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The Teichmüller space of once-punctured tori can be realized as

the upper half-plane IH, or via the Maskit embedding as a proper

subset of IH. We construct and approximate the explicit biholo-

morphic map from Maskit’s embedding to IH. This map involves

the integration of an abelian differential constructed using an

infinite sum over the elements of a Kleinian group. We approxi-

mate this sum and thereby find the locations of the square torus

and the hexagonal torus in Maskit’s embedding, and we show

that the biholomorphism does not send vertical pleating rays in

Maskit’s embedding to vertical lines in IH.

1. INTRODUCTIONMaskit initiated an investigation of the Teichm�ullerspace of Riemann surfaces using explicit \scissors-and-glue" constructions of Riemann surfaces of agiven type by means of his powerful generalizationsof Klein's combination theorem. This work has beencontinued by Kra in recent papers, where he visu-alizes the process as \plumbing" Riemann surfacestogether. These coordinates are interesting evenin the one-dimensional cases of a once-puncturedtorus or a four-times punctured sphere. Both ofthese surfaces have Teichm�uller spaces which are bi-holomorphically equivalent to the upper half-planeH , which is the Teichm�uller space of the ordinarycompact torus. The mapping from the Teichm�ullerspace T (1; 1) of once-punctured tori to H is espe-cially simple, as it amounts to \�lling in" the punc-ture in a standard way to obtain a compact torus.Nonetheless, the precise embedding of Teichm�ullerspace according to Maskit's recipe has turned outto be a domain in H with a very unusual fractal-likeboundary. A numerical plot (see Figure 1) of thisboundary was �rst shown in [Wright n.d.]; it andother similar \cuspy curves" have appeared sincein several places, including [Keen and Series 1993;
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0 1 2

2

1:5
FIGURE 2. Pleating rays in M1;1.group element Wp=q 2 G� which becomes parabolicat the cusp such that the trace of Wp=q equals 2at the cusp, and the trace is real and greater than2 on a ray contained in M1;1. Keen and Seriesshowed that there is a unique branch of the locusf� 2 C : Trace(Wp=q) > 2g which is asymptotic tothe line Re� = 2p=q as �!1. This branch is thep=q-pleating ray.It might be reasonable to guess that the rationalpleating rays in M1;1 are sent to vertical lines underthe biholomorphism  , but our numerical approxi-mations for  show that this is not the case.

2. THE MASKIT-KRA EMBEDDINGS OF TEICHMÜLLER
SPACELet T (g; n) denote the Teichm�uller space of markedRiemann surfaces of genus g with n punctures. (ARiemann surface is marked by specifying a particu-lar set of generators for its fundamental group.) Theembedding of T (g; n) with which we are concerned�rst appeared in [Maskit 1974], and is sometimescalled the Maskit embedding:

Theorem 2.1. Let S be a marked Riemann surface oftype (g; n), 3g � 3 + n > 0. Then S can be real-ized as �(G)=G, where G is a terminal b-group withinvariant component �(G) and G is generated bytransformations which represent the elements of thefundamental group of S speci�ed by the marking .The group G depends upon 3g � 3 + n complex pa-rameters in the upper half-plane H . Thus, T (g; n)is embedded in H 3g�3+n.Kra [1988; 1990] showed that for 3g � 3 + n > 1,the group G can be algebraically constructed from

simpler groups via amalgamated free products andHNN extensions using Maskit's First and SecondCombination Theorems. For a detailed descriptionof Maskit's theorems, see [Maskit 1987].In the following construction of T (1; 1), we usethe notation of [Wright n.d.], where a more detaileddescription of T (1; 1) is presented.Let �0 denote the Kleinian group generated by theparabolic transformations S1 and S2, where S1(z) =z + 2 and S2(z) = z=(2z+1) (see Figure 3). Let H Ldenote the lower half-plane. Then the ordinary set
(�0) is H [ H L, and the quotient space 
(�0)=�0is the union of two triply-punctured spheres. Toconstruct a surface of type (1,1) (that is, a once-punctured torus), cut o� two punctures from H =�0along simple closed curves and glue the simple closedcurves together. To achieve this algebraically wewant to �nd a transformation T which conjugates S2to S1. The assumption TS2T�1 = S1 implies thatT (z) = T�(z) = � + 1=z for some complex param-eter �. In order for the surface H L=�0 to remainunchanged, it is necessary to consider only thosevalues of � for which Im� > 0. Now let G� de-note the HNN extension of �0 by T� (see Figure 3again). The group G� is generated by S1 and T�.The Teichm�uller space T (1; 1) is embedded in H asthe set of all � 2 H for which G� is a terminalb-group and �(G�)=G� is a once-punctured torus;the marking on �(G�)=G� is the distinguished setof generators of �1(�(G�)=G�) represented by theset of group elements fS1; T�g. Let M1;1 denote theembedding of T (1; 1) in H . Wright [n.d.] has shownthat fz : Im z > 2g � M1;1 � fz : Im z > 1g; and� 2 M1;1 if and only if � + 2 2 M1;1; and � 2 M1;1if and only if ��� 2M1;1.
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S1
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�1 0 1 �1 0 1
i
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FIGURE 3. Left: The action in the group �0 = hS1; S2i. Right: The action in the group G�, the HNN extensionof �0 by T� (where Im� > 2).For � 2 M1;1, every parabolic element in G� isconjugate to a power of S1, S2, or S1T�S�11 T�1� =S1S�12 . The puncture on �(G�)=G� is the projec-tion of the �xed point (z = 1) of S1S�12 ; those punc-tures corresponding to S1 and S2 were cut o� by thetransformation T�.We collect in a lemma certain facts about the in-variant component �(G�) that will be useful later.
Lemma 2.2. Let � 2M1;1.(1) �(G�) is contained in the horizontal strip fz 2H : Im z � Im�g.(2) �(G�) is symmetric about the point �=2.(3) If Im� > 2, the horizontal line Im z = Im�=2and the line segment from i to ��i are containedin �(G�).
Proof. Part (1) follows from the fact that T� takesthe lower half-plane onto fz 2 H : Im z > Im�g.To prove part (2), de�ne R�(z) = � � z. ThenR�S1R�1� = S�11 and R�T�R�1� = T�1� , so we haveR�G�R�1� = G� and R�(�(G�)) = �(G�).Maskit's Second Combination Theorem [1987] canbe used to show that if Im� > 2 then the shadedregion in Figure 3 is a fundamental domain for G�.Part (3) of the lemma follows easily. �
3. DIFFERENTIALS, POINCARÉ SERIES, AND THE

BIHOLOMORPHISMLet � be a Kleinian group with an invariant compo-nent �(�) such that �(�)=� is a Riemann surfaceof type (g; n). Our immediate goals are to de�ne

an automorphic form for � and to describe howto \�ll in" a puncture of �(�)=�; we will followthe arguments in [Lehner 1964]. Suppose F (z) is afunction which is meromorphic in �(�), and sup-pose there is some �xed nonnegative integer q suchthat F ((z))0(z)q = F (z) for all  2 �. If n > 0,there is a parabolic element of � with a �xed point pthat projects to a puncture of �(�)=�. Such a �xedpoint is called a parabolic vertex. The subgroup ofparabolic elements of � which �x p is generated bya single element P 2 � since p projects to a punc-ture. If p 6=1, then since P is parabolic, there is aconstant c such that1P (z)� p = 1z � p + c
for all z. Thus, � 1P (z)�p�0 = � 1z�p�0; so

