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OMEGA-CATEGORIES AND CHAIN COMPLEXES

RICHARD STEINER

(communicated by Ronald Brown)

Abstract
There are several ways to construct omega-categories from

combinatorial objects such as pasting schemes or parity com-
plexes. We make these constructions into a functor on a cate-
gory of chain complexes with additional structure, which we
call augmented directed complexes. This functor from aug-
mented directed complexes to omega-categories has a left ad-
joint, and the adjunction restricts to an equivalence on a cat-
egory of augmented directed complexes with good bases. The
omega-categories equivalent to augmented directed complexes
with good bases include the omega-categories associated to
globes, simplexes and cubes; thus the morphisms between these
omega-categories are determined by morphisms between chain
complexes. It follows that the entire theory of omega-categories
can be expressed in terms of chain complexes; in particular we
describe the biclosed monoidal structure on omega-categories
and calculate some internal homomorphism objects.

1. Introduction

This paper is a contribution to the theory of strict ω-categories. In the past,
ω-categories have been constructed from combinatorial structures such as past-
ing schemes, parity complexes or directed complexes; see Johnson [6], Power [9],
Steiner [10] and Street [12]. The constructions are not really functorial, although
there are ways to produce non-obvious morphisms; see Crans-Steiner [4]. The com-
binatorial structures can be regarded as bases for chain complexes, as observed by
Kapranov and Voevodsky in [7]. We will reinterpret the constructions as a functor on
a category of chain complexes with additional structure called augmented directed
complexes, and we will show that the functor has a left adjoint. The adjunction
is related to the well-known equivalence between the categories of chain complexes
and of ω-categories in the category of abelian groups; see Brown-Higgins [3] for
instance.

In the earlier treatments, it is shown that combinatorial structures which are in
a suitable sense loop-free produce free ω-categories. The functorial version of this
result says that the adjunction restricts to equivalences between certain pairs of full
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subcategories. The augmented directed complexes concerned are free chain com-
plexes with good bases, and the corresponding ω-categories have good sets of gen-
erators. These ω-categories include those associated to globes, simplexes and cubes,
which determine the entire theory of ω-categories (see Al-Agl-Brown-Steiner [1],
Al-Agl-Steiner [2] and Street [11]); thus the theory of ω-categories can be described
in terms of chain complexes. In particular the biclosed monoidal structure on ω-
categories can be described in terms of chain complexes, and we will calculate some
internal homomorphism objects. Homomorphisms between these ω-categories have
been studied by Gaucher in his work on higher-dimensional automata [5].

The adjunction between ω-categories and augmented directed complexes is de-
scribed in Section 2, bases for augmented directed complexes are described in Sec-
tion 3, generating sets for ω-categories are described in Section 4, the equivalences
between subcategories are described in Section 5, relations with earlier work are de-
scribed in Section 6, and the applications to the theory of ω-categories are described
in Section 7.

2. The adjunction

In this section we describe the adjunction between ω-categories and augmented
directed complexes. First we define the categories involved. For ω-categories we use
the following description and notation.

Definition 2.1. An ω-category is a set with unary source and target operators d−0 ,
d+
0 , d−1 , d+

1 , . . . and not everywhere defined binary composition operators

(x, y) 7→ x #0 y, (x, y) 7→ x #1 y, . . .

such that the following hold:
(i) x #n y is defined if and only if d+

n x = d−n y;
(ii) for every x there exists n such that d−n x = d+

n x = x;
(iii) for any x,

dβ
mdα

nx =

{
dβ

mx if m < n,

dα
nx if m > n;

(iv) for any x,
d−n x #n x = x #n d+

n x = x;

(v) if x #n y is defined then

dα
m(x #n y) = dα

mx = dα
my = dα

mx #n dα
my for m < n,

d−n (x #n y) = d−n x,

d+
n (x #n y) = d+

n y,

dα
m(x #n y) = dα

mx #n dα
my for m > n;

(vi) for any n,
(x #n y) #n z = x #n (y #n z)

if either side is defined;
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(vii) if m < n then

(x #n y) #m (x′ #n y′) = (x #m x′) #n (y #m y′)

when the left side is defined.
A morphism of ω-categories is a function commuting with the source, target and

composition operators. The category of ω-categories is denoted ω-cat.

Let C be an ω-category. It generates an ω-category object C ′ in the category of
abelian groups, which is equivalent to a nonnegatively graded chain complex K
by [3]. On C ′ there are two pieces of additional structure: the homomorphism
C ′ → Z induced by the morphism from C to the one-element ω-category, and
the submonoid generated by the image of C (a submonoid of an abelian group is
a subset containing zero and closed under addition). Correspondingly, it turns out
that the chain complex K is augmented and has a distinguished submonoid in each
chain group. A chain complex with this kind of additional structure will be called
an augmented directed complex.

Definition 2.2. An augmented directed complex K is an augmented chain complex
(Kn, ∂, ε) of abelian groups concentrated in nonnegative dimensions, together with
a distinguished submonoid K∗

n of the chain group Kn for each n. A morphism of
augmented directed complexes from K to L is an augmentation-preserving chain
map f : K → L such that f(K∗

n) ⊂ L∗n for each n. The category of augmented
directed complexes is denoted ADC.

Similar structures have been studied by Patchkoria in [8].
In order to construct the functor from ω-cat to ADC, we first recall the standard

filtration for an ω-category.

Proposition 2.3. Let C be an ω-category. Then C is the union of an increasing
sequence of sub-ω-categories denoted C0 ⊂ C1 ⊂ . . . , where

Cn = d−n C = d+
n C = {x ∈ C : d−n x = x } = {x ∈ C : d+

n x = x }.
Proof. The four definitions for Cn are consistent because dβ

ndα
n = dα

n. The Cn

are sub-ω-categories by Definition 2.1(iii) and (vi). They form an increasing se-
quence because dα

n = dβ
n+1d

α
n, and C is the union of the sub-ω-categories by Defini-

tion 2.1(ii).

The filtration of Proposition 2.3 is such that the composition operators #m are
trivial in Cn for m > n; thus Cn is an n-category.

We now use the filtration to construct a functor from ω-cat to ADC.

Definition 2.4. The functor λ : ω-cat → ADC is defined as follows. Let C be an
ω-category. Then the chain group (λC)n for n > 0 is generated by elements [x]n for
x ∈ Cn subject to relations

[x #m y]n = [x]n + [y]n for m < n,

the boundary homomorphism ∂ : (λC)n+1 → (λC)n for n > 0 is given by

∂[x]n+1 = [d+
n x]n − [d−n x]n,
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the augmentation ε : (λC)0 → Z is given by

ε[x]0 = 1,

the distinguished submonoid (λC)∗n is the submonoid generated by the elements [x]n.

To justify this definition, we make the following observations. First, if x ∈ Cn+1

then the dα
nx are members of Cn, so the difference [d+

n x]n − [d−n x]n is a member of
(λC)n. If x #n y is a composite in Cn+1 then

[d+
n (x#ny)]n−[d−n (x#ny)]n = [d+

n y]n−[d−n x]n = ([d+
n x]n−[d−n x]n)+([d+

n y]n−[d−n y]n)

because d+
n x = d−n y, and if x #m y is a composite in Cn+1 with m < n then

[d+
n (x #m y)]n − [d−n (x #m y)]n = [d+

n x #m d+
n y]n − [d−n x #m d−n y]n

= ([d+
n x]n + [d+

n y]n)− ([d−n x]n + [d−n y]n)

= ([d+
n x]n − [d−n x]n) + ([d+

n y]n − [d−n y]n);

therefore ∂ : (λC)n+1 → (λC)n is a well-defined homomorphism. There are no rela-
tions on (λC)0, so ε : (λC)0 → Z is a well-defined homomorphism. The composites
∂∂ : (λC)n+2 → (λC)n are trivial because dα

nd−n+1 = dα
nd+

n+1, and the composite
ε∂ : (λC)1 → Z is obviously trivial. Finally, λ is obviously functorial.

We make the following observation.

Proposition 2.5. If C is an ω-category and x ∈ Cm with m < n, then [x]n = 0 in
(λC)n.

Proof. This holds because

[x]n = [x #m d+
mx]n = [x #m x]n = [x]n + [x]n.

We will now go from chain complexes to ω-categories. We first define a functor µ
from arbitrary chain complexes to ω-categories in the category of abelian groups.
It is the equivalence given implicitly in [3], and it may also be regarded an additive
version of Street’s construction [12].

