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ADDITIVITY OF EULER CHARACTERISTICS IN RELATIVE
ALGEBRAIC K-GROUPS

MANUEL BREUNING and DAVID BURNS

(communicated by J.F. Jardine)

Abstract
We describe a criterion for a natural Euler characteristic

that takes values in a relative algebraic K0-group to be addi-
tive in distinguished triangles. As preliminary steps we prove
several results about determinant functors, in particular con-
cerning the comparison of the determinant of a complex to the
determinant of its cohomology.

Dedicated to Victor Snaith on the occasion of his 60-th birthday.

1. Introduction

Let Λ be a ring and P a bounded complex of finitely generated projective Λ-
modules. The Euler characteristic χ(P ) of P is defined to be the alternating sum∑
i∈Z(−1)i(P i) in the Grothendieck group K0(Λ). An immediate consequence of

this definition is that for any short exact sequence 0 → P → Q → R → 0 of such
complexes there is an identity

χ(Q) = χ(P ) + χ(R).

In arithmetic algebraic geometry a complex P of Λ-modules often comes equipped
with a trivialisation t over some ring extension Σ of Λ, that is some additional data
on the cohomology of the complex Σ ⊗Λ P . In this situation one can construct
an Euler characteristic χ(P, t) in the relative algebraic K-group K0(Λ,Σ) which
is a preimage of χ(P ) under the natural homomorphism K0(Λ,Σ) → K0(Λ). In
this paper we describe a criterion for a short exact sequence 0 → P → Q →
R → 0 of trivialised complexes (and more generally for a distinguished triangle of
such complexes) which, when satisfied, ensures additivity of the associated Euler
characteristics, that is

χ(Q, tQ) = χ(P, tP ) + χ(R, tR).
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Our criterion is of a purely cohomological nature in that it involves the triviali-
sations and the long exact cohomology sequence but not the complexes themselves.
This feature ensures that our result is relevant to several recent constructions in
arithmetic algebraic geometry involving (trivialised) perfect complexes which are
only well-defined up to quasi-isomorphism. In particular, in a future manuscript we
will apply our criterion to certain distinguished triangles that arise in the context
of the constructions of [1] and [2]. In addition, recent work of Fukaya and Kato [7]
suggests that applications of our result may well arise naturally in non-commutative
Iwasawa theory (in particular, in the context of elliptic curves with supersingular
reduction for which the relevant Selmer groups are not torsion modules over the
appropriate Iwasawa algebra).

As in [4], our approach to Euler characteristics uses determinant functors on
categories of bounded complexes with values in categories of virtual objects. In the
first half of this paper we prove various properties of very general determinant func-
tors on categories of bounded complexes which may themselves be of independent
interest. We start with a summary of some basic notions in §2 and then discuss the
comparison of the determinant of a complex to the determinant of its cohomology
in §3. The key result here is a description of how the isomorphism of determinants
associated to a short exact sequence of complexes as above is reflected on the level
of cohomology. Section 4 consists of various results which express the determinant
of a complex in terms of the determinants of its even and odd degree parts.

The second half of this paper then deals with Euler characteristics. In §5 we
specialise the preceding results to determinant functors with values in certain cat-
egories of virtual objects, which allows us to define the Euler characteristic χ(P, t),
establish some of its basic properties and prove the key additivity result. The con-
structions and results of §5 are valid whenever Σ is both noetherian and regular,
but if one assumes that Σ is semisimple, then they can be stated in a much more
explicit fashion (and, in particular, without reference to virtual objects). This is the
content of §6 where we also establish the relation of our Euler characteristics to the
‘refined Euler characteristics’ defined by the second named author in [3]. We remark
that such a comparison has already been sketched (albeit slightly erroneously – see
Remark 6.5) in [4, Remark 4] but no details have appeared before now.

2. Basics

Let P be a commutative Picard category, that is a groupoid P with a product
⊗ : P × P → P which satisfies compatible associativity, commutativity and unit
constraints, and for which every object in P is invertible. We refer the reader to
[8, Appendix A] for more details on Picard categories and to [11, Chapitre I] for
a thorough study of tensor categories in general. It will be convenient to fix a unit
1P in P, that is an object 1P with an isomorphism 1P → 1P ⊗ 1P . Recall that
units in a Picard category are unique up to unique isomorphism. In this paper we
will in general not explicitly mention the associativity and commutativity isomor-
phisms. By the coherence theorem for AC tensor categories this will not cause any
confusion. However, using inverses and commutativity isomorphisms together some-
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times introduces signs (automorphisms of order 2) and therefore in those cases it is
important to keep track of all commutativities involved.

The abelian group of isomorphism classes of the Picard category P is denoted by
π0(P) and the abelian group of automorphisms of 1P is denoted by π1(P). We note
that for any object L of P there is a canonical isomorphism Aut(L) ∼= Aut(1P) =
π1(P) and that for two isomorphic objects L and M the set Hom(L,M) is a π1(P)-
torsor. Let ψ be the commutativity constraint of P. For any object L of P we define
ε(L) ∈ π1(P) as the automorphism ψL,L ∈ Aut(L⊗L) ∼= π1(P). One can show that
this induces a homomorphism ε : π0(P) → π1(P) of order at most 2.

Let E be an exact category and let w be an SQ-class of morphisms in E (cf.
[8, Definition 1.1]), for example the class ‘iso’ of all isomorphisms in E . We let Ew
denote the subcategory of E where morphisms are restricted to w. A determinant
functor (f1, f2) on Ew with values in the Picard category P consists of a functor
f1 : Ew → P and an isomorphism f2(∆) : f1(Q) → f1(P ) ⊗ f1(R) for each short
exact sequence

∆ : 0 −→ P −→ Q −→ R −→ 0

in E . One requires f2 to be natural with respect to morphisms of short exact se-
quences in w3. Furthermore the data (f1, f2) must satisfy three axioms (compati-
bility, associativity and commutativity) which are explained in [8, Definition 1.4].
To simplify the notation we will write [·] for both f1(·) and f2(·); the meaning will
always be clear from the context. If 0 is a zero object in E , then [0] has canonically
the structure of a unit in P and therefore there exists a canonical isomorphism
[0] → 1P .
Remark 2.1. One can show that the compatibility axiom in the definition of a
determinant functor in [8] follows from the associativity axiom and is therefore
redundant. Indeed, this follows easily by applying the associativity axiom to the
diagram

A A // 0

²²
A

²²

A //

²²

0

²²
0 // 0 // 0

and using the fact that the unit structure on [0] is induced by the short exact
sequence 0 → 0 → 0. In this regard see also [6, §4.6].

We write det(Ew,P) for the category of determinant functors on Ew with values
in P. If P and Q are two Picard categories then we write Hom⊗(P,Q) for the
category of monoidal functors (that is AC tensor functors in the terminology of [8]).
We recall that for any exact category E there exists a universal determinant functor
[·] : Eiso → V(E), that is a determinant functor such that for every Picard category
P the induced functor Hom⊗(V(E),P) → det(Eiso,P) is an equivalence of categories
(see [4, §2.3] and [6, §4] for more details). The Picard category V(E) is called the
category of virtual objects. There are canonical isomorphisms π0(V(E)) ∼= K0(E)
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and π1(V(E)) ∼= K1(E). If Λ is a ring and E is equal to the category PMod(Λ)
of finitely generated projective left Λ-modules, then we write V(Λ) for V(E). We
remark that if Λ is a commutative and noetherian ring then there is a natural
determinant functor on PMod(Λ)iso with values in the category of graded invertible
Λ-modules (cf. [9]). It is shown in [4, §2.5] that in many cases this determinant
functor is universal and therefore provides an explicit construction of V(Λ).

A filtration 0 = A0 ⊆ A1 ⊆ · · · ⊆ Am = P of an object P in E is admissible if
each inclusion Ai−1 ⊆ Ai is an admissible monomorphism. For such a filtration one
has a canonical isomorphism [P ] → ⊗m

i=1[Ai/Ai−1]. We will use [8, Proposition 1.9]
to compare these isomorphisms for two compatible admissible filtrations of the same
complex P . For the convenience of the reader we recall here the precise statement
of this result.

Proposition 2.2. Let 0 = A0 ⊆ A1 ⊆ · · · ⊆ Am = P and 0 = B0 ⊆ B1 ⊆ · · · ⊆
Bn = P be compatible admissible filtrations of P (see [8, Definition 1.8] for the
definition of compatible). Then there is a commutative diagram

⊗m
i=1[Ai/Ai−1]

²²

[P ]oo //
⊗n

j=1[Bj/Bj−1]

²²⊗m
i=1

⊗n
j=1

[
Ai−1+(Bj∩Ai)
Ai−1+(Bj−1∩Ai)

]
// ⊗n

j=1

⊗m
i=1

[
Bj−1+(Ai∩Bj)
Bj−1+(Ai−1∩Bj)

]
.