P 0(z) = �P (z)� pz � p �2:Therefore,(P (z)� p)2qF (P (z)) = (P (z)� p)2q F (z)P 0(z)q= (z � p)2qF (z);and so the function (z� p)2qF (z) is invariant underthe group hP i.There is a circular discD contained in �(�) whichis precisely invariant under P so thatD=hP i is natu-rally embedded in �(�)=� (see [Matsuzaki and Tani-guchi 1998, p. 48], for example); D is called a cusped
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region for the parabolic vertex p of P . The mapz 7! t = exp 2�ic(z � p)is a conformal map from D onto a punctured discaround the origin �� f0g. Furthermore,exp 2�ic(z � p) = exp 2�ic(w � p)if and only if z = P n(w) for some integer n. Hencethis map induces a conformal homeomorphism � :D=hP i ! � � f0g. If we de�ne �(P0) = 0, thenthe surface �(�)=� with the puncture P0 \�lled in"is the Riemann surface �(�)=� along with anotherpoint P0 and a coordinate chart (D=hP i[P0; �). Welet �(�)=� denote the compact surface obtained by�lling in all the punctures.Since (z � p)2qF (z) is invariant under hP i andmeromorphic in �(�), there is a function g(t), mero-morphic in � � f0g, so that g(t) = (z � p)2qF (z).Then F is meromorphic (holomorphic) at p if g ismeromorphic (holomorphic) at the origin.If F (z) is meromorphic on �(�) and on the setof parabolic vertices of �, and F ((z))0(z)q = F (z)for every  2 �, then F is an automorphic form ofweight �2q for �, or an automorphic q-form for �.Likewise, F is a holomorphic automorphic q-formfor � if it is holomorphic on �(�) and on the set ofparabolic vertices of �, and F ((z))0(z)q = F (z)for all  2 �.A holomorphic automorphic q-form F for � is acusp form of weight �2q for � if whenever p is aparabolic vertex for the parabolic element P 2 �,and fzng is a sequence of points in a cusped regionfor p with zn ! p, then F (zn) ! 0. This is equiv-alent (see [Kra 1972], for example) to the conditionthat Z Z
! �2�q(z)jF (z)j dx dy <1;

where ! is any fundamental domain for the actionof � on �(�) and where �(z) is the Poincar�e metricon �(�).Given a Riemann surface S, a (holomorphic) q-di�erential � on S is an assignment of a (holomor-phic) function f to each local coordinate z on S suchthat f(z)(dz)q is invariant under change of local co-ordinates. A 1-di�erential is called an abelian di�er-ential ; a 2-di�erential is called a quadratic di�eren-

tial. A (holomorphic) automorphic form of weight�2q for � will project to a (holomorphic) q-di�er-ential on �(�)=�.The following lemmas are well-known. See, forexample, [Lehner 1964; Kra 1972].
Lemma 3.1. If F (z) is a cusp form of weight �2q for�, then the corresponding q-di�erential on �(�)=�has a pole of order � q � 1 at each puncture.
Lemma 3.2. The sum of the residues of an abeliandi�erential over all points on a compact Riemannsurface is zero.
Proposition 3.3. If F (z) 6= 0 is a cusp form of weight�4 for G�, then F (z) 6= 0 for any z 2 �(G�).
Proof. The cusp form F projects to a quadratic di�er-ential f on �(G�)=G�, holomorphic on �(G�)=G�.Furthermore, by Lemma 3.1, f has at most a simplepole at the puncture P0. Let g 6= 0 denote a holo-morphic abelian di�erential on �(G�)=G�. By usingthe fact that the complex dimension of the space ofholomorphic abelian di�erentials on a torus is 1 (see[Farkas and Kra 1991, Proposition III.5.2], for exam-ple), we can see that g does not take the value 0 on�(G�)=G�. Thus, f=g is a meromorphic abelian dif-ferential on �(G�)=G�, holomorphic on �(G�)=G�and having at most a simple pole at P0. By Lemma3.2, f=g must be a holomorphic abelian di�erential.Therefore, f=g is nonzero on �(G�)=G�, and so Fis nonzero on �(G�). �The following lemma can be found in [Kra 1972] andin many analysis textbooks.
Lemma 3.4. Suppose 
 is an open set in C , andffn(z)g1n=1 is a sequence of holomorphic functionson 
. If RR 
P1n=1 jfn(z)j dx dy is �nite,P1n=1 fn(z)converges absolutely uniformly on all compact sub-sets of 
.Let hS1inG� denote any set consisting of exactly oneelement from each right coset of hS1i in G�. Twocosets hS1ig1 and hS1ig2 are the same if and onlyif g2 = Sn1 g1 for some integer n. Since (S1g)0(z) =g0(z) for all g 2 G�, g01(z) = g02(z) for any two el-ements g1; g2 in the same right coset. Hence therelative Poincar�e seriesPq(�; z) = Pq(z) = Xg2hS1inG�g0(z)q
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is a well-de�ned series for any integer q.
Proposition 3.5. The series P2(�; z) converges abso-lutely uniformly on compact subsets of �(G�) to acusp form of weight -4 for G�.
Proof. Let V be the vertical strip fz : 0 < Re z � 2g,and let ! be any fundamental domain for the actionof G� on �(G�). For each gj 2 hS1inG�, partition! into sets !j;k such that for each k, there is a cosetrepresentative gj;k which represents the same rightcoset as gj and which maps !j;k into V . Then thesets gj;k(!j;k) are mutually disjoint, andZ Z
!
���� Xgj2hS1inG�g0j(z)2

���� dx dy
� Z Z! Xgj2hS1inG� jg0j(z)2j dx dy= Xgj2hS1inG�

Z Z
! jg0j(z)2j dx dy

= Xgj2hS1inG�Xk
Z Z
!j;k jg0j;k(z)2j dx dy= Xgj2hS1inG�Xk
Z Z

gj;k(!j;k) dx dy= Z Z
�(G�)\V dx dy <1:

By Lemma 3.4, the series P2(�; z) converges abso-lutely uniformly on compact subsets of !. Since !was an arbitrary fundamental domain, this seriesconverges absolutely uniformly (to a holomorphicfunction) on compact subsets of �(G�).To show that P2(z) is an automorphic 2-form forG�, note that if  2 G�, thenP2((z))0(z)2 = Xg2hS1inG�((g � )0(z))2 = P2(z):
Since RR ! jP2(z)j dx dy < 1 for any fundamentaldomain for the action of G� on �(G�), P2(z) is acusp form of weight �4 for G�. �Though Proposition 3.5 guarantees the convergenceof the series P2(�; z), it does not guarantee that theseries converges to a function which is not identicallyzero on �(G�). The fact that P2(�; z) is nontrivialcan be proven using [Kra 1984a, Proposition 5.15],where Kra uses Eichler cohomology; but to proceed

in that direction now would take us too far fromour path. In Section 4 we develop a method for ap-proximating P2(�; z). Our theoretical error boundstogether with our computer calculations can be usedto show that for given values of � and z, P2(�; z) isbounded away from 0. Proposition 3.3 would thenimply that P2(�; z) is not identically zero on �(G�).Since P2(�; z) never takes the value 0 on �(G�), ithas an analytic square root pP2(�; z) there, whichis a cusp form of weight �2 for G�.Let � denote the abelian di�erential on �(G�)=G�which is the projection of pP2(�; z) dz. Then f�gis a basis for the space of holomorphic abelian dif-ferentials on �(G�)=G�. (This space has complexdimension 1 by the Riemann{Roch Theorem; see[Farkas and Kra 1991, Proposition III.5.2].) Choosea base point Q0 on �(G�)=G�, and letfa(�); b(�)gbe the canonical basis for �1(�(G�)=G�; Q0), so thatthe loops a(�) and b(�) have exactly one point incommon and the angle from the positive directionon the a(�) loop to the positive direction on the b(�)loop at the point of intersection is positive and lessthan � radians. (Then if Q is any point in �(G�),then any curve in �(G�) fromQ to S1(Q) projects toa loop on �(G�)=G� in the homotopy class of a(�),and any curve in �(G�) from Q to T�(Q) projects toa loop on �(G�)=G� in the homotopy class of b(�).)Now de�ne  :M1;1 ! H by
 (�) = � = Rb(�) �Ra(�) � :It follows from the so-called \bilinear relations ofRiemann" that the imaginary part of  (�) is posi-tive. See, for example, [Swinnerton-Dyer 1974, p. 11;Farkas and Kra 1991; Kra 1972; Springer 1957].It is well-known (see [Farkas and Kra 1991] or[Swinnerton-Dyer 1974], for example) that the mapfrom a compact torus to its Jacobian variety is aconformal homeomorphism. This map �1 sends thecompact torus �(G�)=G� to the torus C =L� , whereL� denotes the lattice over Z generated by 1 and � ,and where � = Rb(�) ��Ra(�) �. Given a choice of basepoint Q0 2 �(G�)=G�, the map �1 sends a point Pon �(G�)=G� to the point ���R PQ0 ��Ra(�) ��, where�� : C ! C =L� is the natural projection.



