — C. Below we use
the following easy observation:

(%) if f is a weak kernel, then f is a weak kernel of g and ¢(—, A) —» &(—,B) — ¢(—,C) —
H — 0 is the beginning of a projective resolution of H := Coker(—, g).

(i) & (ii) Let FF € €-Mod and G € €—mod, where G = Coker(f,—) for a morphism
f:A— Bin € with weak cokernel g : B — C. Let H := Coker(—, g) € mod—¢. Using obser-
vation (x) above, Ext![G, F] = Ker(Fg)/Im(Ff). Hence Tori[H,F] = Ker(Fg)/Im(Ff) =
Ext'[G, F]. Thus if F is flat then since € is left coherent, F' is FP-injective. Conversely
since VX € €, €(X,—) is FP-injective, if A 1 B % C is a weak cokernel diagram, then
Ext'[G,€(X,-)] = 0 where G = Coker(f,—), which implies that ¢(—, A) — &(—,B) —
¢(—,C) is exact, i.e. f is a weak kernel of g.

(i) & (iii) Let F € Mod—¢ and G € €—mod, where G = Coker(f,—) for a morphism
f: A — Bin € with weak cokernel g : B — C. If H := Coker(—,g) € mod—¢€, then using
observation (x) above, we have Tori[F,G] = Ker(Ff)/Im(Fg) = Ext'[H, F]. Now if F is
FP-injective, then since € is left coherent, we have Tor;[F,G] = 0, Vi > 1, VG € €—mod,
so F is flat. Conversely since VX € €, the character module D&(X, —) = Ab(¢(X, —),Q/Z)

is FP-injective, DE(X, —) is flat. Hence if A 1. B % O is a weak cokernel diagram, then
0 = Tor;[DE(X, —), Coker(f,—)] = the homology of the complex D&(X,C) — D&(X,B) —
D¢ (X, A). Since D reflects exactness, the complex €(X,A) — €(X,B) — €(X,C) is exact
VX € ¢, so fis a weak kernel of g.

(iii) & (iv) The direction (iii) = (iv) is trivial. Let f : A — B be a morphism in € with
weak cokernel g : B — C'. For any X € €, the character module D&(X, —) is injective, hence by
(iv) is flat. Then as in the proof of (iii) < (ii), f is a weak kernel of g. So (i) and consequently
(iii) is true. (2) Similar to the proof of (1). O

The next Proposition contains a useful characterization of weak abelian categories in the
skeletally small case (see also Corollary 4.9 for another one in the general case).

Proposition 8.11. For a skeletally small additive category €, the following are equivalent:

(i) € is weak abelian.
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(ii

(iii

Flat(Mod—¢) = FPInj(Mod—¢).
Flat(€—Mod) = FPInj(¢—Mod).
(iv) Inj(Mod—C€) C Flat(Mod—¢) and Inj(€—Mod) C Flat(€—Mod).
(v) € is coherent and Inj(Mod—¢€) C Flat(Mod—¢).
(vi) € is coherent and Inj(€—Mod) C Flat(€—Mod).
Proof. By Lemma 8.10, (i) implies (ii), (iii), (iv), (v), (vi). If Flat(Mod—¢) = FPInj(Mod—¢),
then obviously Flat(Mod—€) is closed under products and FPInj(Mod—¢€) is closed under

direct limits. Hence by [37], € is left coherent and by [46], € is right coherent. Then (ii) = (i)
follows from the above Lemma. The rest of the proof is similar using the above Lemma. O

)
)
)
)

Remark 8.12. If ¢ is triangulated, let Coh(€°P,2(b) be the category of cohomological functors
¢oP — Ab, and Hom (€, Ab) the category of homological functors € — 2Ab. Since any triangu-
lated category is weak abelian, by Proposition 7.1, we have the following identifications:

Coh(€°P,Ab) = FPInj(Mod—¢) = Flat(Mod—¢)
Hom(€,Ab) = Flat(€—Mod) = FPInj(€—Mod).

The next result which follows directly from Lemma 8.10, characterizes the weak abelian
categories such that their Freyd categories have finite global dimension.

Corollary 8.13. For the category € the following are equivalent:
(i) € is von Neumann reqular.
(ii) The functor P : € — A(C) is an equivalence.
) The functor Q : € — B(€) is an equivalence.
(iv) FPInj(Mod—¢) = Mod—.
) Flat(Mod—¢€) = Mod—¢€.
) Flat(Mod—C¢) is abelian and any injective module is flat.
(vil) € is weak abelian and gl.dimA(¢) < co.