Here the vertical isomorphisms come from refining each quotient Ai/Ai−1 by the
filtration

Ai−1 = Ai−1 + (B0 ∩Ai) ⊆ Ai−1 + (B1 ∩Ai) ⊆ · · · ⊆ Ai−1 + (Bn ∩Ai) = Ai

and each quotient Bj/Bj−1 by the filtration

Bj−1 = Bj−1 + (A0 ∩Bj) ⊆ Bj−1 + (A1 ∩Bj) ⊆ · · · ⊆ Bj−1 + (Am ∩Bj) = Bj .

The bottom horizontal isomorphism is induced by the butterfly isomorphisms

Ai−1 + (Bj ∩Ai)
Ai−1 + (Bj−1 ∩Ai)

∼= Ai ∩Bj
(Ai−1 ∩Bj) + (Ai ∩Bj−1)

∼= Bj−1 + (Ai ∩Bj)
Bj−1 + (Ai−1 ∩Bj) .

In this paper we are interested in determinant functors on certain categories of
complexes. We write Cb(E) for the category of bounded cochain complexes of objects
in E and ‘qis’ for the class of quasi-isomorphisms in Cb(E). Clearly Cb(E) is again
an exact category and qis is an SQ-class of morphisms.

If P is a complex then P [1] denotes the shifted complex, that is P [1]i = P i+1

with differential dP [1](p) = −dP (p). For a map a : P → Q of complexes one defines
the mapping cone cone(a) to be the complex given by cone(a)i = Qi ⊕ P i+1 with
differential dcone(a)(q, p) = (dQ(q) + a(p),−dP (p)). There is a short exact sequence
of complexes 0 → Q → cone(a) → P [1] → 0 with maps given by the canonical
injection and projection, that is q 7→ (q, 0) and (q, p) 7→ p. If the complexes P and
Q are in Cb(E), then so also is cone(a).

For the rest of this section we let [·] be a determinant functor on Cb(E)qis with
values in P. We remark that the main result of [8] shows that giving such a de-
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terminant functor is essentially equivalent to giving a determinant functor on Eiso

with values in P, however we will not need this result until Section 5. By definition
of a Picard category, every object in P has an inverse. In general this inverse is not
unique, but the next lemma shows that for every complex P in Cb(E) there is a
canonical inverse of [P ].

Lemma 2.3. For every complex P in Cb(E) there is a canonical isomorphism

µP : [P ]⊗ [P [1]] −→ 1P .

If a : P ∼−→ Q is a quasi-isomorphism, then µQ◦([a]⊗[a[1]]) = µP . The isomorphism
µ is compatible with short exact sequences, and more generally if 0 ⊆ A0 ⊆ A1 ⊆
· · · ⊆ Am = P is an admissible filtration then the diagram

[P ]⊗ [P [1]]
µP //

²²

1P

²²

⊗
i[Ai/Ai−1]⊗

⊗
i[Ai[1]/Ai−1[1]]

²²⊗
i

(
[Ai/Ai−1]⊗ [(Ai/Ai−1)[1]]

) N
i µAi/Ai−1 // ⊗

i 1P

commutes; here Ai[1]/Ai−1[1] ∼= (Ai/Ai−1)[1] is the canonical isomorphism.

Proof. Let cone(idP ) be the mapping cone of the identity map P
idP−→ P . Then

there is a canonical short exact sequence 0 → P → cone(idP ) → P [1] → 0 and a
quasi-isomorphism cone(idP ) ∼−→ 0. We define µP to be the composite isomorphism

[P ]⊗ [P [1]] −→ [cone(idP )] −→ [0] −→ 1P .

Note that a quasi-isomorphism a : P ∼−→ Q induces a quasi-isomorphism of map-
ping cones cone(idP ) ∼−→ cone(idQ) which immediately implies µQ ◦ ([a]⊗ [a[1]]) =
µP . In addition, compatibility of this construction with short exact sequences follows
from the fact that each short exact sequence of complexes 0 → P → Q → R → 0
induces a short exact sequence of mapping cones 0 → cone(idP ) → cone(idQ) →
cone(idR) → 0. The proof of compatibility with admissible filtrations of arbitrary
(finite) length is then reduced to the case of short exact sequences by an induction
on the length of the filtration.

Let P be a complex in Cb(E) and let −id : P → P denote the negative of
the identity isomorphism. In [6, §4.9] it is shown that the automorphism [−id] ∈
Aut([P ]) ∼= π1(P) agrees with ε([P ]) ∈ π1(P). Lemma 2.3 implies that ε([P [i]]) =
ε([P ]) for every complex P and every integer i. To simplify the notation we will
write ε([P ]) for ε([P [0]]) if P is an object in E .

3. Determinant functors and cohomology

In this section we assume that E is an abelian category and that [·] is a deter-
minant functor on Cb(E)qis with values in a Picard category P. For P ∈ Cb(E) we
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write ZP , BP and HP for the complexes of cycles, boundaries and cohomology of
P respectively, each with zero differentials. These complexes again belong to Cb(E).

Proposition 3.1. For every complex P in Cb(E) there is a canonical isomorphism

ηP : [P ] −→ [HP ].

If a : P ∼−→ Q is a quasi-isomorphism, then ηQ ◦ [a] = [Ha] ◦ ηP .

Proof. We define ηP as the composite isomorphism

[P ] −→ [BP ]⊗ [HP ]⊗ [BP [1]]
−→ [HP ]

which is induced by the filtration

0 ⊆ BP ⊆ ZP ⊆ P

with quotients BP/0 ∼= BP , ZP/BP ∼= HP and P/ZP ∼= BP [1], and by the
isomorphism µBP : [BP ]⊗ [BP [1]] → 1P from Lemma 2.3.

If P = [P i di

−→ P i+1] is a complex of length at most 2 whose differential di is a
monomorphism then there is a canonical quasi-isomorphism hP : P → HP . From
the commutative diagram of short exact sequences

BP //

²²

cone(idBP ) //

²²

BP [1]

ZP //

²²

P //

hP

²²

BP [1]

²²
HP HP // 0

one then sees that ηP = [hP ] : [P ] → [HP ]. This implies ηQ ◦ [a] = [Ha] ◦ ηP if
a : P ∼−→ Q is a quasi-isomorphism and P and Q are both complexes of length
at most 2 with injective differential. The general case follows by induction on the
length of P using the (good) truncation filtration as in the proof of [8, Proposition
3.2].

Remark 3.2. Let iP : BP → ZP denote the canonical inclusion. In [8, §3], Knudsen
considers the composite isomorphism

[P ] −→ [ZP ]⊗ [BP [1]] −→ [cone(iP )] −→ [HP ]

which is induced by the short exact sequences 0 → ZP → P → BP [1] → 0
and 0 → ZP → cone(iP ) → BP [1] → 0 and by the canonical quasi-isomorphism
cone(iP ) ∼−→ HP . It is not difficult to show that this isomorphism agrees with ηP in
Proposition 3.1. Therefore the naturality of η with respect to quasi-isomorphisms
also follows from [8, Proposition 3.3].

For a short exact sequence

∆ : 0 −→ P
a−→ Q

b−→ R −→ 0
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in Cb(E) one has an isomorphism [∆] : [Q] → [P ] ⊗ [R]. Using the identifications
from Proposition 3.1 we obtain an induced isomorphism [HQ] → [HP ]⊗ [HR]. We
shall now give a description of this isomorphism in purely cohomological terms.

Let ∂ : HR → HP [1] be the connecting homomorphism in the long exact coho-
mology sequence induced by ∆. Then the long exact cohomology sequence can be
written as the exact sequence of complexes

0 −→ ker(Ha) −→ HP
Ha−−→ HQ

Hb−−→ HR
∂−→ ker(Ha)[1] −→ 0. (1)

We define [H∆] : [HQ] → [HP ]⊗ [HR] to be the isomorphism

[HQ] −→ [HQ]⊗ [ker(Ha)]⊗ [ker(Ha)[1]]
−→ [HP ]⊗ [HR]

which is induced by the isomorphism µ−1
ker(Ha) : 1P → [ker(Ha)]⊗ [ker(Ha)[1]] and

by the exact sequence (1).

Theorem 3.3. The isomorphism [H∆] : [HQ] → [HP ]⊗ [HR] is the unique map
making the diagram

[Q]
[∆] //

ηQ

²²

[P ]⊗ [R]

ηP⊗ηR

²²
[HQ]

[H∆] // [HP ]⊗ [HR]

commutative.

Proof. The idea of this proof is to introduce two filtrations on the complex Q,
apply Proposition 2.2 to these filtrations and then identify certain of the resulting
subquotients with the objects in the exact sequence (1).

The first filtration is

0 ⊆ BQ ⊆ ZQ ⊆ Q (2)

coming from the boundaries and cycles of Q. The second filtration is

0 ⊆ BP ⊆ ZP ⊆ P ⊆ b−1(BR) ⊆ b−1(ZR) ⊆ Q (3)

coming from the boundaries and cycles of P and from the preimage of the filtration
0 ⊆ BR ⊆ ZR ⊆ R under the map b : Q → R. Obviously there are isomorphisms
b−1(BR)/P ∼= BR, b−1(ZR)/b−1(BR) ∼= HR and Q/b−1(ZR) ∼= R/ZR.