Matthews: Approximation of a Map Between One-Dimensional Teichmüller Spaces 253

Let �1 denote the image of the \�lled in" punc-ture P0 of �(G�)=G� under the map �1, and let L��denote the lattice fw + �1 : w 2 L�g. Then themap � : �(G�)=G� ! (C � L��)=L� , which is therestriction of �1 to the punctured surface, is also aconformal homeomorphism. Furthermore, it clearlypreserves the marking.Now choose a base point Q 2 �(G�) and de�ne' : �(G�)! C � L�� by'(z) = R zQ �R Q+2Q � :Let �� : �(G�) ! �(G�)=G� be the natural pro-jection. Then � � �� = �� � ', so ' must mapany fundamental domain for the action of G� on�(G�) onto a fundamental domain in C � L�� . Itfollows from the equations '(S1(z)) = '(z) + 1 and'(T�(z)) = '(z) + � that ' is surjective, and it iseasy to see that ' is a covering map.We will now gather speci�c facts concerning theimages of certain subsets of M1;1 under the map  :M1;1 ! H . These facts depend on the symmetriesof the Poincar�e series P2(�; z). For example, thetransformation R�(z) = �� z conjugates S1 to S�11and T� to T�1� , and so for � 2 �(G�),P2(z) = Xg2hS1inG�(R� � g �R�1� )0(z)2
= Xg2hS1inG�g0(�� z)2 = P2(�� z):

Another symmetry is this:
Lemma 3.6. P2(�; z) = P2(���;��z).
Proof. De�ne J(z) = ��z. Then J�1 = J , andJT�J = T���, and JS1J = S�11 . Hence, as g variesover all the right coset representatives of hS1i in G�,JgJ varies over all the right coset representatives ofhS1i in G���.It follows from a simple calculation that for anyM�obius transformation g, (JgJ)0(z) = �(Jg0J)(z);and thus,�g0(z)�2 = �Jg0J(��z)�2 = �(JgJ)0(��z)�2:Applying this equality to our series P2(�; z) yieldsthe result. �Consider � = it, with t > 2. Let L1 denote thehorizontal line segment x+ it=2, where �1 � x � 1;

and let L2 denote the vertical line segment iy, where1 � y � t � 1. Then by Lemma 2.2, L1 and L2are contained in �(G�). By Lemma 3.6 and ournote that P2(z) = P2(� � z), P2(z) = P2(��z) =P2(it + �z): Hence, P2(x+ it=2) = P2(x + it=2) andP2(z) is real on L1. Similarly, if 1 � y � t � 1then P2(iy) = P2(iy) and P2(z) is real on L2. Theline segments L1 and L2 project to the loops a(�)and b(�), respectively, on the surface �(G�)=G�; itfollows that  :M1;1 ! H takes the imaginary ray inM1;1 to the imaginary ray in H . We state this belowas Corollary 3.8, and it is an immediate consequenceof the a more general result:
Proposition 3.7.  (���) = � (�):
Proof. Let J(z) = ��z. Then JG�J�1 = G���, and�(G���) = J(�(G�)). Choose a base point Q in�(G���). Then J(Q) = �Q is a point in �(G�) and

 (���) = R T���(Q)Q pP2(���; z) dzR Q+2Q pP2(���; z) dz
= R �T���(Q)�Q pP2(���;��z) d(��z)R �Q�2�Q pP2(���;��z) d(��z) :

Now using the fact that �T���(Q) = T�(�Q) andapplying Lemma 3.6, we see that
 (���) = R T�(�Q)�Q qP2(�; z) d(�z)R �Q�2�Q qP2(�; z) d(�z) = � (�): �

Corollary 3.8. The map  :M1;1 ! H takes the imag-inary ray in M1;1 to the imaginary ray in H .
Proposition 3.9. The map  : M1;1 ! H satis�es theequation  (�+ 2n) =  (�) + n, for any integer n.
Proof. Since T�+2n = Sn1 T�, we have G�+2n = G� andP2(�; z) = P2(�+2n; z) for any � 2M1;1. Choose abase point Q 2 �(G�). Then

 (�+ 2n) = R Sn1 T�(Q)Q pP2(�+ 2n; z) dzR S1(Q)Q pP2(�+ 2n; z) dz :
Write � = pP2(�; z) dz, and separate the integralin the numerator into parts:Z Sn1 T�(Q)Q � =Z T�(Q)Q � + nXj=1 Z Sj1T�(Q)Sj�11 T�(Q) �:
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The equality  (�+ 2n) =  (�) + n follows immedi-ately. �
Corollary 3.10.  takes the ray Re� = 1 in M1;1 tothe vertical ray Re � = 12 in H .
Proof. Propositions 3.9 and 3.7 imply that (it+1) = � (it�1) = � (it�1+2)�1= � (it+1)+1:Thus, Re (it+1) = 12 . �
4. THE ERROR IN APPROXIMATING THE SERIESSince the biholomorphism  : M1;1 ! H involvesthe integral of the abelian di�erential pP2(�; z) dzon the once-punctured torus, we would like to nu-merically approximate the relative Poincar�e seriesP2(�; z) = Xg2hS1inG� g0(z)2for points z 2 �(G�). In order to do this we con-sider the tree structure of the group G�, which is afree group on two generators S and T . Any groupelement in G� is a word in the letters S, S�1, T andT�1, and appears as a vertex in the in�nite graphshown in Figure 4. There is an edge between twovertices if and only if the word corresponding to onevertex can be obtained by adding one letter to theend of the word corresponding to the other vertex.Since the group is free, there are no cycles andthe graph is a tree. Each vertex has degree 4 sincethere are 4 letters from which to choose.The tree structure of G� helps us visualize an or-der on the elements of G� we can use when evaluat-ing the Poincar�e series. We let the identity elementI be the �rst (smallest) element. The edges in thetree ending in the vertex I lead to 4 branches of thetree; the vertices in di�erent branches correspond towords that begin with di�erent letters (T , S, T�1,or S�1). Circling the vertex I in a counter-clockwisedirection, we de�neT < S < T�1 < S�1:We continue the inequalities in a counter-clockwisedirection in every branch of the tree. For two wordsg1 = l1l2 � � � ln and g2 = �1�2 � � � �m in the letters S,

