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This paper deals with the computation and classification of 5-
and 6-dimensional torsion-free crystallographic groups, known
as Bieberbach groups. We describe the basis of an algorithm
that decides torsion-freeness of a crystallographic group as well
as the triviality of its centre. The computations were done us-
ing the computer package CARAT, which handles enumeration,
construction, recognition and comparison problems for crystal-
lographic groups up to dimension 6.

The complete list of isomorphism types of Bieberbach groups up
to dimension 6 can be found online.

1. INTRODUCTION

We say that a group G is an n-dimensional crystallo-
graphic group G if G contains a normal, torsion-free,
maximal abelian subgroup V, of rank n and finite in-
dex. Thus an n-dimensional crystallographic group
satisfies the short exact sequence

0—V-—>G—P—1,

where

P < GL(n,Z) = Aut(V)

is a finite group acting faithfully on V. The groups
P and V are called the point-group (or holonomy
group) and translation subgroup of G, respectively.
Crystallographic groups arise as discrete, irreducible
subgroups of the group of isometries of the n-dimen-
sional Euclidean space; see [Charlap 1986|, for ex-
ample. We say that a crystallographic group G
is a Bieberbach group if it is torsion-free. Bieber-
bach groups also appear as fundamental groups of
compact, connected, flat Riemannian manifolds (flat
manifolds for short). Then X is a flat manifold of
dimension n if and only if its fundamental group G is
a n-dimensional Bieberbach group. Furthermore, G
determines X up to affine equivalence; see [Charlap
1986], for example.
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A referee pointed out that the classification de-
scribed here implies estimates for the volume of cer-
tain 6 and 7 dimensional hyperbolic manifolds; cf.
[Szczepaniski 1996].

2. THE CLASSIFICATION PROBLEM

The problem of classifying isomorphism types of n-
dimensional crystallographic groups goes back over
a hundred years. Bieberbach’s Third Theorem [Bie-
berbach 1912] states that for every n € N, the set
of representatives of isomorphism classes of crystal-
lographic (and Bieberbach) groups is finite. The
classification for dimensions 1, 2 and 3 was found at
the end of the nineteenth century, using mainly ge-
ometric techniques. H. Zassenhaus [1948] presented
an algorithm, based on group-theoretical concepts,
that allows the calculation of the set of representa-
tives of isomorphism classes of n-dimensional crys-
tallographic groups for any n.

If G is a m-dimensional crystallographic group,
it follows from Bieberbach’s Theorems [1911; 1912]
that the point-group of G is isomorphic to a finite
subgroup of GL(n,Z). Let p, be the set of repre-
sentatives of conjugacy classes of finite subgroups
of GL(n,Z). It follows from the Jordan—Zassenhaus
Theorem that the set g, is finite for every n. For in-
stance, for n = 1,2, 3,4,5, 6, the set p, has 2, 13, 73,
710, 6079 and 85311 elements, respectively [Plesken
and Schulz 2000].

Once given the set g, of representatives of con-
jugacy classes of finite subgroups of GL(n,Z) and
the generators of the normalizer in GL(n,Z) of each
element of g,,, Zassenhaus’ algorithm allows one to
calculate the set of representatives of isomorphism
classes of n-dimensional crystallographic groups. In
[Brown et al. 1978] one can find the list of crystal-
lographic groups for dimensions < 4. The numbers
for dimensions 5 and 6 (see Table 1) were reported
in [Plesken and Schulz 2000].

Note that n = 4 seems to be the last dimen-
sion where a complete list of isomorphism classes
of n-dimensional crystallographic groups still makes
sense, since the increase in the number of isomor-
phism classes for higher dimensions does not allow
a complete list in readable form. An alternative kind
of classification for crystallographic group up to di-
mension 6 is suggested in [Plesken and Schulz 2000].