Any one of the above is also equivalent to its dual, replacing € by €°P. If (i) holds, then € is
semisimple abelian iff Mod—¢€ is locally Noetherian or locally Artinian or perfect.

We have seen that any weak abelian category has Frobenius Freyd categories. The next
result characterizes the categories with Frobenius module categories.

Theorem 8.14. For a skeletally small additive category €, the following are equivalent:
(i) Mod—¢ is Frobenius.
(ii) € is weak abelian and A(C), or equivalently B(€), is Noetherian.

(iii) € is weak abelian and Mod—¢ is locally Noetherian or equivalently perfect, or equivalently
¢—Mod is locally Artinian.

(iv) € is weak abelian and Proj(Mod—¢), resp. Inj(Mod—¢), is closed under coproducts, resp.
products.

Proof. (i) = (ii) Since a coproduct of injectives is injective, Mod—¢€ is locally Noetherian
or equivalently mod—¢€ ~ A(€) is a Noetherian abelian category. In particular € is right
coherent. Let F' € Flat(Mod—¢€); then since F is a direct limit of representables and Mod—¢
is Frobenius, it follows that F' is injective. This implies trivially that projective, injective and
flat functors coincide. Hence a product of flat functors is flat and this implies that € is left
coherent. So € is coherent and then by Proposition 8.11, € is weak abelian.

(ii) = (i) Since € is weak abelian, € is coherent and by Proposition 8.11, Flat(Mod—¢€) =
FPInj(Mod—¢). Since A(€) is Noetherian, Mod—¢€ is locally Noetherian and the injectives
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coincide with the FP-injective modules. It follows that Flat(Mod—¢) = Inj(Mod—¢). By
Lemma 7.10, Mod—¢€ is perfect, hence Proj(Mod—¢) = Flat(Mod—¢€) = Inj(Mod—¢€) and
Mod—¢ is Frobenius. Since weak abelian categories are dualizing, the parenthetical case and
the remaining equivalences follow directly from Lemma 7.10 and Theorem 7.6. |

Remark 8.15. By a well-known result of Faith-Walker, for a ring A, the category Mod—A
is a Frobenius category iff A—Mod is a Frobenius category iff A is a Quasi-Frobenius ring. In
this case Mod—A, A—Mod are locally finite. However by [12] there exists a skeletally small
additive category € such that Mod—€ is Frobenius, but €—-Mod is not. In particular there
exists a Frobenius module category Mod—¢, which is not locally finite, thus giving a negative
answer to a problem of Roos [41]. We refer to [12] for details.

Recall that a ring A is called right self FP-injective if Ay is FP-injective. A is called self
FP-injective iff A is right and left self FP-injective. Also A is called a right IF-ring if every
right injective module is flat, and A is called an IF-ring if A is a left and right IF-ring [15].
The following is a direct consequence of Proposition 8.11 and generalizes results of [46], [15].

Corollary 8.16. For a ring A the folowing are equivalent:
(i) Pa is weak abelian, or equivalently mod—A is Frobenius.
(il) Ppor is weak abelian, or equivalently A—mod is Frobenius.
(iii) A is an IF-ring.
(iv) A is a coherent self FP-injective ring.
(v) A is coherent and any finitely presented left and right module is reflexive.

In particular: A is a QF-ring iff A is right Noetherian left coherent ring and any finitely
presented left and right module is reflexive iff A is a right perfect (right Artinian) left coherent
left self FP-injective ring iff A is a left perfect (left Artinian) right coherent right self FP-
injective ring iff A is a left Noetherian right IF-ring iff A is a right Noetherian left IF-ring.

We recall from section 7 that for an additive category € its category of Ind-objects Znd(€) is
defined as the full subcategory Flat(Mod—¢) of Mod—¢, its category of Pro-objects Pro(€) is
defined as Flat(€—Mod)°? and we have: Znd(A(¢)) = Mod—¢€ and Pro(B(€)) = (€—-Mod)°P.