S�1, T and T�1 (where lili+1 and �i�i+1 are non-trivial for all i), we say that g1 is a pre�x of g2, andwrite g1 v g2;if m � n and li = �i for 1 � i � n. We writeg1 < g2if g1 v g2 and g1 6= g2, or if there is a positive integerp such that li = �i for 1 � i � p, lp+1 6= �p+1, and:
(1) if lp = �p = T then lp+1 < �p+1, using the orderS�1 < T < S; or
(2) if lp = �p = S then lp+1 < �p+1, using the orderT < S < T�1; or
(3) if lp = �p = T�1 then lp+1 < �p+1, using the orderS < T�1 < S�1; or
(4) if lp = �p = S�1 then lp+1 < �p+1, using the orderT�1 < S�1 < T .The smallest 6 group elements, in order, will be I,T , TS�1, TS�1T�1, TS�1T�1S, and TS�1T�1ST .The word T 3S�1T�4 is smaller than T 3S�2T 4S�1because the two words agree in the �rst four lettersand any word beginning with T 3S�1T�1 is smallerthan any word beginning with T 3S�2.Our choice of ordering is similar to that obtainedthrough the preorder traversal of a binary tree. Wecould have chosen to order words based upon length(number of letters), but the length of a word g is nota good predictor for the size of jg0(z)2j.Since we need to �nd g0(z)2 only for g 2 hS1inG�,we simply cut o� the branches containing words be-ginning with S and S�1 from the tree.Now that we have an order in which to evaluatethe sum PhS1inG� g0(z)2, we need to �gure out howfar to traverse a branch before we stop and pro-ceed with the next branch. We start by consideringthe inverse image of the point at in�nity under aword g. Recall that the isometric circle of a M�obiustransformation g (which does not �x the point atin�nity) is the circle I(g) = fz : jg0(z)j = 1g. Thecenter of I(g) is the point g�1(1). The transforma-tion g takes the interior of I(g) onto the exterior ofI(g�1). The isometric circle of T� is the unit circle,and I(T�1� ) is the circle fz : jz � �j = 1g.
Proposition 4.1. Let g = g1g2 � � � gn 2 hS1inG�, g1 =T�1� , gigi+1 6= 1 for 1 � i � n � 1, and gi 2
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� � � ...S2 � � � � � � ...TS2 �� ...TS2T... �� ...TS2T 2 � � �
� � � ...ST�1... �� �� S � � � � � �TS � � � � � �TS2T 2S�1... � � �
� � �T�1 �� I T...

...T 2... �� ...T 3 � � �
� � �T�1S�1 � � � � � �S�1 � � � � � � ...T 3S�1T�1... ���� T 3S�1 � � �
� � �T�1S�2... � � � � � �S�2... � � � � � �T 3S�2... � � �

FIGURE 4. The tree structure of G�.fS1; S�11 ; T�; T�1� g for 2 � i � n. Suppose 0 �Re� � 2 and Im� > 2.(i) If gn = T�, then g�1(1) is inside I(T�).(ii) If gn = T�1� , then g�1(1) is inside I(T�1� ).(iii) If gn = S1, then g�1(1) is to the left of Re z =Re�=2.(iv) If gn = S�11 , then g�1(1) is to the right ofRe z = Re�=2.
Proof. We use induction on the length of the wordn. If n = 1, then g = T�1� and the proof is clear.Assume the proposition is true for all words of length� n; we want to show its truth for words g of lengthn+ 1. Write g = g1g2 � � � gn+1.First suppose gn+1 = S1. Then if gn = S1, g�1(1)is to the left of Re z = Re�=2 � 2 by the inductionhypothesis. If gn = T�, then g�1n � � � g�11 (1) is inI(T�), and so g�1(1) is to the left of Re z = �1.If gn = T�1� , then g�1n � � � g�11 (1) is in I(T�1� ), sog�1(1) is to the left of Re z = Re� � 1. SinceRe� � 2, Re�� 1 � Re�=2.Next suppose gn+1 = T�. Then if gn = T� also,then g�1n � � � g�11 (1) is inside I(T�) by hypothesis.

Since the isometric circles of T� and T�1� do notintersect (because Im� > 2), g�1(1) is inside I(T�).If gn = S1, we must consider the previous letteralso. If gn�1gn = S1S1, then g�1n � � � g�11 (1) is to theleft of Re z = Re�=2 � 2, which is outside I(T�1� ),and so g�1(1) is inside I(T�). If gn�1gn = T�S1,then g�1n�1 � � � g�11 (1) is inside I(T�), andg�1n � � � g�11 (1)is to the left of Re z = �1, and so g�1(1) is insideI(T�). If gn�1gn = T�1� S1, then g�1n�1 � � � g�11 (1) isinside I(T�1� ), and g�1n � � � g�11 (1) is outside I(T�1� ),so g�1(1) is inside I(T�).If gn = S�11 we must again consider the previousletter. If gn�1gn = S�11 S�11 , then g�1n � � � g�11 (1) isto the right of Re z = Re�=2 + 2. Since Re� � 2,we have Re�=2 + 2 � Re� + 1, so g�1n � � � g�11 (1)is outside I(T�1� ). Hence, g�1(1) is inside I(T�).If gn�1gn = T�S�11 , then g�1n�1 � � � g�11 (1) is insideI(T�), and g�1n � � � g�11 (1) is below the line Im z = 1;since Im� > 2, g�1n � � � g�11 (1) is outside I(T�1� ) andthus g�1(1) is inside I(T�). If gn�1gn = T�1� S�11 ,then g�1n�1 � � � g�11 (1) is inside I(T�1� ), g�1n � � � g�11 (1)is outside I(T�1� ), and g�1(1) is inside I(T�).
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The cases where gn+1 = S�11 and gn+1 = T�1� canbe proven using the symmetry of the transformationR�(z) = � � z, which �xes 1 and conjugates S�11to S1 and T�1� to T�. First note thatR�g�1(1) =R�g�1n+1 � � � g�11 R�(1) = gn+1 � � � g1(1):By the preceding arguments, if gn+1 = S�11 , thenR�g�1(1) is to the left of Re z = Re�=2. Thusg�1(1) is to the right of Re z = Re�=2. If gn+1 =T�1� , then R�g�1(1) is inside I(T�), so g�1(1) isinside I(T�1� ). �
Corollary 4.2. Under the hypotheses of Proposition4.1, if gn = T�, S1, or S�11 , then g�1(1) is outsideI(T�1� ); if gn = T�1� , S1, or S�11 , then g�1(1) isoutside I(T�).
Proof. Suppose gn = T�. By Proposition 4.1, g�1(1)is inside I(T�), which is disjoint from I(T�1� ). Bysimilar reasoning, if gn = T�1� , then g�1(1) is out-side I(T�).If gn = S1, we consider the previous letter. Ifgn�1gn = S1S1, then by Proposition 4.1, g�1(1) isto the left of Re z = Re�=2� 2. Since Re� � 2, wehave Re�=2 � 2 � �1, so g�1(1) is outside I(T�)and I(T�1� ). If gn�1gn = T�S1, then by Proposition4.1, g�1(1) is to the left of Re z = �1; so g�1(1) isoutside I(T�) and I(T�1� ). If gn�1gn = T�1� S1, theng�1(1) is above the horizontal line Im z = 1 and tothe left of the line Re z = Re� � 1; so g�1(1) isoutside both isometric circles.For the �nal case gn = S�11 we apply the transfor-mation R�(z) = � � z which conjugates S�11 to S1and T�1� to T� and which �xes1. Now R�g�1(1) =gn � � � g1(1), and by the preceding argument, this isoutside I(T�) and I(T�1� ). Hence, g�1(1) is outsideI(T�) and I(T�1� ) also. �Now consider the problem of �nding a bound on��PhS1inG� g0(z0)2��, where z0 2 �(G�). Let D(z0; r)denote a disk contained in some fundamental do-main for G� in �(G�) with center z0 and radiusr > 0. Then for any g 2 hS1inG�, g0(z)2 is holomor-phic in �(G�) and by the mean value property forholomorphic functions,

g0(z0)2 = 1�r2 Z ZD(z0;r) g0(z)2 dx dy:

