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EXPLICIT BRAUER INDUCTION FOR SYMPLECTIC AND
ORTHOGONAL REPRESENTATIONS

OLAF NEISSE and VICTOR P. SNAITH

(communicated by J.F. Jardine)

Abstract
Explicit Brauer Induction formulae with certain natural be-

haviour have been developed for complex representations, for
example by work of Boltje, Snaith and Symonds. In this pa-
per we present induction formulae for symplectic and orthog-
onal representations of finite groups. The problems are moti-
vated by number theoretical and topological questions. We will
prove naturality with respect to restriction and inflation. Also
we investigate complexification maps and use them to compare
the orthogonal and symplectic induction formulae with Boltje’s
complex induction formula.

Introduction

Motivated by a question on L-functions, Brauer published in 1947 [10] his famous
induction theorem which states that any complex/unitary representation of a finite
group can be expressed as an integral linear combination of representations which
are obtained by induction from one-dimensional representations of subgroups. This
result had and still has important implications in many mathematical areas like
number theory, character theory or topology.

The natural question arose to write down explicitly such a linear combination.
During 1986-1989 different explicit Brauer induction formula were developed (e.g.
[35],[4],[43]). The key property of all these formulae is naturality with respect to
homomorphisms of groups. Here we shall be concerned with generalising one of
these formulae, namely the canonical induction formula of [4].

Then, in connection with root-numbers, orthogonal and symplectic representa-
tions of finite groups became important. Similar induction theorems were proved by
Deligne/Serre (for orthogonal) and Martinet (for symplectic) (see [22]). Also topo-
logical questions like stable decompositions of the classifying spaces of symplectic
or orthogonal matrix groups are related to explicit integral induction formulae with
natural behaviour for those induction theorems as explained in §1. However, these
topological problems are not totally answered yet, since our formulae do not have
integer coefficients in general.
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In this paper we introduce corresponding explicit induction formulae by an alge-
braic approach, where the coefficients of the linear combinations are derived from
topological calculations. This enables us to present formulae of the same shape for
all three induction theorems:

Main Theorem1

For n ∈ N let X(n) denote either U(n) (unitary case), O(2n) (orthogonal case)
or Sp(n) (symplectic case). Let G a finite group and ρ : G→ X(n) a representation.
Then

(∗) ρ =
∑

(H,Ψ)<(H1,Ψ1)<..<(Hr,Ψr)

(−1)r
|H|
|G| m(ResGHrρ,Ψr) IndGHΨ

where the sum runs over all chains of pairs (Hi,Ψi) of subgroups Hi 6 G and
representations Ψi : Hi → X(i), and m(Θ,Ψ) is defined by

m(Θ,Ψ) =





〈θ, ψ〉H with ψ = Ψ unitary case

〈θ, ψ〉H / 〈ψ,ψ〉H with ψ = c(Ψ) symplectic case
〈θ, ψ〉H with c(Ψ) = ψ irr.
〈θ, λ〉H with c(Ψ) = λ+ λ
[〈θ, φ〉H /2] mit c(Ψ) = 2φ
1 with c(Ψ) = φ+ φ′ odd
0 otherwise





orthogonal case

and c : RO(G) → RUG resp. c : RSp+ (G) → RUG denotes the complexification map
from the Grothendieck rings RO(G) and RSp+ (G) of orthogonal resp. symplectic
representations to those of unitary representations.

Moreover, we discuss how these three formulae are related to each other by the
natural complexification operations c on orthogonal resp. symplectic representa-
tions.

In section 1 we explain the topological motivation for this research, namely a
proof of the existence of an exponential stable decomposition of the classifying
space BSp of the symplectic group Sp. The idea was to imitate the proof in the
unitary case, where an explicit Brauer induction formula can play an important
role.

Section 2 contains a brief summary on the canonical explicit induction formula
for unitary representations. We also recall terminology, properties of the formula
and the language of Mackey functors.

Then, in section 3, we study symplectic representations. In 3.9 the formula for
symplectic representations is described. Its functoriality with respect to restriction,
inflation and other naturality properties are proved.

We will show (after a long calculation) that the induction formulae commute
with complexification, proving that our symplectic formula gives a natural induction
formula. It will turn out that it is not integral for general groups. But, in 3.21, we

1for details on notation and interpretation see 2.2, 3.9 and 6.4
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prove integrality for representations of Galois groups of certain local number field
extensions.

In section 4 we examine the interaction between the symplectic induction formula
and symplectic Adams operations. This will be important for section 5, because
there we explore another motivation for such explicit formulae, namely the connec-
tions to symplectic local root numbers. In §5.2 we formulate a conjecture that our
formula aSpG (ρ) is 2-adically integral when ρ is a local Galois representation and the
residue characteristic is odd. If true, as explained in Remark 5.4, this conjecture
would enable one to promote the two-dimensional formulae of [26], [27] and [17] to
a formula for all symplectic root numbers of p-adic local fields when p 6= 2.

Finally, in section 6, we deal with orthogonal representations. As explained in
§6, our motivation for deriving the orthogonal formula comes more from algebraic
topology than from algebra. In 6.4 we give details on our explicit orthogonal induc-
tion formula. While this formula respects restriction, inflation and conjugation (as
we will prove), we lose additivity and integrality. However, after calculating the de-
fect term which obstructs the orthogonal formula from commuting with the unitary
formula via complexification, we find that our orthogonal formula is natural as well.

We have developed our formulae combinatorially from scratch, this seemed more
directly accessible from a reader’s point of view. However, we are grateful to the
referee who pointed out that we could have used the methodology of [7] in several
places.

1. Topological motivation

1.1. Let Gn denote one of the classical compact Lie groups, U(n),Sp(n) or O(2n),
of unitary, symplectic or orthogonal matrices. Since Gn−1 embeds canonically into
Gn (by adding 1 ∈ G1 at the bottom right-hand corner) we may form the mapping
cone, BGn/BGn−1, of the induced map between classifying spaces. When n = 0
we set BG0/BG−1 = S0, the zero-dimensional sphere. Let X+ denote the disjoint
union of the space X and a base-point. In the stable homotopy category [1] there
is a homotopy equivalence of the form

(BG∞)+ ' ∨k>0BGk/BGk−1

which was first proved in [33]. In fact, from this equivalence one can easily deduce
equivalences of the form

(BGn)+ ' ∨06k6nBGk/BGk−1.

Stable decompositions of classifying spaces are important [28] because the factors
are much simpler to work with than the whole. For example, BU(n)/BU(n− 1) is
just the Thom space, MU(n), of the universal n-plane bundle on BU(n).

In this section we shall show how Explicit Brauer Induction may be used to
derive these stable decompositions.

1.2. Let RU+(G), RSp+ (G) and RO+(G) denote, respectively, the free abelian group on
the G-conjugacy classes of representations φ : H −→ G1 where H is a subgroup
of G. Hence RU+(G) (denoted by R+(G) in [41]) is the free abelian group on the
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G-conjugacy classes of homomorphisms φ : H −→ U(1) = S1. However, in the
symplectic and orthogonal cases, because a representation into G1 is a G1-conjugacy
class of a homomorphism, a free generator φ : H −→ G1 is equivalent to Xφ(g −
g−1)X−1 : H −→ G1 for any g ∈ G, X ∈ G1. The equivalence class of (H,φ) will
be denoted by (H,φ)G.

If J ⊆ G we have a restriction homomorphism

ResGJ : RZ+(G) −→ RZ+(J)

for Z = U, Sp,O defined by

ResGJ ((H,φ)G) =
∑

z∈J\G/H
(J

⋂
zHz−1, (z−1)∗φ)J

where (z−1)∗φ(zhz−1) = φ(h). If π : G −→ K is a surjection there is an inflation
homomorphism

InfGK : RZ+(K) −→ RZ+(G)

given by InfGK(H,φ)K = (π−1(H), φ · π)G.
By means of these maps RZ+(−) gives a functor from finite groups to abelian

groups when Z = U, Sp,O. When Z = U , we even obtain a Mackey functor from
finite groups to the category of rings ([4], [5], [11], [35], [38], [41]).

1.3. RU+(G) and stable homomotopy decompositions
Let R(G) denote the complex representation ring of G, so R(G) = K0(CG), and

let IR(G) = Ker(ε : R(G) −→ Z) denote the augmentation ideal given by the
kernel of the homomorphism which sends a virtual representation to its dimension.
Henceforth, following [41], we shall abbreviate RU+(G) to R+(G).

The central result of Explicit Brauer Induction is the existence of natural trans-
formations from representations of G to R+(G) which are right inverse to the map

bG : R+(G) −→ R(G)

given by bG(H,φ)G = IndGH(φ) ∈ R(G). The formula of ([5], [41], [43]) gives a
natural homomorphism

aG : R(G) −→ R+(G)

such that aG(φ : G −→ U(1)) = (G,φ)G. There is only one such homomorphism
and it satisfies bGaG = 1.

Now let p be a prime and consider the case when G = GLnFq with q a power
of p. In [29] the canonical modular representations of G are used, by means of the
Brauer lifting technique of [19], to construct a canonical element

σp ∈ lim
←−
n,q

IR(GLnFq) ⊂ lim
←−
n,q

R(GLnFq).

By naturality of the homomorphisms, {aGLnFq}, we obtain

aGLFp(σp) ∈ lim
←−
n,q

IR+(GLnFq) ⊂ lim
←−
n,q

R+(GLnFq).
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Here Fp is an algebraic closure of Fp and IR+(G) is the kernel of the homomorphism
to the Burnside ring given by ε(H,φ)G = [G/H] ([35], [41]).

IfX and Y are base-pointed spaces let {X,Y } denote the stable homotopy classes
of maps from X to Y ; that is, the morphisms from X to Y in the stable homotopy
category [1]. If G is a finite group there exists a natural transformation

T : IR+(G) −→ {BG+, BU(1)+}
given by sending (H,φ)G − (H, 1)G to the composition

BG+
τ−→ BH+

Bφ+−→ BU(1)+

where τ is the stable homotopy transfer ([37] pp.163-4; see also [2], [3], [21], [24]).
In fact, if IA(G) is the augmentation ideal of the Burnside ring, A(G), then the
IA(G)-adic completion of T is an isomorphism. We shall not need this result, which
was first proved (with U(1) replaced by any torus) in ([37] Ch.V Theorem 1.17)
and was extended to all Lie groups in [24].

Hence we have a canonical element

T (aGLFp(σp)) ∈ lim
←−
n,q

{(BGLnFq)+, BU(1)+} ∼= {(BGLFp)+, BU(1)+}.

Let Q(X+) denote the iterated loopspace Q(X+) = limn ΩnΣn(X+). Then, if Y
is a base-pointed space there is an adjunction isomorphism of the form

adj : {Y,BU(1)+}
∼=−→ [Y,Q(BU(1)+)]

whose range is the set of based homotopy classes of maps from Y to Q(BU(1)+).
Therefore we obtain a (homotopy class of a) map of the form

T̃p = adj(T (aGLFp(σp))) : (BGLFp)+ −→ Q(BU(1)+).

Now we shall examine how the properties of aG translate into useful properties
of T̃p.

Direct sum of matrices makes BGLFp into an H-space with multiplication

m : BGLFp ×BGLFp −→ BGLFp.

The iterated loopspace Q(BU(1)+) is also an H-space and additivity of the Brauer
lifting together with the fact that aG is a homomorphism implies that T̃p is an
H-map so that

m(T̃p × T̃p) ' T̃p ·m : BGLFp ×BGLFp −→ Q(BU(1)+).

On the other hand, in the stable homotopy category, there is a Snaith splitting
([32], [34]; see also [13], [14]) of the form

∨

k>0

jk : Q(BU(1)+) '−→
∨

k>0

(BΣk
∫
U(1))/(BΣk−1

∫
U(1))

where Σk
∫
U(1) is the wreath product given by the normaliser of the diagonal

maximal torus in U(k). As usual, when k = 0 we adopt the convention that mapping
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cone of BΣ−1

∫
U(1) −→ BΣ0

∫
U(1) is the zero-sphere, S0. Composing with the

map

(BΣk
∫
U(1))/(BΣk−1

∫
U(1)) −→ BU(k)/BU(k − 1) = MU(k)

induced by the inclusion of Σk
∫
U(1) into U(k) we obtain a stable map of the form

∨

k>0

ĵk : Q(BU(1)+) −→
∨

k>0

MU(k).

Furthermore, as explained in ([34]; see also [13], [14]), the maps
∨
k>0 jk and∨

k>0 ĵk are exponential with respect to the pairings

(BΣk
∫
U(1))/(BΣk−1

∫
U(1)) ∧ (BΣl

∫
U(1))/(BΣl−1

∫
U(1))

↓

(BΣk+l
∫
U(1))/(BΣk+l−1

∫
U(1))

and
MU(k) ∧MU(l) −→MU(k + l)

induced by direct sum of matrices. That is, we have a homotopy-commutative dia-
gram of stable maps of the following form

QBU(1)+ ×QBU(1)+
∨

k

MU(k) ∧MU(t− k)

QBU(1)+ MU(t)

-
P
k ĵk∧ĵt−k

?
m

?
-ĵt

Now we come to our motivating topological result.

Theorem 1.4. ([34] Theorem 2.2; [33] Theorem 4.3)
There exists a stable homotopy equivalence of the form

σU =
∨

k>0

σU,k : BU+
'−→

∨

k>0

MU(k).

In addition, σU is an exponential map in the sense that, for each t > 0, the
diagram

BU+ ∧BU+ = (BU ×BU)+
∨

k

MU(k) ∧MU(t− k)

BU+ MU(t)

-
P
k σU,k∧σU,t−k

?

m+

?
-ĵt
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commutes in the stable homotopy category.

Proof. It suffices to construct an H-map, τ , from BU to QBU(1)+ which restricts
to the canonical map on BU(1). Then we set σU equal to the composition with∑∞
k=0 ĵk. The map T̃p has the right properties except that its domain is (BGLnFp)+

rather than BU . However, by the technique of localisation and completion in ho-
motopy theory ([8], [9], [23], [42]) it suffices to construct τ on the rationalisation
of BU and on its completion at each prime, l. Since BU and QBU(1)+ are ratio-
nally equivalent we may take the rationalisation of τ to be the identity map. The
completion of BU at the prime l is equal to the l-adic completion of (BGLnFp)
where p is chosen to generate (Z/l2)∗ if l is odd and p = 3 when l = 2. Therefore
we may choose the l-adic completion of a suitable T̃p as the completion of τ at l,
which completes the proof.

Remark 1.5. We have used the Explicit Brauer Induction map to prove Theorem
1.4. The naturality of the map is required to in order to turn Quillen’s element, σp of
§1.3, into a map from BGLFp to QBU(1)+. It is the fact that aG is a homomorphism
which yields an H-map and hence the exponential property of the splitting.

The Explicit Brauer Induction formulae of [35] are natural in the symplectic and
orthogonal case, too. Using this one could give a proof of the stable decompositions
of [33]

BSp '
∞∨

k=0

MSp(k), BO '
∞∨

k=0

BO(2k)/BO(2k − 2)

similar to that of Theorem 1.4.
In [34] Theorem 2.2 (see also [33] Theorem 3.2) it is claimed that BSp admits

an exponential stable decomposition of the above form. However there is a gap in
the proposed proof since the cavalier reference to the existence of “an analogous
symplectic vector field” in ([33] Example 2.13) is not true. For a time this gap did
not seem serious in view of the fact that [25] offered an alternative construction of
an exponential stable decomposition of BSp.

On Friday, 18 July 1997 one of us (VPS) learned of the argument of [30] which
showed that none of the stable decompositions of BSp which were then in the
literature were exponential. The way around this gap then seemed clear. We believed
that one could use the topological approach to symplectic Explicit Brauer Induction
described in ([43] §6) to construct a natural homomorphism of the form

aSpG : RSp(G) −→ RSp+ (G)

and then imitate the proof of Theorem 1.4. After all, in ([43] p.180) one finds the
remark that “The symplectic case presents no new difficulties; one just replaces
the complex projective space by the quaternionic version.” Unfortunately, as we
studied the symplectic and orthogonal cases more closely, we discovered that this
remark is false. As a result, at the moment, we do not know whether or not there
is an exponential stable decomposition for BSp. In fact, our analysis, together with
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the topological results of [30] strongly suggests that no such exponential stable
decomposition for BSp exists.

2. Induction formula for unitary representations

2.1. Brauer Induction formula
In this section we recall briefly the natural explicit Brauer induction formula in

the complex case. This formula is due to Robert Boltje ([5]; see also [4], [7] and
[41]).

Let G be a finite group. Let R(G) denote the Grothendieck group of the category
of finite-dimensional left CG-modules. Every such module yields a matrix represen-
tation G→ Gl(n,C) which is conjugate to a unitary representationG→ U(n). Since
such a representation is determined by its character, we may identify R(G) with the
character ring of G, the free abelian group on the set of irreducible characters on
G. The subgroup of R(G) generated by the set of linear characters G→ U(1) = S1

will be denoted by L(G). Brauer proved [10] that every unitary representation
ρ : G → U(n) is an integral sum of representations which are induced from linear
characters on subgroups of G, so

ρ =
∑

i

niIndGHi(φi) with Hi 6 G, φi : Hi → U(1) .

Canonical explicit Brauer induction formulae with various properties were given by
Boltje [4], Snaith [35] etc. We are going to use the formula which is trivial on one-
dimensional representations and natural with respect to restriction and inflation,
namely

ρ =
∑

(H0,φ0)<..<(Hr,φr)

(−1)r
|H0|
|G| m(ResGHr (ρ), φr)IndGH0

(φ0)

where Hi 6 G, φi : Hi → U(1) and m(θ, φ) = 〈θ;φ〉H denotes the multiplicity of
φ : H → U(1) in θ ∈ R(H).