For every finite group P, Auslander and Kuran-
ishi [1957] have shown that there is a Bieberbach
group having point-group isomorphic to P. Follow-
ing [Hiller and Sah 1986], we will call a finite group
P primitive if it can be realized as point-group of
a Bieberbach group G with finite commutator quo-
tient. In contrast to the result of Auslander and
Kuranishi, not every finite group is primitive. Hiller
and Sah [1986] proved that a finite group P is prim-
itive if and only if no cyclic Sylow p-subgroup of P
has a normal complement. Let X be a flat manifold
that has G as its fundamental group. Then it is well
known that the first Betti number of the manifold X
is zero if and only if the commutator quotient of G is
finite, which is also equivalent to the triviality of the
centre of G [Hiller and Sah 1986]. Due to the Cal-
abi construction [Calabi 1957], n-dimensional Bie-
berbach groups with trivial centre have a relevant
role in the classification of n-dimensional Bieber-
bach groups in general.

3. DECIDING TORSION-FREENESS

Even though the problem of classification of isomor-
phism types of crystallographic groups dates back
to the nineteenth century, the idea of studying and
classifying the torsion-free ones in particular came
much later, with the study of flat manifolds. In
[Brown et al. 1978] one can find the list of Bie-
berbach groups up to dimension 4; there are 1, 2,
10 and 74 Bieberbach groups, respectively, in these
low dimensions. Below we describe the basis of an
algorithm that decides torsion-freeness of a crystal-
lographic group and verifies whether it has trivial
centre.

The description of a crystallographic group G is
based on the following property: If z;,zs,...,x; are
the generators of the point-group P < GL(n,Z) of
G, then a generating set of G can be given in the
form

LG (G} o (@) eem )

where vy,...,v;, € Q" and Id is the n x n identity

matrix. We set
=(5 1)
9=\o 1)
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The following lemma gives the condition that a
crystallographic group G must satisfy in order to be
torsion-free.

Lemma 3.1. Let V' be a torsion-free Z P-module, and
G the extension of P by V corresponding to o €
H*(P,V). Then G is torsion-free if and only if
resh (a) # 0 for every cyclic subgroup H of prime
order of P.

Let ¢ : G — P =~ G/V be the natural homomor-
phism. Let g € G be an element of finite order.
Without loss of generality, we can assume that g? =
1 for some prime p. And since V' is torsion-free, ¢(g)
is an element of order p in P, and res}; () = 0, where
H = (p(g)). Conversely, assume that resf;, = 0.
Then ¢ '(H) splits and therefore G has an element
of finite order.

Remark 3.2. Let V, G, P and « be as given in Lemma
3.1, and define t(n,z) :== 14 -+ 2" 1. Let g €
G given by g = (}0“1’), where ¢(g) = h € P has
order m. Then resfh) a = 0 if and only if t(m, h)v €

t(m,h)V.

A trivial calculation shows that one needs only to
do such tests for representatives of conjugacy classes
of cyclic subgroups of prime order of P.

In short, the main points of the algorithm are :

(1) Given the generators gy, g, ..., g, of G, obtain
coset representatives of V' in G corresponding to
the point-group P (via ¢);

(2) In view of Lemma 3.1, restrict the list from (1)
to those elements giving rise to representatives
of conjugacy classes of elements of prime order
in P;

(3) For every element g € G from the list (2), test if
t(p, p(9))vy € t(p,p(g))V, where v, is the trans-
lation component of g and p is a prime such that
©(g)? = e. If so, the solution of this Z-linear
system will give an element of order p in G. Oth-
erwise, GG is torsion-free.

The centre of a space group in general is the lattice
fixed by P, and it is easy to determine by solving
(p(g;)—1)v = 0, for i« = 1,...,k. Note that this
calculation has to be done only once for all groups
in a specific Q-class.

The algorithm has been implemented in C' and
uses as input the results presented in [Plesken and

Schulz 2000]. The computer programs and data
which were used to obtain these results are part
of the package CARAT, which is also available at
the address given in the last section. The package,
the algorithms, a lot of the underlying theory are
described in [Opgenorth et al. 1998; Plesken and
Schulz 2000].