Definition 2.6. The functor µ from chain complexes to ω-categories in the category
of abelian groups is defined as follows. Let K be a chain complex. Then µK is the
abelian group of double sequences

x = (x−0 , x+
0 , x−1 , x+

1 , . . . )

such that

x−n ∈ Kn and x+
n ∈ Kn,

x−n = x+
n = 0 for all but finitely many values of n,

x+
n − x−n = ∂x−n+1 = ∂x+

n+1 for n > 0;

if x ∈ µK then

dα
nx = (x−0 , x+

0 , . . . , x−n−1, x
+
n−1, x

α
n, xα

n, 0, 0, . . . );
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if d+
n x = d−n y = z, say, in µK then

x #n y = x− z + y

= (x−0 , y+
0 , . . . , x−n , y+

n , x−n+1 + y−n+1, x+
n+1 + y+

n+1, . . . ).

It is straightforward to check that µ is a well-defined functor. We extend the
filtration of µK given in Proposition 2.3 by writing (µK)−1 = 0, and we get the
following result.

Proposition 2.7. Let K be a chain complex and let n be a nonnegative integer.
Then x−n = x+

n for x ∈ (µK)n, and the homomorphism x 7→ xα
n : (µK)n → Kn fits

into a natural split short exact sequence

0 → (µK)n−1 → (µK)n → Kn → 0.

Proof. If x ∈ (µK)n then x = dα
nx, so x−n = x+

n . For x ∈ µK, one finds that
x ∈ (µK)n if and only if x−m = x+

m = 0 for all m > n, and it follows that the
homomorphism x 7→ xα

n : (µK)n → Kn has kernel (µK)n−1. This means that there
is a natural exact sequence 0 → (µK)n−1 → (µK)n → Kn. To complete the proof
we need a natural splitting homomorphism Kn → (µK)n. For n = 0 we use the
homomorphism

x 7→ (x, x, 0, 0, . . . ),

and for n > 0 we can use the homomorphism

x 7→ (0, 0, . . . , 0, ∂x, x, x, 0, 0, . . . ).

We now use the additional structure on an augmented directed complex to define
a functor from ADC to ω-cat.

Definition 2.8. The functor ν : ADC → ω-cat is defined as follows. Let K be an
augmented directed complex. Then νK is the sub-ω-category of µK consisting of
the elements

(x−0 , x+
0 , x−1 , x+

1 , . . . )

such that

x−n ∈ K∗
n and x+

n ∈ K∗
n for all n,

εx−0 = εx+
0 = 1.

It is straightforward to check that Definition 2.8 gives a well-defined functor from
augmented directed complexes to ω-categories: if K is an augmented directed com-
plex then νK is a subset of µK closed under the ω-category operations. Obviously
νK is not a subgroup of µK.

Finally in this section, we show that λ is left adjoint to ν. First we describe the
unit of the adjunction.
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Definition 2.9. The natural transformation η : C → νλC for an ω-category C is
defined by the formula

ηx = ([d−0 x]0, [d+
0 x]0, [d−1 x]1, [d+

1 x]1, . . . ).

In order to justify this definition, we first show that ηx ∈ νλC for x ∈ C. Indeed,
it is clear that [dα

nx]n ∈ (λC)∗n and ε[dα
0 x]0 = 1, and we also have

∂[dα
n+1x]n+1 = [d+

n dα
n+1x]n − [d−n dα

n+1x]n = [d+
n x]n − [d−n x]n,

so it suffices to show that [dα
nx]n = 0 for n sufficiently large. But by Proposition 2.3

there exists p such that dα
nx ∈ Cp for all n, and it then follows from Proposition 2.5

that [dα
nx]n = 0 for n > p.

We must also show that η : C → νλC is a morphism of ω-categories. But we get
ηdα

nx = dα
nηx because [dβ

mdα
nx]m = [dβ

mx]m for m < n, because [dβ
ndα

nx]n = [dα
nx]n,

and because [dβ
mdα

nx]m = [dα
nx]m = 0 for m > n by Proposition 2.5. We also get

η(x#n y) = ηx#n ηy because [d−m(x#n y)]m = [d−mx]m and [d+
m(x#n y)]m = [d+

my]m
for m 6 n and because [dα

m(x #n y)]m = [dα
mx #n dα

my]m = [dα
mx]m + [dα

my]m for
m > n. It follows that η is a morphism of ω-categories, and it is clear that η is
natural.

Next we describe the counit. We denote this by π rather than ε, in order to avoid
confusion with augmentations.

Definition 2.10. The natural transformation π : λνK → K is defined for an aug-
mented directed complex K by the formula

π[x]n = x−n = x+
n .

To justify this definition, observe first that x−n = x+
n for x ∈ (νK)n by Propo-

sition 2.7. The formula π[x]n = x−n = x+
n gives a well-defined homomorphism

π : (λνK)n → Kn because if m < n then (x#m y)α
n = xα

n + yα
n . We get a chain map

because

∂π[x]n+1 = ∂xα
n+1 = x+

n −x−n = (d+
n x)+n −(d−n x)−n = π([d+

n x]n−[d−n x]n) = π∂[x]n+1.

This chain map is augmentation-preserving because επ[x]0 = εxα
0 = 1 = ε[x]0 for

x ∈ (νK)0, and we get π(λνK)∗n ⊂ K∗
n because xα

n ∈ K∗
n for x ∈ νK. Therefore

π : λνK → K is a morphism of augmented directed complexes. It is clearly natural.
The main theorem is now as follows.

Theorem 2.11. The functors λ : ω-cat → ADC and ν : ADC → ω-cat form an
adjoint pair with unit η : id → νλ and counit π : λν → id.

Proof. We must show that

(πλ) ◦ (λη) = id: λ → λ

and

(νπ) ◦ (ην) = id: ν → ν.
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Let C be an ω-category. The generators of (λC)n have the form [x]n with x ∈ Cn.
For these generators, dα

nx = x, so

π(λη)[x]n = π[ηx]n
= π

[
([d−0 x]0, [d+

0 x]0, [d−1 x]1, [d+
1 x]1, . . . )

]
n

= [dα
nx]n

= [x]n;

therefore (πλ) ◦ (λη) = id.
Now let K be an augmented directed complex and let x be a member of νK.

Then

(νπ)ηx = (νπ)([d−0 x]0, [d+
0 x]0, [d−1 x]1, [d+

1 x]1, . . . )

= (π[d−0 x]0, π[d+
0 x]0, π[d−1 x]1, π[d+

1 x]1, . . . )

=
(
(d−0 x)−0 , (d+

0 x)+0 , (d−1 x)−1 , (d+
1 x)+1 , . . .

)

= (x−0 , x+
0 , x−1 , x+

1 , . . . )
= x;

therefore (νπ) ◦ (ην) = id.
This completes the proof.

3. Bases for augmented directed complexes

We will now consider augmented directed complexes with bases. We essentially
recover the examples constructed in earlier treatments such as [6], [9], [10] and [12].

Definition 3.1. Let K be an augmented directed complex. A basis for K is a
set B ⊂ ⊔

n Kn such that each Kn is a free abelian group with basis B ∩Kn and
each K∗

n is the submonoid of Kn generated by B ∩Kn.

Suppose that K is an augmented directed complex with a basis. We make Kn

into a partially ordered abelian group by the rule

x 6 y ⇐⇒ y − x ∈ K∗
n.

The basis elements in Kn can be characterised as the minimal non-zero elements
in K∗

n, and it follows that K has only one basis. Note also that Kn is a lattice: any
two elements x and y have a least upper bound x ∨ y and a greatest lower bound
x ∧ y. If x is an element of Kn+1, then there are unique elements ∂−x, ∂+x ∈ Kn,
the negative and positive parts of ∂x, such that

∂x = ∂+x− ∂−x, ∂−x ∧ ∂+x = 0;

indeed, if ∂x is expressed as a linear combination of distinct basis elements, then
∂+x is the sum of the terms with positive coefficients and −∂−x is the sum of the
terms with negative coefficients.
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Let b be a basis element for K. We denote the dimension of b by |b|, so that
b ∈ K|b|. We then define elements 〈b〉−n and 〈b〉+n in Kn by downward recursion as
follows:

〈b〉αn =





0 for n > |b|,
b for n = |b|,
∂α〈b〉αn+1 for n < |b|.

It is straightforward to check that this produces an element 〈b〉 of µK; in fact we
can make the following definition.