Thus, ��g0(z0)2�� � 1�r2 Z ZD(z0;r) ��g0(z)2�� dx dy:The last integral equals the area of g(D(z0; r)) di-vided by �r2.Lemma 2.2 assures us that the invariant compo-nent �(G�) is contained in the horizontal strip fz 2H : Im z � Im�g; so each of the disks g(D(z0; r))is also contained in this strip. Since D(z0; r) is con-tained in a fundamental domain for G�, none of thedisks g(D(z0; r)) intersect. Hence, the sum of theareas of all the disks g(D(z0; r)) for g 2 hS1inG� isless than the area of the rectangle fz 2 H : Im z �Im�; 0 � Re z � 2g, which is 2 Im�. We haveproven the following result.
Proposition 4.3. Suppose that D(z0; r) is contained insome fundamental domain for G�. ThenXg2hS1inG� jg0(z0)2j < 2 Im��r2 :
Recall that the map  :M1;1 ! H is given by (�) = Rb(�) �Ra(�) � ;where fa(�); b(�)g is the canonical basis for the fun-damental group of �(G�)=G� with given base point.If Im� > 2, then the line segments from �=2� 1 toS1(�=2�1) = �=2+1 and from i to T�(i) = ��i arein �(G�) (by Lemma 2.2) and project to loops whichcomprise such a basis fa(�); b(�)g. To make com-putations easier, however, we need only use half ofeach of these line segments: using the symmetry ofP2(�; z) about the point z = �=2 given by P2(�; z) =P2(�; ��z), we can integrate pP2(�; z) dz over theline segments from �=2�1 to �=2 and from i to �=2.We can also use the equality  (� + 2) =  (�) + 1(Proposition 3.9) to restrict our attention to the case0 � Re� � 2.If Im� � 2, the line segments from �=2 � 1 to�=2 and from i to �=2 might not be contained in�(G�), so more care must be taken to constructcurves in �(G�) projecting to the loops a(�) andb(�). Furthermore, Corollary 4.2 does not hold forall such �. Since this corollary will play a crucialrole in our approximations of P2(�; z), we restrictour attention to the case where Im� > 2.
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Now let z0 be any point on the line segment from�=2�1 to �=2 or on the line segment from i to �=2.Choose a radius r so that the disk D(z0; r) satis�es:
(a) D(z0; r) is inside the vertical strip�z : � 32 +Re�=2 � Re z � 12 +Re�=2	;
(b) D(z0; r) is below the horizontal line given byIm z = Im(�)� 1;
(c) T�(D(z0; r)) is above the line Im z = 1;
(d) T�(D(z0; r)) is inside the vertical stripfz : �1 + Re� � Re z � 1 + Re�g;
(e) S1(D(z0; r)) and S�11 (D(z0; r)) are outside theisometric circle I(T�); and
(f) D(z0; r) is contained in some fundamental do-main for G� in �(G�).It is easy to construct a radius r which satis�es allof these conditions if z0 6= i. For z0 = i, the onlycondition which is nontrivial is (f). As the shadedregion R in Figure 3 is a fundamental domain forG�, this shaded region and its image under T�1� aresubsets of �(G�). By computing the region T�1� (R)it is not di�cult to �nd an r satisfying (f).
Proposition 4.4. Letg = g1g2 � � � gn;where gi 2 fS1; S�11 ; T�; T�1� g for all i, and wheregigi+1 6= 1 for 1 � i � n� 1. Suppose 0 � Re� � 2and Im� > 2, and that D(z0; r) satis�es conditions(a) through (f ) above. Then(i) if T�1� v g, then g(D(z0; r)) is contained in I(T�);and(ii) if T� v g and n � 2, then g(D(z0; r)) is con-tained in I(T�1� ).
Proof. We use induction on n. In the basis steps,either g = T�1� or n = 2 and g1 = T�. First letg = T�1� . The disk D(z0; r) is outside I(T�1� ) bycondition (b), so g takes D(z0; r) inside I(T�).Next let n = 2 and g1 = T�. Condition (c) impliesthat T�(D(z0; r)) is outside I(T�), and condition (e)states that S1(D(z0; r)) and S�11 (D(z0; r)) are out-side I(T�). Thus T� takes each of these disks insideI(T�1� ).Now assume the statement is true for all words oflength � n, and let g = g1g2 � � � gn+1. Let g1 = T�1� .

Then g = T�1� Sn1 , g = T�1� S�n1 , or there is someintegerm with �n < m < n such that T�1� Sm1 T�1� vg or T�1� Sm1 T� v g (with m 6= 0). If g = T�1� S�n1 ,then (i) follows from condition (b). If T�1� Sm1 T�1� vg then write g = T�1� Sm1 T�1� h (where possibly h isthe identity). Then by the induction hypothesis,T�1� h(D(z0; r)) � I(T�). Hence Sm1 T�1� h(D(z0; r))is below the line Im z = 1, which is in the exteriorof I(T�1� ), and so g(D(z0; r)) is in the interior ofI(T�). In the case where g = T�1� Sm1 T�, condition(d) implies that Sm1 T�(D(z0; r)) lies outside I(T�1� ),so that g(D(z0; r)) � I(T�). If T�1� Sm1 T� v g, m 6=0, and T�1� Sm1 T� 6= g, then write g = T�1� Sm1 T�h.By the induction hypothesis, T�h(D(z0; r)) is insideI(T�1� ); so Sm1 T�h(D(z0; r)) is outside I(T�1� ), andg(D(z0; r)) is inside I(T�).Finally consider the case g1 = T�. Then g =T�S�n1 , or there is some integer m with �n < m <n such that T�Sm1 T� v g or T�Sm1 T�1� v g (withm 6= 0). If g = T�S�n1 , then (ii) follows from con-dition (e). If g = T�Sm1 T�, condition (c) impliesSm1 T�(D(z0; r)) is outside I(T�), so g(D(z0; r)) isinside I(T�1� ). If T�Sm1 T� v g and T�Sm1 T� 6= g,then (ii) follows from the induction hypothesis. IfT�Sm1 T�1� v g then again (ii) follows from the in-duction hypothesis. �Once we have found a value of r satisfying condi-tions (a) through (f), we can bound PH jg0(z0)2j,for certain types of subsets H of hS1inG�, as fol-lows.First consider H = fg 2 hS1inG� : g1T�1� v gg,where g1 is �xed. For g 2 H , write g = g1T�1� h.By Proposition 4.4, T�1� h(D(z0; r)) lies inside I(T�).By Corollary 4.2, g�11 (1) lies outside I(T�); so g1takes the inside of I(T�) to the inside of g1(I(T�)).Thus, for all g 2 H , g(D(z0; r)) is inside g1(I(T�)).It follows from the mean value property for holo-morphic functions that PH jg0(z0)2j is less than thearea inside g1(I(T�)) divided by �r2.Next supposeH = fg 2 hS1inG� : g1T� v g and g1T� 6= ggwhere g1 is �xed. For g 2 H , write g = g1T�h.By Proposition 4.4, T�h(D(z0; r)) lies inside I(T�1� ).By Corollary 4.2, g�11 (1) lies outside I(T�1� ); so g1takes the inside of I(T�1� ) to the inside of g1(I(T�1� )).Thus, for all g 2 H , g(D(z0; r)) is inside g1(I(T�1� )).
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It follows from the mean value property for holo-morphic functions that PH jg0(z0)2j is less than thearea inside g1(I(T�1� )) divided by �r2.Now let H = fg 2 hS1inG� : g1S�11 S�11 v gg. Forg = g1S�11 S�11 h 2 H , the set S�11 S�11 h(D(z0; r)) isto the left of the line Re z = Re��3 by Proposition4.4 and conditions (a) and (d). By Proposition 4.1,g�11 (1) is inside I(T�), inside I(T�1� ), or to the rightof Re z = Re�=2; so g1 takes the setD1 = fz : Re z < Re�� 3gto the inside of g1(D1). Thus PH jg0(z0)2j is lessthan the area inside the disk g1(D1) divided by �r2.As a �nal case, consider H = fg 2 hS1inG� :g1S1S1S1 v gg. For g = g1S1S1S1h 2 H , the diskh(D(z0; r)) is to the right of the vertical line Re z =� 32 by Proposition 4.4 and conditions (a) and (d).Hence, the set S1S1S1h(D(z0; r)) is inside the halfspace D2 = fz : Re z > 92g:By Proposition 4.1, g�11 (1) is not inside D2; so g1takes D2 to the inside of the disk g1(D2). HencePH jg0(z0)2j is less than the area inside the diskg1(D2) divided by �r2.We summarize these results in the following the-orem. Let A(D) denote the area inside the disk D.
Theorem 4.5. Suppose 0 � Re� � 2 and Im� > 2,and let z0 be any point on the line segment from�=2 � 1 to �=2 or on the line segment from i to�=2. Suppose the disk D(z0; r) satis�es conditions(a) through (f ) above.(i) If H = fg 2 hS1inG� : g1T�1� v gg for some �xedg1, thenXg2H jg0(z0)2j < 1�r2A(g1(I(T�))):(ii) If H = fg 2 hS1inG� : g1T� v g and g1T� 6= ggfor some �xed g1, thenXg2H jg0(z0)2j < 1�r2A(g1(I(T�1� ))):
(iii) If H = fg 2 hS1inG� : g1S�11 S�11 v gg for some�xed g1, thenXg2H jg0(z0)2j < 1�r2A(g1(D1)):