In order to work with this formula we denote R+(G) the free abelian group on
the G-conjucacy classes of linear characters on subgroups of G. More precisely, let
G act on the set M(G) of pairs (H,φ) with H 6 G and φ : H → U(1), and let
(H,φ)G denote the G-orbit of (H,φ) in M(G), then those orbits, collected in a set
denoted M(G)/G, form a Z-basis of R+(G). This is an example of a general method
called the +-construction (see [6]). There are, for J 6 G, homomorphisms

ResGJ : R+(G) → R+(J)

and

IndGJ : R+(J) → R+(G)

and a natural conjugation map, giving the functor R+ the structure of a G-Mackey
functor.

Theorem 2.2. [6, 3.1.2]; see also [4, 2.35] and [41, 2.2.15]
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The map

aG : R(G) 3 ρ 7→
∑

(H0,φ0)<..<(Hr,φr)

(−1)r
|H0|
|G| m(ResGHr (ρ), φr)(H0, φ0)G

is a homomorphism which takes values in R+(G).

This homomorphism aG : R(G) → R+(G) satisfies the following natural proper-
ties:

Proposition 2.3. [41, 2.3.2]
i) For J 6 G the following diagram commutes

R(G) R+(G)

R(J) R+(J)

-aG

?
ResGJ

?
ResGJ

-aJ

ii) For φ ∈ L(G), aG(φ) = (G,φ)G.
iii) For N / G the following diagram commutes

R(G/N) R+(G/N)

R(G) R+(G)

-aG/N

?
InflGG/N

?
InflGG/N

-aG

Theorem 2.4. [41, 2.3.2]
If bG : R+(G) → R(G) is the homomorphism defined by

(H,φ)G 7→ IndGH(φ)

that aG is a splitting; that is bG ◦ aG = id : R(G) → R(G).

Example 2.5. To prepare the reader for the sort of combinatorial arguments which
we shall use later (in §3, for example) and to explain notation we shall derive the
following example ab initio. By Remark 2.7, we could have deduced the formula of
Proposition 2.6 from the dihedral formula of [4].

Let Q4n denote the generalised quaternion group

Q4n =
〈
x, y | xn = y2, y4 = 1, yxy−1 = x−1

〉

and let Ψ denote the symplectic representation

Ψ : Q4n −→ Sp(1) ⊂ H∗

given by Ψ(x) = ξ2n and Ψ(y) = j. Here ξn = e2π
√−1/n and j is the usual quater-

nion.
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We wish to evaluate

aQ4n(c(Ψ))

=
∑

(H,φ)<(H1,φ1)<...<(Hr,φr)
(−1)r |H|4n < c(Ψ), φr >Hr ·(H,φ)Q4n ∈ R+(Q4n).

If the multiplicity < c(Ψ), φr >Hr is non-zero then ResQ4n
Hr

(c(Ψ)) = φr ⊕ φr so
that φr must be injective on Hr, because Ψ is. Hence Hr must be cyclic. The
cyclic subgroups contained in 〈x〉 ∼= Z/2n are given by 〈xm〉 ∼= Z/(2n/m) for each
m dividing 2n. Otherwise each xiy satisfies (xiy)2 = y2 and generates a cyclic
subgroup of order four. When n is odd, all the subgroups,

〈
xiy

〉
, are conjugate in

Q4n but when n is even, there are two conjugacy classes, namely 〈y〉 and 〈xy〉. Also
Ψ(y2) = −1 so that, if χ is the non-trivial character on

〈
y2

〉
, (y2, χ) 6 (H,φ) for

any (H,φ)Q4n which has a non-zero coefficient in aQ4n(c(Ψ)) ([41] Corollary 2.2.40).
Now consider the coefficient of (H,φ)Q4n when

〈
y2

〉 ⊆ H ⊆ 〈x〉 with |H| = t > 2.
In this case (H,φ) 6= (H,φ) but (H,φ)Q4n = (H,φ)Q4n . If λ ∈ {φ, φ} then we have
1 =< c(Ψ), φr >Hr for any chain of the form (H,λ) < (H1, φ1) < . . . < (Hr, φr).
The chains starting with φ are distinct from those starting with φ so that the
coefficient of (H,φ)Q4n is equal to

2 · |H|
4n

∑

{1}<A1<A2<...<Ar6<x>/H
(−1)r.

Here the sum of taken over all proper chains of subgroups, Ai = Hi/H ⊆ 〈x〉/H or,
when 〈x〉 = H, just the trivial chain. By ([41] Exercise 2.5.1)

2 · |H|
4n

∑

{1}<A1<A2<...<Ar6<x>/H
(−1)r =

2 · |H|
4n

∑

d| |<x>/H|
µ(d)

where µ(n) denotes the classical Möbius function. This expression is zero unless
H = 〈x〉 in which case it equals one.

Now consider the possibly non-trivial coefficients of the basis elements (〈y〉, φ)Q4n

and (〈xy〉, φ)Q4n . If g has order four let ρg denote the character on < g > given by
ρg(g) =

√−1. When n is odd we must evaluate the coefficients of (< y >, ρy)Q4n

and (〈y〉, ρy)Q4n . These coefficients are both equal to one since < y > is a maximal
cyclic subgroup of Q4n and, for example, there are 2n (H,φ)’s which are conjugate
to (〈y〉, ρy). When n is even the distinct (H,φ)Q4n ’s with H =

〈
xiy

〉
are (〈y〉, ρy)Q4n

and (〈xy〉, ρxy)Q4n , each of which has coefficient equal to one.
Finally we must evaluate the coefficient of (

〈
y2

〉
, χ)Q4n , which is given by

∑

(〈y2〉,χ)<(H1,φ1)<...<(Hr,φr)

(−1)r
|H|
4n

< c(Ψ), φr >Hr .

The 2n chains of length one of the form (
〈
y2

〉
, χ) < (

〈
xiy

〉
, φ1) contribute −1 to

this coefficient. The remaining terms contribute zero, as is seen by the argument
used on (H,φ)Q4n ’s with H ⊆ 〈x〉 together with the observation that, in this case,
for the trivial chain, the multiplicity < c(Ψ), χ ><y2>= 2.

The preceding discussion establishes the following result:



Homology, Homotopy and Applications, vol. 7(3), 2005 109

Proposition 2.6.
In the notation of 2.5

aQ4n(c(Ψ)) =





(〈x〉, φx)Q4n + (〈y〉, ρy)Q4n + (〈y〉, ρy)Q4n − (
〈
y2

〉
, χ)Q4n

if n is odd,

(〈x〉, φx)Q4n + (〈y〉, ρy)Q4n + (〈xy〉, ρxy)Q4n − (
〈
y2

〉
, χ)Q4n

if n is even

where ρx(x) = ξ2n.

Remark 2.7. The formula for aQ4n(c(Ψ)) is determined by the projective repre-
sentation associated to c(Ψ) [43] which is the same projective representation as the
one associated to the dihedral representation

ν : D2n −→ GL2C

given by

ν(x) =




ξn 0

0 ξn


 , ν(y) =




0 1

1 0




where
D2n =< x, y | xn = 1 = y2, yxy = x−1 > .

This implies that aD2n(ν) is also given by the formulae of Proposition 2.6.

3. Induction formula for symplectic representations

3.1. Symplectic representations
Let G be a finite group. Let RSp(G) denote the Grothendieck group of finite-

dimensional HG-modules, or in language of matrix representations, the Grothen-
dieck group of equivalence classes of symplectic representations

ρ : G −→ Sp(n) := Sp(n,H) .

By an induction theorem of Martinet, every such symplectic representation ρ is
a Z-linear combination of representations induced from one-dimensionals; that is
ρ : G→ Sp(n) can be written as

ρ =
∑

i

niIndGHi(Ψi)

withHi 6 G, Ψi : Hi → Sp(1) and ni ∈ Z. In order to make this formula explicit, we
apply the machinery of Mackey functors as described in [6]. Endowed with the usual
conjugation, restriction and induction maps, H 7→ RSp(H) is a G-Mackey functor.
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In RSp(H) (with H 6 G) we consider the free abelian group LSp(H) generated by
the classes of one-dimensional HH-modules, that is by Sp(1)-conjugacy classes of
homomorphisms

Ψ : H −→ Sp(1) = S3.

Let H 7→ RSp+ (H) denote the Mackey functor obtained by the +-construction on
the subfunctor H 7→ LSp(H). So RSp+ (G) is the free abelian group on the G−Sp(1)-
conjugacy classes of elements in LSp(H) for H 6 G; these classes correspond to
G-conjugacy classes of a one-dimensional symplectic representation (up to isomor-
phisms) of the subgroup, H, and will be denoted by (H,Ψ)G ∈ RSp+ (G). For J 6 G
we define homomorphisms

ResGJ : RSp+ (G) −→ RSp+ (J)

and

IndGJ : RSp+ (J) −→ RSp+ (G)

in a manner which is analogous to the complex case (or given by the +-construction).
For N / G we have the inflation map

InflGG/N : RSp+ (G/N) −→ RSp+ (G)

defined by mapping (HN/N,Ψ)G/N to (HN,Ψ)G. Let

bSpG : RSp+ (G) −→ RSp(G)

be the homomorphism defined on the basis by bSpG ((H,Ψ)G) = IndGH(Ψ). Our aim
is to obtain a map âspG : RSp(G) → RSp+ (G) which is a splitting of bSpG , that is
bSpG ◦ âspG = id : RSp(G) → RSp(G), and which behaves naturally with respect to
restriction. But this will not be possible in this integral form, as we shall see.

3.2. One-dimensional symplectic representations
Besides the cyclic and the quaternion type groups there are three more types

of finite subgroups in the unit group Sp(1) of length 1 in H×, namely the binary
tetrahedral, octahedral and icosahedral groups. They arise from finite groups in
SO(3) given by rigid solids centered in the origin. These groups can be pulled back
via π : Sp(1) → SO(3), the map letting Sp(1) act on the pure quaternion space (a
3-dimensional real space with standard inner product) via conjugation. The kernel
of this map is {±1}.

The binary tetrahedral group B24 is the preimage of the group of motions of a
regular tetrahedron, which is isomorphic to the alternating group A4. So B24 is an
extension of a cyclic group of order 2 with A4. In fact, B24 can be expressed as
the semidirect product of the quaternion group Q8 of order 8 and a cyclic group of
order 3 acting faithfully on Q8, so

B24 =< x, y, c|x4 = 1, y2 = x2, c3 = 1, xy = x−1, xc = y, yc = xy > .

The lattice of subgroups can be pictured as follows:
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Using this notation, let Ψ denote the representation

Ψ : B24 → Sp(1) ⊂ H×

defined by

x 7→ i , y 7→ j , c 7→ −1
2
(1− i− j − k) .

This is, up to Sp(1)-conjugation, the unique faithful symplectic representation of
B24.

The binary octahedral group B48 is the preimage of the group of motions of a
regular cube, which is isomorphic to the symmetric group S4. So B48 is an extension
of a cyclic group of order 2 with S4. This group of order 48 appears as the nonsplit
extension of the quaternion group of order 8 with the symmetric group S3 acting
as the full automorphism group. We can describe B48 as an extension of the binary
tetrahedral group with a cyclic group 〈d〉 of order 2, acting as described in this
group presentation:

B48 =< x, y, c, d|x4 =c3 =1, d2 =y2 =x2,

xy=x3, xc=y, yc=xy, xd=x3y, yd=y3, cd=c2 > .

The maximal subgroups of B48 are the normal subgroup B24 of index 2, three
conjugate groups of quaternion type Q16 of order 16 and four conjugate groups of
quaternion type Q12 of order 12.

With this notation, let Ψ denote the (up to Sp(1)-conjugation) unique faithful
symplectic representation

Ψ : B48 → Sp(1) ⊂ H×

given by

x 7→ i , y 7→ j , c 7→ −1
2
(1− i− j − k) , d 7→

√
2

2
(i− k) .

The binary icosahedral group B120 is the preimage of the group of motions of a
regular icosahedron, which is isomorphic to the alternation group A5. In fact, B120

is isomorphic to SL2(5), and can be described as [12]

B120 =< r, s, t|r2 = s3 = t5 = rst > .

B120 has order 120. The maximal subgroups of B120 are six conjugate groups of
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quaternion type Q20 of order 20, five conjugate groups of type binary tetrahedral
group of order 24 and ten conjugate groups of quaternion type Q12 of order 12.

There are actually two types of faithful symplectic representations

Ψ : B120 → Sp(1) ⊂ H×

given by

r 7→ i

s 7→ 1
2
(1− (ζ5 + ζ4

5 )i− (ζ2
5 + ζ3

5 )j)

t 7→ 1
2
(−(ζ5 + ζ4

5 ) + i− (ζ2
5 + ζ3

5 )k) .

depending on the choice of ζ5 (e.g. ζ5 is exp( 2πi
5 ) or exp( 4πi

5 )).

3.3. Complexification
We use the usual embedding Sp(n) → U(2n) to define the complexification map

c = cG : RSp(G) −→ R(G) .

So ρ : G→ Sp(n) (in RSp(G)) maps to

c(ρ) : G −→ Sp(n) −→ U(2n).

Of course this is an injective homomorphism. Furthermore we define the homomor-
phism

c+ = c+,G : RSp+ (G) −→ R+(G)

by the formula

c+,G((H,Ψ)G) = IndGH(aH(c(Ψ))) ∈ R+(G).

The homomorphism was first defined in ([41] §5.4.40 p.213). There is an aH missing
in the formula of ([41] §5.4.41) but not in the proof of the following result, which
is part of the proof of Theorem 5.4.42 of [41]. Obviously bG and bSpG are naturally
connected via complexification, so that bG ◦ c+ = c ◦ bSpG : RSp+ (G) → R(G).

Proposition 3.4.
The homomorphism c+,G is natural with respect to restriction so that, if J 6 G,

ResGJ ◦ c+,G = c+,J ◦ ResGJ : RSp+ (G) −→ R+(J).

Proof. We recall that there is a double coset formula for the composition

ResGJ ◦ IndGH : R+(H) −→ R+(J)

if H, J 6 G. Explicitly we have

ResGJ (IndGH((K,Ψ)H)) =
∑

w∈J\G/H
IndJJ∩wHw−1(w∗(ResHH∩w−1Jw((K,Ψ)H)))

whose proof is similar to the proof of the product formula of ([41] Exercise 2.5.7).
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Hence, if (H,Ψ)G ∈ RSp+ (G) with Ψ : H −→ Sp(1), then

ResGJ (c+,G((H,Ψ)G))

= ResGJ (IndGH(aH(c(Ψ) : H −→ U(2))))

=
∑
w∈J\G/H IndJJ∩wHw−1(w∗(ResHH∩w−1Jw(aH(c(Ψ)))))

=
∑
w∈J\G/H IndJJ∩wHw−1(w∗(aJ∩wHw−1(c(ResHH∩w−1Jw(Ψ)))))

=
∑
w∈J\G/H IndJJ∩wHw−1(aJ∩wHw−1(c(ReswHw

−1

J∩wHw−1((w−1)∗(Ψ)))))

= c+,J(ResGJ ((H,Ψ)G)),

which completes the proof.

Proposition 3.5.
Suppose that

x =
∑

i

ni(Hi, ψi)G ∈ Ker(c+,G)

and that each image, ψi(Hi), is abelian. Then x = 0. In particular, c+,G is injective
for G abelian.

Proof. Amongst the Hi’s which appear in x, choose an H which is maximal in the
poset of conjugacy classes of subgroups of G. Then we may write

x =
∑

i

ni(H,ψi)G +
∑

j

nj(Hj , ψj)G

where the (H,ψi)G’s are all distinct and where none of the Hj in the second sum
satisfies Hj > gHg−1 for any g ∈ G. Then, if c(ψi) = φi ⊕ φi,

0 = c+,G(x) =
∑

i

ni((H,φi)G + (H,φi)
G) +

∑

j

njIndGHj (aHj (c(ψj))) ∈ R+(G)

and it is clear that no term from the second sum can cancel any term from the first
sum, so that

0 =
∑

i

ni((H,φi)G + (H,φi)
G) ∈ R+(G).

This can only happen if, for distinct i0, i1, (H,φi0)
G = (H,φi1)

G or (H,φi0)
G =

(H,φi1)
G. In turn, this can only happen if there exists g ∈ NG(H) such that φi0 =

g∗(φi1) = φi1(g − g−1) or φi0 = g∗(φi1). Both these relations imply that ψi0 =
g∗(ψi1) and so (H,ψi0)

G = (H,ψi1)
G, which is a contradiction.

3.6. Example
We calculate explicitly aG applied to the complexification of the faithful ir-

reducible symplectic representations Ψ of the binary tetrahedral, octahedral and
icosahedral groups (see 3.2).
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Using the notation of 3.2, for the binary tetrahedral group B24,

aB24(c(Ψ)) = 1
6
(〈x〉, ζ4)

B24 + 1
6
(〈x〉, ζ4)

B24 + 1
6
(〈y〉, ζ4)

B24 + 1
6
(〈y〉, ζ4)

B24

+ 1
6
(〈xy〉, ζ4)

B24 + 1
6
(〈xy〉, ζ4)

B24 + 1
4
(〈−c〉, ζ6)

B24 + 1
4
(〈−c〉, ζ6)

B24

+ 1
4
(〈−cx〉, ζ6)

B24 + 1
4
(〈−cx〉, ζ6)

B24 + 1
4
(〈−cy〉, ζ6)

B24 + 1
4
(〈−cy〉, ζ6)

B24

+ 1
4
(〈−cxy〉, ζ6)

B24 + 1
4
(〈−cxy〉, ζ6)

B24 + 1
12

(2− (3 · 2 + 4 · 2))(
ŋ
x2

ő
, ε)B24

= (C4, ζ4)
B24 + (C6, ζ6)

B24 + (C6, ζ6)
B24 − (C2, ε)

B24

Here, for n ∈ N, (Cn, ζn) denotes a cyclic groups Cn of order n (e.g. C4 = 〈x〉)
with a faithful unitary representation ζn on Cn. We note that all cyclic subgroups
are conjugate. For n = 2, that is C2 =

〈
x2

〉
, the representation given by x2 7→ −1

is denoted ε.
For the binary octahedral group B48

aB48(c(Ψ)) = (C8, ζ8)B48 + (C6, ζ6)B48 + (C4, ζ4)B48 − (C2, ε)B48 ,

where for example C8 = 〈xd〉, C6 =
〈
x2c

〉
, C4 = 〈d〉 and C2 =

〈
x2

〉
.