Definition 3.2. Let K be an augmented directed complex with a basis and let b
be a basis element. Then the atom associated to b is the element 〈b〉 of µK such
that 〈b〉αn = 0 for n > |b|, such that 〈b〉α|b| = b, and such that 〈b〉−n ∧ 〈b〉+n = 0 for
n < |b|. The dimension of the atom 〈b〉 is the dimension of the corresponding basis
element b.

From Proposition 2.7 we deduce the following result.

Proposition 3.3. Let K be an augmented directed complex with a basis. Then the
atoms form a basis for the abelian group µK, the n-dimensional atoms form a basis
for (µK)n/(µK)n−1, and the atoms of dimension greater than n form a basis for
µK/(µK)n.

If 〈b〉 is an atom, then 〈b〉αn ∈ K∗
n for all n by construction. An atom 〈b〉 is

therefore in νK if and only if ε〈b〉−0 = ε〈b〉+0 = 1. This leads us to the following
definition.

Definition 3.4. A basis B for an augmented directed complex is unital if ε〈b〉−0 =
ε〈b〉+0 = 1 for every b ∈ B.

For the equivalence theorem of Section 5 we need bases which are unital and are
also loop-free in the sense of the following definition.

Definition 3.5. A basis B for an augmented directed complex is loop-free if there
are partial orderings 60, 61, . . . on B such that a <n b whenever 〈a〉+n ∧ 〈b〉−n > 0
and |a|, |b| > n.

Note that the partial orderings 6n are quite different from the partial orderings
on the individual chain groups.

In practice, one usually has a stronger condition.

Definition 3.6. A basis B for an augmented directed complex is strongly loop-free
if there is a partial ordering 6N on B such that a <N b whenever a 6 ∂−b or
∂+a > b.

The two notions of loop-freeness are related as follows.

Proposition 3.7. If a basis for an augmented directed complex is strongly loop-free,
then it is loop-free.
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Proof. Let 6N be a partial ordering with the property required for strong loop-
freeness. For each n, we will show that 6N has the property required for 6n in the
definition of loop-freeness. In other words, we suppose that 〈a〉+n ∧ 〈b〉−n > 0 with
|a|, |b| > n for some n, and we show that a <N b. Indeed we can choose a basis
element c with 〈a〉+n > c and c 6 〈b〉−n , and we will show that a <N c <N b.

To show that c <N b, observe that, by the construction of 〈b〉, we must have
c 6 ∂−c′ for some basis element c′ with c′ 6 〈b〉−n+1, and we than have c <N c′. If
n + 1 < |b| then we repeat this argument, and eventually we get c <N . . . <N c′′

with c′′ 6 〈b〉−|b|. But 〈b〉−|b| = b, so c′′ = b, and we have got c <N b as claimed. The
proof that a <N c is similar.

Example 3.8. Let K be the chain complex of a simplicial set. Then K is an
augmented chain complex with a distinguished basis, so it can be regarded as an
augmented directed complex with a basis. In particular, let ∆[p] be the chain com-
plex of the standard p-simplex, so that ∆[p] has the following structure: the basis
elements are the ordered (n + 1)-tuples of integers (v0, . . . , vn) with 0 6 v0 < v1 <
. . . < vn 6 p; the dimension of (v0, . . . , vn) is n; the boundary ∂ : ∆[p]n → ∆[p]n−1

is given by
∂ = ∂0 − ∂1 + ∂2 − . . . + (−1)n∂n,

where
∂i(v0, . . . , vn) = (v0, . . . , vi−1, vi+1, . . . , vn);

the augmentation is given by ε(v0) = 1. For m 6 n one finds that

〈(v0, . . . , vn)〉αm =
∑

∂i(1) . . . ∂i(n−m)(v0, . . . , vn),

where the sum runs over (n −m)-tuples such that 0 6 i(1) < . . . < i(n −m) 6 n
and the parities (−)i(1), . . . , (−)i(n−m) form the alternating sequence α,−α, α, . . . .
We have therefore recovered Street’s oriented simplexes [11]. The basis is unital, be-
cause 〈(v0, . . . , vn)〉−0 = (v0) and 〈(v0, . . . , vn)〉+0 = (vn). The basis is also strongly
loop-free under the total ordering given recursively as follows: (v0, . . . , vn) <N

(w0, . . . , wm) if
v0 < w0,

or if
v0 = w0 and n = 0 and m > 0,

or if
v0 = w0 and n > 0 and m > 0 and (v1, . . . , vn) >N (w1, . . . , wm).

Example 3.9. Let B be a finite non-empty totally ordered set in which each ele-
ment b is assigned a nonnegative integer dimension |b|. Suppose also that the initial
and final elements have dimension 0 and that adjacent elements have dimensions
differing by 1. For b ∈ B with |b| > 0, let δ−b be the last element of dimension
|b| − 1 to come before b, and let δ+b be the first element of dimension |b| − 1 to
come after b; the hypotheses ensure that these elements exist. The hypotheses also
ensure that the elements between δ−b and δ+b have dimension at least |b|, and for
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|b| > 1 it follows that δαδ−b = δαδ+b. By taking ∂b = δ+b − δ−b for |b| > 0 and
εb = 1 for |b| = 0 we define an augmented directed complex with basis B. Clearly
〈b〉αn is a basis element for n 6 |b|, so the basis is unital. It is also strongly loop-free
under the original total ordering.

In particular, let p be a nonnegative integer and let the sequence of dimensions
of the elements of B be

0, 1, . . . , p− 1, p, p− 1, . . . , 1, 0.

Then the augmented directed complex is called the p-dimensional globe and denoted
G[p]. Let x denote the p-dimensional basis element; then d−p 〈x〉 = d+

p 〈x〉 = 〈x〉, and
the atoms other than 〈x〉 are the elements dα

i 〈x〉 for i < p.
A p-dimensional globe is in a sense free on a p-dimensional generator. In a similar

way we can get an augmented directed complex G[p;n] free on a #n-composable
pair of p-dimensional elements: we take the sequence of dimensions of the elements
of B to run from 0 up to p, then down to min{p, n}, then up to p, then down to 0.
Let the p-dimensional basis elements in order be x and y (they coincide if p 6 n);
then d−p 〈x〉 = d+

p 〈x〉 = 〈x〉, d−p 〈y〉 = d+
p 〈y〉 = 〈y〉, and d+

n 〈x〉 = d−n 〈y〉. The atoms
other than 〈x〉 and 〈y〉 are the dα

i 〈x〉 and dα
i 〈y〉 for i < p, with the identifications

dα
i 〈x〉 = dα

i 〈y〉 for i < min{p, n} and with the identification d+
n 〈x〉 = d−n 〈y〉 if n < p.

There is a similar augmented directed complex G[p; n, n] free on a #n-composable
triple of p-dimensional elements: the sequence of dimensions is now from 0 up to p,
down to min{p, n}, up to p, down to min{p, n}, up to p, down to 0. For m < n
there is also an augmented directed complex G[p; n,m, n] free on a composable
quadruple of p-dimensional elements in the configuration (x #n y) #m (x′ #n y′)
of Definition 2.1(vii): the sequence of dimensions is now from 0 up to p, down to
min{p, n}, up to p, down to min{p,m}, up to p, down to min{p, n}, up to p, down
to 0.

Example 3.10. The category of augmented chain complexes has a symmetric
monoidal structure under the tensor product (K,L) 7→ K ⊗ L, where

(K ⊗ L)n =
⊕

i

Ki ⊗ Ln−i,

∂(x⊗ y) = ∂x⊗ y + (−1)|x|x⊗ ∂y,

ε(x⊗ y) = (εx)(εy) for |x| = |y| = 0

(we write |x| = i if x ∈ Ki, etc.). The identity object is the 0-dimensional globe G[0]
of Example 3.9. We extend this structure to a monoidal structure on augmented
directed complexes as follows: (K ⊗ L)∗n is the submonoid of (K ⊗ L)n generated
by the elements x⊗ y with x ∈ K∗

i and y ∈ L∗n−i. Note that the monoidal structure
on augmented directed complexes is not symmetric: the standard switch morphism
x⊗ y 7→ (−1)|x| |y|(y ⊗ x) does not always map (K ⊗ L)∗n into (L⊗K)∗n.