By refining the filtration (2) as in Proposition 2.2 we obtain

0 ⊆ BP ⊆ ZP ∩BQ ⊆ BQ,

BQ ⊆ ZP +BQ ⊆ ZQ,

ZQ ⊆ P + ZQ ⊆ b−1(ZR) ⊆ Q
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which gives (using the identifications in the table below)

[Q] ∼= [BQ]⊗ [HQ]⊗ [Q/ZQ]
∼=

(
[BP ]⊗ [ker(Ha)]⊗ [BR]

)

⊗ (
[ker(Hb)]⊗ [im(Hb)]

)

⊗ (
[P/ZP ]⊗ [HR/im(Hb)]⊗ [R/ZR]

)
.

(4)

By refining the filtration (3) as in Proposition 2.2 we obtain

0 ⊆ BP, BP ⊆ ZP ∩BQ ⊆ ZP, ZP ⊆ P,

P ⊆ b−1(BR), b−1(BR) ⊆ P + ZQ ⊆ b−1(ZR), b−1(ZR) ⊆ Q

which gives (again using the table below)

[Q] ∼= [BP ]⊗ [HP ]⊗ [P/ZP ]
⊗ [BR]⊗ [HR]⊗ [R/ZR]

∼=
(
[BP ]

)⊗ (
[ker(Ha)]⊗ [ker(Hb)]

)⊗ (
[P/ZP ]

)

⊗ (
[BR]

)⊗ (
[im(Hb)]⊗ [HR/im(Hb)]

)⊗ (
[R/ZR]

)
.

(5)

By Proposition 2.2 the isomorphisms (4) and (5) agree after reordering the terms
on the right hand sides.

In the following table we summarise the identifications used. The three objects in
each row are isomorphic. The obvious isomorphism between the subquotient in the
first column and the subquotient in the second column is the butterfly isomorphism
of Proposition 2.2, and each of these subquotients is canonically isomorphic to the
object in the third column.

subquotient in (4) subquotient in (5) identified with
BP/0 BP/0 BP

(ZP ∩BQ)/BP (ZP ∩BQ)/BP ker(Ha)
BQ/(ZP ∩BQ) b−1(BR)/P BR
(ZP +BQ)/BQ ZP/(ZP ∩BQ) ker(Hb)
ZQ/(ZP +BQ) (P + ZQ)/b−1(BR) im(Hb)
(P + ZQ)/ZQ P/ZP P/ZP

b−1(ZR)/(P + ZQ) b−1(ZR)/(P + ZQ) HR/im(Hb)
Q/b−1(ZR) Q/b−1(ZR) R/ZR

The differential d : Q → Q[1] induces an isomorphism Q/ZQ
∼=−→ BQ[1]. We

therefore obtain an isomorphism [BQ]⊗ [Q/ZQ] → [BQ]⊗ [BQ[1]] → 1P where the
second map is µBQ. More generally, d induces an isomorphism from the filtration
ZQ
ZQ ⊆ P+ZQ

ZQ ⊆ b−1(ZR)
ZQ ⊆ Q

ZQ to the filtration 0[1] ⊆ BP [1] ⊆ (ZP ∩ BQ)[1] ⊆
BQ[1], and we obtain isomorphisms [BP0 ] ⊗ [P+ZQ

ZQ ] → [BP0 ] ⊗ [BP0 [1]] → 1P , etc.
In Lemma 2.3 we showed that µ is compatible with filtrations which gives the
commutativity of the upper square in diagram (7) below.

We obtain the lower commutative square in diagram (7) by identifying each
subquotient with the corresponding object in the third column of the table above.
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Thus the bottom horizontal map is given by [BP ]⊗ [ PZP ] → [BP ]⊗ [BP [1]] → 1P ,
etc., where the isomorphisms

P/ZP
∼=−→ BP [1], HR/im(Hb)

∼=−→ ker(Ha)[1], R/ZR
∼=−→ BR[1] (6)

are induced from the differential d on the subquotients of Q. One easily checks
that the first and third isomorphism in (6) agree with the isomorphism induced by
the differential of P and R respectively, and that the second isomorphism is the
connecting homomorphism ∂ of the long exact cohomology sequence.

[BQ]

⊗[Q/ZQ]
//

²²

1P

²²[BP0 ]⊗[ZP∩BQBP ]⊗[ BQ
ZP∩BQ ]

⊗[P+ZQ
ZQ ]⊗[ b

−1(ZR)
P+ZQ ]⊗[ Q

b−1(ZR) ]
//

²²

1P ⊗ 1P ⊗ 1P

²²[BP ]⊗[ker(Ha)]⊗[BR]

⊗[ PZP ]⊗[ HR
im(Hb) ]⊗[ RZR ]

// 1P ⊗ 1P ⊗ 1P

(7)

Now consider the following diagram.

[P ]

⊗[R]

ηP⊗ηR //

²²

[HP ]

⊗[HR]

[Q]
ηQ //

²²

[∆]

55jjjjjjjjjjjjjjjjj [HQ]

[H∆]
77pppppppp

[BP ]⊗[HP ]⊗[ P
ZP ]

⊗[BR]⊗[HR]⊗[ R
ZR ]

//

²²

[HP ]

⊗[HR]

²²

[BQ]

⊗[HQ]

⊗[ Q
ZQ ]

//

²²

[HQ]

::vvvvvvvvvv

²²

[BP ]⊗[ker(Ha)]⊗[ker(Hb)]⊗[ P
ZP ]

⊗[BR]⊗[im(Hb)]⊗[ HR
im(Hb) ]⊗[ R

ZR ]
// [ker(Ha)]⊗[ker(Hb)]

⊗[im(Hb)]⊗[ HR
im(Hb) ]

[BP ]⊗[ker(Ha)]⊗[BR]

⊗[ker(Hb)]⊗[im(Hb)]

⊗[ P
ZP ]⊗[ HR

im(Hb) ]⊗[ R
ZR ]

77nnnnnn

// [ker(Hb)]⊗[im(Hb)]

::vvvvvvvvvv

The left face of this diagram is commutative because the isomorphisms (4) and
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(5) agree. The right face is commutative by the definition of [H∆]. The upper
front face and upper back face are commutative by the definition of the maps
ηP : [P ] → [HP ], ηR : [R] → [HR] and ηQ : [Q] → [HQ]. The commutativity of
the lower front face follows from (7). The lower back face and the bottom face are
obviously commutative. The resulting commutativity of the top face is precisely the
statement of the theorem.

As an immediate consequence of Theorem 3.3 we deduce the following result.

Corollary 3.4. The functor [·] ◦H : Cb(E)qis → P together with the isomorphism
[H∆] for each short exact sequence ∆ in Cb(E) form a determinant functor, and
η : [·] → [·] ◦H is an isomorphism of determinant functors.

We now end this section by proving a result which will be useful in §5.

Lemma 3.5. Let P be a complex in Cb(E) and identify H(P [1]) and (HP )[1] (in
the obvious way). Then the diagram

[P ]⊗ [P [1]]
ηP⊗ηP [1] //

µP

²²

[HP ]⊗ [H(P [1])]

µHP

²²
1P 1P

(8)

is commutative.

Proof. Consider the diagram

[P ]

⊗[P [1]]

α1 // [BP ]⊗[HP ]⊗[(BP )[1]]

⊗[B(P [1])]⊗[H(P [1])]⊗[(B(P [1]))[1]]

β1 //

id⊗id⊗id

⊗id⊗id⊗[−id]²²

[HP ]

⊗[H(P [1])]

²²
[P ]

⊗[P [1]]

α2 //

µP

²²

[BP ]⊗[HP ]⊗[(BP )[1]]

⊗[(BP )[1]]⊗[(HP )[1]]⊗[(BP )[2]]

ε([BP ])◦β2 //

µBP⊗µHP⊗µ(BP )[1]

²²

[HP ]

⊗[(HP )[1]]

µHP

²²
1P // 1P ⊗ 1P ⊗ 1P // 1P .

The map α1 is induced by the filtration 0 ⊆ BP ⊆ ZP ⊆ P with quotients BP , HP
and (BP )[1], and by the filtration 0 ⊆ B(P [1]) ⊆ Z(P [1]) ⊆ P [1] with quotients
B(P [1]), H(P [1]) and (B(P [1]))[1].

For the map α2 we use the same filtration of P as above and the filtration
0 ⊆ (BP )[1] ⊆ (ZP )[1] ⊆ P [1] on P [1] which is obtained by shifting the filtration
on P . The quotients of this filtration on P [1] are identified with (BP )[1], (HP )[1]
and (BP )[2] by shifting the identifications for the quotients of P . There are canon-
ical isomorphisms B(P [1]) ∼= (BP )[1] and (B(P [1]))[1] ∼= (BP )[2] but to ensure
commutativity of the upper left hand square we need the determinant of the nega-
tive of this isomorphism, i.e. [−id] : [(B(P [1]))[1]] → [(BP )[2]]. This is because the
isomorphism P [1]/Z(P [1]) → (B(P [1]))[1] used for the map α1 is induced by the
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differential dP [1], whereas the isomorphism P [1]/(ZP )[1] → (BP )[2] used for the
map α2 is induced by the differential dP .