For the two symplectic representations on the binary icosahedral B120 we find
that

aB120(c(Ψ)) = (C10, ζ10)B120 + (C6, ζ6)B120 + (C4, ζ4)B120 − (C2, ε)B120 .

Here the faithful unitary representation on C10 (e.g. C10 = 〈t〉) has to be taken such
that its square is the fifth root of unity chosen to define Ψ. For the groups we may
pick C6 = 〈s〉, C4 = 〈r〉 and C2 = 〈rst〉.

3.7. Some elements in Ker(c+,G)
As a matter of fact, c+,G is in general not injective. The kernel is generated by

elements which we describe now.
Type τ :
If H ⊆ G and ψ : H −→ Sp(1) has non-abelian image which is isomorphic to a

generalised quaternion group, Q4n for some n. Then, by the formula of 2.2,

aH(c(ψ)) =
∑
α

mα(Hα, φα)H =
∑
α

mα(Hα, φα)H ∈ R+(H)

in which each image, φα(Hα), is abelian. Also there exists ψα : Hα −→ Sp(1),
unique up to H − Sp(1)-conjugation, such that c(ψα) = φα ⊕ φα. Then, in R+(G),

c+,G(2(H,ψ)G −∑
αmα(Hα, ψα)G)

= 2
∑
αmα(Hα, φα)G −∑

αmα((Hα, φα)G + (Hα, φα)G)

= 0.
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Denote by τG(H,ψ) the element

τG(H,ψ) = 2(H,ψ)G −
∑
α

mα(Hα, ψα)G ∈ Ker(c+,G) ⊆ RSp+ (G).

Notice that each of the images, ψα(Hα) is abelian.
Type β:
Let B24, B48, B120 denote the binary tetrahedral, octahedral and icosahedral

groups, respectively. Let Ψn : Bn −→ Sp(1) denote the faithful representation
described in 3.2.

From 3.6, we have an inclusion Q8 ⊂ B24 under which all C4’s are conjugate.
Therefore

IndB24
Q8

(c+,Q8(Q8,Ψ)Q8) = 3(C4, ζ4)B24 − (C2, ε)B24 .

If ψn : Cn −→ Sp(1) satisfies c(ψn) = ζn ⊕ ζn then, from 3.6,

c+,B24((B24,Ψ24)B24) + c+,B24((C4, ψ4)B24)− c+,B24((C6, ψ6)B24) =

IndB24
Q8

(c+,Q8(Q8,Ψ)Q8)

and therefore

β24 = (B24,Ψ24)B24 + (C4, ψ4)B24 − (C6, ψ6)B24 − (Q8,Ψ)B24 ∈ Ker(c+,B24).

Now consider B48 =< x, y, c, d | . . . > as in 3.2. This case is a little more
delicate because there are two conjugacy classes of C4, namely C4 =< d > and
C ′4 =< y >⊂ N =< x, y, c > /B48. We have

c+,B48((B48,Ψ48)B48) = (C8, ζ8)B48 + (C6, ζ6)B48 + (C4, ζ4)B48 − (C2, ε)B48 .

Also Q16 =< xd, d > and C8 =< xd > so that

c+,B48((Q16,Ψ16)B48) = (C8, ζ8)B48 + (C4, ζ4)B48 + (C ′4, ζ4)
B48 − (C2, ε)B48 .

Furthermore Q12 =< c, d > so that

c+,B48((Q12,Ψ12)B48) = (C6, ζ6)B48 + 2(C4, ζ4)B48 − (C2, ε)B48 .

Also we have Q′8 =< x, y > and Q8 =< d, y > so that

c+,B48((Q
′
8,Ψ8)B48) = 3(C ′4, ζ4)

B48 − (C2, ε)B48

and

c+,B48((Q8,Ψ8)B48) = 2(C4, ζ4)B48 + (C ′4, ζ4)
B48 − (C2, ε)B48 .

Therefore

β48 = (B48,Ψ48)B48 − (Q16,Ψ16)B48 − (Q12,Ψ12)B48 − (Q′8,Ψ8)B48 ∈ Ker(c+,B48).
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Next consider B120 =< r, s, t | r2 = r3 = t5 = rst >. The relations

c+,B120((B120,Ψ120)B120)
= (C10, ζ10)B120 + (C6, ζ6)B120 + (C4, ζ4)B120 − (C2, ε)B120 ,

c+,B120((Q20 =< r, t >,Ψ20)B120)
= (C10, ζ10)B120 + 2(C4, ζ4)B120 − (C2, ε)B120 ,

c+,B120((Q12 =< r, s >,Ψ12)B120) = (C6, ζ6)B120 + 2(C4, ζ4)B120 − (C2, ε)B120 ,

c+,B120((Q8,Ψ8)B120) = 3(C4, ζ4)B120 − (C2, ε)B120

imply that

β120 = (B120,Ψ120)B120 − (Q20,Ψ20)B120−

(Q12,Ψ12)B120 + (Q8,Ψ8)B120 ∈ Ker(c+,B120).

The elements of Ker(c+,G) of Type β are defined to be those of the form
IndGH(π∗βn) where π : H −→ Bn is a surjective homomorphism and n = 24, 48
or 120.

Type σ:
Elements, Σ ∈ Ker(c+,G), of Type σ are defined to be those which satisfy a

relation of the form

2Σ =
∑
α

τG(Hα, ψα).

Here are two examples of elements of Type σ.
i) Let

Q4n =< x, y |xn = y2, yxy−1 = x−1, y4 = 1 >

denote the generalised quaternion group of order 4n and let z have order two.
Set G = Q4n × 〈z〉 so that G contains four copies of Q4n given by Q1 = 〈x, y〉,
Q2 = 〈xz, y〉, Q3 = 〈x, yz〉 and Q4 = 〈xz, yz〉. Each of these subgroups has a
homomorphism, Ψ : Qv −→ Sp(1), sending the generator xzs to eπi/n and yzt to j
for appropriate s, t. Setting

Σn = (Q1,Ψ)G + (Q2,Ψ)G + (Q3,Ψ)G + (Q4,Ψ)G + 2(
〈
y2

〉
, ψ2)G

− (〈x〉, ψ2n)G − (〈y〉, ψ4)G − (〈xy〉, ψ4)G − (〈xz〉, ψ2n)G

− (〈yz〉, ψ4)G − (〈xyz〉, ψ4)G

we find that c+(Σn) = 0 and

2Σn = τG(Q1,Ψ) + τG(Q2,Ψ) + τG(Q3,Ψ) + τG(Q4,Ψ).

ii) If z, w have order two set G = C2n(Q8× < z >)× < w > whereQ8 =< x, y >



Homology, Homotopy and Applications, vol. 7(3), 2005 117

and the generator, λ, of the left-hand C2 acts by λ(x) = xz, λ(y) = yz. Then

Σ′ = (〈x, y〉,Ψ)G + (〈xz, y〉,Ψ)G + (
〈
y2

〉
, ψ2)G − (〈x〉, ψ4)G

−(〈y〉, ψ4)G − (〈xy〉, ψ4)G − (〈xyz〉, ψ4)G + (〈xw, yw〉,Ψ)G

+(〈xwz, yw〉,Ψ)G + (
〈
y2

〉
, ψ2)G − (〈xw〉, ψ4)G − (〈yw〉, ψ4)G

satisfies c+(Σ′) = 0 and

2Σ′ = τG(< 〈x, y〉,Ψ) + τG(〈xz, y〉,Ψ)

+τG(〈xw, yw〉,Ψ) + τG(〈xzw, yw〉,Ψ).

Proposition 3.8.
In the notation of 3.7, Ker(c+,G) is generated by elements of Types τ, β and σ.

Proof. Suppose that

x =
∑

i

ni(Hi, ψi)G ∈ (Ker(c+,G) : RSp+(G) −→ R+(G)).

For all the terms with ni 6= 0 we may subtract a Z-linear combination of the
τG(H,ψ)’s and IndGH(π∗(βn))’s to ensure that either ψi(Hi) ⊂ Sp(1) is abelian or
ni = 1 and ψi(Hi) is isomorphic to a generalised quaternion group. Under these
circumstances write

x =
∑

ψi(Hi) non−abelian
(Hi, ψi)G +

∑

ψj(Hj) abelian

(Hi, ψi)G

then

2x−
∑

ψi(Hi) non−abelian
τG(Hi, ψi) =

∑
m

am(Hm, ψm)G ∈ Ker(c+,G)

with every image, ψm(Hm) abelian in the right-hand sum. Hence

2x−
∑

ψi(Hi) non−abelian
τG(Hi, ψi) = 0,

by Lemma 3.5, and x is of Type σ.

3.9. A symplectic induction formula
Throughout we will identify RSp(G) ⊗Z Q with the Q-vectorspace we get from

RSp(G) by extending scalars, denoted by QRSp(G). Analogously we set QRSp+ (G) =
RSp+ (G) ⊗Z Q. All homomorphisms on RSp(G) and RSp+ (G), especially ResGJ and
IndGJ , extend in a natural way to homomorphisms between these Q-vectorspaces.
Define the map

aSpG : QRSp(G) → QRSp+ (G)
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by the formula

aSpG (ρ) =
∑

(H0,Ψ0)<..<(Hr,Ψr)

(−1)r
|H0|
|G| m(ResGHr (ρ),Ψr)(H0,Ψ0)G

with m(θ,Ψ) = 〈c(θ);c(Ψ)〉H
〈c(Ψ);c(Ψ)〉H for θ,Ψ ∈ RSp(H), H 6 G. This is a homomorphism

since m is linear in the first argument because both, the restriction map and the
scalar product on characters, are linear.

3.10. Example: G = Cp ×Q8

Let p be an odd prime and let G denote the group

Cp ×Q8 =< x, y, z|x4 = y4 = zp = 1, zx = xz, zy = yz, x2 = y2, yx = x3y > .

So G = {xiyjzk|0 6 i 6 3, 0 6 j 6 1, 0 6 k 6 p − 1} is a group of order 8p. To
shorten notation set −1 := x2. The lattice of subgroups of G is as pictured.
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G

Let ζ denote a primitive root of unity of order p. We calculate the explicit induc-
tion formula for the symplectic irreducible representation ρ : G → Sp(2) given by

sending x to
ţ

i 0
0 i

ű
, y to

ţ
j 0
0 j

ű
and z to

Ã
ζ+ζ−1

2
−i ζ−ζ−1

2

i ζ−ζ−1

2
ζ+ζ−1

2

!
. Further-

more, ρ is irreducible because c(ρ) is a sum of two 2-dimensional representations,
whose characters χ and χ′ are not real-valued.

To calculate the formula we have to study the restriction of ρ on the subgroups H
of G. In the following table we give all the nonzero multiplicitiesm = m(ResGH(ρ),Ψ)
for pairs H, c(Ψ):
〈xz〉, iζ+iζ 〈xz〉, -iζ+-iζ 〈-z〉, -ζ+-ζ 〈z〉, ζ+ζ Q8, χ 〈x〉, i+i 〈-1〉, 2ε 1, 211

2
2

2
2

4
2

4
2

2
1

4
2

8
4

8
4

Here ±i (resp. ±ζ) denotes a complex linear representation sending the generator
to ±i (resp. ±ζ), χ the faithful irreducible representation on Q8 and ε the faithful
linear representation on a group of order 2. In the list we have taken 〈xz〉 resp. 〈x〉
as representatives for the groups of order 4p resp. 4, as the other groups behave in
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the same way. Observe furthermore that the representations iζ+iζ and iζ+iζ on 〈xz〉
are conjugate by G. Now
aSpG (ρ) = 1

2 ( 2
2 )(〈xz〉, iζ+iζ)G + 1

2 ( 2
2 )(〈xz〉, -iζ+-iζ)G + 1

2 ( 2
2 )(〈yz〉, iζ+iζ)G

+ 1
2 (〈yz〉, -iζ+-iζ)G 2

2 + 1
2 (2

2 )(〈xyz〉, iζ+iζ)G + 1
2 ( 2

2 )(〈xyz〉, -iζ+-iζ)G

+ 1
4 ( 4

2 − (3 2
2 + 3 2

2 ))(〈-z〉, -ζ+-ζ)G + 1
8 ( 4

2−(3 2
2 + 3 2

2 + 4
2 )

+(3 2
2 + 3 2

2 ))(〈z〉, ζ+ζ)G+ 1
p (

2
1 )(Q8, χ)G + 1

2p (
4
2 − ( 2

2 + 2
2 + 2

1 ))(〈x〉, i+i)G
+ 1

2p (
4
2 − ( 2

2 + 2
2 + 2

1 ))(〈y〉, i+i)G + 1
2p (

4
2 − ( 2

2 + 2
2 + 2

1 ))(〈xy〉, i+i)G
+ 1

4p (
8
4 − (3 2

2 + 3 2
2 + 4

2 + 2
1 + 3 4

2 ) + (3 · 22
2 + 3 · 2 2

2 + 3 2
1 ))(〈-1〉, 2ε)G

+ 1
8p (

8
4 − (3 2

2 + 3 2
2 + 4

2 + 4
2 + 2

1 + 3 4
2 + 8

4 ) + (3·42
2 + 3·42

2 + 2 4
2 + 4 2

1 + 34
2 )

−(32 2
2 + 32 2

2 + 3 2
1 ))(〈1〉, 211)G

= (〈xz〉, iζ+iζ)G + (〈yz〉, iζ+iζ)G + (〈xyz〉, iζ+iζ)G − (〈-z〉, -ζ+-ζ)G

+ 2
p (Q8, χ)G − 1

p (〈x〉, i+i)G − 1
p (〈y〉, i+i)G − 1

p (〈xy〉, i+i)G + 1
p (〈-1〉, 2ε)G

As this example shows, the symplectic induction formula may have non-integral
coefficients.

Example 3.11. G = C2n ×Q8

Let n ∈ N, Z =< z > the cyclic group of order 2n and Q8 =< x, y > the
quaternion group of order 8, as before. Let Gn = Z × Q8 be the direct product of
these groups and ρn : G→ Sp(2) the symplectic representation given by sending x

to
ţ

i 0
0 i

ű
, y to

ţ
j 0
0 j

ű
and z to

Ã
ζ+ζ−1

2
i ζ−ζ−1

2

−i ζ−ζ−1

2
ζ+ζ−1

2

!
, ζ a primitive 2n-th

root of unity. This is an irreducible representation for n > 2, and for n = 1 it is
twice the one-dimensional symplectic representation Ψ defined by x 7→ i, y 7→ j and
z 7→ −1.

Now let n > 2 and G = Gn, and let Ht be the subgroup generated by x,y and
z2n−t , 0 6 t 6 n. Notice that H1

∼= G1 is normal in Gn with cyclic factor group,
all the intermediate groups are the groups Ht (1 6 t 6 n − 1), being isomorphic
to Gt. Thus ResGnHt (ρ) stays irreducible for t > 2, while ResGH1

(ρ) = 2Ψ. Hence the
coefficient of (H1,Ψ)G in aSpG (ρ) is 8·2

8·2n · 2
1 = 1

2n−2 .
As this example shows, the denominators of the coefficients in the symplectic

induction formula may contain arbitrarily large 2-powers.

Proposition 3.12.
The homomorphism aSpG is natural with respect to restriction: for J 6 G

aSpJ ◦ ResGJ = ResGJ ◦ aSpG : QRSp(G) → QRSp+ (J) .

Proof. The statement follows immediately from general results of Boltje
([6, Prop.1.4.1(ii)],[7, Prop.5.2(ii)] and [6, Prop.1.3.2],[7, Prop.2.4]) concerning an
adjointness property of certain functors between conjugation functors and restric-
tion functors on G, combined with certain isomorphisms. Let (pH)H6G with pH :
QRSp(H) → QLSp(H) sending ρ : H → Sp(n) to

∑
Ψ:H→Sp(1)m(ρ,Ψ)Ψ. Since
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those maps commute with conjugation maps, (pH)H6G is a morphism between
conjugation functors on G. According [7, Prop.5.2(ii)], this gives rise to a mor-
phism (rH)H6G of restriction functors on G with rH mapping ρ : H → Sp(n) to
(pK(ResHK(ρ)))K6H . Composed with the isomorphism

(aK)K6H 7→
∑

L6K6H

|L|
|H|µ(L : K)(L,ResKL (aK))H

(see [7, 2.3a]) this turns out to be a morphism (denoted (ãH)H6G) of restriction
functors on G with ãH sending ρ : H → Sp(n) to

ρ 7→ ∑
L6K6H

|L|
|H|µ(L : K)(L,ResKL (

∑
Ψ:K→Sp(1)m(ResHK(ρ),Ψ)Ψ))H

=
∑
L6K6H

|L|
|H|µ(L : K)(L,

∑
Ψ:K→Sp(1) m(ResHK(ρ),Ψ)ResKL (Ψ))H

=
∑
L6K6H

|L|
|H|µ(L : K)

∑
Ψ:K→Sp(1) m(ResHK(ρ),Ψ)(L,ResKL (Ψ))H

=
∑

(K0,Ψ0)6(K,Ψ)6H
|K0|
|H| µ(K0 : K)m(ResHK(ρ),Ψ)(K0,Ψ0)H

= aSpH (ρ) .

Thus (aSpH )H6G is a morphism of restriction functors, in particular aSpG natural with
respect to restriction.

Proposition 3.13.
Let ρ : G→ Sp(1) then aSpG (ρ) = (G, ρ)G .