Suppose now that K and L are augmented directed complexes with bases A and B.
Then K ⊗ L has a basis C consisting of the elements a ⊗ b for a ∈ A and b ∈ B.
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One finds that

〈a⊗ b〉αn =
n∑

i=0

〈a〉αi ⊗ 〈b〉(−)iα
n−i ;

in particular 〈a⊗ b〉α0 = 〈a〉α0 ⊗〈b〉α0 . If A and B are unital, then it follows that C is
unital. Similarly, if A and B are strongly loop-free under partial orderings 6N, then
C is strongly loop-free under the partial ordering 6N such that a⊗ b 6N a′⊗ b′ for

a <N a′,

or for
a = a′ and |a| even and b 6N b′,

or for
a = a′ and |a| odd and b >N b′.

In particular, for p > 0, let Q[p] be the chain complex of the p-dimensional cube.
Then Q[p] is the p-fold tensor power of the one-dimensional globe G[1], so Q[p] is
an augmented directed complex with a strongly loop-free unital basis.

4. Bases for ω-categories

We will now describe bases for ω-categories, corresponding to bases for aug-
mented directed complexes. The required properties can be described directly in
terms of ω-categories, but it is often easier to work in the augmented directed com-
plexes got by applying λ.

We begin with a particular kind of generating set, analogous to a spanning set.
Recall that if C is an ω-category then Cn is the sub-ω-category d−n C = d+

n C.

Definition 4.1. An ω-category C is composition-generated by a subset E if each
member e of E is assigned a nonnegative integer dimension |e| and if for n > 0
the sub-ω-category Cn is generated under the composition operations #m by the
elements of E of dimension at most n.

Composition-generation should be distinguished from ordinary generation, where
one uses the operations dα

m as well as the composition operations.
Note that if e is a composition-generator for an ω-category C then e ∈ C|e|, so

that dα
ne = e for n > |e|.

There are standard forms for the elements of ω-categories with composition-
generators, as follows.

Proposition 4.2. Let C be an ω-category with a set of composition-generators
and let x be a member of C. Then x is a generator or x has an expression x =
x1 #r . . . #r xk with r > 0 and k > 2 such that the xi are composites of generators,
each xi has exactly one factor of dimension greater than r, and at most one of the xi

has a factor of dimension greater than r + 1.

Proof. It suffices to prove the result when x is a composite, say x = y#n z, in which
y and z have expressions of the required form. If the expression for y involves no



Homology, Homotopy and Applications, vol. 6(1), 2004 186

factors of dimension greater than n, then y is an identity for #n by Definition 2.1(v),
so x = z and the result therefore holds for x. A similar argument applies if the
expression for z involves no factors of dimension greater than n.

From now on, assume that the expressions for y and z both involve factors of
dimension greater than n. Let r be the largest integer such that the expressions for
y and z together involve more than one factor of dimension greater than r; thus
r > n. Suppose that the expressions for y and z have k and l factors respectively of
dimension greater than r; thus k + l > 2. Then there is a decomposition

y = y1 #r . . . #r yk #r d+
r y #r . . . #r d+

r y,

with l appearances of d+
r y, such that yi has exactly one factor of dimension greater

than r (if k = 0 then y = d+
r y, so this holds trivially; if k = 1 we take y1 = y;

if k > 1 then y1 #r . . . #r yk is the given expression for y). Similarly there is a
decomposition

z = d−r z #r . . . #r d−r z #r z1 #r . . . #r zl,

with k factors equal to d−r z, such that zj has exactly one factor of dimension greater
than r. The choice of r ensures that the yi and zj have at most one factor of
dimension r + 1 between them. If now n = r then the desired decomposition of
x = y #r z is given by

x = y1 #r . . . #r yk #r z1 #r . . . #r zl;

if n < r then Definition 2.1(vii) gives

x = (y1 #r . . . #r yk #r d+
r y #r . . . #r d+

r y) #n (d−r z #r . . . #r d−r z #r z1 #r . . . #r zl)

= (y1 #n d−r z) #r . . . #r (yk #n d−r z) #r (d+
r y #n z1) #r . . . #r (d+

r y #n zl),

which is a decomposition of the required form because d−r z and d+
r y are composites

of generators of dimension at most r.
This completes the proof.

Composition-generators for an ω-category C produce generators for (λC)n and
(λC)∗n as follows.

Proposition 4.3. Let C be an ω-category with a set of composition-generators E.
Then the abelian group (λC)n and the submonoid (λC)∗n are generated by the ele-
ments [e]n for e an n-dimensional element of E.

Proof. The abelian group (λC)n and the submonoid (λC)∗n are generated by the
elements [x]n for x ∈ Cn, and the elements of Cn are the composites of the members
of E of dimension at most n. If m > n then the elements of Cn are identities for #m,
because dβ

mdα
n = dα

n; it therefore suffices to use the composition operators #m

for m < n. These operations become addition in (λC)n, so (λC)n and (λC)∗n are
generated by the elements [e]n for e ∈ E with |e| 6 n. Finally [e]n = 0 for |e| < n
by Proposition 2.5; therefore (λC)n and (λC)∗n are generated by the elements [e]n
for e ∈ E with |e| = n.

We now define a basis for an ω-category C in terms of a basis for the augmented
directed complex λC.
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Definition 4.4. A basis for an ω-category C is a set of composition-generators E
such λC has a basis and the function e 7→ [e]|e| maps E bijectively onto the basis
for λC.

Because of Proposition 4.3, a composition-generating set E is a basis if and only
if the elements [e]|e| for e ∈ E are distinct and linearly independent.

Let C be an ω-category with a basis E. Then λC has a basis B, and we can use
properties of B to define properties of E.

Definition 4.5. Let E be a basis for an ω-category C. Then
(i) E is atomic if [d−n e]n ∧ [d+

n e]n = 0 for e ∈ E and n < |e|;
(ii) E is loop-free if the basis for λC is loop-free;
(iii) E is strongly loop-free if the basis for λC is strongly loop-free.

The point of atomicity is as follows.

Proposition 4.6. Let E be an atomic basis for an ω-category C. Then ηe = 〈[e]|e|〉
for each e in E, and the basis for λC is unital.

Proof. Recall from Definition 2.9 that (ηe)α
n = [dα

ne]n for all n and α. If n > |e| then
[dα

ne]n = [e]n = 0 by Proposition 2.5. If n = |e| then [dα
ne]n = [e]|e|. By comparing

Definition 4.5(i) with Definition 3.2, we now see that ηe = 〈[e]|e|〉. Since ηe ∈ νλC,
it follows that ε〈[e]|e|〉α0 = ε(ηe)α

0 = 1; therefore the basis for λC is unital. This
completes the proof.

Example 4.7. Let p be a nonnegative integer, and let F [p] be the ω-category
with the following presentation: there is a single generator u and there are relations
d−p u = d+

p u = u. The ω-categories F [p] represent the elements of ω-categories, in
the sense that there are natural bijections between hom(F [p], C) and Cp. We have
dα

i u = u for i > p. Using Definition 2.1(iii) and (v), we see that F [p] is composition-
generated by u and the elements dα

i u for i < p.
Now let G[p] be the p-dimensional globe with p-dimensional basis element x as

in Example 3.9. The atom 〈x〉 in νG[p] satisfies the relations d−p 〈x〉 = d+
p 〈x〉 = 〈x〉,

so there is a morphism F [p] → νG[p] given by u 7→ 〈x〉. The adjoint λF [p] → G[p]
maps the generators [u]p and [dα

i u]i for λF [p] (see Proposition 4.3) bijectively to
the basis elements for G[p], and it follows that the morphism λF [p] → G[p] is an
isomorphism. It then follows that the elements u and dα

i u form a basis for F [p], and
one can check that this basis is atomic. It is also strongly loop-free, because the
basis for G[p] is strongly loop-free.

There are similar ω-categories F [p; n], F [p;n, n] and F [p; n,m, n] (where m < n)
corresponding to the other augmented directed complexes of Example 3.9. These
ω-categories all have strongly loop-free atomic bases. There is a presentation for
F [p;n] given by

〈u, v : dα
p u = u, dα

p v = v, d+
n u = d−n v 〉,

there is a presentation for F [p;n, n] given by

〈u, v, w : dα
p u = u, dα

p v = v, dα
p w = w, d+

n u = d−n v, d+
n v = d−n w 〉,
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and there is a presentation for F [p; n,m, n] given by

〈u, v, u′, v′ : dα
p u = u, dα

p v = v, dα
p u′ = u′, dα

p v′ = v′,

d+
n u = d−n v, d+

mv = d−mu′, d+
n u′ = d−n v′ 〉.