The compatibility of the isomorphism µ with filtrations implies the commuta-
tivity of the lower left hand square of the diagram. Note that in the vertical arrow
marked µBP ⊗ µHP ⊗ µ(BP )[1] the map µBP : [BP ] ⊗ [(BP )[1]] → 1P refers to
[(BP )[1]] in the second row and µ(BP )[1] : [(BP )[1]] ⊗ [(BP )[2]] → 1P refers to
[(BP )[1]] in the first row.

The map β1 is obtained by applying µBP : [BP ]⊗ [(BP )[1]] → 1P and µB(P [1]) :
[B(P [1])] ⊗ [(B(P [1]))[1]] → 1P . Similarly the map β2 is obtained by applying
µBP : [BP ]⊗ [(BP )[1]] → 1P (referring to [(BP )[1]] in the first row) and µ(BP )[1] :
[(BP )[1]] ⊗ [(BP )[2]] → 1P (referring to [(BP )[1]] in the second row). Commuta-
tivity of the upper right hand square is immediate because −id acting on (BP )[2]
gives the automorphism ε([BP ]). Finally, the commutativity of the lower right hand
square follows directly from the definition of ε([BP ]).

Thus the above diagram is commutative. Since β1 ◦ α1 = ηP ⊗ ηP [1] this shows
the commutativity of (8).

4. Decomposition into even and odd degree parts

In this section we prove various technical results relating the determinant of a
complex to the determinants of its even and odd degree parts. This will be needed
for our applications to Euler characteristics in §5 and §6. We let E be an exact
category and [·] a determinant functor on Cb(E)qis with values in a Picard category
P.

Lemma 4.1. For every complex P in Cb(E) there is a canonical isomorphism

σP : [P ] −→ [P [2]].

If a : P ∼−→ Q is a quasi-isomorphism then σQ ◦ [a] = [a[2]] ◦ σP . The isomorphism
σ is compatible with short exact sequences, and more generally if 0 = A0 ⊆ A1 ⊆
· · · ⊆ Am = P is an admissible filtration, then the diagram

[P ]
σP //

²²

[P [2]]

²²⊗
i[Ai/Ai−1]

N
i σAi/Ai−1 // ⊗

i[Ai[2]/Ai−1[2]]

commutes, where for the bottom map we have used the canonical isomorphism
(Ai/Ai−1)[2] ∼= Ai[2]/Ai−1[2].

Proof. We define σP as the composite isomorphism

[P ] −→ [P ]⊗ ([P [1]]⊗ [P [2]])
−→ ([P ]⊗ [P [1]])⊗ [P [2]]
−→ [P [2]]

where we have first applied µ−1
P [1] : 1P → [P [1]] ⊗ [P [2]] and then µP : [P ] ⊗
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[P [1]] → 1P . Compatibility with quasi-isomorphisms and filtrations follows from
the corresponding properties of µP [1] and µP (cf. Lemma 2.3).

Lemma 4.2. For every complex P in Cb(E) the diagram

[P ]⊗ [P [1]]
µP //

σP⊗id

²²

1P

ε([P ])

²²
[P [2]]⊗ [P [1]]

µP [1]◦ψ // 1P

is commutative, where ψ denotes the commutativity constraint.

Proof. We will show the following more general result. Let L0, L1, L2 be objects in
P and µi : Li ⊗ Li+1 → 1P isomorphisms for i = 0, 1. If σ0 : L0 → L2 is defined by
L0 → L0 ⊗ (L1 ⊗ L2) → (L0 ⊗ L1)⊗ L2 → L2, then

L0 ⊗ L1
µ0 //

σ0⊗id

²²

1P

ε(L1)

²²
L2 ⊗ L1

µ1◦ψ // 1P

(9)

commutes. Obviously this will imply the statement in the lemma.
An argument similar to [8, Proposition A.14] shows that the map

L1 −→ 1P ⊗ L1
µ−1

1 ⊗id−−−−−→ L1 ⊗ L2 ⊗ L1
id⊗ψ−−−→ L1 ⊗ L1 ⊗ L2

id⊗µ1−−−−→ L1 ⊗ 1P −→ L1

is ε(L1). Tensoring with L0 on the left gives the commutative triangle in the fol-
lowing diagram (where we omit isomorphisms of the form L0 ⊗ 1P ∼= L0 etc.).

L0 ⊗ L1
µ0 //

id⊗ε(L1)

))RRRRRRRRRRRRRRRRR

id⊗µ−1
1 ⊗id

²²

1P

ε(L1)

²²L0 ⊗ L1

⊗L2 ⊗ L1

id⊗id⊗(µ1◦ψ) //

µ0⊗id⊗id

²²

L0 ⊗ L1
µ0 // 1P

L2 ⊗ L1
µ1◦ψ // 1P .

By definition of the isomorphism Aut(L1) ∼= Aut(1P), the upper trapezium is com-
mutative. The commutativity of the bottom rectangle is obvious.

Therefore diagram (9) is commutative as claimed.

Corollary 4.3. For every complex P in Cb(E) the following diagram is commutative

[P ]⊗ [P [1]]
µP //

σP⊗σP [1]

²²

1P

[P [2]]⊗ [P [3]]
µP [2] // 1P .
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Proof. This follows from Lemma 4.2 applied to the complexes P and P [1] and the
observation that ε([P [1]]) ◦ ε([P ]) = id1P .

For a complex P in Cb(E) we define the objects P ev and P od in E by P ev =⊕
i even P

i and P od =
⊕

i odd P
i. Obviously these operations give exact functors

Cb(E) → E .

Proposition 4.4. For every complex P in Cb(E) there is a canonical isomorphism

πP : [P ] −→ [P ev[0]]⊗ [P od[1]].

If a : P
∼=−→ Q is an isomorphism, then πQ ◦ [a] = ([aev[0]] ⊗ [aod[1]]) ◦ πP . The

isomorphism π is compatible with short exact sequences, and more generally if 0 =
A0 ⊆ A1 ⊆ · · · ⊆ Am = P is an admissible filtration, then the following diagram
commutes

[P ]
πP //

²²

[P ev[0]]⊗ [P od[1]]

²²⊗
i[A

ev
i /A

ev
i−1[0]]⊗⊗

i[A
od
i /A

od
i−1[1]]

²²⊗
i[Ai/Ai−1]

N
i πAi/Ai−1 // ⊗

i

(
[(Ai/Ai−1)ev[0]]⊗ [(Ai/Ai−1)od[1]]

)
,

where for the right vertical maps we have used the induced admissible filtrations
0 = Aev

0 ⊆ Aev
1 ⊆ · · · ⊆ Aev

m = P ev and 0 = Aod
0 ⊆ Aod

1 ⊆ · · · ⊆ Aod
m = P od and the

canonical isomorphisms Aev
i /A

ev
i−1

∼= (Ai/Ai−1)ev and Aod
i /A

od
i−1

∼= (Ai/Ai−1)od.

Proof. We consider the brutal truncation filtration (cf. [8, Definition 2.17])

· · · ⊆ σ>i+1P ⊆ σ>iP ⊆ σ>i−1P ⊆ · · · ⊆ P.

This filtration is admissible and has quotients σ>iP/σ>i+1P ∼= P i[−i]. We define
πP as the composite isomorphism

[P ] −→
⊗

i

[P i[−i]]

−→
⊗

i even

[P i[0]]⊗
⊗

i odd

[P i[1]]

−→ [P ev[0]]⊗ [P od[1]]

where for the second map we repeatedly applied the isomorphism σ from Lemma
4.1.

The compatibility with isomorphisms of complexes is obvious. Since the filtration
0 = A0 ⊆ A1 ⊆ · · · ⊆ Am = P and the brutal truncation filtration of P are compat-
ible, we can apply Proposition 2.2. Together with the statement about filtrations in
Lemma 4.1 this easily implies the compatibility of π with respect to filtrations.
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Lemma 4.5. For every complex P the diagram

[P ]⊗ [P [1]]
µP //

πP⊗πP [1]
²²

1P

ε([P od])

²²[P ev[0]]⊗ [P od[1]]
⊗[P od[0]]⊗ [P ev[1]]

µPev[0]⊗µPod[0] // 1P

is commutative where for the left map we have used P [1]ev = P od and P [1]od = P ev

and for the bottom map we have used µP ev[0] ⊗ µP od[0] after reordering the terms.

Proof. Specialising the diagram in Lemma 2.3 to the brutal truncation filtration
gives the commutative diagram

[P ]⊗ [P [1]]
µP //

²²

1P

²²⊗
i

(
[P i[−i]]⊗ [P i[−i][1]]

) N
i µP i[−i] //

⊗
i

1P .

(10)

The top square in diagram (11) below is commutative by Corollary 4.3 and the
compatibility of the isomorphism µ with respect to direct sums. Commutativity of
the bottom square follows from Lemma 4.2.