Proof. Since (G, ρ) is the only element in (G, ρ)G and m(ρ, ρ) = 1, the coefficient of
(G, ρ)G in aSpG (ρ) is 1. Now let (H,Ψ) < (G, ρ). Only those elements may give other
nontrivial contributions to aSpG (ρ). Since ResGHr (ρ) = Ψr for (Hr,Ψr) < (G, ρ), the
multiplicities turn out to be 1. Thus we have to show that

∑

(H,Ψ)<(H1,Ψ1)<..<(Hr,Ψr)
(Hr,Ψr)6(G,ρ)

(−1)r = 0 .

Consider the set, R, of chains which the sum runs over. Let P < R denote the
subset of those chains which will not end in (G, ρ). Then

( (H,Ψ) < . . . < (Hr,Ψr) ) 7→ ( (H,Ψ) < . . . < (Hr,Ψr) < (G, ρ) )

gives a bijection P → R \ P, where chains of length r are in correspondence to
chains of length r + 1. Since the terms cancel in pairs the sum above equals 0.

Proposition 3.14.
The homomorphism aSpG : QRSp(G) → QRSp+ (G) is the only homomorphism

which is natural with respect to restriction and satisfies Prop. 3.13 when ρ is one-
dimensional.

The proof is similar to the one of theorem 2.2.15 in [41].
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Proposition 3.15.
The homomorphism aSpG is natural with respect to inflation so that, for N / G,

aSpG ◦ InflGG/N = InflGG/N ◦ aSpG/N : QRSp(G/N) → QRSp+ (G)

Proof. We have to show that the coefficients of a basis element (H,Ψ)G in
aSpG (InflGG/N (ρ)) and InflGG/N (aSpG/N (ρ)) for ρ : G → Sp(n) with N 6 ker ρ coin-
cide. Since all maps are morphisms, we can assume that ρ is irreducible. In case
ρ : G→ Sp(1) the statement follows directly from 3.13.

Now we assume n > 2 and argue using induction on |G|. If H = G, the formula
3.9 tells that the coefficient of (G,Ψ)G in aSpG (InflGG/N (ρ)) is zero, as ρ = InflGG/N (ρ)
is irreducible, and on the other hand the coefficient of (G,Ψ)G in InflGG/N (aSpG/N (ρ))
also vanishes, because

InflGG/N (
∑

(HN/N,Ψ)G/N

C(HN/N,Ψ)G/N (HN/N,Ψ)G/N )

contributes to this coefficient only from the base elements with HN = G, and for
those the coefficient C(G/N,Ψ)G/N = 0 since Ψ is irreducible.

Now we suppose H < G and use induction on [G : H]. The coefficient of
(H,Ψ)H in ResGH(

∑
(H0,Ψ0)G

C(H0,Ψ0)G(H0,Ψ0)G) is determined by C(H0,Ψ0)G with
(H,Ψ)G 6 (H0,Ψ0)G. Since by induction on [G : H] we know that the coeffi-
cients coincide for (H,Ψ)G < (H0,Ψ0)G, it suffices to prove that the coefficient of
(H,Ψ)H in ResGH(aSpG (InflGG/N (ρ))) is the same as of ResGH(InflGG/N (aSpG/N (ρ))). But

in fact, with ι
H/(N∩H)
HN/N denoting the isomorphism induced by the canonical group

isomorphism HN/N ∼= H/(N ∩H),

ResGH(aSpG (InflGG/N (ρ))) = aSpH (ResGH(InflGG/N (ρ)))

= aSpH (InflHH/(H∩N)(ι
H/N∩H
HN/N (ResG/NHN/N (ρ))))

= InflHH/(H∩N)(a
Sp
H/(H∩N)(ι

H/N∩H
HN/N (ResG/NHN/N (ρ))))

= InflHH/(H∩N)(ι
H/N∩H
HN/N (aSpHN/N (ResG/NHN/N (ρ))))

= InflHH/(H∩N)(ι
H/N∩H
HN/N (ResG/NHN/N (aSpG/N (ρ))))

= ResGH(InflGG/N (aSpG/N (ρ))) .

We have used the induction hypothesis on G/N which is of smaller order than G,
except in the trivial case N = 1.

Definition 3.16. Let ρ : G −→ Sp(n) be a symplectic representation of a finite
group,G. The centre of ρ, Z(ρ), is the maximal subgroupH such that ResGH(ρ) = nχ
for some homomorphism of the form χ : H −→ {±1} ⊂ Sp(1). Since {±1} is central
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of Sp(1) it is easy to see that such a maximal Z(ρ) exists and is unique (cf. [41]
Corollary 2.2.40).

Proposition 3.17.
In the notation of Definition 3.16, the coefficient of (H,Ψ)G in aSpG (ρ) is zero

unless (Z(ρ), χ) 6 (H,Ψ).

Proof. Since aSpG commutes with inflation by 3.15 we may assume that ρ is injective.
Recall the formula for aSpG (ρ)

aSpG (ρ) =

∑

(H0,Ψ0)<..<(Hr,Ψr)

(−1)r
|H0|
|G|

〈
c(ResGHr (ρ)); c(Ψr)

〉
Hr

〈c(Ψr); c(Ψr)〉Hr
(H0,Ψ0)G ∈ QRSp+ (G).

If H contains Z(ρ) then (Z(ρ), χ) 6 (H,Ψ) because ResGZ(ρ)(ρ) = nχ. Therefore we
must show that the coefficient of (H,Ψ)G is zero when H does not contain Z(ρ).
In this case Z(ρ) is not trivial and we may choose g ∈ Z(ρ) such that χ(g) = −1,
since ρ (and hence χ) is injective on Z(ρ).

If g 6∈ H̃ and Ψ̃ : H̃ −→ Sp(1) is a homomorphism then there exists a unique
extension, Ψ̂, of Ψ̃ to Ĥ =< H̃, g > such that Ψ̂(g) = χ(g) = −1. Now consider the
set, R, of chains (H,Ψ) < (H1,Ψ1) < .. < (Hr,Ψr) appearing in the formula with〈
c(ResGHr (ρ)); c(Ψr)

〉
Hr

non-zero. Let P ⊂ R denote the subset consisting of those

chains for which no Hi = Ĥi−1 and H1 6= Ĥ. For each chain in P there exists a
smallest integer, j, such that g 6∈ Hj−1 but g ∈ Hj . If there is no such Hj we set
j = r+ 1. For each such chain we have (Hj−1,Ψj−1) < (Ĥj−1, Ψ̂j−1) < (Hj ,Ψj) or
(Hr,Ψr) < (Ĥr, Ψ̂r) if j = r + 1. Furthermore, when j = r + 1 the multiplicities of
Ψ̂r and Ψr in ResGZ(ρ)(ρ) are equal and hence non-zero.

Associating to each chain in P the unique chain obtained by interpolating
(Ĥj−1, Ψ̂j−1) gives a multiplicity-preserving bijection between chains of length r
in P and length r+1 in R\P . This bijection shows that the terms in the coefficient
of (H,ψ)G cancel in pairs, as required.

Proposition 3.18.
The homomorphisms aG and aSpG are connected via complexification, that is

aG ◦ cG = c+,G ◦ aSpG : QRSp(G) → QR+(G) .

Proof. Let ρ : G → Sp(n) and let (J, φ)G be a base element of QR+(G). We have
to show that the coefficients of (J, φ)G in aG(c(ρ)) and c+(aSpG (ρ)) coincide. The
first one is easy to express, namely

|J |
|G|

∑

(J0,φ0)∈(J,φ)G

∑

(J0,φ0)<..<(Jr,φr)

(−1)r
〈
ResGJr (c(ρ));φr

〉
Jr
.

Now we calculate the coefficient, denoted C, of (J, φ)G in

c+(aSpG (ρ)) =
∑

(H0,Ψ0)<..<(Ht,Ψt)

(−1)t
|H0|
|G| m(ResGHt(ρ),Ψt) c+((H0,Ψ0)G) .
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Only those summands will have a contribution to C which have a non-zero term
(J, φ)G in c+((H0,Ψ0)G). If c(Ψ0) = φ0 + φ0, then c+((H0,Ψ0)G) = (H0, φ0)G +
(H0, φ0)G, and this can only contributes to C, if (H0, φ0)G = (J, φ)G or (H0, φ0)G =
(J, φ)G. If c(Ψ0) = ψ0 is irreducible, then

c+((H0,Ψ0)G) = IndGH0
(aH0(ψ0)) =

∑

(J0,φ0)<..<(Jt,φt)

(−1)t
|J0|
|H0|

〈
ResH0

Jt
(ψ0);φt

〉
Jt

(J0, φ0)G ,

and this contributes
|J |
|H0|

∑

(J0,φ0)∈(J,φ)G

∑

(J0,φ0)<..<(Jt,φt)
Jt6H0

(−1)t
〈
ResH0

Jt
(ψ0);φt

〉
Jt
.

Therefore, C can be expressed as

C =
∑

(H0,Ψ0)<..<(Ht,Ψt)

c(Ψ0)=φ0+φ0 , (H0,φ0)xor(H0,φ0)∈(J,φ)G

(−1)t |H0|
|G| m(ResGHt(ρ),Ψt)

+
∑

(H0,Ψ0)<..<(Ht,Ψt)

c(Ψ0)=φ0+φ0 , (H0,φ0)and(H0,φ0)∈(J,φ)G

(−1)t |H0|
|G| 2m(ResGHt(ρ),Ψt)

+
∑

(H0,Ψ0)<..<(Ht,Ψt)
c(Ψ0)=ψ0 irred.

(−1)t |H0|
|G| m(ResGHt(ρ),Ψt)×


 |J|
|H0|

∑
(J0,φ0)<..<(Jr,φr)

(J0,φ0)∈(J,φ)G , Jr<H0

(−1)r
〈
ResH0

Jr
(ψ0);φr

〉
Jr




Note that in each summand the factor |J|
|G| appears and thus can be factored out.

We expand the three subsums of C according to the type of decomposition of c(Ψi),
namely c(Ψi) = φi + φi or c(Ψi) = ψi irreducible. The first subsum

∑

(H0,Ψ0) , c(Ψ0)=φ0+φ0
(H0,φ0)∈(J,φ)G , (H0,φ0) 6∈(J,φ)G

∑

(H0,Ψ0)<..<(Ht,Ψt)

(−1)tm(ResGHt(ρ),Ψt)

splits into C1 + C2 with

C1 =
∑

(H0,Ψ0) , c(Ψ0)=φ0+φ0
(H0,φ0)∈(J,φ)G , (H0,φ0)6∈(J,φ)G

∑
(H0,Ψ0)<..<(Ht,Ψt)

c(Ψt)=φt+φt

(−1)tm(ResGHt(ρ),Ψt)

=
∑

(H0,φ0)∈(J,φ)G

(H0,φ0)6∈(J,φ)G

∑
(H0,φ0)<..<(Ht,φt)

(−1)t
〈
ResGHt(c(ρ));φt

〉
Ht

because 〈c(Ψt); c(Ψt)〉Ht = 2,
〈
ResGHt(c(ρ));φr

〉
Ht

=
〈
ResGHt(c(ρ));φr

〉
Ht

and
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C2 =
∑

(H0,Ψ0) , c(Ψ0)=φ0+φ0
(H0,φ0)∈(J,φ)G , (H0,φ0) 6∈(J,φ)G

∑
(H0,Ψ0)<..<(Ht,Ψt)

c(Ψt)=ψt

(−1)tm(ResGHt(ρ),Ψr)

=
∑

(H0,Ψ0) , c(Ψ0)=φ0+φ0
(H0,φ0)∈(J,φ)G , (H0,φ0)6∈(J,φ)G

∑
(H0,Ψ0)<..<(Hr,Ψr)

c(Ψr)=φr+φr∑
(Hr+1,Ψr+1)<..<(Ht,Ψt)

(Hr,Ψr)<(Hr+1,Ψr+1) , c(Ψr+1)=ψr+1

(−1)tm(ResGHt(ρ),Ψt)

=
∑

(J0,φ0)<..<(Jr,φr)

(J0,φ0)∈(J,φ)G , (J0,φ0)6∈(J,φ)G

∑
(Hr+1,Ψr+1)<..<(Ht,Ψt)
Jr<Hr+1 , c(Ψr+1)=ψr+1

(−1)t
〈
ResHr+1

Jr
(ψr+1);φr

〉
Jr
m(ResGHt(ρ),Ψt).

The second subsum

∑

(H0,Ψ0) , c(Ψ0)=φ0+φ0
(H0,φ0)∈(J,φ)G and (H0,φ0)∈(J,φ)G

∑

(H0,Ψ0)<..<(Ht,Ψt)

(−1)t2 ·m(ResGHt(ρ),Ψt)

splits into C3 + C4 with

C3 =
∑

(H0,Ψ0) , c(Ψ0)=φ0+φ0
(H0,φ0)∈(J,φ)G , (H0,φ0)∈(J,φ)G

∑
(H0,Ψ0)<..<(Ht,Ψt)

c(Ψt)=φt+φt

(−1)t2 ·m(ResGHt(ρ),Ψt)

=
∑

(H0,φ0)∈(J,φ)G

with (H0,φ0)∈(J,φ)G

∑
(H0,φ0)<..<(Ht,φt)

(−1)t
〈
ResGHt(c(ρ));φt

〉
Ht
,

and

C4 =
∑

(H0,Ψ0) , c(Ψ0)=φ0+φ0
(H0,φ0)∈(J,φ)G , (H0,φ0)∈(J,φ)G

∑
(H0,Ψ0)<..<(Ht,Ψt)

c(Ψt)=ψt

(−1)t2 ·m(ResGHt(ρ),Ψr)

=
∑

(H0,Ψ0) , c(Ψ0)=φ0+φ0
(H0,φ0)∈(J,φ)G , (H0,φ0)∈(J,φ)G

∑
(H0,Ψ0)<..<(Hr,Ψr)

c(Ψr)=φr+φr

∑
(Hr+1,Ψr+1)<..<(Ht,Ψt)

(Hr,Ψr)<(Hr+1,Ψr+1) , c(Ψr+1)=ψr+1

(−1)t2 ·m(ResGHt(ρ),Ψt)

=
∑

(J0,φ0)<..<(Jr,φr)

(J0,φ0)∈(J,φ)G and (J0,φ0)∈(J,φ)G

∑
(Hr+1,Ψr+1)<..<(Ht,Ψt)
Jr<Hr+1 , c(Ψr+1)=ψr+1

(−1)t
〈
ResHr+1

Jr
(ψr+1);φr

〉
Jr
m(ResGHt(ρ),Ψt).

In fact, for the calculation of C3 we notice that if φ0 = φ0 then either in case φt = φt
the factor 2 cancels because of
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2 ·m(ResGHt(ρ),Ψt) = 2

〈
ResGHt(c(ρ)); 2φt

〉
Ht

〈2φt; 2φt〉Ht
=

〈
ResGHt(c(ρ));φt

〉
Ht
,

or in case φt 6= φt each chain (H0,Ψ0)<..<(Ht,Ψt) yields two chains
(H0, φ0)<..<(Ht, φt) and

m(ResGHt(ρ),Ψt) =

〈
ResGHt(c(ρ));φt + φt

〉
Ht〈

φt + φt;φt + φt
〉
Ht

=
〈
ResGHt(c(ρ));φt

〉
Ht
.

Also if φ0 6= φ0 then the factor 2 vanishes because each chain

(H0,Ψ0)<..<(Ht,Ψt)

yields two chains (H0, φ0)<..<(Ht, φt) starting in either (H0, φ0) or (H0, φ0), and
again

m(ResGHt(ρ),Ψt) =

〈
ResGHt(c(ρ));φt + φt

〉
Ht〈

φt + φt;φt + φt
〉
Ht

=
〈
ResGHt(c(ρ));φt

〉
Ht
.

For the calculation of C4 the same arguments hold for the subchains
(H0,Ψ0)<..<(Hr,Ψr), where in case φr = φr we have

〈
ResHr+1

Jr
(ψr+1);φr

〉
Jr

= 2.

Finally C2 + C4 add up to

∑

(J0,φ0)<..<(Jr,φr)

(J0,φ0)∈(J,φ)G

∑

(H0,Ψ0)<..<(Ht,Ψt)
Jr<H0 , c(Ψ0)=ψr+1

(−1)r+t−1
〈
ResHr+1

Jr
(ψr+1);φr

〉
Jr
m(ResGHt(ρ),Ψt)

which now turns out to be the negative of the third subsum above, and C1 + C3

add up to

∑

(H0,φ0)∈(J,φ)G

∑

(H0,φ0)<..<(Ht,φt)

(−1)t
〈
ResGHt(c(ρ));φt

〉
Ht
,

which coincides with the coefficient of (J, φ)G in aG(c(ρ)).

Example 3.19. G = Cp ×Q8

We will apply the complexification map c+ to formula calculated in
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3.10:

c+(aGsp(ρ)) = (〈xz〉, iζ)G + (〈xz〉, iζ)G + (〈yz〉, iζ)G + (〈yz〉, iζ)G + (〈xyz〉, iζ)G

+ (〈xyz〉, iζ)G − (〈-z〉, -ζ)G − (〈-z〉, -ζ)G +
2
p
((〈x〉, i)G + (〈y〉, i)G

+ (〈xy〉, i)G − (〈-1〉, ε)G)− 1
p
(〈x〉, i)G− 1

p
(〈x〉, i)G

− 1
p
(〈y〉, i)G− 1

p
(〈y〉, i)G − 1

p
(〈xy〉, i)G+

1
p
(〈xy〉, i)G+

2
p
(〈-1〉, ε)G

= (〈xz〉, iζ)G + (〈xz〉, iζ)G + (〈yz〉, iζ)G + (〈yz〉, iζ)G + (〈xyz〉, iζ)G
+ (〈xyz〉, iζ)G − (〈-z〉, -ζ)G − (〈-z〉, -ζ)G
= aG(χ) + aG(χ′)
= aG(c(ρ)).