5. The adjoint equivalence

From Definition 4.4, Definition 4.5 and Proposition 4.6, if an ω-category C has a
loop-free atomic basis then λC has a loop-free unital basis. We will now show that
ω-categories with loop-free atomic bases and augmented directed complexes with
loop-free unital bases are equivalent under the adjoint functors λ and ν.

We begin by considering decompositions in νK, where K is an augmented di-
rected complex with a basis. The basic existence result is as follows.

Proposition 5.1. Let K be an augmented directed complex with a basis and let x
be a member of νK which is congruent to a non-trivial sum of atoms modulo (µK)r

for some r > 0, say
x ≡ 〈b1〉+ . . . + 〈bk〉 mod (µK)r

with k > 1. If 〈bi〉+r ∧ 〈bj〉−r = 0 for i > j, then there is a decomposition

x = x1 #r . . . #r xk

with xi ∈ νK such that xi ≡ 〈bi〉 mod (µK)r.

Proof. The congruence gives

x = 〈b1〉+ . . . + 〈bk〉+ z

for some z ∈ (µK)r; thus dα
r z = z. For 1 6 i 6 k let xi be the element of µK given

by
xi = d+

r [〈b1〉+ . . . + 〈bi−1〉] + 〈bi〉+ d−r [〈bi+1〉+ . . . + 〈bk〉] + z,

and for 1 6 i 6 k − 1 let

yi = d+
r [〈b1〉+ . . . + 〈bi〉] + d−r [〈bi+1〉+ . . . + 〈bk〉] + z.

Then d+
r xi = yi = d−r xi+1 because dβ

r dα
r = dα

r , and we also have

x = x1 − y1 + x2 − y2 + . . . + xk,

so there is a decomposition

x = x1 #r . . . #r xk

in µK. It is clear that xi ≡ 〈bi〉 mod (µK)r, and it remains to show that xi ∈ νK.
We must therefore show that ε(xi)α

0 = 1 and that (xi)α
n > 0.

As to the augmentation, we have ε(dβ
r 〈bj〉)α

0 = ε〈bj〉α0 for all j and β, so ε(xi)α
0 =

εxα
0 = 1.
As to the (xi)α

n, if n < r then (xi)α
n = xα

n > 0, and if n > r then (xi)α
n =

〈bi〉αn > 0; it therefore remains to consider the case n = r. Now (x1)−r = x−r > 0 and
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(xk)+r = x+
r > 0, and for 1 6 i 6 k − 1 we have

(xi)+r = (xi+1)−r = x−r + [〈b1〉+r + . . . + 〈bi〉+r ]− [〈b1〉−r + . . . + 〈bi〉−r ]

= x+
r + [〈bi+1〉−r + . . . + 〈bk〉−r ]− [〈bi+1〉+r + . . . + 〈bk〉+r ].

But xα
r > 0, 〈bj〉αr > 0, and

[〈b1〉−r + . . . + 〈bi〉−r ] ∧ [〈bi+1〉+r + . . . + 〈bk〉+r ] = 0,

so (xi)α
r > 0 in all cases. This completes the proof.

To find situations in which Proposition 5.1 can be applied, we use the following
result.

Proposition 5.2. Let K be an augmented directed complex with a basis and let x
be a member of νK.

(i) If x ≡ 0 mod (µK)r+1 then

x ≡ 〈c1〉+ . . . + 〈cl〉 mod (µK)r

for some (r + 1)-dimensional atoms 〈c1〉, . . . , 〈cl〉.
(ii) If x ≡ m〈a〉 mod (µK)r+1 for some positive integer m and for some atom 〈a〉

with |a| > r + 1, then

x ≡ m〈a〉+ 〈c1〉+ . . . + 〈cl〉 mod (µK)r

for some (r + 1)-dimensional atoms 〈c1〉, . . . , 〈cl〉.
(iii) If x = y #r z for some y, z ∈ νK such that y ≡ 〈a〉 and z ≡ 〈b〉 mod (µK)r

with |a|, |b| > r and 〈a〉+r ∧ 〈b〉−r = 0, then

x ≡ 〈a〉+ 〈b〉+ 〈c1〉+ . . . + 〈cl〉 mod (µK)r−1

for some r-dimensional atoms 〈c1〉, . . . , 〈cl〉.
Proof. (i) Since x ∈ (µK)r+1, we have x−r+1 = x+

r+1 = w for some w ∈ Kr+1. Since
x ∈ νK, we have w > 0, so that w is a sum of (r + 1)-dimensional basis elements
c1 + . . . + cl. It now follows that x ≡ 〈c1〉+ . . . + 〈cl〉 mod (µK)r, as required.

(ii) Here x − m〈a〉 is in (µK)r+1. As in the proof of part (i), we get x−r+1 −
m〈a〉−r+1 = x+

r+1 −m〈a〉+r+1 = w for some w ∈ Kr+1, and it suffices to show that
w > 0. But this holds because x−r+1 > 0, x+

r+1 > 0 and 〈a〉−r+1 ∧ 〈a〉+r+1 = 0.
(iii) Here

x−r − 〈a〉−r − 〈b〉−r = x+
r − 〈a〉+r − 〈b〉+r = z−r − 〈a〉+r − 〈b〉−r = w

for some w ∈ Kr, since x ≡ y + z ≡ 〈a〉+ 〈b〉 mod (µK)r, since x+
r = z+

r , and since
z − 〈b〉 ∈ (µK)r. As before, it suffices to show that w > 0. But this holds because
x−r > 0, x+

r > 0, z−r > 0 and

〈a〉−r ∧ 〈a〉+r = 〈b〉−r ∧ 〈b〉+r = 〈a〉+r ∧ 〈b〉−r = 0.

To construct decompositions we use Proposition 5.2(i) together with the case
m = 1 of Proposition 5.2(ii). It is convenient to make the following definition.
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Definition 5.3. Let K be an augmented directed complex with a basis, and let
x be a member of νK. Then the decomposition index of x is the smallest integer
r > −1 such that x is congruent to zero or an atom modulo (µK)r+1.

In Definition 5.3, note that the decomposition index exists because
x ≡ 0 mod (µK)n for all sufficiently large n.

By combining Propositions 5.1 and 5.2 we get the following result, analogous to
part of Proposition 4.2.

Proposition 5.4. Let K be an augmented directed complex with a loop-free basis,
and let x be a member of (νK)n with decomposition index r > 0. Then there is a
decomposition

x = x1 #r . . . #r xk

with xi ∈ (νK)n and xi ≡ 〈bi〉 mod (µK)r, where 〈b1〉, . . . , 〈bk〉 is a list of atoms
such that k > 2, such that |bi| > r for all i, such that |bi| > r + 1 for at most one
value of i, and such that 〈bi〉+r ∧ 〈bj〉−r = 0 for i > j.

Proof. We have x congruent to zero or an atom modulo (µK)r+1. By Proposi-
tion 5.2(i) or (ii) there is a congruence

x ≡ 〈b1〉+ . . . + 〈bk〉 mod (µK)r

for some list of atoms 〈bi〉 with |bi| > r for each i and with |bi| > r + 1 for at most
one value of i. Since the decomposition index is r, we have k > 2. Since the basis
is loop-free we can assume the list ordered so that 〈bi〉+r ∧ 〈bj〉−r = 0 for i > j. By
Proposition 5.1 there is a decomposition x = x1 #r . . . #r xk with xi ∈ νK and
xi ≡ 〈bi〉 mod (µK)r. Finally, |bi| 6 n for each i, because x ∈ (νK)n, and it follows
that xi ∈ (νK)n. This completes the proof.

To complete the analogy with Proposition 4.2 we give the following result.

Proposition 5.5. Let K be an augmented directed complex with a unital basis, and
let x be a member of (νK)n with decomposition index −1. Then x is an atom of
dimension at most n.

Proof. We have x congruent to zero or an atom modulo (µK)0. By Proposition 5.2(i)
or (ii) there is a congruence

x ≡ 〈b1〉+ . . . + 〈bk〉 mod (µK)−1

for some atoms 〈bi〉. Since (µK)−1 = 0, this congruence is an equality, and it follows
that

εxα
0 = ε〈b1〉α0 + . . . + ε〈bk〉α0 .

But εxα
0 = 1 because x ∈ νK, and ε〈bi〉α0 = 1 for each i because the basis is unital,

so k = 1. This means that x is equal to the atom 〈b1〉. The dimension of 〈b1〉 is at
most n because x ∈ (νK)n.