⊗
i

(
[P i[−i]]⊗ [P i[−i][1]]

) N
i µP i[−i] //

²²

⊗
i

1P

²²[P ev[0]]⊗ [P ev[1]]
⊗[P od[1]]⊗ [P od[2]]

µPev[0]⊗µPod[1] //

id⊗id

⊗id⊗σ−1
Pod[0]²²

1P ⊗ 1P

id⊗ε([P od])

²²[P ev[0]]⊗ [P ev[1]]
⊗[P od[1]]⊗ [P od[0]]

µPev[0]⊗(µ
Pod[0]◦ψ)

// 1P ⊗ 1P .

(11)

Diagrams (10) and (11) show the lemma.

5. Euler characteristics

In the sequel we fix rings Λ and Σ and a ring homomorphism Λ → Σ such that Σ
is flat as a right Λ-module. We assume that Σ is noetherian and regular, that is every
finitely generated Σ-module has finite projective dimension. We write PΣ = Σ⊗ΛP
for the scalar extension if P is a Λ-module or a complex of Λ-modules. We recall
that there is a canonical exact sequence of algebraic K-groups

K1(Λ) −→ K1(Σ)
δ1Λ,Σ−−−→ K0(Λ,Σ)

δ0Λ,Σ−−−→ K0(Λ) −→ K0(Σ), (12)
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where K0(Λ,Σ) is the relative algebraic K-group as defined by Swan in [12, p. 215].
We recall also that elements in K0(Λ,Σ) are represented by triples (P, g,Q) where P
and Q belong to the category PMod(Λ) of finitely generated projective Λ-modules
and g : PΣ → QΣ is an isomorphism of Σ-modules.

The scalar extension functor PMod(Λ) → PMod(Σ), P 7→ PΣ, is exact and by
the universal property of virtual objects it therefore induces a monoidal functor
V(Λ) → V(Σ) (unique up to natural isomorphism). We fix such a monoidal functor
which again we will write as L 7→ LΣ. Furthermore we fix an isomorphism in
det(PMod(Λ)iso,V(Σ)) from the determinant functor PMod(Λ)iso → V(Λ) → V(Σ)
to the determinant functor PMod(Λ)iso → PMod(Σ)iso → V(Σ) (the existence of
such an isomorphism also follows from the universal property).

We fix a unit 1V(Σ) in V(Σ) and define a tensor category V(Λ,Σ) as follows.
Objects in V(Λ,Σ) are pairs (L, λ) with L an object in V(Λ) and λ an isomorphism
LΣ → 1V(Σ) in V(Σ). A morphism from (L, λ) to (M,µ) is an isomorphism α : L→
M in V(Λ) such that µ ◦ αΣ = λ in V(Σ). The product of (L, λ) and (M,µ) is
(L⊗M,ν) where ν : (L⊗M)Σ → 1V(Σ) is the isomorphism

(L⊗M)Σ −→ LΣ ⊗MΣ
λ⊗µ−−−→ 1V(Σ) ⊗ 1V(Σ) −→ 1V(Σ).

Lemma 5.1. The tensor category V(Λ,Σ) is a Picard category (with respect to
natural associativity and commutativity constraints) and there is an isomorphism
π0V(Λ,Σ) ∼= K0(Λ,Σ).

Proof. The proof is similar to the proof of [4, Proposition 2.5]. Let P0 be the Picard
category with unique object 1P0 and trivial automorphism group AutP0(1P0). Then
V(Λ,Σ) is the fibre product

V(Λ,Σ) //

²²

P0

²²
V(Λ) // V(Σ)

where P0 → V(Σ) maps 1P0 to 1V(Σ). This implies that V(Λ,Σ) is a Picard category
with respect to the associativity and commutativity constraints that are induced
by those of V(Λ) and V(Σ).

We define a homomorphism ξ : K0(Λ,Σ) → π0V(Λ,Σ) by sending a generator
(P, g,Q) to the isomorphism class of ([P ] ⊗ [Q]−1, λ) where λ : ([P ] ⊗ [Q]−1)Σ →
1V(Σ) is the isomorphism

([P ]⊗ [Q]−1)Σ −→ [PΣ]⊗ [QΣ]−1 [g]⊗id−−−−→ [QΣ]⊗ [QΣ]−1 −→ 1V(Σ).

(Given the defining relations of K0(Λ,Σ) [12, p. 215], it is a straightforward exercise
to show that ξ is well-defined.) Now the exact sequence (12) and the Mayer-Vietoris
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sequence of the fibre product fit into a commutative diagram

K1(Λ) //

²²

K1(Σ) //

²²

K0(Λ,Σ) //

ξ

²²

K0(Λ) //

²²

K0(Σ)

²²
π1V(Λ) // π1V(Σ) // π0V(Λ,Σ) // π0V(Λ) // π0V(Σ)

in which all unlabelled vertical arrows represent the canonical isomorphisms. From
the 5-Lemma we may therefore deduce that ξ is itself an isomorphism.

We note that if α ∈ K1(Σ) ∼= π1V(Σ), then δ1Λ,Σ(α) ∈ K0(Λ,Σ) is represented by
the isomorphism class of (1V(Λ), λ) ∈ V(Λ,Σ) where 1V(Λ) is a unit in V(Λ) and λ

is the isomorphism (1V(Λ))Σ → 1V(Σ)
α−→ 1V(Σ).

Next we consider the extension of determinant functors to certain categories of
complexes. By [8, Theorem 2.3], the restriction functor

det(Cb(PMod(Λ))qis,P) −→ det(PMod(Λ)iso,P) (13)

is an equivalence of categories. The following result shows that for the regular ring
Σ one can even consider bounded complexes of objects in the category Mod(Σ) of
finitely generated Σ-modules.

Lemma 5.2. For any Picard category P the restriction functor

det(Cb(Mod(Σ))qis,P) −→ det(PMod(Σ)iso,P)

is an equivalence of categories.

Proof. We recall that by [8, Theorem 2.3], the functor det(Cb(Mod(Σ))qis,P) →
det(Mod(Σ)iso,P) is an equivalence of categories.

The inclusion of exact categories PMod(Σ) → Mod(Σ) induces a monoidal
functor V(PMod(Σ)) → V(Mod(Σ)), and the induced maps πiV(PMod(Σ)) →
πiV(Mod(Σ)) for i = 0 and 1 agree with the maps Ki(PMod(Σ)) → Ki(Mod(Σ))
on algebraic K-groups (cf. [6, §4.11]). Since Σ is regular these maps are isomor-
phisms by Quillen’s resolution theorem [10, §4, Corollary 2], thus the monoidal
functor V(PMod(Σ)) → V(Mod(Σ)) is an equivalence of categories. Using the uni-
versal property of virtual objects one then easily deduces that det(Mod(Σ)iso,P) →
det(PMod(Σ)iso,P) is an equivalence of categories.

By (13) we can choose an extension of [·] : PMod(Λ)iso → V(Λ) to a determinant
functor [·] : Cb(PMod(Λ))qis → V(Λ), and by Lemma 5.2 we can choose an extension
of [·] : PMod(Σ)iso → V(Σ) to a determinant functor [·] : Cb(Mod(Σ))qis → V(Σ).
These extensions are unique up to isomorphism. Even though we use the same
notation for all these determinant functors, it should always be clear from the
context which one we mean. We will always work with the unique isomorphism
in det(Cb(PMod(Λ))qis,V(Σ)) from the determinant functor Cb(PMod(Λ))qis →
V(Λ) → V(Σ) to the determinant functor Cb(PMod(Λ))qis → Cb(Mod(Σ))qis →
V(Σ) whose restriction to PMod(Λ)iso is the isomorphism from PMod(Λ)iso →
V(Λ) → V(Σ) to PMod(Λ)iso → PMod(Σ)iso → V(Σ) that we have fixed above.
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Remark 5.3. Obviously the definition of V(Λ,Σ) depends on the choice of the
monoidal functor V(Λ) → V(Σ). Furthermore all our constructions in these cat-
egories (including the isomorphism in Lemma 5.1) depend on the choice of the
determinant functors and isomorphisms of determinant functors. However one can
check that the Euler characteristics defined below are independent of these choices.
For semisimple Σ this also follows from the results in §6.

Let D(Λ) be the derived category consisting of all complexes of Λ-modules. We
remark that everything which follows also works if one imposes a boundedness
condition on the complexes in D(Λ). A complex P is called perfect if in D(Λ) it
is isomorphic to a bounded complex of finitely generated projective Λ-modules.
Equivalently, P is perfect if there exists a quasi-isomorphism of complexes of Λ-
modules U ∼−→ P with U ∈ Cb(PMod(Λ)). A perfect complex P need not be bounded
nor do we require the modules P i to be finitely generated. We denote the full
subcategory of perfect complexes in D(Λ) by Dperf(Λ).

The categories D(Σ) and Dperf(Σ) are defined similarly. Since Σ is noetherian,
the category Mod(Σ) is abelian and H(P ) belongs to Cb(Mod(Σ)) for every perfect
complex P of Σ-modules.