Theorem 3.20.
The map aSpG yields an induction formula, that is

bSpG aSpG = id : RSp(G) → RSp(G) .

Proof. By 3.1 and 3.18 the diagram

QRSp(G) QRSp+ (G) QRSp(G)

QR(G) QR+(G) QR(G)

-aSpG

?
c

-bspG

?
c+

?
c

-aG -bG

is commutative. Hence, for ρ : G→ Sp(n), we use Theorem 2.4 to obtain

c(bspG (aSpG (ρ))) = bG(aG(c(ρ))) = c(ρ) ,

and since c is injective, we conclude ρ = bspG (aSpG (ρ)).

Theorem 3.21.
Let K/Qp, (p odd), and let L/K be a finite, totally ramified Galois extension

with group G. Then, for ρ : G→ Sp(n), aSpG (ρ) ∈ RSp+ (G).

Proof. First we observe that the structure of G is restricted, G is a semidirect
product of a p-group by a cyclic group of order prime to p. Especially the 2-Sylow-
subgroup of G has to be cyclic. Hence, if ρ : G→ Sp(n) is irreducible, then c(ρ) will
not be irreducible. In fact, if c(ρ) were irreducible, its character would be real-valued
and therefore of Schur index 2 (over R). By the Brauer-Witt theorem ([15] §74.38)
there would be a (R, 2)-elementary subgroup H of G loaded with an irreducible
character of Schur index 2. But H, a semidirect product of an odd cyclic normal
subgroup with a 2-group, which is cyclic by itself, does not admit such a character.
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Thus c(ρ) = θ + θ for some irreducible unitary representation θ : G → U(n).
Since

aSpG (ρ) =
∑

(H,Ψ)G

α(H,Ψ)G(ρ) (H,Ψ)G with

α(H,Ψ)G(ρ) =
|H|
|G|

∑

(H0,Ψ0)<..<(Hr,Ψr)

(H0,Ψ0)∈(H,Ψ)G

(−1)rm(ResGHrρ,Ψr) ,

we have to show that α(H,Ψ)G(ρ) ∈ Z. This we do by showing that these coefficients
equal to coefficients of the canonical unitary induction formula of c(ρ) or θ, which
by Boltje’s results are known to be integral.

Case 1: c(Ψ) = λ+ λ with λ 6= λ.

In this case the complexification of the one-dimensional symplectic representa-
tions Ψi split into λi + λi with λi 6= λi. Hence m(ResGHr (ρ),Ψr) =

〈
θ + θ;λr

〉
Hr

. If
(H,λ)G 6= (H,λ)G, we find that

α(H,Ψ)G(ρ) =
|H|
|G|

∑

(H0,λ0)<..<(Hr,λr)

(H0,λ0)∈(H,λ)G

(−1)r
〈
θ + θ;λr

〉
Hr

= α(H,λ)G(θ + θ) ,

the coefficient of (H,λ)G in aG(θ + θ). If (H,λ)G = (H,λ)G, each symplectic
chain gives two unitary chains. Thus the same equation shows that α(H,Ψ)G(ρ) =
1
2α(H,λ)G(θ + θ). But as

α(H,λ)G(θ+ θ) = α(H,λ)G(θ)+α(H,λ)G(θ) = α(H,λ)G(θ)+α(H,λ)G(θ) = 2α(H,λ)G(θ) ,

we conclude that α(H,Ψ)G(ρ) = α(H,λ)G(θ) ∈ Z.
Case 2: c(Ψ) = 2λ.

We show that α(H,Ψ)G(ρ) = α(H,λ)G(θ) ∈ Z. Therefore we take a chain

(∗) (H0,Ψ0)<..<(Hr,Ψr)

and study the corresponding multiplicity. Let c(Ψr) = λr + λr.
If λr = λr then m(ResGHr (ρ),Ψr) = 1

2

〈
ResGHr (θ + θ);λr

〉
Hr

=
〈
ResGHr (θ);λr

〉
Hr

and
there is exactly one unitary chain derived from (∗), namely (H0, λ0)<..<(Hr, λr).
On the other side, if λr 6= λr then m(ResGHr (ρ),Ψr) = 1

2

〈
ResGHr (θ + θ);λr

〉
Hr

and
(∗) affords the two unitary chains (H0, λ0)<..<(Hr, λr) and (H0, λ0)<..<(Hr, λr).
Since

〈
ResGHr (θ);λr

〉
Hr

=
〈
ResGHr (θ);λr

〉
Hr

we conclude that

∑

(H0,Ψ0)<..<(Hr,Ψr)

(H0,Ψ0)∈(H,Ψ)G

(−1)rm(ResGHr (ρ),Ψr) =
∑

(H0,λ0)<..<(Hr,λr)

(H0,λ0)∈(H,λ)G

(−1)rm(ResGHr (θ), λr) ,

which finishes the proof.
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4. Symplectic Adams operations

In this section we are going to construct an additive homomorphism
Ψp : RSp+ (G) −→ RSp+ (G) which induces the Adams operation on RSp(G). For
R+(G) and complex representations this sort of construction first appeared in [38]
but we shall explain in §5 precisely why the complex case will not suffice for the
local root number applications we have in mind. Also it is with this type of appli-
cation in mind that we content ourselves with the class of solvable G’s which occur
as local Galois groups in the odd residue characteristic case.

4.1. We may represent Sp(1) ∼= SU(2) by matrices in U(2) of the form



a b

−b a




where a and b are complex numbers which satisfy the relation |a|2 + |b|2 = 1. The
standard maximal torus in Sp(1) is the circle corresponding to a = eiθ, b = 0.
Writing S1 for this circle, the normaliser is given by

NSp(1)S
1 = {




a 0

0 a


 ,




0 b

−b 0


 | |a| = 1 = |b|}.

Hence NSp(1)S
1 =< S1, w > where

w =




0 1

−1 0


 .

Consider a finite subgroup, H ⊂ NSp(1)S
1, then H may be conjugated by an

element of NSp(1)S
1 so that H = H ∩ S1 or H =< H ∩ S1, w >, such a subgroup

H will temporarily be called standard. Write Cm ⊂ S1 for the cyclic subgroup of
order m and Q4m =< Cm, w >. These are all the standard finite subgroups, H ⊂
NSp(1)S

1. The inclusion, i : H ⊂ Sp(1), of a finite, standard subgroup yields a one-
dimensional symplectic representation which is determined by the Sp(1)-conjugacy
class of i. However, if H = H

⋂
S1 any automorphism of H induced by conjugation

in Sp(1) may also be realised by conjugation in NSp(1)S
1. The same is true for any

standard subgroup of the form H =< H ∩ S1, w > of order strictly larger than
eight. The cyclic group C4 of order four in S1 may, however, be conjugated within
Sp(1), onto < w >= Q4. In fact, if Λ(X) is given by

Λ(X) =




1/
√

2 i/
√

2

i/
√

2 1/
√

2


X




1/
√

2 −i/√2

−i/√2 1/
√

2




then

Λ




i 0

0 −i


 = w, Λ(w) =



−i 0

0 i



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Also Λ induces an automorphism of the standard subgroup isomorphic to Q8, the
quaternion group of order eight.

Up to conjugation in NSp(1)S
1 these are the only Sp(1)-conjugation automor-

phisms between standard subgroups which are not induced by conjugation in
NSp(1)S

1.
Let p be an odd prime. Then we may define a homomorphism

Ψp : NSp(1)S
1 −→ NSp(1)S

1

by the formulae

Ψp




a 0

0 a


 =




ap 0

0 ap


 , Ψp




0 b

−b 0


 = (−1)(p−1)/2




0 bp

−bp 0


 .

Proposition 4.2.
Let G be a finite solvable group which is isomorphic to the group of a Galois

extension of local fields of odd residue characteristic. Let p be an odd prime. Then
there is a natural homomorphism

Ψp : RSp+ (G) −→ RSp+ (G)

given by Ψp((H,ψ)G) = (H,Ψp · ψ)G when ψ(H) ⊂ NSp(1)S
1 is standard in the

sense of §4.1.

Proof. The hypothesis on G is inherited by H and by ψ(H). This means that ψ(H)
is solvable and not isomorphic to the binary tetrahedral group of order twenty-
four, which implies that we may conjugate in Sp(1) to get make ψ(H) standard.
The element, (H,ψ)G, depends only on the G − Sp(1)-conjugacy class of (H,ψ).
Varying (H,ψ) by G − NSp(1)S

1-conjugation does not alter (H,Ψp · ψ)G. By the
discussion of §4.1, this means that Ψp is well-defined on (H,ψ)G except possibly
if ψ(H) = C4, Q4, Q8. However it is easily verified that the Sp(1)-conjugation, Λ,
commutes with Ψp in these exceptional cases, which completes the proof.

Proposition 4.3.
As in ([41] p.109), define Ψp : R+(G) −→ R+(G) by Ψp((H,φ)G) = (H,φp)G.

Let G be a solvable group as in Proposition 4.2 and let p be an odd prime. Then

Ψp · c+ = c+ ·Ψp : RSp+ (G) −→ R+(G).

Proof. If ψ(H) is abelian and standard with c(ψ) = φ⊕φ then c(Ψp ·ψ) = φp⊕φp
as complex representations of H so that

Ψp(c+(H,ψ)G) = (H,φp)G + (H,φ
p
)G = c+(Ψp(H,ψ)G).

Otherwise, being standard, ψ(H) is Q4n for some n > 1 and the result follows
from the formulae of Proposition 2.6 for aQ4n(Q4n, ψ)Q4n . More precisely, from
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Proposition 2.6 we have

aQ4n(c(Ψ)) =



(< x >, φx)Q4n + (< y >, ρy)Q4n + (< y >, ρy)Q4n − (< y2 >,χ)Q4n

if n is odd,

(< x >, φx)Q4n + (< y >, ρy)Q4n + (< xy >, ρxy)Q4n − (< y2 >,χ)Q4n

if n is even

where ρx(x) = ξ2n. Therefore, if n is odd, we have

Ψp(c+(H,ψ)G)

= Ψp((< x >, φx)G + (< y >, ρy)G + (< y >, ρy)G − (< y2 >,χ)G)

= ((< x >, φpx)
G + (< y >, ρpy)

G + (< y >, ρpy)
G − (< y2 >,χp)G)

On the other hand, if the symplectic representation ψ : H −→ Sp(1) satisfies
c(ψ) = IndQ4n

C2n
(φ) then c(Ψp(ψ)) = IndQ4n

C2n
(φp) so that

c+(Ψp(H,ψ)G))

= ((< x >, φpx)
G + (< y >, ρpy)

G + (< y >, ρpy)
G − (< y2 >,χp)G)

= Ψp(c+(H,ψ)G).

The case when n is even is similar.

Corollary 4.4.
Let G be a solvable group as in Proposition 4.2 and let p be an odd prime. Then

the composition

RSp(G)
aspG−→ RSp+ (G)⊗Q Ψp⊗1−→ RSp+ (G)⊗Q bG⊗1−→ RSp(G)⊗Q

sends z to ψp(z)⊗ 1, where ψp is the usual Adams operation.

Proof. It suffices to show that c(bG ⊗ 1(Ψp ⊗ 1(aspG (z)))) is equal to ψp(c(z)) ⊗ 1.
However

c(bG ⊗ 1(Ψp ⊗ 1(aspG (z)))) = bG ⊗ 1(c+(Ψp ⊗ 1(aspG (z))))

= bG ⊗ 1(Ψp ⊗ 1(c+(aspG (z))))

= bG ⊗ 1(Ψp ⊗ 1(aG(c(z))))

= ψp(c(z))⊗ 1

by ([41] Theorem 4.1.6).
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Remark 4.5. Orthogonal representations and Ψ2

We continue to assume that G is a finite solvable group which is isomorphic to
the group of a Galois extension of local fields of odd residue characteristic.

Now we turn to the orthogonal group, O(2), whose maximal torus is the circle,

SO(2) = {



cos(θ) sin(θ)

−sin(θ) cos(θ)


 | θ ∈ R}.

This is normal is O(2) which may be written as a semi-direct product, Z/2 n S1,
given in terms of generators and relations as

O(2) = {τ, eiθ (θ ∈ R) | τ2 = 1, τeiθτ = e−iθ}.
The formulae

Ψ2(w) = τ, Ψ2(




eiθ 0

0 e−iθ


) = e2iθ

define a homomorphism

Ψ2 : NSp(1)S
1 −→ O(2)

since Ψ2(w2) = τ2 = 1 = Ψ2(−I) and τe2iθτ = e−2iθ.
However

Ψ2(




i 0

0 −i


) = −1, Ψ2(w) = τ

which are two elements of order two which are not conjugate in O(2). This means
that we cannot define a homomorphism Ψ2 by the formula of Proposition 4.2, in
the light of the discussion of §4.1 of Sp(1)-conjugacy of standard subgroups. The
difficulty occurs with the standard subgroups C4, Q4, Q8. The following result is the
best we can do.

Proposition 4.6.
Let G be a finite solvable group which is isomorphic to the group of a Galois

extension of local fields of odd residue characteristic. Then there is a homomorphism

Ψ2 : RSp+ (G) −→ RO+(G)

given by Ψ2((H,ψ)G) = (H,Ψ2 ·ψ)G when ψ(H) ⊂ NSp(1)S
1 is standard and differ-

ent from C4, Q4, Q8. When ψ(H) ⊂ NSp(1)S
1 is standard and H is one of C4, Q4, Q8

set

Ψ2((H,ψ)G) = (H,Ψ2 · ψ)G + (H,Ψ2 · ψ′)G

where

ψ′ =




1/
√

2 i/
√

2

i/
√

2 1/
√

2


 · ψ ·




1/
√

2 −i/√2

−i/√2 1/
√

2


 .
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5. Symplectic Local Root Numbers

5.1. Local root numbers
Now suppose that L/K is a Galois extension of p-adic local fields with group

G(L/K). An important invariant of a finite dimensional, complex representation ρ
of G(L/K) is the local root number WK(ρ), which is a complex number of unit
norm ([40] §§1.4.10-1.4.14). When ρ is one-dimensional WK(ρ) is given by a Gauss
sum/Artin conductor formula which extends uniquely to an exponential homomor-
phism on the representation ring R(G(L/K)) of the form

WK : R(G(L/K)) −→ S1 = {z ∈ C∗ | |z| = 1}
which satisfies the following properties:

(i) If K ⊂ L ⊂ N is a chain of finite Galois extensions and G(N/K) −→ G(L/K)
is the canonical map then

WK(InflG(N/K)
G(L/K) (ρ)) = WK(ρ).

(ii) If F is an intermediate field of L/K and ρ : G(L/F ) −→ GL(V ) is a
representation then

WK(IndG(L/K)
G(L/F ) (ρ− dim(ρ))) = WF (ρ).

Note that WK(1) = 1.
When ρ is the complexification of an orthogonal (i.e. real) representation, ρ =

c(ρ1), then we have a formula of Deligne ([16]; see also [36], [37] Theorem 2.26
p.270)

WK(ρ) = SW2(ρ1) ·WK(det(ρ1)).

Here SW2(ρ1)∈ H2(K;Z/2) ∼= {±1} is the second Stiefel-Whitney class of ρ1 and
WK(det(ρ1)) is a fourth root of unity given by the quadratic Gauss sum/Artin
conductor formula, since det(ρ1) is a one-dimensional representation given by a
quadratic character. In particular, this formula applies to the case of permutation
representations ρ = IndG(L/K)

G(L/F ) (1).
The case when ρ is the underlying complex representation of a symplectic (i.e.

quaternionic) representation, ρ = c(ρ2), is particularly important in number theory
(for example, see [18] and [40]). In this case WK(ρ) ∈ {±1}. On the other hand,
the authors know of no formula for symplectic root numbers in general. When ρ2

is one-dimensional of the form ρ2 : G(L/K) −→ Sp(1) and K has odd residue
characteristic the results of [26] and [27] amount to a semi-topological formula for
WK(ρ) in the same spirit as the orthogonal local root number formula of (ii) above.
The explicit construction and resulting formulae are derived in [17].

Let G(L/K) denote the Galois group of a finite extension of local fields of odd
residue characteristic. Suppose that ρ : G(L/K) −→ Sp(n) is a symplectic repre-
sentation and that, in RSp+ (G(L/K))⊗Z Q,

aspG(L/K)(ρ) =
∑

(G(L/F ),Ψ)G(L/K)

n(G(L/F ),Ψ)G(L/K) · (G(L/F ),Ψ)G(L/K)
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is the symplectic Explicit Brauer Induction formula of 3.9. If each of the rational
numbers n(G(L/F ),Ψ)G(L/K) actually lies in the 2-adic integers then WK(ρ) would be
given by the formula

WK(ρ) = WK(ρ− n)

=
∏

(G(L/F ),Ψ)G(L/K) WK(IndG(L/K)
G(L/F ) (Ψ− 1))n(G(L/F ),Ψ)G(L/K)

=
∏

(G(L/F ),Ψ)G(L/K) WF (Ψ)n(G(L/F ),Ψ)G(L/K) ,

which makes sense because WF (Ψ) ∈ {±1} and n(G(L/F ),Ψ)G(L/K) ∈ Z2.
The above formula for local symplectic roots numbers is the motivation for the

following integrality conjecture.

Conjecture 5.2. Let G be a finite solvable group which is isomorphic to the group
of a Galois extension of local fields of odd residue characteristic. Then, in §3.9,

aspG(L/K)(ρ) ∈ RSp+ (G(L/K))⊗Z Z2.