We can now prove one half of the equivalence.
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Theorem 5.6. Let K be an augmented directed complex with a loop-free unital
basis. Then νK has a loop-free atomic basis consisting of its atoms, and the counit
π : λνK → K is an isomorphism.

Proof. First we show that νK is composition-generated by its atoms. Indeed the
atoms of dimension at most n lie in (νK)n because the basis is unital, so the
composites of atoms of dimension at most n lie in (νK)n. Conversely, let x be
a member of (νK)n of decomposition index r. If r > 0, then x is a composite
of members of (νK)n with lower decomposition index by Proposition 5.4, and if
r = −1 then x is an atom of dimension at most n by Proposition 5.5. It follows by
induction on r that x is a composite of atoms of dimension at most n. Therefore
νK is composition-generated by its atoms.

Next we show that π : λνK → K is an isomorphism. For each n > 0 we must show
that π : (λνK)n → Kn is an isomorphism with π[(λνK)∗n] = K∗

n. Now it follows
from Proposition 4.3 that (λνK)n and (λνK)∗n are generated as abelian group and
submonoid by the elements [〈b〉]n for |b| = n. The images of these elements under π
are the n-dimensional basis elements, which generate Kn and K∗

n as abelian group
and submonoid freely. It follows that π : (λνK)n → Kn is an isomorphism with
π[(λνK)∗n] = K∗

n as required.
Finally we show that the atoms form a basis for νK with the desired properties

by verifying the conditions of Definitions 4.4 and 4.5. We have already shown that
the atoms composition-generate νK. The elements [〈b〉]|b| form a basis for λνK,
because their images under the isomorphism π : λνK → K form a basis for K, so
the function 〈b〉 7→ [〈b〉]|b| is a bijection from the set of atoms to a basis for λνK.
The atoms therefore form a basis for νK. We have [d−n 〈b〉]n∧ [d+

n 〈b〉]n = 0 for n < |b|
because

π[d−n 〈b〉]n ∧ π[d+
n 〈b〉]n = 〈b〉−n ∧ 〈b〉+n = 0;

therefore the basis for νK is atomic. The basis for λνK is loop-free because λνK ∼=
K; therefore the basis for νK is loop-free. This completes the proof.

Conversely, if C is an ω-category with a loop-free atomic basis, then we want the
unit η : C → νλC to be an isomorphism. More generally, we will prove the following
result.

Theorem 5.7. Let C be an ω-category composition-generated by a set E, let K be
an augmented directed complex with a loop-free unital basis, and let θ : C → νK be
a morphism which restricts to a dimension-preserving bijection from E to the atoms
of νK. Then θ is an isomorphism.

In a sense, Theorem 5.7 says that νK is freely composition-generated by its
atoms. To prove it, we will show that the decompositions in Proposition 5.4 are as
nearly as possible uniquely determined. We begin with the following observation.

Proposition 5.8. Let K be an augmented directed complex. If

x1 #r . . . #r xk = y1 #r . . . #r yk

in µK and if xi ≡ yi mod (µK)r for 1 6 i 6 k, then xi = yi for 1 6 i 6 k.
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Proof. We have
(x1 − y1) #r . . . #r (xk − yk) = 0

and x1 − y1 ∈ (µK)r, so

x1 − y1 = d−r (x1 − y1) = d−r (0) = 0,

and it follows that x1 = y1. We then have d−r (x2−y2) = d+
r (x1−y1) = 0, so x2 = y2

by a similar argument, and so on.

Because of Proposition 5.8, the decomposition in Proposition 5.4 is uniquely
determined by the ordered list of atoms 〈b1〉, . . . , 〈bk〉. Up to permutation this list
is determined by x, because x ≡ 〈b1〉 + . . . + 〈bk〉 mod (µK)r; however, it may be
possible to reorder the list.

In particular, suppose that k = 2, so that x ≡ 〈b1〉 + 〈b2〉 mod (µK)r with
min{|b1|, |b2|} = r + 1. Suppose further that r > 0, and that x has a #r−1-
decomposition x = x∗1 #r−1 x∗2 with x∗1 ≡ 〈b1〉 and x∗2 ≡ 〈b2〉 mod (µK)r. Then it
follows from Definition 2.1(iv) and (vii) that there are #r-decompositions

x = (x∗1 #r−1 d−r x∗2) #r (d+
r x∗1 #r−1 x∗2) = (d−r x∗1 #r−1 x∗2) #r (x∗1 #r−1 d+

r x∗2)

with (x∗1 #r−1 dα
r x∗2) ≡ 〈b1〉 and (dα

r x∗1 #r−1 x∗2) ≡ 〈b2〉 mod (µK)r. For elements of
this type, one can therefore transpose the atoms. We will now show that any two
consecutive atoms in the ‘wrong’ order can be transposed in this way.

Proposition 5.9. Let K be an augmented directed complex with a loop-free unital
basis. Suppose that x = y#r z is a composite in νK with y ≡ 〈a〉 and z ≡ 〈b〉 modulo
(µK)r, where 〈a〉 and 〈b〉 are atoms such that |a|, |b| > r and 〈a〉+r ∧〈b〉−r = 0. Then
r > 0 and there is a decomposition x = y∗ #r−1 z∗ or x = z∗ #r−1 y∗ in νK with
y∗ ≡ 〈a〉 and z∗ ≡ 〈b〉 modulo (µK)r.

Proof. By Proposition 5.2(iii),

x ≡ 〈a〉+ 〈b〉+ 〈c1〉+ . . . + 〈cl〉 mod (µK)r−1

for some r-dimensional atoms 〈ci〉. If r = 0 then this congruence is an equality and
we get εxα

0 = l + 2 > 1, which is absurd. Therefore r > 0. Since the basis is loop-
free we can order the list 〈a〉, 〈b〉, 〈c1〉, . . . , 〈cl〉 so that Proposition 5.1 applies. We
get a decomposition x = x1 #r−1 . . . #r−1 xl+2 in νK such that modulo (µK)r−1

the factors are congruent to 〈a〉, 〈b〉, 〈c1〉, . . . , 〈cl〉 in some order. Modulo (µK)r it
follows that one of the factors is congruent to 〈a〉, another factor is congruent to 〈b〉,
and the others are congruent to zero. By grouping the factors appropriately, we get
a decomposition x = y∗ #r−1 z∗ or x = z∗ #r−1 y∗ of the required form.

In the proof of Theorem 5.7, we show that elements of νK have unique inverse
images by induction on their decomposition indices. In the inductive step we use
the following lemma.

Lemma 5.10. Let K be an augmented directed complex with a loop-free unital
basis, let C be an ω-category, let r be a nonnegative integer, and let θ : C → νK
be a morphism such that elements of νK with decomposition index less than r have
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unique inverse images in C. If ξ = η #r ζ is a composite in C such that θ(η) ≡ 〈a〉
and θ(ζ) ≡ 〈b〉 modulo (µK)r, where 〈a〉 and 〈b〉 are atoms such that |a|, |b| > r
and 〈a〉+r ∧ 〈b〉−r = 0, then there is a decomposition ξ = ζ ′ #r η′ in C such that
θ(ζ ′) ≡ 〈b〉 and θ(η′) ≡ 〈a〉 modulo (µK)r.

Proof. By Proposition 5.9, r > 0 and there is a decomposition θ(ξ) = y∗#r−1 z∗ or
θ(ξ) = z∗#r−1y∗ in νK with y∗ ≡ 〈a〉 and z∗ ≡ 〈b〉 modulo (µK)r. For definiteness,
suppose that θ(ξ) = y∗ #r−1 z∗. Then y∗ and z∗ have decomposition indices less
than r, so they have unique inverse images η∗ and ζ∗. We now get

θ(d+
r−1η

∗) = d+
r−1y

∗ = d−r−1z
∗ = θ(d−r−1ζ

∗),

and the element d+
r−1y

∗ = d−r−1z
∗ clearly has decomposition index less than r−1, so

d+
r−1η

∗ = d−r−1ζ
∗ by the uniqueness part of the hypothesis. It follows that η∗ and ζ∗

have a composite η∗#r−1 ζ∗. We now have θ(ξ) = θ(η∗#r−1 ζ∗), and we claim that
ξ = η∗ #r−1 ζ∗. Indeed it follows from Definition 2.1(vii) that

θ(η) #r θ(ζ) = θ(ξ) = θ(η∗ #r−1 ζ∗) = θ(η∗ #r−1 d−r ζ∗) #r θ(d+
r η∗ #r−1 ζ∗)

with

θ(η) ≡ 〈a〉 ≡ y∗ ≡ θ(η∗) ≡ θ(η∗ #r−1 d−r ζ∗) mod (µK)r

and

θ(ζ) ≡ 〈b〉 ≡ z∗ ≡ θ(ζ∗) ≡ θ(d+
r η∗ #r−1 ζ∗) mod (µK)r,

so θ(η) = θ(η∗ #r−1 d−r ζ∗) and θ(ζ) = θ(d+
r η∗ #r−1 ζ∗) by Proposition 5.8. Clearly

θ(η) and θ(ζ) have decomposition indices less than r, so η = η∗ #r−1 d−r ζ∗ and
ζ = d+

r η∗#r−1 ζ∗ by the uniqueness part of the hypothesis. Using Definition 2.1(vii)
again, we get ξ = η #r ζ = η∗ #r−1 ζ∗ as claimed. It now follows that

ξ = (d−r η∗ #r−1 ζ∗) #r (η∗ #r−1 d+
r ζ∗) = ζ ′ #r η′,

say, with θ(ζ ′) ≡ θ(ζ∗) ≡ 〈b〉 and θ(η′) ≡ θ(η∗) ≡ 〈a〉modulo (µK)r. This completes
the proof.