If F:¢ — ® is an additive functor between abelian categories, then in general the right
derived functor R* (F) : D*(€) — D*(D) a la Deligne, see [17], does not exists. The reason is
that the image of R* (F) lies always in Znd(D* (D)), but not necessarily in its full subcategory
D*(®). Hence it is useful to know when the Ind-category of a triangulated, or more generally
weak abelian, category is triangulated. The next result presents a class of categories with the
property that their Ind-categories are triangulated. For further results in this direction we
refer to [12].

Theorem 8.17. Let € be a weak abelian category and suppose that the Auslander category
F(€) is Noetherian. Then Ind(<) is a covariantly finite subcategory of Ind(A(E)), the stable
category Ind(A(€))/Ind(€) is triangulated and there exists an equivalence:

Ind(A(€))/Ind(€) = Ind(A(¢)).

Proof. Since € is weak abelian, € is left coherent, so by Theorem 7.6, Znd(€) is covariantly
finite in Znd(A(€)) = Mod—¢€. By Theorem 2.2, the stable category Znd(A(€))/Znd(€) is
right triangulated. Since F(€) = mod—B(€) is Noetherian by [24], Mod—B(€) ~ Mod—A(¢)
is locally Noetherian. Hence its localized quotient Mod—¢ is also locally Noetherian. By The-
orem 8.14, the category Mod—¢ is Frobenius and Znd(¢) = Inj(Mod—¢). Hence the category
Ind(A(%))/Ind(€) is triangulated (see [10]).

Since € is weak abelian, by Theorem 8.7, A(€) is Frobenius, so by [10], A(€) is triangu-
lated. In particular A(€) is weak abelian. Since Mod—.A(€) is locally Noetherian as a localiz-
ing subcategory of the locally Noetherian category Mod—A(€) we deduce that Mod—A(C) is
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Frobenius. Hence Znd(A(€)) = Inj(Mod—A(€)). It follows from [24] (see also [32]) that the

quotient functor Mod—A(€) — Mod—¢€ induces an equivalence between the stable category
Inj(Mod—A(€))/Inj(Mod—¢) and the category Inj(Mod—.A(€)). But since A(€) ~ B(¢) and
Mod—A(€) is locally Noetherian we can identify Inj(Mod—A(€)) = FPInj(Mod—A(¢)) =
FPInj(Mod—B(€)). Since Mod—A(€), Mod—¢€ are Frobenius we have also the identifications
Inj(Mod—¢) = Znd(¢), Inj(Mod—A(€)) = Ind(A(€)). Using the above remarks and Corol-
lary 7.2 we have equivalences Znd(A(€)) ~ Mod—€ ~ FPInj(Mod—B(¢)) = Inj(Mod—B(¢))
~ Inj(Mod—A(€)). Hence the equivalence Inj(Mod—A(€))/Inj(Mod—¢) =~ Inj (Mod—.A(<))

induces the desired equivalence Znd(A(€))/Znd(€) ~ Ind(A(C)). O

Corollary 8.18. («a) Let € be a weak abelian category. If the Auslander category F(€) is
Artinian, then the Pro-category Pro(A(€)) is triangulated.

(B) Let € be a weak abelian category such that its Auslander category F(€) is a finite length
category. Then the categories Pro(A(€)), Ind(A(€)) are triangulated.

Proof. (a) €°P is weak abelian because € is weak abelian. It is easy to see that the equivalence
A(€°P) ~ B(€)°P ~ A(€)P of Proposition 3.6, induces an equivalence A(€)° ~ A(€°P). Hence
Pro(A(€)) = Ind(A(€)P)°P = Tnd(A(€))°P. Since the dual of a triangulated category is
triangulated, by Theorem 8.17 it remains to show that F(€°P) is Noetherian. But since (&)
is Artinian, F(€°P) = F(€)°P is Noetherian. (8) follows from («) and Theorem 8.14. O

Corollary 8.19. If € is triangulated and Mod—¢€ is pure-semisimple, then the stable module
categories mod—€, Mod—¢€, Mod—A(®) and the Ind-category Ind(A(€)) are triangulated.

The interpretation of the above results in the case of the module category of a ring leads
to the following result first proved in [33].

Corollary 8.20. If A is a QF-ring of finite representation type, then the stable module cat-
egories mod—A, Mod—A, Mod—(mod—A) modulo projectives, and the Ind-, Pro-categories
Ind(mod—A), Pro(mod—A), are triangulated.

Acknowledgement. I would like to thank Prof. Daniel Simson for pointing out to me his
joint paper with J.L. Garcia [44] and for some useful discussions.
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