Remark 5.3. Evidence for Conjecture 5.2
We have explained the motivation for Conjecture 5.2 in 5.1. Here are two pieces

of evidence in its favour.
(i) In 3.11 we gave an example of a symplectic representation ρn of G = Q8×C2n

for which aspG (ρn) was not 2-adically integral.
When can G = Q8 × C2n occur as the Galois group of an extension of p-adic

local fields? Never when p is odd!
If p = 2 one can take L/Q2 as in Case B or Case C of [20]. Namely either

L = Q2(
√

2,
√

3)(α±)

where α2
± = ±(

√
6/6)(1 +

√
2)(
√

2 +
√

3) or

L = Q2(
√

10,
√

3)(α±)

where α2
± = ±(1+

√
3+

√
10/10+

√
30/10). In all these four cases Qnr2 , the maximal

unramified extension of Q2, satisfies Qnr2

⋂
L = Q2. Therefore if we take K/Q2 to

be the unique unramified extension of degree 2n then LK/Q2 is Galois with group
G(LK/Q2) ∼= Q8 × C2n .

On the other hand, if p is odd and F is a p-adic local field then F ∗ ⊗ Z/2 has
four elements. Hence if L/F is Galois with G(L/F ) ∼= Q8 then NL/F (L∗) is equal
to the squares in F ∗. If E/L is such that E/F is Galois with group Q8 ×C2n then
there is an intermediate field M/F with F ∗/NM/F (M∗) ∼= C2 × C2 × C2 but then
the surjection F ∗ onto C2 ×C2 ×C2 must factor through F ∗ ⊗Z/2 which has only
four elements. Thus the expected counterexample to Conjecture 5.1 coming from
3.11 cannot exist when p is odd.

(ii) The prototypical integrality argument for an Explicit Brauer Induction for-
mula is due to Boltje ([41] Theorem 2.3.43). The symplectic modification of that
argument is rather more involved but can be used to establish 2-adic integrality in
almost all cases.

In addition, 2-adic integrality holds under the conditions of Theorem 3.21.
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Remark 5.4. Conjecture 5.2 and Ψp

In §5.1 we explained that the 2-adic conjecture would permit us to write the local
root number of a symplectic representation ρ in a canonical formula in terms of the
local root numbers of one-dimensional symplectic local Galois representations. How-
ever, treating ρ as a complex representation and using the Explicit Brauer Induction
formula of [35] for the complexification c(ρ) would accomplish more or less the same
thing. This was first done in [39] and was the motivation for [35]. However, using Ψp

in the case of local fields of odd residue characteristic p together with the formulae of
[17] we can do much better. In [17] a topological formula in terms of Stiefel-Whitney
classes is given for the ratio WK(ρ)/WK(Ψp(ρ)) when ρ is one-dimensional, sym-
plectic. Since, in the notation of §5.1, RSp+ (G(L/K)) is the free abelian group on
one-dimensional symplectic representations of subgroups of G(L/K) the topological
formula of [17] yields a homomorphism defined on RSp+ (G(L/K)) which, composed
with aSpG(L/K), should yield a topological formula for WK(ρ)/WK(Ψp(ρ)) in general.

6. Induction formula for orthogonal representations

In Section 1 we described in the unitary case how canonical induction formulae
may be used to derive the exponential property of the stable homotopy decompo-
sition of BU and how we began this paper motivated by the possibility of similar
behaviour in the symplectic case. However, in the orthogonal case, the transfer
maps used in the stable decomposition of BO have long been known to have very
complicated, non-exponential behaviour. This was first evaluated by Tornehave in
[45]. The combinatorial results of this section are intended to describe, or at least
to complement, Tornehave’s results purely algebraically.

6.1. Orthogonal representations
Let G be a finite group. Let RO(G) denote the Grothendieck group of even-

dimensional RG-modules, R denoting the field of real numbers.
By definition, this is the quotient group of the free abelian group FO(G) over

the isomorphism classes of the category of even-dimensional RG-modules, factored
out the subgroup generated by expressions coming from short exact sequences. This
gives a canonical surjective morphism

κG : FO(G) → RO(G) .

We identify RO(G) with the Grothendieck group of equivalence classes of even-
dimensional orthogonal representations

ρ : G −→ O(2n) := O(2n,R)

for some n ∈ N, and with the subgroup of R-characters on G. Endowed with the
standard maps

ResGJ : RO(G) → RO(J)
(
resp. ResGJ : FO(G) → FO(J)

)

and
IndGJ : RO(J) → RO(G)

(
resp. IndGJ : FO(J) → FO(G)

)
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for J 6 G, this defines a G-Mackey functor structure on H 7→ RO(H). But H 7→
FO(H) is not a G-Mackey functor because the Mackey formula does not hold.

Deligne [22] has shown that every representation ρ : G → O(2n) is a Z-linear
combination of two-dimensional orthogonal representations on subgroups induced
to G. So there exist Hi 6 G, Ψi : Hi → O(2) and ni ∈ Z such that

ρ =
∑

i

niIndGHi(Ψi) .

Thus let LO(G) (resp. T O(G)) denote the subgroup in RO(G) (resp. FO(G)) gen-
erated by the classes of two-dimensional orthogonal RH-modules, that is the O(2)-
conjugacy classes of homomorphisms

Ψ : H → O(2) .

These two groups LO(G) and T O(G) are canonically isomorphic via κG.

6.2. The +-construction
Let RO+(G) denote the G-Mackey functor obtained by +-construction on H 7→

LO(H). More precisely, let (H,Ψ) be a pair consisting of a subgroup H 6 G and the
equivalence class of an orthogonal representation Ψ : H → O(2), and let MO(G) be
the set of all those pairs. There is an obvious action of G on MO(G). Let (H,Ψ)G

denote the G-orbit of (H,Ψ) in MO(G), and let MO(G)/G denote the set of those
orbits. Then RO+(G) is defined as the free abelian group generated by the elements of
MO(G)/G. Indeed H 7→ RO+(H) is the G-Mackey functor induced by H 7→ LO(H)
and this comes with homomorphisms

ResGJ : RO+(G) −→ RO+(J)

and
IndGJ : RO+(J) −→ RO+(G)

for J 6 G. For N / G we have the inflation map

InflGG/N : RO+(G/N) → RO+(G)

defined by InflGG/N ((HN/N,Ψ)G) = (HN,Ψ)G for Ψ : HN → O(2) with N 6 kerΨ.
Let bOG : RO+(G) → RO(G) be the homomorphism defined by

bOG : (H,Ψ)G 7→ IndGH(Ψ) .

This map behaves naturally with respect to restriction, induction and inflation.

6.3. Complexification
Let c denote the natural homomorphism

c = cG : RO(G) −→ R(G)
given by embedding R into C, which may also be regarded as tensoring with C.

So that for ρ : G→ O(2n),

c(ρ) : G 3 g 7→ ρ(g) ∈ O(2n) ⊆ U(2n) .
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For Ψ : G → O(2) we will have to distinguish between the different behaviours of
c(Ψ). Either c(Ψ) stays irreducible or it splits into a sum of two one-dimensional
unitary representations. If c(Ψ) = ψ is irreducible, we will indicate this by writing ψ
instead of Ψ. If c(Ψ) = λ+ λ with λ : G→ U(1) not real-valued and λ the complex
conjugated character, we will write λ+ λ. If c(Ψ) = 2φ is twice a linear character,
we use the notation 2φ, and finally in case c(Ψ) is the sum of two different linear
characters φ+φ′ taking values in ±1 we will indicate this by writing φ+φ′. So φ will
always denote a one-dimensional real-valued representation, λ a one-dimensional
representation which differs from its complex conjugate denoted λ, and ψ a two-
dimensional irreducible representation.

Define the homomorphism

c+ = c+,G : RO+(G) → R+(G)

by the formula

c+((H,Ψ)G) = IndGH(aH(c(Ψ))) .

This definition does not depend on the choice of (H,Ψ) in (H,Ψ)G. Since we will
have to apply this formula, we give the images in detail:

c+((H,Ψ)G) =





2 · (H,φ)G if c(Ψ) = 2φ

(H,φ)G + (H,φ′)G if c(Ψ) = φ+ φ′

(H,λ)G + (H,λ)G if c(Ψ) = λ+ λ

in case c(Ψ) is reducible, and in case c(Ψ) = ψ is irreducible we choose a represen-
tative (H,Ψ) of (H,Ψ)G and define

c+((H,Ψ)G) =
∑

(K,φ)<..<(Ks,φs)
inM(H)

(−1)s |K||H|
〈
ResHKs(ψ);φs

〉
(K,φ)G

+
∑

(K,φ)<..<(Ks,λs)
inM(H)

(−1)s |K||H|
〈
ResHKs(ψ);λs

〉
(K,φ)G

+
∑

(K,λ)<..<(Ks,λs)
inM(H)

(−1)s |K||H|
〈
ResHKs(ψ);λs

〉
(K,λ)G

Obviously this definition does not depend on the choice of (H,Ψ).
Observe also that bG and bOG are naturally connected via complexification, which

means that bG ◦ c+ = c+ ◦ bOG : RO+(G) → R(G).

6.4. An orthogonal induction formula
Let QRO(G) denote the Q-vectorspace we receive from RO(G) by scalar exten-

sion. We identify QRO(G) with RO(G)⊗ZQ, and similarly QRO+(G) with RO+(G)⊗Z
Q. All homomorphims on RO(G) and RO+(G), especially ResGJ and IndJG, extend in
a natural way to homomorphisms between those Q-vectorspaces.

The homomorphism aOG : FO(G) → QRO+(G) is defined by mapping an orthogo-
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nal representation ρ : G→ O(2n) to

aOG(ρ) =
∑

(H0,Ψ0)<..<(Hr,Ψr)

(−1)r
|H0|
|G| m(ResGHr (ρ),Ψr)(H0,Ψ0)G ,

where the sum runs over all chains (H0,Ψ0)<..<(Hr,Ψr) in G. Here the multiplicity
m given by the formula

m(θ,Ψ) :=





〈c(θ);ψ〉H if c(Ψ) = ψ

〈c(θ);λ〉H if c(Ψ) = λ+ λ

[〈c(θ);φ〉H/2] if c(Ψ) = 2φ

1 if c(Ψ) = φ+ φ′, 〈c(θ);φ〉H odd and 〈c(θ);φ′〉H odd

0 otherwise

,

for θ : H → O(2n), Ψ : H → O(2), where [x] denotes the integral part of a rational
number x. Notice that 〈c(θ);λ〉H =

〈
c(θ);λ

〉
H

and that m(Ψ,Ψ) = 1 in all cases.
The following examples will show that in general this homomorphism does not

factor through RO(G) and does not take values in RO+(G). But first we give an
analogue of 3.13.

Proposition 6.5.
Let ρ : G→ O(2) then

aOG(ρ) = (G, ρ)G .

Proof. Since (G, ρ) is the only element in (G, ρ)G and m(ρ, ρ) = 1, the coefficient of
(G, ρ)G in aOG(ρ) is 1. Now let (H,Ψ) < (G, ρ). Only those elements may give other
nontrivial contributions to aOG(ρ). Since ResGHr (ρ) = Ψr for (Hr,Ψr) < (G, ρ), the
multiplicities turn out to be 1. Thus we have to show that

∑
(H,Ψ)<(H1,Ψ1)<..<(Hr,Ψr)

(Hr,Ψr)6(G,ρ)

(−1)r = 0 .

Consider the set, R, of chains the sum runs over. Let P < R denote the subset of
those chains which will not end in (G, ρ). Then

( (H,Ψ) < . . . < (Hr,Ψr) ) 7→ ( (H,Ψ) < . . . < (Hr,Ψr) < (G, ρ) )

gives a bijection P → R \ P, where chains of length r are in correspondence to
chains of length r+1. So the terms cancel in pairs and indeed the sum above equals
0.

Example 6.6. G = C2 × C2

Let G =< A,B| A2 = B2 = (AB)2 = 1 > be the Klein 4-group. Let 11 denote
the trivial character on G and εX the linear character on G with kernel < X >
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for X = A,B,AB. On a cyclic group < X > of order 2, ε denotes the non-trivial
irreducible character. By 6.5

aOG(11 + εA) + aOG(εB + εAB) = (G, 11 + εA)G + (G, εB + εAB)G .

But for the regular ρ = 11 + εA + εB + εAB an easy but lengthy calculation gives

aOG(ρ) = (G, 11 + εA)G + (G, 11 + εB)G + (G, 11 + εAB)G

+(G, εA + εB)G + (G, εA + εAB)G + (G, εB + εAB)G − 2(〈A〉, 11 + ε)G

−2(〈B〉, 11 + ε)G − 2(〈AB〉, 11 + ε)G + 2(〈1〉, 211)G

Since the element (11+εA)+(εB +εAB)− (11+εA+εB +εAB) ∈ FO(G) will not be
killed by aOG, aOG does not factor through RO(G) . The situation is the same after
applying c because

aG(c(ρ)) = (G, 11)G + (G, εA)G + (G, εB)G + (G, εAB)G ,

while

c+(aOG(ρ)) = 3(G, 11)G + 3(G, εA)G + 3(G, εB)G + 3(G, εAB)G

+
∑
X 6=1

(−2(〈X〉, 11)G − 2(〈X〉, ε)G)
+ 4(〈1〉, 11)G .

Example 6.7. G = Cp × S3

Let p > 5 be an odd prime and let G be the direct product of a cyclic group of
order p and the symmetric group on three letters, so

G =< z, σ, τ |zp = σ3 = τ2 = 1, zσ = σz, zτ = τz, τσ = σ2τ > .

The lattice of subgroups of G is as pictured below.
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Let ζ denote a primitive p-th root of unity. We calculate aOG(ρ) for the orthogonal
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representation ρ : G→ O(4) defined by

ρ(σ) =




−1
2
−√3

2
0
0

−√3
2
1
2
0
0

0
0
−1
2
−√3

2

0
0
−√3

2
1
2


 , ρ(τ) =

(
1
0
0
0

0
−1
0
0

0
0
1
0

0
0
0
−1

)
,

ρ(z) =




ζ+ζ−1
2
0

ζ−ζ−1
2i
0

0
ζ+ζ−1

2
0

ζ−ζ−1
2i

ζ−ζ−1
−2i
0

ζ+ζ−1
2
0

0
ζ−ζ−1
−2i
0

ζ+ζ−1
2


 ,

which is irreducible as an orthogonal representation, because c(ρ) splits into the
sum of two irreducible non-orthogonal representations χζ and χζ-1.

To calculate the formula one has to know the multiplicities m = m(ResGH(ρ),Ψ)
for all subgroups H 6 G and all Ψ : H → O(2). This we can look up in the following
table.

H, c(Ψ) N, ζζ3+ζζ3 N, ζζ2
3+ζζ2

3 S3, χ 〈σ〉, ζ3+ζ3 〈z〉, ζ+ζ
m 1 1 2 2 2

H, c(Ψ) 〈zτ〉, ζ+ζ 〈zτ〉, εζ+εζ 〈τ〉, 211 〈τ〉, 2ε 1, 211
m 1 1 1 1 2

Here ζ3 denotes a fixed primitive third root of unity resp. the corresponding rep-
resentation defined by z 7→ ζ3, χ : S3 → O(2) the faithful irreducible representation
on S3 and ε the character on 〈τ〉 sending τ 7→ −1. Now

aOG(ρ) =
1
2
(1)(N, ζζ3+ζζ3)G +

1
2
(1)(N, ζζ2

3+ζζ2
3 )G +

1
p
(2)(S3, χ)G

+
1
2p

(2− (2 + 1 + 1))(〈σ〉, ζ3+ζ3)G +
1
3
(1)(〈zτ〉, ζ+ζ)G +

1
3
(1)(〈zτ〉, εζ+εζ)G

+
1
3
(1)(〈zστ〉, ζ+ζ)G +

1
3
(1)(〈zστ〉, εζ+εζ)G +

1
3
(1)(

〈
zσ2τ

〉
, ζ+ζ)G

+
1
3
(1)(

〈
zσ2τ

〉
, εζ+εζ)G +

1
6
(2− (3 · (1 + 1) + 2))(〈z〉, ζ+ζ)G

+
1
3p

(1− 1)(〈τ〉, 211)G +
1
3p

(1− 1)(〈τ〉, 2ε)G +
1
3p

(0− 2)(〈τ〉, 11 + ε)G

+
1
3p

(1− 1)(〈στ〉, 211)G +
1
3p

(1− 1)(〈στ〉, 2ε)G +
1
3p

(0− 2)(〈στ〉, 11 + ε)G

+
1
3p

(1− 1)(
〈
σ2τ

〉
, 211)G +

1
3p

(1− 1)(
〈
σ2τ

〉
, 2ε)G +

1
3p

(0− 2)(
〈
σ2τ

〉
, 11 + ε)G

+
1
6p

(2−(2+2 +3(1+1)+(1+1)+3(1+1)+2)+(4·2+2(1+1)+3·2(1+1)))

(〈1〉, 211)G

= (N, ζζ3 + ζζ3)G +
2
p
(S3, χ)G − 1

p
(〈σ〉, ζ3 + ζ3)G + (〈zτ〉, ζ + ζ)G

+ (〈zτ〉, εζ + εζ)G − (〈z〉, ζ + ζ)G − 2
p
(〈τ〉, 11 + ε)G − 1

p
(〈1〉, 211)G
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Proposition 6.8.
The homomorphism aOG is natural with respect to restriction so that, if J 6 G,

aOJ ◦ ResGJ = ResGJ ◦ aOG : FO(G) → QRO+(J) .

Proof. Similar to the proof of 3.12.

Proposition 6.9.
Let G be a finite group. For ρ : G→ O(2n), the defect for commutativity in

FO(G) QRO+(G)

R(G) QR+(G)

-aOG

?
c◦κG

?
c+

-
aG

is given by

c+(aOG(ρ)) − aG(c(ρ)) =
∑

(H0,φ0)<..<(Hr,φr)
φr odd

(−1)r
|H0|
|G| (nHr (ρ)− 2)(H0, φ0)G ,

where the sum runs over all chains ending in some pair (Hr, φr) with linear char-
acter φr (taking values in ±1) such that

〈
ResGHr (c(ρ));φr

〉
Hr

is an odd number, and
nHr (ρ) denotes the number of such characters on Hr.