Proof of Theorem 5.7. We show that θ is an isomorphism by showing that each
element x of νK has a unique inverse image under θ. We use induction on the
decomposition index of x.

Suppose first that x has decomposition index −1. By Proposition 5.5, x is an
atom. From Proposition 4.2, we see that the inverse images of x must be generators.
Since θ maps the set of generators bijectively onto the set of atoms, it follows that
x has a unique inverse image.

Now suppose that x has decomposition index r > 0. By Proposition 5.4 there is
a decomposition

x = x1 #r . . . #r xk

with k > 2, with xi ∈ νK, and with xi ≡ 〈bi〉 mod (µK)r, such that |bi| > r for
all i, such that |bi| > r+1 for at most one value of i, and such that 〈bi〉+r ∧〈bj〉−r = 0
for i > j. The xi clearly have decomposition indices less than r, so they have unique
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inverse images ξi by the inductive hypothesis. As in the proof of Lemma 5.10,

θ(d+
r ξi−1) = d+

r xi−1 = d−r xi = θ(d−r ξi)

and the decomposition index of d+
r xi−1 = d−r xi is less than r, so d+

r ξi−1 = d−r ξi

by the uniqueness part of the inductive hypothesis, and it follows that there is a
composite

ξ = ξ1 #r . . . #r ξk.

Then ξ is an inverse image for x.
To complete the proof, let ξ′ be any inverse image for x; we must show that

ξ′ = ξ. We can express ξ′ as in Proposition 4.2. From the form of x, this must mean
that ξ′ = ξ′1 #r . . . #r ξ′k with the θ(ξ′i) congruent to the 〈bi〉 in some order modulo
(µK)r. By repeated application of Lemma 5.10, we can change back to the original
order. This gives us a decomposition

ξ′ = ξ′′1 #r . . . #r ξ′′k

with θ(ξ′′i ) ≡ 〈bi〉 ≡ xi mod (µK)r for each i. Since θ(ξ′) = x = x1 #r . . . #r xk,
it follows from Proposition 5.8 that θ(ξ′′i ) = xi for each i. But the xi have unique
inverse images ξi, so ξ′′i = ξi for each i, and it follows that ξ′ = ξ. This completes
the proof.

The main theorem is now as follows.

Theorem 5.11. The adjoint functors λ : ω-cat → ADC and ν : ADC → ω-cat re-
strict to adjoint equivalences between the full subcategories consisting of ω-categories
with loop-free atomic bases and of augmented directed complexes with loop-free uni-
tal bases. Under these equivalences, ω-categories with strongly loop-free atomic bases
correspond to augmented directed complexes with strongly loop-free unital bases.

Proof. By Theorem 5.6, if K is an augmented directed complex with a loop-free
unital basis then νK has a loop-free atomic basis and the counit π : λνK → K is
an isomorphism.

Conversely, let C be an ω-category with a loop-free atomic basis E. By Definitions
4.4 and 4.5, the function e 7→ [e]|e| maps E bijectively to a loop-free basis for
λC. By Proposition 4.6 this basis is unital, so λC has a loop-free unital basis. By
Proposition 4.6 again, the unit η : C → νλC sends the generator e to the atom
〈[e]|e|〉. It follows that η maps the generators of C bijectively to the atoms of νλC
and preserves dimensions. By Theorem 5.7, η : C → νλC is an isomorphism.

Finally, strongly loop-free atomic bases correspond to strongly loop-free unital
bases by Definition 4.5(iii).

This completes the proof.
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6. Relations with earlier work

In this section we compare our construction ν with other constructions of ω-
categories.

We first observe that Theorem 5.11 serves to characterise certain ω-categories: if
K is an augmented directed complex with a loop-free basis and if C is an ω-category
with an atomic basis such that λC ∼= K, then C must be isomorphic to νK. This
shows that the various constructions are essentially equivalent. For example, let C
be the ω-category associated to the p-simplex in [2], [10] or [11]; then C must be
isomorphic to ν∆[p], where ∆[p] is as in Example 3.8.

The ω-categories associated to loop-free structures in earlier treatments have
presentations of particular types. The analogous result for the functor ν is as follows.

Theorem 6.1. Let K be an augmented directed complex with a loop-free unital
basis. Then the ω-category νK has a presentation as follows: the generators are
the atoms; for each atom 〈b〉 there are relations d−|b|〈b〉 = d+

|b|〈b〉; for each positive-
dimensional atom 〈b〉 there are relations d−|b|−1〈b〉 = w−(b) and d+

|b|−1〈b〉 = w+(b),
where the wα(b) are expressions for the dα

|b|−1〈b〉 as composites of atoms of dimen-
sion less than |b|.
Proof. It follows from Theorem 5.5 that νK is composition-generated by its atoms,
and the atoms therefore satisfy relations of the form described. Let C be the ω-
category generated by the atoms subject to these relations; then there is a canonical
morphism θ : C → νK, and we must show that it is an isomorphism. Because of
Theorem 5.7, it suffices to show that the atoms composition-generate C. Because of
Definition 2.1(iii) and (v), C is composition-generated by the elements dα

n〈b〉 for 〈b〉
an atom. It therefore suffices to show that in C each element dα

n〈b〉 is a composite of
atoms of dimension at most n. We do this by induction on |b|. Indeed, if n < |b| then
dα

n〈b〉 = dα
ndα
|b|−1〈b〉 = dα

nwα(b), and wα(b) is a composite of atoms of dimension
less than |b|, so the result holds by the inductive hypothesis and Definition 2.1(v),
and if n > |b| then dα

n〈b〉 = dα
ndα
|b|〈b〉 = dα

|b|〈b〉 = 〈b〉, so the result holds trivially.
This completes the proof.

The constructions corresponding to ν in earlier treatments are described combi-
natorially in terms of sets rather than algebraically. We will now show that νK can
be described combinatorially when K has a loop-free unital basis B, in the sense
that the elements of νK are determined by subsets of B.

Theorem 6.2. Let K be an augmented directed complex with a loop-free unital
basis and let x be a member of νK.

(i) If x is a sum of atoms then x is an atom.
(ii) If x ≡ m1〈b1〉+ . . . + mk〈bk〉 mod (µK)r for some r > −1, with |bi| > r and

with mi > 0 for all i, then mi = 1 for all i.
(iii) Each term xα

n of x is a sum of distinct basis elements.

Proof. (i) Suppose that x = 〈b1〉 + . . . + 〈bk〉. Then εxα
0 = ε〈b1〉α0 + . . . + ε〈bk〉α0 .

But εxα
0 = 1 because x ∈ νK, and ε〈bi〉α0 = 1 for each i because the basis is unital,

so k = 1. This means that x is equal to the atom 〈b1〉.
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(ii) The proof is by induction on r. In the case r = −1 the result follows from
part (i). From now on, suppose that r > 0. We may assume that k > 1 (otherwise
there is nothing to prove). We have 〈bi〉+r ∧ 〈bi〉−r = 0 for each i, because |bi| > r.
Since the basis is loop-free, we can assume the list 〈b1〉, . . . , 〈bk〉 ordered so that
〈bi〉+r ∧ 〈bj〉−r = 0 for i > j. By applying Proposition 5.1 and grouping the factors,
we get a decomposition x = x1 #r . . . #r xk with xi ∈ νK and xi ≡ mi〈bi〉 modulo
(µK)r. By Proposition 5.2(ii),

xi ≡ mi〈bi〉+ 〈c1〉+ . . . + 〈cl〉 mod (µK)r−1

for some r-dimensional atoms 〈c1〉, . . . , 〈cl〉. By the inductive hypothesis, mi = 1 as
required.