(iv) If H = fg 2 hS1inG� : g1S1S1S1 v gg for some�xed g1, thenXg2H jg0(z0)2j < 1�r2A(g1(D2)):
This theorem gives us a method to approximatethe in�nite series P2(�; z0) and compute an errorbound on this approximation. We �rst �nd a valueof r so that the disk D(z0; r) satis�es conditions (a)through (f). Then pick a small positive value ". Nowstart adding the terms g0(z0)2 of the series using theorder established at the beginning of this section(I < T� < T�S�11 < T�S�11 T�1� < � � �). Wheneverwe arrive at a vertex of the form g1T�1� , we checkthe size of the disk g1(I(T�)). If the area of thisdisk is at least ", then we continue with the nextvertex in order. If the area is less than ", we trun-cate the in�nite branch fg 2 hS1inG� : g1T�1� v ggand start again with the �rst vertex following thisin�nite branch. Likewise, whenever we arrive at avertex of the form g1T�, g1S�11 S�11 or g1S1S1S1, wecompare the size of the disk g1(I(T�1� )), g1(D1), org1(D2), respectively, with ". Whenever the area ofthe disk is less than ", we truncate the appropri-ate in�nite branch from the tree and proceed withthe next vertex following the branch. The resultingapproximation to P2(�; z0) is the sumP2(�; z0; ") = Xg2H" g0(z0)2;whereH" is the subset of hS1inG� consisting of thoseg for which:
(1) if g1T�1� v g then the area inside g1(I(T�)) is atleast ";
(2) if g1T� v g and g1T� 6= g then the area insideg1(I(T�1� )) is at least ";
(3) if g1S�11 S�11 v g then the area inside g1(D1) is atleast "; and
(4) if g1S1S1S1 v g then the area inside g1(D2) is atleast ".Note that we have not actually proved that the se-ries P2(�; z0; ") is a �nite sum, but in our computerexperiment the series was always �nite. The familyof the subsets H listed in parts (i) through (iv) ofTheorem 4.5 is su�cient in the sense that for anyg0 2 hS1inG�, the in�nite branch fg 2 hS1inG� :g0 v gg is contained in the union of a �nite number
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of subsets from this family, where each g1 satis�esg0 v g1 and g0 6= g1. Hence, even though we haveno proof that the series P2(�; z0; ") is a �nite sum,one does not need to abandon hope of computingP2(�; z0; ") after �nitely many steps at any stage ofthe procedure.The error bound on the approximation is the sumof the bounds for PH jg0(z0)2j over all the in�nitebranches H of the forms given in Theorem 4.5 (i),(ii), (iii) and (iv) that are truncated when comput-ing the sum P2(�; z0; ").To illustrate exactly how this procedure works,we will �nd the sum P2(�; z0; ") for � = 1 + 3i,z0 = �=2 = 0:5 + 1:5i, and the relatively large value" = 1. It is easy to see that the disk D(z0; r) satis-�es conditions (a) through (f) for the radius r = 0:5.The error bound is initialized to 0, the sum is ini-tialized to 1+T 0�(z0)2, and g is initialized to T�S�11 .Then g0(z0)2 is added to the sum, and g becomesT�S�11 T�1� . Theorem 4.5 (i) is applied, since g endsin the letter T�1� . The area of the disk T�S�11 (I(T�))is computed and compared to ". Since this area isless than ", we do not traverse through any verticesin the in�nite branchfh 2 hS1inG� : T�S�11 T�1� v hg;but we add the bound1�r2A(T�S�11 (I(T�)))on PH jg0(z0)2j given by Theorem 4.5 (i) to the er-ror bound. Next g becomes the vertex T�S�11 S�11 .Theorem 4.5 (iii) is applied, and we truncate thein�nite branch fh 2 hS1inG� : T�S�11 S�11 v hg andadd the bound A(T�(D1))=(�r2) to the error bound.Then g becomes T�S�11 T�, and g0(z0)2 is added tothe sum. Theorem 4.5 (ii) is applied and we trun-cate the branchfh 2 hS1inG� : T�S�11 T� v h and T�S�11 T� 6= hg:Then g becomes T�T�, and we continue. In the end,16 vertices will contribute to the sum. These ver-tices are shown in Figure 5.To �ve decimal places the sum turns out to be0:98490+0:29108i, and the error bound is less than3:02162. Hence,P2(1+3i; 0:5+1:5i; 1) = 0:98490+0:29108i

(to �ve decimal places) and P2(1+3i; 0:5+1:5i) isapproximately this same value, with��P2(1+3i; 0:5+1:5i)�(0:98490+0:29108i)��<3:02162:Choosing smaller values for " yields the approxi-mations shown in Table 1." P2(1+3i; 0:5+1:5i; ") err. bnd. #terms100 0:98490 + 0:29108i 3.02162 1610�1 0:98104 + 0:28708i 1.75334 4610�2 0:98197 + 0:28414i 0.70464 17410�3 0:98284 + 0:28327i 0.31006 66210�4 0:98294 + 0:28381i 0.10732 310010�5 0:98297 + 0:28388i 0.04104 12 93410�6 0:98297 + 0:28391i 0.01590 52 13110�7 0:98298 + 0:28392i 0.00603 211 96610�8 0:98298 + 0:28392i 0.00231 842 03110�9 0:98298 + 0:28392i 0.00089 3 325 210
TABLE 1. Approximations of P2(1+3i; :5+1:5i). Thelast two columns give the error bound and the num-ber of terms in the sum.We do not have a good method of estimating theerror bound on the approximation of P2(�; z0) byP2(�; z0; ") in terms of ". It is only after we com-pute the sum P2(�; z0; ") when we are able to sayhow good the approximation is. Our computer ex-periments have consistently indicated that as " getssmaller, so does the error bound.T�1SS13 T�1SST14 TSS8 TSST9
T�1S11 T�1ST12 TS6 TST7
T�110 I 1 T 2 TT5

T�1S�115 T�1S�1T16 TS�13 TS�1T4
FIGURE 5. The 16 vertices used in the computationof P2(1+3i; :5+1:5i; 1). The integers below the ver-tices represent the order in which the vertices weretraversed.
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5. THE ERROR IN APPROXIMATING THE INTEGRAL OF
THE SQUARE ROOT OF THE SERIESWe decided to use the trapezoid rule to approxi-mate the integrals of the square root of the relativePoincar�e series. The error bound for the trapezoidrule depends on the second derivative, so we startby �nding a bound on the second derivative of thesquare root of the series.