Definition 5.4. Let P ∈ Dperf(Λ). We define the Euler characteristic χΛ(P ) ∈
K0(Λ) to be the isomorphism class of the object [U ] in V(Λ) under the isomorphism
π0V(Λ) ∼= K0(Λ), where U is a complex in Cb(PMod(Λ)) which is isomorphic to P
in D(Λ).

One easily verifies that χΛ(P ) is well-defined. In addition, if P ∈ Cb(PMod(Λ))
then

χΛ(P ) =
∑

i

(−1)i(P i)

in K0(Λ).
We write Hev(P ) and Hod(P ) for the direct sum of even and odd degree coho-

mology modules of a complex P .

Definition 5.5. Let P ∈ Dperf(Λ) and let t : Hev(PΣ)
∼=−→ Hod(PΣ) be an isomor-

phism of Σ-modules. We refer to t as a ‘trivialisation’ of P and to the pair (P, t) as a
‘trivialised complex’. We define the Euler characteristic χΛ,Σ(P, t) of the trivialised
complex (P, t) to be the element of K0(Λ,Σ) which is represented under the isomor-
phism π0V(Λ,Σ) ∼= K0(Λ,Σ) of Lemma 5.1 by the object ([U ], λ) in V(Λ,Σ), where
U and λ are as follows. Choose a quasi-isomorphism of complexes of Λ-modules
a : U ∼−→ P with U ∈ Cb(PMod(Λ)) and let λ : [U ]Σ → 1V(Σ) be the isomorphism in
V(Σ) given by

[U ]Σ ∼= [UΣ]
ηUΣ−−→ [H(UΣ)]

[H(aΣ)]−−−−−→ [H(PΣ)]
πH(PΣ)−−−−−→ [Hev(PΣ)[0]]⊗ [Hod(PΣ)[1]]

[t]⊗id−−−−→ [Hod(PΣ)[0]]⊗ [Hod(PΣ)[1]]
µ

Hod(PΣ)[0]−−−−−−−→ 1V(Σ).

Proposition 5.6. Let P ∈ Dperf(Λ) and let t : Hev(PΣ) → Hod(PΣ) be a triviali-
sation. Then the Euler characteristic χΛ,Σ(P, t) ∈ K0(Λ,Σ) is well-defined and has
the following properties.
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1. δ0Λ,Σ(χΛ,Σ(P, t)) = χΛ(P ).

2. If t′ : Hev(PΣ) → Hod(PΣ) is another trivialisation, then

χΛ,Σ(P, t′)− χΛ,Σ(P, t) = δ1Λ,Σ((Hod(PΣ), t′ ◦ t−1)).

3. χΛ,Σ(P [1], t−1) = −χΛ,Σ(P, t).

Proof. If a : U ∼−→ P and a′ : U ′ ∼−→ P are two quasi-isomorphisms, then there
exists a quasi-isomorphism b : U ∼−→ U ′ such that a and a′ ◦ b are homotopic. From
this the well-definedness easily follows.

1. Let a : U ∼−→ P and λ be as in Definition 5.5. The functor V(Λ,Σ) → V(Λ)
maps the isomorphism class of ([U ], λ) in V(Λ,Σ) to the isomorphism class of [U ]
in V(Λ). This shows δ1Λ,Σ(χΛ,Σ(P, t)) = χΛ(P ).

2. We can assume that P ∈ Cb(PMod(Λ)). Let λt, λt′ : [P ]Σ → 1V(Σ) be the
maps from Definition 5.5 for t and t′ respectively. Then one has λt′ = α ◦ λt where
α ∈ AutV(Σ)(1V(Σ)) is [t′ ◦ t−1] ∈ AutV(Σ)([Hod(PΣ)[0]]) under the isomorphism
AutV(Σ)(1V(Σ)) ∼= AutV(Σ)([Hod(PΣ)[0]]). This implies that ([P ], λt′) is isomorphic
to ([P ], λt)⊗ (1V(Λ), α) in V(Λ,Σ) which gives the result.

3. We can assume that P ∈ Cb(PMod(Λ)). The sum χΛ,Σ(P, t) + χΛ,Σ(P [1], t−1)
is represented by the isomorphism class of ([P ] ⊗ [P [1]], λ ⊗ λ̃) in V(Λ,Σ), where
λ : [P ]Σ → 1V(Σ) is associated to t and λ̃ : [P [1]]Σ → 1V(Σ) is associated to t−1. The
following diagram

[H(PΣ)]⊗ [H(PΣ)[1]]
µH(PΣ) //

πH(PΣ)⊗πH(PΣ)[1]
²²

1V(Σ)

ε([Hod(PΣ)])

²²[Hev(PΣ)[0]]⊗ [Hod(PΣ)[1]]
⊗[Hod(PΣ)[0]]⊗ [Hev(PΣ)[1]]

µHev(PΣ)[0]⊗µHod(PΣ)[0] //

[t]⊗id⊗[t−1]⊗id

²²

1V(Σ)

ε([Hod(PΣ)])

²²[Hod(PΣ)[0]]⊗ [Hod(PΣ)[1]]
⊗[Hev(PΣ)[0]]⊗ [Hev(PΣ)[1]]

µ
Hod(PΣ)[0]⊗µHev(PΣ)[0]

// 1V(Σ)

commutes in V(Σ) (this follows from Lemma 4.5 for the top square and from the
definition of ε for the bottom square). Together with Lemma 3.5 (applied to the
complex PΣ) this shows that ([P ]⊗ [P [1]], λ⊗ λ̃) is isomorphic to (1V(Λ), id1V(Σ)) in
V(Λ,Σ) and therefore represents the zero element in K0(Λ,Σ).

We consider the following triangulation on D(Λ). A triangle

P
a−→ Q

b−→ R
c−→ P [1] (14)

in D(Λ) is said to be ‘distinguished’ if it is isomorphic to a triangle of the form

U
e−→ V −→ cone(e) −→ U [1]

where e is a morphism of complexes and in each degree i the map V i → cone(e)i =
V i⊕U i+1 is the canonical inclusion, that is v 7→ (v, 0), and the map cone(e)i = V i⊕
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U i+1 → U i+1 is the negative of the canonical projection, that is (v, u) 7→ −u. (The
reader should be warned that some authors use the canonical projection instead of
its negative which leads to a different triangulation on D(Λ) – see Remark 5.9.) One
easily verifies that Dperf(Λ) is a triangulated subcategory of D(Λ).

Theorem 5.7. Let P a−→ Q
b−→ R

c−→ P [1] be a distinguished triangle in Dperf(Λ).
Let tP : Hev(PΣ) → Hod(PΣ), tQ : Hev(QΣ) → Hod(QΣ) and tR : Hev(RΣ) →
Hod(RΣ) be trivialisations. If the following diagram

[HevQΣ]⊗ [ker(HevaΣ)]⊗ [ker(HodaΣ)] //

[tQ]⊗id⊗[−id]

²²

[HevPΣ]⊗ [HevRΣ]

[tP ]⊗[tR]

²²
[HodQΣ]⊗ [ker(HevaΣ)]⊗ [ker(HodaΣ)] // [HodPΣ]⊗ [HodRΣ]

(15)

commutes in V(Σ), then

χΛ,Σ(Q, tQ) = χΛ,Σ(P, tP ) + χΛ,Σ(R, tR)

in K0(Λ,Σ). The horizontal arrows in diagram (15) are induced by the exact se-
quences

0 → ker(HevaΣ) → HevPΣ → HevQΣ → HevRΣ → ker(HodaΣ) → 0, (16)

0 → ker(HodaΣ) → HodPΣ → HodQΣ → HodRΣ → ker(HevaΣ) → 0, (17)

which are obtained from the long exact cohomology sequence of the distinguished
triangle PΣ

aΣ−−→ QΣ
bΣ−→ RΣ

cΣ−→ PΣ[1].

Proof. The following lemma reduces the proof of Theorem 5.7 to the case of a short
exact sequence.

Lemma 5.8. For every distinguished triangle P a−→ Q
b−→ R

c−→ P [1] in Dperf(Λ)
there exists a short exact sequence 0 → U → V → W → 0 in Cb(PMod(Λ)) and
quasi-isomorphisms of complexes of Λ-modules U ∼−→ P , V ∼−→ Q, W ∼−→ R such
that the induced diagram of cohomology sequences

Hi(U) //

∼=
²²

Hi(V ) //

∼=
²²

Hi(W ) //

∼=
²²

Hi+1(U)

∼=
²²

Hi(P ) // Hi(Q) // Hi(R) // Hi+1(P )

is commutative.

Proof. Choose quasi-isomorphisms U ∼−→ P and X
∼−→ R[−1] with U and X in

Cb(PMod(Λ)). Let e : X → U be a map of complexes such that the left hand square
in the following diagram in D(Λ) commutes.