The proof of this fact follows directly from lemma 6.11 and lemma 6.12. It is
straightforward, but one has to keep book on lots of cases. Therefore we have to
introduce some more notation and will begin with two preparatory lemmas.

6.10. Notation

Recall the convention explained in 6.3 to denote a base element (H,Ψ)G of
QRO+(G) by (H, c(Ψ))G and to use ψ, λ and φ to indicate the type of splitting
of c(Ψ).
Since we will have to compare coefficients, we use for each base element (H,Ψ)G ∈
MO(G)/G the homomorphism π(H,Ψ)G : QRO+(G) → Q defined by

π(H,Ψ)G((H ′,Ψ′)G) =
{

1 if (H,Ψ)G = (H ′,Ψ′)G

0 else

To abbreviate notation we denote for (H,Ψ) ∈MO(G)

MO(H,Ψ) := {(H ′,Ψ′) ∈M(G)|(H ′,Ψ′) 6 (H,Ψ)}
and

M(H,Ψ) := {(H ′, ε′) ∈M(G)|H ′ 6 H,
〈
ResHH′(c(Ψ)); ε′

〉
H′ > 0} .

Furthermore, for (H,φ) ∈ M(G) and (K,Ψ) ∈ MO(G) we will write (H,φ) ¹
(K,Ψ), if H 6 K and

〈
ResKH(c(Ψ));φ

〉
H
> 0. If additionally H < K we write

(H,φ) ≺ (K,Ψ). For (H,φ)G ∈M(G)/G and (K,Ψ)G ∈MO(G)/G we use

(H,φ)G ¹ (K,Ψ)G
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(resp. (H,φ)G ≺ (K,Ψ)G) to express the fact that there exist (H0, φ0) ∈ (H,φ)G

and (K0,Ψ0) ∈ (K,Ψ)G such that (H0, φ0) ¹ (K0,Ψ0) (resp. (H0, φ0) ≺ (K0,Ψ0)).
Since ρ will not be changed through our calculations, we will write briefly 〈χ〉
instead of

〈
ResGH(c(ρ)); ε

〉
H

, where ε is an irreducible complex representation on a
subgroup H of G. For φ : H → {±1} we will say ”φ is odd” or briefly ”φ odd” , if
〈φ〉 =

〈
ResGH(ρ⊗ C);φ

〉
H

is an odd number.

Lemma 6.11.
Let (H,λ)G ∈M(G)/G for some λ : H → U(1) with λ 6= λ. Then

π(H,λ)G(aG(c(ρ))) = π(H,λ)G(c+(aOG(ρ)) ) .

Proof. Let (H,λ)G ∈M(G)/G. The coefficient B of (H,λ)G in aG(c(ρ)) is, accord-
ing to 2.2,

B =
|H|
|G|

∑
(H0,λ0)<..<(Hr,λr)

(H0,λ0)∈(H,λ)G

(−1)r〈λr〉 .

The calculation of the coefficient C of (H,λ)G in c+(aOG(ρ)) takes some more effort.
Since c+ is a homomorphism, it is the coefficient of (H,λ)G in

∑
(H0,Ψ0)<..<(Hr,Ψr)

(−1)r
|H0|
|G| m(ResGHr (ρ),Ψr) c+((H0,Ψ0)G) .

But (H,λ)G can only have a nontrivial contributions from c+((H̃, Ψ̃)G) if either
(H̃, Ψ̃)G = (H,λ+ λ)G or (H̃, Ψ̃)G = (K,ψ)G with (H,λ+ λ)G<(K,ψ)G. So, if for
(H̃, Ψ̃) ∈MO(G)

C eH,eΨ := π(H,λ)G




∑
(H0,Ψ0)<..<(Hr,Ψr)

(H0,Ψ0)=(fH,eΨ)

(−1)r
|H0|
|G| m(ResGHr (ρ),Ψr) c+((H̃, Ψ̃)G)




then C can be expressed as

C =
∑

(H0,λ0+λ0)∈MO(G)
(H0,λ0+λ0)G=(H,λ+λ)G

CH0,λ0+λ0
+

∑

(K,ψ)∈MO(G)
(K,ψ)G>(H,λ+λ)G

CK,ψ.

We shall calculate these coefficients in each case, starting with CH0,λ0+λ0
. With-

out loss of generality we may suppose that λ0 is such that (H0, λ0)G = (H,λ)G.
With this fixed λ0 we change notation and write briefly H for H0 and λ for λ0. This
will not cause any confusion. We decompose CH,λ+λ into the sum of the coefficient
of (H,λ)G in

∑

(H,λ+λ)<..<(Hr,λr+λr)

(−1)r
|H|
|G| 〈λr〉((H,λ)G + (H,λ)G)
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and the coefficient of (H,λ)G in
∑

(H,λ+λ)<..<(Hr,λr+λr)<
<(K1,ψ1)<..<(Ks,ψs)

(−1)r+s
|H|
|G| 〈ψs〉((H,λ)G + (H,λ)G) .

Any long chain ((H0, λ0 + λ0)<..<(Hr, λr + λr)<(K1, ψ1)<..<(Ks, ψs)) of length
r+s can be broken up uniquely into the lower chain ((H0, λ0 + λ0)<..<(Hr, λr + λr))
inMO(K1, ψ1) of length r and the upper chain ((K1, ψ1)<..<(Ks, ψs)) of length s−1
and conversely any such lower and upper chain define a unique long chain. Hence
the second sum turns out to be the coefficient of (H,λ)G in

∑

(K,ψ)>(H,λ+λ)

∑

(H,λ+λ)<..<(Hr,λr+λr)
inM(K,ψ)

∑
(K,ψ)<(K1,ψ1)<..<(Ks,ψs)

(−1)r+s+1 |H|
|G| 〈ψs〉((H,λ)G+(H,λ)G) .

Now, for (Hi, λi + λi) > (H,λ+ λ), we choose λi such that ResHiH (λi) = λ, and
distinguish two cases.

If (H,λ)G 6= (H,λ)G, then every chain ((H,λ+ λ)<..<(Hr, λr + λr)) starting in
(H,λ+ λ) determines the unique chain ((H,λ)<..<(Hr, λr)) starting in an element
of (H,λ)G, and the other way arround. Thus, in this case,

CH,λ+λ =
|H|
|G|




∑
(H,λ)<..<(Hr,λr)

(−1)r〈λr〉

+
∑

(K,ψ)>(H,λ+λ)

∑
(H,λ)<..<(Hr,λr)

inM(K,ψ)

∑
(K,ψ)<..<(Ks,ψs)

(−1)r+s+1〈ψs〉




If (H,λ)G = (H,λ)G, then every chain ((H,λ+ λ)<..<(Hr, λr + λr)) determines
uniquely the two chains ((H,λ)<..<(Hr, λr)) and ((H,λ)<..<(Hr, λr)) starting in
elements of (H,λ)G, and the other way arround. Therefore, in this case

CH,λ+λ =
|H|
|G|




∑
(H,λ)<..<(Hr,λr)

(−1)r〈λr〉+
∑

(H,λ)<..<(Hr,λr)

(−1)r〈λr〉




+
|H|
|G|

∑

(K,ψ)>(H,λ+λ)

∑
(K,ψ)<..<(Ks,ψs)




∑
(H,λ)<..<(Hr,λr)

inM(K,ψ)

(−1)r+s+1〈ψs〉+
∑

(H,λ)<..<(Hr,λr)
inM(K,ψ)

(−1)r+s+1〈ψs〉




Next we express CK,ψ with (K,ψ)G > (H,λ+ λ)G for some (K,ψ) ∈ MO(G).
By definition, the coefficient of (H,λ)G in c+((K,ψ)G) is

∑

(H0,λ0)∈(H,λ)G

(H0,λ0+λ0)<(K,ψ)

∑
(H0,λ0)<..<(Hr,λr)

inM(K,ψ)

(−1)r
|H|
|K|

〈
ResKHr (ψ);λr

〉
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Since
〈
ResKHi(ψ);λi

〉
= 1, the coefficient CK,ψ of (H,λ)G in

∑
(K,ψ)<..<(Ks,ψs)

(−1)s
|K|
|G|

〈
ResGK(c(ρ));ψ

〉
K
c+((K,ψ)G)

turns out to be

CK,ψ =
∑

(K,ψ)<..<(Ks,ψs) (−1)s |K||G| 〈ψs〉
∑

(H0,λ0)
∈(H,λ)G

∑
(H0,λ0)<..<(Hr,λr)

inM(K,ψ)
(−1)r |H||K|

= |H|
|G|

∑
(K,ψ)<..<(Ks,ψs)

∑
(H0,λ0)
∈(H,λ)G

∑
(H0,λ0)<..<(Hr,λr)

inM(K,ψ)
(−1)s+r〈ψs〉.

Using these three expressions for C( eH,eΨ)G , the formula for C turns into

C =
∑

(H0,λ0+λ0)
∈(H,λ+λ)G

CH0,λ0+λ0
+

∑
(K,ψ)∈MO(G)

(K,ψ)G>(H,λ+λ)G
cK,ψ

= |H|
|G|

(∑
(H0,λ0)∈(H,λ)G

∑
(H0,λ0)<..<(Hr,λr) (−1)r〈λr〉

+
∑

(K,ψ)∈MO(G)
(K,ψ)G>(H,λ+λ)G

∑
(K,ψ)<..<(Ks,ψs)

∑
(H0,λ0)<..<(Hr,λr)

inM(K,p),(H0,λ0)G=(H,λ)G
(−1)r+s+1〈ψs〉

+
∑

(K,ψ)∈MO(G)
(K,ψ)G>(H,λ+λ)G

∑
(K,ψ)<..<(Ks,ψs)

∑
(H0,λ0)
∈(H,λ)G

∑
(H0,λ0)<..<(Hr,λr)

inM(K,ψ)
(−1)s+r〈ψs〉

)

The two last terms cancel out, and we finally get

C = |H|
|G|

∑
(H0,λ0)∈M(G)

(H0,λ0+λ0)G=(H,λ+λ)G

∑
(H0,λ0)<..<(Hr,λr) (−1)r〈λr〉 = B

as claimed in 6.11.

Lemma 6.12.
Let (H,φ)G ∈M(G)/G with φ : H → {±1} an orthogonal representation. Then

π(H,φ)G( c+(aOG(ρ)) − aG(c(ρ)) ) =
∑

(H0,φ0)<..<(Hr,φr)
(H0,φ0)∈(H,φ)G , φr odd

|H0|
|G| (−1)r(nHr − 2) ,

where nHr denote the number of elements in the set {φr : Hr → {±1} | φr odd}.

Proof. Let (H,φ)G ∈M(G)/G. The coefficient B of (H,φ)G in aG(c(ρ)) is

B =
|H|
|G|




∑
(H0,φ0)<..<(Hr,φr)

(H0,φ0)∈(H,φ)G

(−1)r〈φr〉+
∑

(H0,φ0)<..<(Hr,λr)
(H0,φ0)∈(H,φ)G

(−1)r〈λr〉




The coefficient C of (H,φ)G in c+(aOG(ρ)) turns out to be the sum of a lot of partial
sums coming from different kinds of chains. Since c+ is a homomorphism, C is the
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coefficient of (H,φ)G in
∑

(H0,Ψ0)<..<(Hr,Ψr)

(−1)r
|H0|
|G| m(ResGHr (ρ),Ψr) c+((H0,Ψ0)G) .

Since (H,φ)G can only have a nontrivial contribution from elements of the form
c+((H0,Ψ0)G) if (H0,Ψ0)G is either (H, 2φ)G or (H,φ+ φ′)G or (K,ψ)G with
(H,φ)G ≺ (K,ψ)G, we can express C as

C =
∑

(H0,2φ0)∈MO(G)
(H0,2φ0)G=(H,2φ)G

CH0,2φ0 +
∑

(H0,φ0+φ′0)∈MO(G)

(H0,φ0+φ′0)G=(H,φ+φ′)G

CH0,φ0+φ′0 +
∑

(H0,ψ0)∈MO(G)
(H0,ψ0)G≺(H,φ)G

CH0,ψ0

where the second subsum runs over all possible pairs φ + φ′, and, for (H̃, Ψ̃) ∈
MO(G),

C eH,eΨ := π(H,φ)G




∑
(H0,Ψ0)<..<(Hr,Ψr)

(H0,Ψ0)=(fH,eΨ)

(−1)r
|H0|
|G| m(ResGHr (ρ),Ψr) c+((H̃, Ψ̃)G)


 .

Now we calculate these coefficients C eH,eΨ in each of the three cases.

We begin with the case (H̃, Ψ̃)G = (H̃, 2φ̃)G = (H, 2φ)G and can, without causing
confusion, change notation back to H instead of H̃ and φ instead of φ̃. Using the
explicit formula for the multiplicities, we split CH,2φ into |H|

|G|
∑6
i=1 Ci(H, 2φ), where

C1(H, 2φ) :=
∑

(H,2φ)<..<(Hr,2φr) (−1)r2 [〈φr〉/2]

C2(H, 2φ) :=
∑

(H,2φ)<..<(Hi,2φi)<(Hi+1,φi+1+φ′
i+1)<

<..<(Hr,φr+φ′r) , φr,φ′r odd

(−1)r2 · 1

C3(H, 2φ) :=
∑

(H,2φ)<..<(Hi,2φi)<
<(Hi+1,λi+1+λi+1)<..<(Hr,λr+λ′r)

(−1)r2〈λr〉

C4(H, 2φ) :=
∑

(H,2φ)<..<(Hr,2φr)<
<(K1,ψ1)<..<(Ks,ψs)

(−1)r+s2〈ψs〉

C5(H, 2φ) :=
∑

(H,2φ)<..<(Hi,2φi)<(Hi+1,φi+1+φ′
i+1)<..<

<(Hr,φr+φ′r)<(K1,ψ1)<..<(Ks,ψs)

(−1)r+s2〈ψs〉

C6(H, 2φ) :=
∑

(H,2φ)<..<(Hi,2φi)<(Hi+1,λi+1+λi+1)<..<

<(Hr,λr+λr)<(K1,ψ1)<..<(Ks,ψs)

(−1)r+s2〈ψs〉

Now we will modify these terms using the following observations:
1) Of course we can identify any chain of the form ((H, 2φ)<..<(H ′, 2φ′)) in

MO(G) with the corresponding chain ((H,φ)<..<(H ′, φ′)) in M(G).
2) Clearly 2 [〈φr〉/2] equals 〈φr〉−1, if φr odd, and coincides with 〈φr〉 otherwise.
3) Any chain ((H, 2φ)<..<(Hr, λr + λr)) in MO(G) corresponds uniquely to the

pair of chains given by ((H,φ)<..<(Hr, λr)) and ((H,φ)<..<(Hr, λr)). Thus, taking
the sum over all chains ((H,φ)<..<(Hr, λr)) instead of ((H, 2φ)<..<(Hr, λr + λr))
gives twice as many summands, and this will take care of the factor 2.
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4) A chain

((H, 2φ)<..<(Hr, 2φr)<(K1, ψ1)<..<(Ks, ψs))

of length r + s breaks uniquely up into the lower chain ((H, 2φ)<..<(Hr, 2φr)) in
MO(K1, ψ1) of length r and the upper chain ((K1, ψ1)<..<(Ks, ψs)) of length s− 1.

5) A chain

((H, 2φ)<..<(Hr, φr + φ′r)<(K1, ψ1)<..<(Ks, ψs))

of length r+s breaks up uniquely into the lower chain ((H, 2φ)<..<(Hr, φr + φ′r)) in
MO(K1, ψ1) of length r and the upper chain ((K1, ψ1)<..<(Ks, ψs)) of length s− 1.

6) A chain ((H, 2φ)<..<(Hr, λr + λr)<(K1, ψ1)<..<(Ks, ψs)) of length r+s breaks
up uniquely into the lower chain ((H, 2φ)<..<(Hr, λr + λr)) inMO(K1, ψ1) of length
r and the upper chain ((K1, ψ1)<..<(Ks, ψs)) of length s− 1.

Thus we have

C1(H, 2φ) =
∑

(H,φ)<..<(Hr,φr) (−1)r〈φr〉 −
∑

(H,φ)<..<(Hr,φr)
φr odd

(−1)r

C2(H, 2φ) = 2
∑

(H,2φ)<..<(Hr,φr+φ′r)
φr,φ′r odd

(−1)r · 1

C3(H, 2φ) =
∑

(H,φ)<..<(Hr,λr) (−1)r〈λr〉

C4(H, 2φ) = 2
∑

(K,ψ)>(H,2φ)

∑
(H,φ)<..<(Hr,φr)

inM(K,ψ)

∑
(K,ψ)<..<(Ks,ψs) (−1)r+s+1〈ψs〉

C5(H, 2φ) = 2
∑

(K,ψ)>(H,2φ)

∑
(H,2φ)<..<(Hr,φr+φ′r)

inMO(K,ψ)

∑
(K,ψ)<..<(Ks,ψs) (−1)r+s+1〈ψs〉

C6(H, 2φ) =
∑

(K,ψ)>(H,2φ)

∑
(H,φ)<..<(Hr,λr)

inM(K,ψ)

∑
(K,ψ)<..<(Ks,ψs) (−1)r+s+1〈ψs〉

Next we study the case

(H̃, Ψ̃)G = (H̃, φ̃+ φ̃′)G = (H,φ+ φ′)G

for some φ′ 6= φ. Again we change notation and write H instead of H̃ and φ, φ′

instead of φ̃, φ̃′. The explicit formula for the multiplicities transform CH,φ+φ′ into

CH,φ+φ′ =

|H|
|G|mH,φ+φ′




∑
(H,φ+φ′)<..<(Hr,φr+φ′r)<
<(K1,ψ1)<..<(Ks,ψs)

(−1)r+s+1〈ψs〉+
∑

(H,φ+φ′)<..<(Hr,φr+φ′r)
φr,φ′r odd

(−1)r




with mH,φ+φ′ = 2, if (H,φ)G = (H,φ′)G, and mH,φ+φ′ = 1 otherwise.
We split any chain ((H,φ+ φ′)<..<(Hr, φr + φ′r)<(K1, ψ1)<..<(Ks, ψs)) of length

r + s into the lower chain ((H,φ+ φ′)<..<(Hr, φr + φ′r)) in MO(K1, ψ1) of length
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r and the upper chain ((K1, ψ1)<..<(Ks, ψs)) of length s− 1. So, if

C7(H,φ+ φ′) := mH,φ+φ′
∑

(K,ψ)>(H,φ+φ′)
∑

(H,φ+φ′)<..<(Hr,φr+φ′r)
inMO(K,ψ)

∑
(K,ψ)<..<(Ks,ψs) (−1)r+s+1〈ψs〉

and
C8(H,φ+ φ′) := mH,φ+φ′

∑
(H,φ+φ′)<..<(Hr,φr+φ′r)

φr,φ′r odd

(−1)r ,

then CH,φ+φ′ = |H|
|G| ( C7(H,φ+ φ′) + C8(H,φ+ φ′) ).