(iii) We have xα
n > 0 because x ∈ νK, so xα

n = m1b1 + . . . + mkbk for some
positive integers mi and some n-dimensional basis elements bi. It now suffices to
show that mi = 1 for each i, and this follows from part (ii) because

dα
nx ≡ m1〈b1〉+ . . . + mk〈bk〉 mod (µK)n−1.

7. The structure of the category of ω-categories

The ω-categories F [p], F [p; n], F [p; n, n] and F [p; n,m, n] of Example 4.7 repre-
sent the elements, operations and defining identities of ω-categories; in particular
F [p;n, n] and F [p; n,m, n] are what one needs for the identities of Definition 2.1(vi)
and (vii). One can therefore use these ω-categories to give a ‘globular’ description
of ω-cat. There are also simplicial and cubical descriptions, using the ω-categories
ν∆[p] and νQ[p] coming from Examples 3.8 and 3.10; see [1], [2], [11]. All of these
descriptions are based on ω-categories with strongly loop-free atomic bases. Be-
cause of Theorem 5.11, one can express these descriptions in terms of augmented
directed complexes; thus the theory of ω-categories can be expressed in terms of
chain complexes. We will now use the globular description to get results on monoidal
structures. The main novelty is the functoriality; see Theorem 7.6 in particular.

We first make the following observation.

Theorem 7.1. Every ω-category is the colimit of a small diagram of ω-categories
with strongly loop-free atomic bases.

Proof. Let C be an ω-category. By Proposition 2.3, C is the union of the increasing
sequence of sub-ω-categories Cp, where

Cp = d−p C = d+
p C = {x ∈ C : d−p x = x } = {x ∈ C : d+

p x = x }.
The structure of C is given by the unary operations dα

n and the not everywhere
defined binary composition operations #n. Now the elements and #n-composable
pairs in Cp are represented by the ω-categories F [p] and F [p; n] of Example 4.7,
and it follows that C is the colimit of a small diagram in which the objects are
copies of the F [p] and F [p; n]. Indeed, one needs a copy of F [p] for each element
of Cp; one needs a copy of F [p;n] for each #n-composable pair in Cp; and one
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needs morphisms to determine the inclusions Cp−1 → Cp, the operations dα
n, and

the composition operations #n. The result now holds since, by Example 4.7, the
F [p] and F [p; n] have strongly loop-free atomic bases.

From Example 3.10, the category of augmented directed complexes with strongly
loop-free unital bases has a monoidal structure based on the usual tensor product of
chain complexes. From Theorem 5.11 we immediately get the following consequence.

Proposition 7.2. There is a monoidal structure on the full subcategory of ω-cat
consisting of ω-categories with strongly loop-free atomic bases. It is equivalent via
λ and ν to the monoidal structure on the full subcategory of ADC consisting of
atomic directed complexes with strongly loop-free unital bases.

We now use Theorem 7.1 to get a monoidal structure on the category of ω-
categories.

Theorem 7.3. There is a colimit-preserving functor

(C, C ′) 7→ C ⊗ C ′ : ω-cat× ω-cat → ω-cat

extending the tensor product on ω-categories with strongly loop-free atomic bases.
This functor is unique up to natural equivalence, and it determines a monoidal
structure on ω-cat.

Proof. Because of Theorem 7.1, it makes sense to define the functor by

C ⊗ C ′ = colim(F ⊗ F ′),

where the colimit is taken over the morphisms F → C and F ′ → C ′ whose domains
have strongly loop-free atomic bases. It is clear that this functor preserves colimits
and that it extends the tensor product on ω-categories with strongly loop-free atomic
bases. It is also clear that these properties determine the functor up to natural
equivalence. We get a monoidal structure on ω-cat because we are starting from a
monoidal structure on the subcategory.

We now wish to show that the monoidal structure on ω-cat is biclosed. We will
use the following result.

Theorem 7.4. Let F be the category of ω-categories with strongly loop-free atomic
bases. Then an ω-category is naturally equivalent under the functor C 7→ hom(−, C)
to a contravariant set-valued functor on F which takes colimits in ω-cat to limits
in the category of sets.

Proof. If C is an ω-category, then hom(−, C) is a contravariant set-valued functor
on ω-cat taking colimits to limits. It follows that the restriction hom(−, C)|F is
a contravariant set-valued functor on F taking colimits in ω-cat to limits in the
category of sets. The axioms of ω-category theory (Definition 2.1) reduce to these
properties of hom(−, C)|F: indeed it suffices to take the ω-categories F [p], F [p; n],
F [p;n, n] and F [p;n, m, n] of Example 4.7, all of which are in F. The result follows.
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The category F of Theorem 7.4 is equivalent under λ to a subcategory of ADC
by Theorem 5.11, so Theorem 7.4 yields a description of ω-categories in terms of
chain complexes. Note in particular that λ takes colimits in ω-cat to colimits in
ADC because it is a left adjoint.

From Theorem 7.4, in the standard way, we get the following result.

Theorem 7.5. The monoidal structure on ω-cat is biclosed.

Proof. Given ω-categories C and D, we must find ω-categories HOM(C,D) and
HOM′(C, D) such that there are natural equivalences

hom
(−, HOM(C,D)

) ∼= hom(−⊗C, D), hom
(−, HOM′(C,D)

) ∼= hom(C⊗−, D).

But it follows from Theorem 7.3 that hom(−⊗ C,D) is a contravariant set-valued
functor on ω-cat taking colimits to limits, and it then follows from Theorem 7.4 that
hom(−⊗C, D) is naturally equivalent to hom

(−,HOM(C,D)
)

for some ω-category
HOM(C, D). The construction of HOM′(C,D) is similar.

The category of chain complexes has a well-known closed symmetric monoidal
structure, and one can check that this induces a biclosed monoidal structure on aug-
mented directed complexes. Indeed, let K and L be augmented directed complexes.
If n > 0 then

HOM(K, L)n =
∏
m

hom(Km, Lm+n),

while HOM(K, L)0 consists of the pairs (f, εf) such that f ∈ ∏
m hom(Km, Lm) is a

chain map from K to L and εf is an integer with (εf)(εx) = ε(fx) for x ∈ K0. If f ∈∏
m hom(Km, Lm+n), then we write fm for the component of f in hom(Km, Lm+n).

The boundary on HOM(K,L)n is given by

(∂f)m =

{
∂ ◦ fm − (−1)nfm−1 ◦ ∂ if m > 0,

∂ ◦ fm if m = 0,

and by ε(∂f) = 0 in the case n = 1. The augmentation on HOM(K, L)0 is given
by (f, εf) 7→ εf . The submonoid HOM(K,L)∗n is given by the elements f of∏

m hom(Km, Lm+n) such that fm(K∗
m) ⊂ L∗m+n for all m. The definition of

HOM′(K, L) is the same as for HOM(K,L), except that the boundary formula
changes to

(∂f)m =

{
(−1)m(∂ ◦ fm − fm−1 ◦ ∂) if m > 0,

∂ ◦ fm if m = 0.

The biclosed monoidal structures on augmented directed complexes and ω-cate-
gories are related as follows.

Theorem 7.6. Let K and L be augmented directed complexes such that K has a
strongly loop-free unital basis. Then there are natural isomorphisms

ν HOM(K, L) ∼= HOM(νK, νL), ν HOM′(K, L) ∼= HOM′(νK, νL).
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Proof. We give the proof for the first of these isomorphisms. Because of Theo-
rem 7.4, it suffices to show that there are natural bijections

hom
(
F, ν HOM(K,L)

) ∼= hom
(
F, HOM(νK, νL)

)

for F an ω-category with a strongly loop-free atomic basis. But

hom
(
F, ν HOM(K, L)

) ∼= hom
(
λF, HOM(K,L)

) ∼= hom(λF ⊗K, L)

and

hom
(
F, HOM(νK, νL)

) ∼= hom(F ⊗ νK, νL) ∼= hom
(
λ(F ⊗ νK), L

)

because λ is left adjoint to ν, and λF ⊗K ∼= λ(F ⊗ νK) by Proposition 7.2. The
result follows.
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