X
e //

∼
²²

U //

∼
²²

cone(e) //

²²

X[1]

∼
²²

R[−1]
−c[−1] // P

a // Q
b // R
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The dotted arrow making everything commutative exists by the axioms of a trian-
gulated category. In fact, since cone(e) is a bounded complex of finitely generated
projective Λ-modules we can assume that the dotted arrow comes from a map of
complexes of Λ-modules cone(e) → Q which then must be a quasi-isomorphism.
Shifting back we see that the given distinguished triangle is isomorphic to the dis-
tinguished triangle

U −→ cone(e) −→ X[1]
−e[1]−−−→ U [1]

and therefore has an isomorphic cohomology sequence. An easy computation shows
that the connecting homomorphism in the long exact cohomology sequence coming
from the short exact sequence 0 → U → cone(e) → X[1] → 0 is induced by −e.
Therefore the cohomology sequences of the distinguished triangle and of the short
exact sequence are isomorphic.

We continue with the proof of Theorem 5.7. By Lemma 5.8 and the definition of
the Euler characteristics, it suffices to prove the result for a short exact sequence
∆ : 0 → P

a−→ Q
b−→ R → 0 in Cb(PMod(Λ)). In this case we will show that the

following diagram

[Q]Σ
[∆]Σ //

λQ

²²

[P ]Σ ⊗ [R]Σ

λP⊗λR

²²
1V(Σ) // 1V(Σ) ⊗ 1V(Σ)

(18)

commutes in V(Σ), where λQ, λP and λR are the maps from Definition 5.5. Note that
the commutativity of this diagram implies that ([Q], λQ) and ([P ], λP ) ⊗ ([R], λR)
are isomorphic in V(Λ,Σ), and hence ensures that χΛ,Σ(Q, tQ) = χΛ,Σ(P, tP ) +
χΛ,Σ(R, tR), as required.

For typographical simplicity, we will omit the subscript Σ on all complexes and
maps in the rest of this proof. The key observation is the existence of a commutative
diagram

[HQ]
α1 //

π
²²

[HQ]⊗[ker(Ha)]⊗[ker(Ha)[1]]
β1 //

π⊗π⊗π
²²

[HP ]⊗ [HR]

π⊗π
²²

[HevQ[0]]

⊗[HodQ[1]]

ε◦α2 //

[tQ]

⊗id²²

[HevQ[0]]⊗[ker(Heva)[0]]⊗[ker(Hoda)[0]]

⊗[HodQ[1]]⊗[ker(Hoda)[1]]⊗[ker(Heva)[1]]

β2 //

[tQ]⊗id⊗[−id]

⊗id⊗id⊗id²²

[HevP [0]]⊗[HevR[0]]

⊗[HodP [1]]⊗[HodR[1]]

[tP ]⊗[tR]

⊗id⊗id²²
[HodQ[0]]

⊗[HodQ[1]]

α3 //

µ

²²

[HodQ[0]]⊗[ker(Heva)[0]]⊗[ker(Hoda)[0]]

⊗[HodQ[1]]⊗[ker(Hoda)[1]]⊗[ker(Heva)[1]]

β3 //

µ⊗µ⊗µ
²²

[HodP [0]]⊗[HodR[0]]

⊗[HodP [1]]⊗[HodR[1]]

µ⊗µ
²²

1V(Σ) // 1V(Σ) ⊗ 1V(Σ) ⊗ 1V(Σ) // 1V(Σ) ⊗ 1V(Σ).
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In the diagram the vertical maps are as indicated, the map α1 is obtained by ap-
plying µ−1

ker(Ha) and the maps α2 and α3 are both obtained by applying µ−1
ker(Heva)[0]

and µ−1
ker(Hoda)[0]

. Furthermore ε denotes the map ε([ker(Hoda)]). The map β1 is
induced by the cohomology sequence

0 −→ ker(Ha) −→ HP −→ HQ −→ HR −→ ker(Ha)[1] −→ 0,

and the maps β2 and β3 are induced by the cohomology sequences (16) and (17).
The top left square is commutative by Lemma 4.5 and the top right square by the
compatibility of π with respect to exact sequences. For the middle left square com-
mutativity follows since [−id] acting on [ker(Hoda)[0]] agrees with ε([ker(Hoda)])
and for the middle right square it follows by tensoring diagram (15) with

[HodQ[1]]⊗ [ker(Hoda)[1]]⊗ [ker(Heva)[1]] −→ [HodP [1]]⊗ [HodR[1]]

(induced by the exact sequence (17)). Finally for the bottom left square commuta-
tivity is obvious and for the bottom right square it follows from the compatibility
of µ with exact sequences.

Together with Theorem 3.3 this implies that diagram (18) commutes and hence
completes the proof of Theorem 5.7.

Remark 5.9. An alternative triangulation on D(Λ) consists of triangles isomorphic
to those of the form

U
e−→ V −→ cone(e) −→ U [1]

where V → cone(e) is the canonical inclusion and cone(e) → U [1] is the canonical
projection. A triangle P a−→ Q

b−→ R
c−→ P [1] is distinguished for this triangulation if

and only if P a−→ Q
b−→ R

−c−−→ P [1] is distinguished for the previous triangulation.
Using this observation one can apply Theorem 5.7 to obtain an analogous additivity
criterion for this alternative triangulation.

6. Euler characteristics in the semisimple case

As in §5 we consider a ring homomorphism Λ → Σ such that Σ is flat as right
Λ-module, but in this section we assume that Σ is semisimple. We fix an object P
of Dperf(Λ) and let t : Hev(PΣ)

∼=−→ Hod(PΣ) be a trivialisation. In [3] the second
named author gave an explicit construction of a ‘refined Euler characteristic’ of
such a complex P and isomorphism t−1 : Hod(PΣ) → Hev(PΣ) (in a slightly more
restrictive setting – see Remark 6.1 below). This refined Euler characteristic again
lies in the relative algebraic K-group K0(Λ,Σ) and we will denote it by χold(P, t−1).

If P belongs to Cb(PMod(Λ)), then the refined Euler characteristic is defined by
setting χold(P, t−1) = (P od, g, P ev) where g is the composite isomorphism

P od
Σ

∼=−→ Ball(PΣ)⊕Hod(PΣ) id⊕t−1

−−−−→ Ball(PΣ)⊕Hev(PΣ)
∼=−→ P ev

Σ .

Here Ball(PΣ) =
⊕

i∈ZB
i(PΣ) = Bev(PΣ) ⊕ Bod(PΣ). The first and third iso-

morphism depend on the choice of splittings of the tautological exact sequences
0 → Zi(PΣ) → P iΣ → Bi+1(PΣ) → 0 and 0 → Bi(PΣ) → Zi(PΣ) → Hi(PΣ) → 0,
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but it can be shown that χold(P, t−1) is independent of all such choices. For a gen-
eral complex P ∈ Dperf(Λ) one first chooses a quasi-isomorphism of complexes of
Λ-modules U ∼−→ P with U ∈ Cb(PMod(Λ)) and then applies the above construction
to U and the induced isomorphism Hev(UΣ) → Hod(UΣ).

Remark 6.1. The situation considered in [3] is as follows. Let R be a Dedekind
domain of characteristic 0 with field of fractions F and E an extension field of F .
Let A be a finite dimensional semisimple F -algebra and A an R-order in A. Then
Λ = A and Σ = E⊗F A satisfies the assumptions considered above. If P ∈ Dperf(A)
and t : Hev(E ⊗R P ) → Hod(E ⊗R P ) is a trivialisation, then the refined Euler
characteristic denoted by χA(P, t−1) ∈ K0(A, E ⊗F A) in [3] is the element we
denoted by χold(P, t−1).

Theorem 6.2. If P is an object of Dperf(Λ) and t : Hev(PΣ)
∼=−→ Hod(PΣ) a

trivialisation, then

−χold(P, t−1) = χΛ,Σ(P, t) + δ1Λ,Σ((Bod(PΣ),−id))

in K0(Λ,Σ).

Proof. By Lemma 6.3 below, the term δ1Λ,Σ((Bod(PΣ),−id)) does not change if we
replace P by a quasi-isomorphic complex. Without loss of generality we can therefore
assume that P ∈ Cb(PMod(Λ)). One has −χold(P, t−1) = (P ev, g−1, P od) and by
Lemma 5.1 and the identification [P ] πP−−→ [P ev[0]]⊗ [P od[1]] → [P ev]⊗ [P od]−1 this
element is represented by the isomorphism class of

([P ], µP od
Σ [0] ◦ ([g−1]⊗ id) ◦ πPΣ)

in V(Λ,Σ). On the other hand χΛ,Σ(P, t) is represented by the isomorphism class
of ([P ], λ) in V(Λ,Σ), where λ : [PΣ] → 1V(Σ) is the map from Definition 5.5. We
will show that

λ = ε([BodPΣ]) ◦ µP od
Σ [0] ◦ ([g−1]⊗ id) ◦ πPΣ (19)

which then immediately implies the claimed equality in K0(Λ,Σ).