Proposition 5.1. Suppose that z 2 �(G�) and thatk � d(g�1(1); z) for all g 2 hS1inG�. Let r beany positive number such that there is a fundamentaldomain for G� containing the disk of radius r aboutz. Then����� q Xg2hS1inG� g0(z)2
!00 �����< 16(Im�)2�2k2r4 ��P g0(z)2��3=2 + 20 Im��k2r2 ��P g0(z)2��1=2 :

Proof. After computing the second derivative usingg(z) = (az+b)=(cz+d), and letting the symbol P0denote the sum over all (az+b)=(cz+d) for whichc 6= 0, it is easy to see that�����qX g0(z)2�00����
� �P ��4c(cz+d)�5���24��P g0(z)2��3=2 + P��20c2(cz+d)�6��2��P g0(z)2��1=2= �P0��4(z+d=c)�1(cz+d)�4���24��P g0(z)2��3=2+ P0��20(z + d=c)�2(cz+d)�4��2��P g0(z)2��1=2� 4k2 �P0 jcz+dj�4�2jP g0(z)2j3=2 + 10k2 P0 jcz+dj�4��P g0(z)2��1=2< 4�2k2r4 (2 Im�)2��P g0(z)2��3=2 + 10 � 2 Im��k2r2��P g0(z)2��1=2= 16�2k2r4 (Im�)2��P g0(z)2��3=2 + 20 Im��k2r2��P g0(z)2��1=2 ;where we have used Proposition 4.3 to get the in-equality X0 1jcz+dj4 < 2 Im��r2 : �

To approximate the integral R ba f(x) dx, take a par-tition of [a; b] using points a = x1 < x2 < � � � <xn = b, where xj = a + (j�1)(b�a)=(n�1). LetTn(f) denote the approximation of R ba f(x) dx usingthe trapezoid rule with these points; that is,Tn(f) = b� a2(n� 1)�f(a) + 2 n�1Xj=2 f(xj) + f(b)�:
Since we will use the trapezoid rule on an approx-imation to the square root of an in�nite series, wewill need the following proposition.

Proposition 5.2. Suppose jf(xj) � g(xj)j � ", wherexj = a+ (j�1)(b�a)=(n�1) for 1 � j � n. Then����Z ba f(x) dx�Tn(g)���� � sup[a;b] ��f 00(x)�� (b�a)312(n�1)2+(b�a)":
Proof. Using the standard error bound for the trape-zoid rule (see [King 1984], for example),����Z ba f(x) dx� Tn(g)����� ����Z ba f(x) dx� Tn(f)����+ ��Tn(f)� Tn(g)��
� sup[a;b] ��f 00(x)�� (b�a)312(n�1)2 + b�a2(n�1) � 2(n�1)": �Let 1(t) = �=2�1+ t where 0 � t � 1; this is a linesegment from �=2 � 1 to �=2. Let 2(t) denote theline segment from i to �=2, with equation 2(t) =i+ t(�=2� i) for 0 � t � 1. Then (�) = (�=2� i)�R 10 RepP2(�; 2(t)) dt+ i R 10 ImpP2(�; 2(t)) dtR 10 RepP2(�; 1(t)) dt+ i R 10 ImpP2(�; 1(t)) dt :

(5–1)We will approximate these four real integrals usingProposition 5.2 with the approximation P2(�; z; ")for P2(�; z). Pick a small positive " and computeP2(�; 1(tj); ") and P2(�; 2(tj); ") for n equidistantvalues of tj between t1 = 0 and tn = 1. Let "0 denotethe largest error bound for any of these approxima-tions: jP2(�; m(tj))� P2(�; m(tj); ")j � "0for every tj and m = 1, 2. Now for � � 0��pz �pz + �ei� �� � � sup ��(pz)0�� = �2 infpjzj ;
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where the supremum and the in�mum are over theline segment from z to z + �ei�. Hence,��pz �pz + �ei� �� � �2pjzj � � :Then, for each j,��pP2(�; 2(tj))�pP2(�; 2(tj); ") ��� "02pjP2(�; 2(tj))j � "0� "02 inf [0;1]pjP2(�; 2(t))j � "0 ;and so��RepP2(�; 2(tj))� RepP2(�; 2(tj); ") ��� "02 inf [0;1]pjP2(�; 2(t))j � "0 :The following bound on the derivative of P2(�; z)will help us to �nd a bound on inf [0;1] jP2(�; 2(t))j.
Proposition 5.3. Suppose k � d(g�1(1); z) for allg 2 hS1inG�: Suppose D(z; r) is contained in somefundamental domain for G�. Then����� Xg2hS1inG�g0(z)2

�0 ���� < 8�kr2 Im�:
Proof. Using Proposition 4.3,����� Xg2hS1inG�g0(z)2

�0 ���� �X���� �4c(cz+d)5 ����= 4X0 1jz + d=cj 1jcz+dj4� 4kX0 1jcz+dj4< 4k � 2 Im��r2 : �
Corollary 5.4. Suppose k � d(g�1(1); z) for all g 2hS1inG�. Suppose the minimum possible value of��P g0(z)2�� among n � 2 equidistant values along aline segment of length l is �. Finally suppose thatfor any z on this line segment , D(z; r) is containedin some fundamental domain for G�. Then, on thisline segment ,���� Xg2hS1inG� g0(z)2

���� � � � l2(n� 1) 8�kr2 Im�:

Let �2 denote the smallest value of jP2(�; 2(tj); ")j�"0 over the n points tj . Pick a value of r such thatfor any point z on either line segment from �=2� 1to �=2 or from i to �=2, the disk D(z; r) is containedin some fundamental domain for G�. Assume k �d(g�1(1); z) for all g 2 hS1inG� and for every pointz on these line segments. (Since1 is a limit point ofG�, setting k = r satis�es this requirement.) Thenby Corollary 5.4,inf[0;1] jP2(�; 2(t))j � �2 � 4 j�=2� ij Im��kr2(n� 1) :Hence, if we setN2 = �2 � 4 j�=2� ij Im��kr2(n� 1) ;Proposition 5.1 implies that���� d2dt2 RepP2(�; 2(t))����= ����Re d2dt2pP2(�; 2(t))����< ���� 16(Im�)2�2k2r4N3=22 + 20 Im��k2r2N 1=22 ���� j�=2� ij2:By Proposition 5.2, the absolute value ofZ 10 RepP2(�; 2(t))dt� Tn�RepP2(�; 2(t); ")�is bounded above by� 16(Im�)2�2k2r4N3=22 + 20 Im��k2r2N 1=22 � j�=2� ij212(n�1)2 + "02pN2�"0 :
(5–2)Likewise, the absolute value ofZ 10 ImpP2(�; 2(t))dt� Tn�ImpP2(�; 2(t); ")�is bounded above by (5{2). Thus, we can approxi-mate the numerator of the second line of (5{1) byTn�RepP2(�; 2(t); ")�+ iTn�ImpP2(�; 2(t); ")�;
(5–3)with a maximum modulus of error less than p2times the expression in (5{2).Similarly, if we let �1 be the smallest value of��P2(�; 1(tj); ")��� "0 over the n points tj and setN1 = �1 � 4 Im��kr2(n� 1) ;
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the denominator in (5{1) can be approximated byTn�RepP2(�; 1(t); ")�+ iTn�ImpP2(�; 1(t); ")�;
(5–4)with a maximum modulus of error less than p2times� 16(Im�)2�2k2r4N3=21 + 20 Im��k2r2N 1=21 � 112(n�1)2 + "02pN1�"0 :
(5–5)To determine an error bound for our approxima-tion to the ratio in (5{1), we use a proposition:

Proposition 5.5. Suppose Ka;Kb;Ma;Mb; "a; and "bare complex numbers such that Ka = Ma + "a andKb =Mb + "b and j"aj � Ca and j"bj � Cb. Supposealso that Ca < jMaj. Then����KbKa � MbMa ���� � CbjMaj � Ca + Ca jMbjjMaj2 � Ca jMaj :
Proof.����KbKa � MbMa ���� = ����KbMa �KaMbKaMa ����

= ����(Mb + "b)Ma � (Ma + "a)Mb(Ma + "a)Ma ����
� ���� "bMaM 2a + "aMa ����+ ���� "aMbM 2a + "aMa ����� CbjMaj � Ca + Ca jMbjjMaj2 � Ca jMaj : �To apply Proposition 5.5 in our situation, we setKb=R �=2i pP2(�; z)dz andKa=R �=2�=2�1pP2(�; z)dz.Then  (�) = Kb=Ka is approximated by Mb=Ma,where Mb is (�=2� 1) times the expression in (5{3)and Ma equals the expression in (5{4). The errorbound Cb is p2 j�=2� 1j times the value (5{2), andCa is p2 times the value (5{5).We mention two more points where we need tobe careful when we use a computer program to dothe approximations. First, there will be an imple-mentation error that includes truncation error in thecalculations. We have not made a signi�cant e�ortto account for this kind of error. Second, when weintegrate the square root of the series, we must besure to use a consistent branch of the square root.The FORTRAN package used for our computationsuses the negative real axis for the branch cut of thesquare root function. Thus, if P2(�; z) stays awayfrom the negative real axis on the line segments 1(t)

and 2(t), the branch of square root is consistent. Toprove that P2(�; z) does indeed stay away from thenegative real axis, we call on the following corollaryto Proposition 5.3.
Corollary 5.6. Suppose k � d(g�1(1); z) for all g 2hS1inG�. Let � denote the smallest distance from thenegative real axis to P2(�; z) among n � 2 equidis-tant values of z along a line segment L of length l.Suppose also that for any z on L, the disk D(z; r)is contained in some fundamental domain for G�.Then for every z on L, the distance from the nega-tive real axis to P2(�; z) is at least� � l2(n� 1) 8�kr2 Im�:To use this corollary in the calculations, we computeP2(�; m(tj); ") letting m = 1, 2 and tj = (j�1)=(n�1) for 1 � j � n. Then let �1 denote the smallestof the distances from the negative real axis to thesepoints, and let � = �1 � "0, wherejP2(�; m(tj); ")� P2(�; m(tj))j � "0for every tj and m = 1, 2. Then apply the formulain Corollary 5.6. As long as the formula yields a pos-itive value, we are guaranteed of using a consistentbranch of the square root.
6. COMPUTER RESULTS AND EXAMPLESIt is of some interest which point in M1;1 is mappedto i, which is the point in H representing the squaretorus. We know by Corollary 3.8 that  �1(i) = tifor some t > 2. It turns out that t is between 3:76and 3:77. To prove this we chose the value " = 10�9at which to truncate the in�nite branches of the treerepresenting hS1inG�, and we computed our approx-imations at n = 1000 points along the curves a(�)and b(�) for � = 3:76i and � = 3:77i. The maximumerror bound ("0) for the series approximations wasless than 5:31�10�4. Each �nite series P2(�; z; 10�9)consisted of over 2.5 million terms. Some of thewords used in the �nite series were made up of over31,000 letters. Here are the �nal approximations to (�) and the error bounds:� " n approximation error bound3:76i 10�9 1000 0:9973065i 4:45� 10�43:77i 10�9 1000 1:0023112i 4:47� 10�4
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The error bound is probably rather conservative,as the next table shows; here we truncated the in�-nite branches at a level of " = 10�6.� " n approximation error bound3:76i 10�6 1000 0:9973087i 7:51� 10�33:77i 10�6 1000 1:0023134i 7:53� 10�3The approximations in the two tables are the sameto 5 decimal places, yet the error bounds are 0:00753and 0:000447 for " = 10�6 and " = 10�9, respec-tively. The �nite series with the truncation level of" = 10�6 consisted of only about 44,000 terms, usingwords made up of at most 1002 letters. Our large er-ror bounds prevented us from computing the exactvalue for the square torus to more than 2 decimalplaces, but our computations indicate the value tobe approximately � = 3:76538i.Similarly, we approximated which point in M1;1corresponds to the hexagonal torus � = 12(1 +p3 i)in H . The value is approximately � = 1 + 3:49645i.It is also of interest what happens to vertical raysRe � = p=q in H (for rational numbers p=q) un-der the map  �1 : H ! M1;1. It has been ques-tioned whether the inverse image of the vertical rayp=q is the same as the p=q-pleating ray in M1;1.The boundary @M1;1 consists of groups G� whichare either totally degenerate (meaning �(G�) com-pletely collapses and the domain of discontinuity ofG� consists of the images of the lower half-planeH L under the elements of G�) or cusps (meaningthere is a group element g� 2 G� which is hyper-bolic or loxodromic for � 2M1;1 but which becomesparabolic on @M1;1). Wright [n.d.] developed amethod of enumerating the cusps on @M1;1 usingrational numbers p=q. The trace of the group ele-mentWp=q which becomes parabolic at a cusp equals2 at that cusp, and is real and greater than 2 on aray contained in M1;1. Keen and Series [1993] haveshown that there is a unique branch of the locusf� 2 C : Trace(Wp=q) > 2g which is asymptotic tothe line Re� = 2p=q as � ! 1. It is this uniqueray which they refer to as the p=q-pleating ray.The group elements Wp=q are de�ned recursivelyas follows. Let bQ denote the set of pairs of rela-tively prime integers (p; q) (hereafter written p=q)such that q > 0 unless q = 0 and p = �1, andp 6= 0 unless q = 1. Extend the ordering of therationals to bQ , with the additional stipulation that

�1=0 < p=q < 1=0 whenever q 6= 0. If p=q andn=m are in bQ and qn � pm = �1, then p=q andn=m are called Farey neighbors. The Farey addi-tion � is de�ned on Farey neighbors (p=q; n=m) byp=q � n=m = (p + n)=(q + m). Every p=q 2 bQcan be written as a �nite sum � of �1=0, 0=1 and1=0. Note that if p=q and n=m are Farey neighbors,then p=q and p=q�n=m are Farey neighbors, as arep=q � n=m and n=m. Note also that if p=q < n=mthen p=q < p=q � n=m < n=m.Now de�ne W0=1 = T�1� , W1=0 = S1, and W�1=0 =S�11 . Then for any two Farey neighbors p=q andn=m in bQ with p=q < n=m, de�ne Wp=q�n=m =Wp=qWn=m. This de�nes Wp=q for every p=q 2 bQ .For example, W1=1 = W0=1W1=0 = T�1� S1, W1=2 =W0=1W1=1 = T�1� T�1� S1, and W1=3 = W0=1W1=2 =T�1� T�1� T�1� S1.Our computations prove that the inverse image ofthe ray Re � = p=q is in general di�erent from thep=q-pleating ray. Of course the inverse images of thevertical rays Re � = 0=1, 1=2, and 1=1 are the sameas the pleating rays 0=1, 1=2, and 1=1 (this followsfrom Corollary 3.8, Corollary 3.10, and Proposition3.9, respectively), but the inverse images of someother vertical rays were found to be di�erent fromthe corresponding pleating rays. Figure 6 showsDavid Wright's computer image of @M1;1 along withthe pleating rays 0=1, 1=8, 1=4, 1=3, 4=9, 1=2, and1=1. We have added the corresponding inverse im-ages of vertical rays from the upper half-plane. Wewere able to prove that the rays that appear di�erentin Figure 6 really are di�erent. To prove that the p=qrays are di�erent, we computed an approximation of (�) with an error bound E for certain points � tothe right of the p=q-pleating ray, and noted that thereal part of our approximation was less than p=q�E,so  (�) was on the left side of Re � = p=q. For ex-ample, the point � = 0:64978+3:5i is to the right ofthe 1=3-pleating ray but the real part of  (�) wascomputed to be less than 0:3252 with an error boundless than 0:0005; so Re (�) < 0:3257, which is tothe left of the vertical ray Re � = 1=3 in H . Figure6 shows the inverse images of the vertical lines evenfor Im� < 2, but we cannot be certain how accuratethe picture is for Im� < 2 because our error boundsdo not apply in this case. The inverse images of thevertical lines are drawn down to the points where itwas di�cult to construct curves in �(G�) projecting
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FIGURE 6. Pleating rays and images of vertical lines under  �1 inM1;1. The cuspy curve is the boundary ofM1;1.The pleating rays 0=1, 1=2 and 1=1 are the same as the inverse images of those vertical lines. The pleating rays1=8, 1=4 and 1=3 appear to the left of the corresponding images of vertical lines. The 4=9-pleating ray appearsto cross the image of the 4=9 vertical line at a height of about 2:2i.
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to the loops a(�) and b(�) or where the estimatesfor the Poincar�e series P2(�; z) seemed unreliable.
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