Finally we expand C eH,eΨ in the case (H̃, Ψ̃)G = (K,ψ)G Â (H,φ)G for some
(K,ψ) ∈MO(G).

By definition of c+, the coefficient of (H,φ)G in c+((K,ψ)G) is

∑

(H0,φ0)∈(H,φ)G

(H0,φ0)≺(K,ψ)

|H0|
|K|




∑
(H0,φ0)<..<(Hr,φr)

inM(K,ψ)

(−1)r
〈
ResKHr (ψ);φr

〉
+

∑
(H0,φ0)<..<(Hr,λr)

inM(K,ψ)

(−1)r
〈
ResKHr (ψ);λr

〉

 .

Therefore, the coefficient CK,ψ of (H,φ)G in
∑

(K,ψ)<..<(Ks,ψs)

(−1)s
|K|
|G|m(ResGK(ρ), ψ) (⊗C+)((K,ψ)G)

is given by

CK,ψ =
∑

(K,ψ)<..<(Ks,ψs)

(−1)s |K||G| 〈ψs〉
∑

(H0,φ0)∈(H,φ)G

(H0,φ0)≺(K,ψ)

|H|
|K| ·


 ∑

(H0,φ0)<..<(Hr,φr)
inM(K,ψ)

(−1)r
〈
ResKHr (ψ);φr

〉
+

∑
(H0,φ0)<..<(Hr,λr)

inM(K,ψ)

(−1)r
〈
ResKHr (ψ);λr

〉



This we split into several subsums and obtain CK,ψ = |H|
|G|

7∑
i=4

Ci(K,ψ), where

C4(K,ψ) :=
∑

(K,ψ)<..<(Ks,ψs)

∑
(H0,φ0)∈(H,φ)G

(H0,φ0)≺(K,ψ)

∑
(H0,φ0)<..<(Hr,φr) inM(K,ψ)

ResK
Hr

(ψ)=2φr

(−1)r+s〈ψs〉 · 2

C5(K,ψ) :=
∑

(K,ψ)<..<(Ks,ψs)

∑
(H0,φ0)∈(H,φ)G

(H0,φ0)≺(K,ψ)

∑
(H0,φ0)<..<(Hr,φr) inM(K,ψ)

ResK
Hr

(ψ)=φr+φ′r,ResK
H0

(ψ)=2φ0

(−1)r+s〈ψs〉

C6(K,ψ) :=
∑

(K,ψ)<..<(Ks,ψs)

∑
(H0,φ0)∈(H,φ)G

(H0,φ0)≺(K,ψ)

∑
(H0,φ0)<..<(Hr,λr)inM(K,ψ)

ResK
H0

(ψ)=2φ0

(−1)r+s〈ψs〉

C7(K,ψ) :=
∑

(K,ψ)<..<(Ks,ψs)

∑
(H0,φ0)∈(H,φ)G

(H0,φ0)≺(K,ψ)

∑
(H0,φ0)<..<(Hr,φr) inM(K,ψ)

ResK
H0

(ψ)=φ0+φ′0

(−1)r+s〈ψs〉
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Bringing all these expressions together, we conclude

C =
∑

(H0,2φ0)
∈(H,2φ)G

CH0,2φ0 +
∑

(H,φ+φ′)G

∑
(H0,φ0+φ′0)

∈(H,φ+φ′)G

CH0,φ0+φ′0 +
∑

(K,ψ)∈MO(G)
(K,ψ)GÂ(H,φ)G

CK,ψ

= |H|
|G|




6∑
i=1

∑
(H0,2φ0)
∈(H,2φ)G

Ci(H0, 2φ0) +
8∑
i=7

∑
(H,φ+φ′)G

∑
(H0,φ0+φ′0)

∈(H,φ+φ′)G

Ci(H0, φ0 + φ′0)

+
7∑
i=4

∑
(K,ψ)∈MO(G)

(K,ψ)GÂ(H,φ)G

Ci(K,ψ)


 .

Some of these terms cancel each other. The terms involving C4 vanish, as

∑
(H0,2φ0)
∈(H,2φ)G

C4(H0, 2φ0) +
∑

(K,ψ)∈MO(G)
(K,ψ)GÂ(H,φ)G

C4(K,ψ) =

∑
(H0,2φ0)
∈(H,2φ)G

2
∑

(K,ψ)>(H0,2φ0)

∑
(H0,φ0)<..<(Hr,φr)

inM(K,ψ)

∑
(K,ψ)<..<(Ks,ψs)

(−1)r+s+1〈ψs〉

+
∑

(K,ψ)∈MO(G)
(K,ψ)GÂ(H,φ)G

∑
(K,ψ)<..<(Ks,ψs)

∑
(H0,φ0)∈(H,φ)G

(H0,φ0)≺(K,ψ)

∑
(H0,φ0)<..<(Hr,φr) inM(K,ψ)

ResK
Hr

(ψ)=2φr

2(−1)r+s〈ψs〉

= 0.

The C5-terms add up to 0, because

∑
(H0,2φ0)
∈(H,2φ)G

C5(H0, 2φ0) +
∑

(K,ψ)∈MO(G)
(K,ψ)GÂ(H,φ)G

C5(K,ψ)

=
∑

(H0,2φ0)
∈(H,2φ)G

2
∑

(K,ψ)>(H0,2φ0)

∑
(H0,2φ0)<..<(Hr,φr+φ′r)

inMO(K,ψ)

∑
(K,ψ)<..<(Ks,ψs)

(−1)r+s+1〈ψs〉

+
∑

(K,ψ)∈MO(G)
(K,ψ)GÂ(H,φ)G

∑
(K,ψ)<..<(Ks,ψs)

∑
(H0,φ0)∈(H,φ)G

(H0,φ0)≺(K,ψ)

∑
(H0,φ0)<..<(Hr,φr) inM(K,ψ)

ResK
Hr

(ψ)=φr+φ′r,ResK
H0

(ψ)=2φ0

(−1)r+s〈ψs〉

Indeed, every chain (H0<..<Hr) of subgroups in K determine exactly two chains in
M(K,ψ), namely ((H0, φ0)<..<(Hr, φr)) and ((H0, φ0)<..<(Hr, φ

′
r)).
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Also the C6-terms cancel each other, as
∑

(H0,2φ0)
∈(H,2φ)G

C6(H0, 2φ0) +
∑

(K,ψ)∈MO(G)
(K,ψ)GÂ(H,φ)G

C6(K,ψ)

=
∑

(H0,2φ0)
∈(H,2φ)G

∑
(K,ψ)>(H0,2φ0)

∑
(H0,φ0)<..<(Hr,λr)

inMO(K,ψ)

∑
(K,ψ)<..<(Ks,ψs) (−1)r+s+1〈ψs〉

+
∑

(K,ψ)∈MO(G)
(K,ψ)GÂ(H,φ)G

∑
(K,ψ)<..<(Ks,ψs)

∑
(H0,φ0)∈(H,φ)G

(H0,φ0)≺(K,ψ)

∑
(H0,φ0)<..<(Hr,λr)inM(K,ψ)

ResK
H0

(ψ)=2φ0

(−1)r+s〈ψs〉

= 0

Finally, the terms with C7 cancel out, since
∑

(H,φ+φ′)G
∑

(H0,φ0+φ′0)

∈(H,φ+φ′)G
C7(H0, φ0 + φ′0) +

∑
(K,ψ)∈MO(G)

(K,ψ)GÂ(H,φ)G
C7(K,ψ)

=
∑

(H,φ+φ′)G
∑

(H0,φ0+φ′0)

∈(H,φ+φ′)G
mH0,φ0+φ′0

∑
(K,ψ)>(H0,φ0+φ′0)

∑
(H0,φ0+φ′0)<..<(Hr,φr+φ′r)

inMO(K,ψ)

∑
(K,ψ)<..<(Ks,ψs) (−1)r+s+1〈ψs〉

+
∑

(K,ψ)∈MO(G)
(K,ψ)GÂ(H,φ)G

∑
(K,ψ)<..<(Ks,ψs)

∑
(H0,φ0)∈(H,φ)G

(H0,φ0)≺(K,ψ)

∑
(H0,φ0)<..<(Hr,φr) inM(K,ψ)

ResK
H0

(ψ)=φ0+φ′0

(−1)r+s〈ψs〉

In fact this is 0, because if we have a pair (K,ψ) > (H0, φ0 + φ′0) with (H0, φ0)G =
(H,φ)G 6= (H0, φ

′
0)
G , themH0,φ0+φ′0 = 1, and taking sums over chains inMO(K,ψ)

starting in (H0, φ0 + φ′0) is the same as taking sums over chains in M(K,ψ) start-
ing in (H0, φ0). Otherwise, if a pair (K,ψ) > (H0, φ0 + φ′0) satisfies (H0, φ0)G =
(H,φ)G = (H0, φ

′
0)
G, then mH0,φ0+φ′0 = 2, and taking sums over chains in M(K,ψ)

starting in (H0, φ0) or (H0, φ
′
0) is twice as much as taking sums over chains in

MO(K,ψ) starting in (H0, φ0 + φ′0).

So C reduces to

C =
|H|
|G|




3∑

i=1

∑
(H0,2φ0)
∈(H,2φ)G

Ci(H0, 2φ0) +
∑

(H,φ+φ′)G

∑
(H0,φ0+φ′0)

∈(H,φ+φ′)G

C8(H0, φ0 + φ′0)


 .

Now we can compare B and C, which is the coefficient of (H,φ)G in c+(aOG(ρ)) −
aG(c(ρ). We notice that, taking the expressions for B and C into account,

|H|
|G|

∑
(H0,φ0)∈(H,φ)G (C1(H0, 2φ0) + C3(H0, 2φ0))

= B + |H|
|G|

∑
(H0,φ0)∈(H,φ)G

∑
(H0,φ0)<..<(Hr,φr)

φr odd
(−1)r .
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Thus we have to compute
∑

(H0,φ0)∈(H,φ)G

(∑
(H0,2φ0)<..<(Hr,φr+φ′r)

φr,φ′r odd

2(−1)r −∑
(H0,φ0)<..<(Hr,φr)

φr odd
(−1)r

)

and ∑
(H,φ+φ′)G

∑
(H0,φ0+φ′0)∈(H,φ+φ′)G C8(H0, φ0 + φ′0).

The first term can be simplified by the following observation. Let (H0, φ0) ∈ (H,φ)G

fixed and, for H0 6 Hr 6 G, let XHr,φ0 := {φr : Hr → ±1|ResHrH0
(φr) = φ0, φr odd}

and n = nHr,φ0 denote the number of elements in XHr,φ0 . Then there are pre-
cisely n elements (Hr, φr) ∈ M(G) with (H0, φ0) 6 (Hr, φr) and φr odd, and pre-
cisely n(n−1)

2 elements (Hr, φr + φ′r) ∈ M(G) with (H0, 2φ0) 6 (Hr, φr + φ′r) and
φr, φ

′
r odd. Thus

∑
(H0,2φ0)<..<(Hr,φr+φ′r)

φr,φ′r odd

2(−1)r =
∑

H0<..<Hr 2nHr,φ0 (nHr,φ0−1)

2 (−1)r

=
∑

(H0,φ0)<..<(Hr,φr)
φr odd

(−1)r(nHr,φ0 − 1)

So the first term can be rewritten as∑
(H0,φ0)∈(H,φ)G

∑
(H0,φ0)<..<(Hr,φr)

φr odd
(−1)r(nHr,φ0 − 2)

Next we reduce the second expression. Let (H0, φ0) ∈ (H,φ)G fixed. For H0 6 Hr 6
G let X ′

Hr,φ0
:= {φr : Hr → ±1|ResHrH0

(φr) 6= φ0, φr odd} and n′ = n′Hr,φ0
denote

the number of elements in X ′
Hr,φ0

. Now
∑
φ′0 6=φ0

∑
(H0,φ0+φ′0)<..<(Hr,φr+φ′r)

φr,φ′r odd

(−1)r =
∑

(H0,φ0)<..<(Hr,φr)
φr odd

(−1)rn′Hr,φ0
,

since, for any chain (H0, φ0)<..<(Hr, φr) with φr odd, a chain
(H0, φ0 + φ′0)<..<(Hr, φr + φ′r) with φr, φ

′
r odd determines and is determined by

φ′r ∈ X ′
Hr,φ0

. Furthermore, for (Hr, φr) fixed with (Hr, φr)G º (H,φ)G,
∑

(H0,φ0+φ′0)

(H0,φ0+φ′0)Gº(H,φ0)G

∑
(H0,φ0+φ′0)<..<(Hr,φr+φ′r)

φr,φ′r odd

mH0,φ0+φ′0(−1)r =
∑

(H0,φ0)∈(H,φ)G

∑
(H0,φ0)<..<(Hr,φr)

φr odd

(−1)rn′Hr,φ0
,

as mH0,φ0+φ′0 = 1 in the case (H0, φ0)G 6= (H0, φ
′
0)
G and mH0,φ0+φ′0 = 2 in the case

(H0, φ0)G = (H0, φ
′
0)
G. Finally, we may take the sum over all (Hr, φr) to rewrite

the second expression as
∑

(H0,φ0)∈(H,φ)G

∑
(H0,φ0)<..<(Hr,φr)

φr odd

(−1)rn′Hr,φ0
.

Taking these simplifications into account, we conclude from nHr,φ0 + n′Hr,φ0
=

nHr , that

C −B =
|H|
|G|

∑
(H0,φ0)<..<(Hr,φr)

(H0,φ0)∈(H,φ)G , φr odd

(−1)r(nHr − 2)
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which completes the proof of lemma 6.12.

Theorem 6.13.
The map aOG induces an explicit induction formula, that is, for ρ : G→ O(2n) in

FO(G),

bOG(aOG(ρ)) = κG(ρ) ∈ RO(G) ,

where κG : FO(G) → RO(G) is the map of §6.1.

Proof. We study the diagram

FO(G) QRO+(G) QRO(G)

QR(G) QR+(G) QR(G)

-aOG

?
c◦κG

-bOG

?
c+

?
c

-aG -bG

.

Note that the right square is a commutative diagram, since all maps involved are
homomorphisms and aG, used in the definition of c+, is a section for bG. Indeed

bG(c+((H,Ψ)G)) = bG(IndGH(aH(c(Ψ)))

= IndGH(bHaH(c(Ψ))) = IndGH(c(Ψ)) = c(IndGH(Ψ)).

Since c+ is injective, it suffices to show

c+((bOG ◦ aOG)(ρ)) = c(κG(ρ)) ( = (bG ◦ aG)(c ◦ κG)(ρ) ) .

Therefore it is enough to prove that the defect on the commutativity in the left
square, given by (6.9), lies in the kernel of bG. In fact, for ρ : G→ O(2n) and nH(ρ)
as in 6.9, we calculate

bG
(
c+(aOG(ρ)) − aG(c(ρ))

)

= bG

(∑
(H,φ)
φ odd

(nH(ρ)− 2)
∑

(H0,φ0)<..<(Hr,φr)
(Hr,φr)=(H,φ)

(−1)r |H0|
|G| (H0, φ0)G

)

=
∑

(H,φ)
φ odd

(nH(ρ)− 2)
∑

(H0,φ0)<..<(Hr,φr)
(Hr,φr)=(H,φ)

(−1)r |H0|
|G| IndGH0

(φ0)

=
∑

(H,φ)
φ odd

(nH(ρ)− 2) |H||G| IndGH(
∑

(H0,φ0)<..<(Hr,φr)
(Hr,φr)=(H,φ)

(−1)r |H0|
|H| IndHH0

(φ0))

=
∑

(H,φ)
φ odd

(nH(ρ)− 2) |H||G| IndGH(φ
∑

H0<..<Hr
Hr=H

(−1)r |H0|
|H| IndHH0

(11))

= 0 ,

since firstly, for H 6 G a fixed noncyclic group,
∑

H0<..<Hr=H

(−1)r
|H0|
|H| IndHH0

(11) = 0 . (1)
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(see for example [6, III.1.4]) and secondly, if H 6 G has a nontrivial contribution
to the sum above, then nH(ρ) > 0 (so there exists an odd φ) and nH(ρ)− 2 6= 0 (so
nH(ρ) > 4), so that H has an elementary abelian 2 group of order at least 4 as a
factor group and can not be cyclic.

References

[1] J.F. Adams: Stable homotopy and generalised homology; University of
Chicago Press (1974).

[2] J.C. Becker and D.H. Gottlieb: The transfer map and fibre bundles; Topology
14 (1975) 1-12.

[3] J.C. Becker and R.E. Schultz: Equivariant function spaces and stable homo-
topy I; Comm. Math. Helv. (49) 1 (1974) 1-34.

[4] R. Boltje: Canonical and explicit Brauer induction in the character ring of
a finite group and a generalisation for Mackey functors; Augsburg Univ.
thesis (1989).

[5] R. Boltje: A canonical Brauer induction formula; Astérisque 181-182
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