To simplify the notation we omit the subscript Σ for the rest of this proof. Note
that since one has λ = µ ◦ ([t] ⊗ id) ◦ π ◦ β1 ◦ α1 in the notation of the diagram
below, the commutativity of the outer square of that diagram will imply the required
equation (19).
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[P ]
α1 //

π
²²

[BP ]⊗ [HP ]⊗ [BP [1]]
β1 //

π⊗π⊗π
²²

[HP ]

π
²²

[P ev[0]]

⊗[P od[1]]

α2 //

[g−1]⊗id

²²

[BevP [0]]⊗[HevP [0]]⊗[BodP [0]]

⊗[BodP [1]]⊗[HodP [1]]⊗[BevP [1]]

ε([BodP ])◦β2 //

id⊗[t]⊗id

⊗id⊗id⊗id²²

[HevP [0]]

⊗[HodP [1]]

[t]⊗id

²²
[P od[0]]

⊗[P od[1]]

α3 //

µ

²²

[BevP [0]]⊗[HodP [0]]⊗[BodP [0]]

⊗[BodP [1]]⊗[HodP [1]]⊗[BevP [1]]

ε([BodP ])◦β3 //

µ⊗µ⊗µ
²²

[HodP [0]]

⊗[HodP [1]]

µ

²²
1V(Σ) // 1V(Σ) ⊗ 1V(Σ) ⊗ 1V(Σ)

ε([BodP ]) // 1V(Σ).

The vertical maps in this diagram are as indicated. The map α1 is induced by the
filtration 0 ⊆ BP ⊆ ZP ⊆ P with quotients BP , HP and BP [1], and the maps
α2 and α3 are induced by the filtration 0 ⊆ BevP ⊆ ZevP ⊆ P ev with quotients
BevP , HevP and BodP , and the filtration 0 ⊆ BodP ⊆ ZodP ⊆ P od with quotients
BodP , HodP and BevP . The commutativity of all squares on the left follows from
the compatibility of π and µ with respect to filtrations and from the definition of
g. The map β1 is obtained by applying µBP and the maps β2 and β3 are obtained
by applying µBevP [0] and µBodP [0]. The commutativity of the upper right hand
square is Lemma 4.5. The other two squares on the right hand side are obviously
commutative.

When applying Theorem 6.2 it is useful to note that δ1Λ,Σ((Bod(PΣ),−id)) can
be expressed purely in terms of the cohomology of PΣ as follows.

Lemma 6.3. One has

δ1Λ,Σ((Bod(PΣ),−id)) = δ1Λ,Σ

((⊕
i≡1,2 mod 4

Hi(PΣ),−id
))

= δ1Λ,Σ

((⊕
i≡0,3 mod 4

Hi(PΣ),−id
))

.

Proof. Using the tautological exact sequences 0 → ZiPΣ → P iΣ → Bi+1PΣ → 0
and 0 → BiPΣ → ZiPΣ → HiPΣ → 0 and the observation that δ1Λ,Σ((P iΣ,−id)) =
0 ∈ K0(Λ,Σ), one finds that

δ1Λ,Σ((BiPΣ,−id)) + δ1Λ,Σ((Bi+2PΣ,−id))

= δ1Λ,Σ((HiPΣ,−id)) + δ1Λ,Σ((Hi+1PΣ,−id)).

The two equalities in the lemma follow by adding over all i ≡ 1 mod 4 and all
i ≡ 3 mod 4 respectively.

Remark 6.4. In arithmetic applications one often deals with complexes that are
acyclic outside two consecutive degrees. With this in mind, we note that Lemma
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6.3 implies that if PΣ is acyclic outside degrees 0 and 1, then

δ1Λ,Σ((BodPΣ,−id)) = δ1Λ,Σ((H0PΣ,−id)) = δ1Λ,Σ((H1PΣ,−id)),

whilst if PΣ is acyclic outside degrees 1 and 2, then Lemma 6.3 implies that

δ1Λ,Σ((BodPΣ,−id)) = 0.

Remark 6.5. The result of Theorem 6.2 implies that the final sentence of [4, Remark
4] is incorrect as stated. Specifically, whilst it is clear that the sentence in question
is correct if one replaces the term ‘χA(Y, ψ−1)’ by (in our notation) the inverse of
the element χA,AF

(Y, ψ), Theorem 6.2 shows that these terms do not in general
coincide. For a similar reason, the equality of [3, (3.1)] is valid in general only if the
morphism ‘τTriv’ is replaced by ‘εC· · τTriv’ where εC· ∈ A× is equal to the product
of the determinants (over A) of the action of −id on certain cohomology modules
Hi(C ·) (but to be more specific in this regard one would need to be precise about
certain sign conventions used in [3]). This change to [3, (3.1)] in turn necessitates
a corresponding change in the statement of [3, Theorem 3.1]. The second named
author would like to apologise to the reader for these errors.

We finish this paper with a corollary of Theorem 5.7 which gives a more explicit
version of the additivity criterion under the assumption that Σ is semisimple. We
recall that in this case each automorphism α of a finitely generated Σ-module gives
rise to a ‘reduced norm’ element nrΣ(α) in the multiplicative group ζ(Σ)× of the
centre of Σ and that the association α 7→ nrΣ(α) induces a well-defined group
homomorphism K1(Σ) → ζ(Σ)×.

Corollary 6.6. Assume that Σ is semisimple and that the homomorphism K1(Σ) →
ζ(Σ)× induced by the reduced norm nrΣ is injective. Let P a−→ Q

b−→ R
c−→ P [1] and

tP , tQ, tR be as in Theorem 5.7. Let

sev : HevQΣ ⊕ ker(HevaΣ)⊕ ker(HodaΣ) −→ HevPΣ ⊕HevRΣ,

sod : HodQΣ ⊕ ker(HevaΣ)⊕ ker(HodaΣ) −→ HodPΣ ⊕HodRΣ

be isomorphisms induced by any choice of splittings of the exact sequences (16) and
(17) respectively. If in ζ(Σ)× one has

nrΣ
(
(t−1
Q ⊕ id⊕ (−id)) ◦ (sod)−1 ◦ (tP ⊕ tR) ◦ sev) = 1,

then in K0(Λ,Σ) one has

χΛ,Σ(Q, tQ) = χΛ,Σ(P, tP ) + χΛ,Σ(R, tR).

Proof. For brevity we set α = (t−1
Q ⊕ id ⊕ (−id)) ◦ (sod)−1 ◦ (tP ⊕ tR) ◦ sev and

W = HevQΣ ⊕ ker(HevaΣ)⊕ ker(HodaΣ). The assumptions of Corollary 6.6 imply
that [α] = id[W ] in AutV(Σ)([W ]) because nrΣ(α) is the image of [α] under the
composite homomorphism AutV(Σ)([W ]) ∼= π1(V(Σ)) ∼= K1(Σ) → ζ(Σ)×, where
the first two maps are the canonical isomorphisms and the last arrow denotes the
homomorphism induced by nrΣ. But [α] = id[W ] is equivalent to the commutativity
of diagram (15) and so the claimed result follows directly from Theorem 5.7.
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The reduced norm map K1(Σ) → ζ(Σ)× can fail to be injective even in natural
arithmetic contexts (for example, it is known to have non-trivial kernel if Σ is
the total quotient ring of the Iwasawa algebra of a semidirect product of the form
ZpoZp). However, if E is a finite extension of either Q or Qp for any prime p, then
the map is always injective in the setting of Remark 6.1 (cf. [5, (45.3)]). In addition,
the criterion of Corollary 6.6 is straightforward to check in the case HcΣ = 0 (so
that ker(HevaΣ) = ker(HodaΣ) = 0). In particular, in this way one can recover the
result of [3, Theorem 2.8] as an easy special case of Corollary 6.6.
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[6] P. Deligne, Le déterminant de la cohomologie, in: Current trends in arith-
metical algebraic geometry (Arcata, CA, 1985), pp. 93–177, Contemp. Math.
67, Amer. Math. Soc., Providence, 1987.

[7] T. Fukaya, K. Kato, A formulation of conjectures on p-adic zeta functions in
non-commutative Iwasawa theory, to appear in Proc. St. Petersburg Math.
Soc. 11 (2005).

[8] F. Knudsen, Determinant functors on exact categories and their extensions
to categories of bounded complexes, Michigan Math. J. 50 (2002), 407–444.

[9] F. Knudsen, D. Mumford, The projectivity of the moduli space of stable
curves, I: preliminaries on “det” and “Div”, Math. Scand. 39 (1976), 19–
55.

[10] D. Quillen, Higher algebraic K-theory: I, in: Algebraic K-theory, I: Higher
K-theories (Seattle, Wash., 1972), pp. 85–147, Lecture Notes in Math. 341,
Springer, Berlin, 1973.



Homology, Homotopy and Applications, vol. 7(3), 2005 36

[11] N. Saavedra Rivano, Catégories Tannakiennes, Lecture Notes in Math. 265,
Springer, Berlin, 1972.

[12] R. G. Swan, Algebraic K-theory, Lecture Notes in Math. 76, Springer,
Berlin, 1968.

This article is available at http://intlpress.com/HHA/v7/n3/a2/

Manuel Breuning manuel.breuning@maths.nottingham.ac.uk

School of Mathematical Sciences
University of Nottingham
University Park
Nottingham NG7 2RD
United Kingdom

David Burns david.burns@kcl.ac.uk

Department of Mathematics
King’s College London
Strand
London WC2R 2LS
United Kingdom