As a result, we have the following count of n-
dimensional crystallographic groups and Bieberbach
groups, for n < 6.

dim. cryst. Bieb. dim. cryst.  Bieb.
1 2 1 4 4783 74
2 17 2 5 222,018 1060
3 219 10 6 28,927,922 38746

TABLE 1. Number of crystallographic and Bieberbach
groups in each dimension up to 6.

4. FIVE-DIMENSIONAL BIEBERBACH GROUPS

Through our calculations, we have obtained 1060
Bieberbach groups in dimension 5, of which 101
have trivial centre. On working first with those
5-dimensional Bieberbach groups with trivial cen-
tre, we classified the possible isomorphism types of
point-groups.

Let (C,,)"* denote the direct product of k copies of
the cyclic group of order n, D,, the dihedral group of
order n, S, and A, the symmetric and alternating
groups, and I' the group of order 16 and nilpotence
class 2, isomorphic to (Cy x Cy) x Cy.

Theorem 4.1. A finite group P can be realized as
point-group of a five-dimensional Bieberbach group
with trivial centre if and only if it is isomorphic to
(Cy)*, for 2 <k <4, Cy x Cy, Dia, Dg, Dg x Cy or
T.

This list shows that [Szczepanski 1990, Theorem 1],
where the group Cy x Cy x Cy is included in the list
of finite groups, is not correct. The given example
of a Bieberbach group with such point-group and
trivial centre is in fact not torsion-free (for instance,
the element cybya, has order 4).

By considering all 1060 groups, the theorem be-
low, that lists the finite groups that can be realized
as the point-group of a 5-dimensional Bieberbach
group, agrees with [Szczepanski 1996, Theorem 1].
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number of classes

family symbol isomorphism type of point-group Q 7Z  affine
1,1,1;1;1 Cyx(Cy 1 1 1
1,1;1,1;1 CyxCy 1 2 2
1, ]., ]., ].,]. CQXCQXCQ 2 3 17
1; 1, ]., ].,]. 02X02X02,02X02X02X02 3 8 44
2-1,2-1;1 Dy 1 1 1
2-1;1,1; 1 Dg 2 3 3
2—1; 17 17 1 CQXC4, CQXDg, Ds 6 13 25
2-1;2-1; 1 r 2 2 4
2-2;1; 151 Cy %X S3 2 4 4
total 20 37 101

TABLE 2. Five-dimensional Bieberbach groups with trivial centre (first Betti number zero).

Theorem 4.2. A finite group P # {e} can be realized
as point-group of a 5-dimensional Bieberbach group
if and only if it is isomorphic to C,,, forn=2,...,6,
8,10,12, (Cy)*, for2 <k <4, CoxCy, Cyx Cy x Cy,
C3xC3, CexCy, CegxC3, Cgx Cyx Cqy, Ci19xCy, Ss,
Dyg, D1y, Dg x Cy, S5 x C5, Dy x Cy, Ay, Ay x Cs,
Ay x Cy x Cy, 84 orT.

Tables 2 and 3 classify the 5-dimensional Bieberbach
groups, using the notation of [Opgenorth et al. 1998;
Plesken and Schulz 2000].

5. SIX-DIMENSIONAL BIEBERBACH GROUPS

Tables 4 and 5 classify 6-dimensional Bieberbach
groups. As to the isomorphim types of point groups,
the notation [n, k] refers to the classification of solv-
able groups with small order given in GAP [Schénert
et al. 1994] and n stands for the order of the group
in question.

Note that in the notation C5 x Cy, C3 x Cg and
C2 % C, the top Cy acts by inverting, in the latter
case on both components.

number of classes

family symbol isomorphism type of point-group Q Z  affine
1,1,1,1,1 Ch 1 1 1
1,1,1,1;1 Co 2 3 3
1,1,1;1,1 Cs 2 ) )
1,1,1; 151 022 2 8 21
1,1;1,1;1 C3 2 9 31
1,1;1;1;1 Cz2,C3 4 43 236
1;1;1; 151 C3, C3 3 22 290
2-1,2-1"; 1 Cy 1 1 1
2-1;1,1,1 Cy 1 2 2
2—1; 1, 1; 1 02 ><C'47 04, Ds 8 36 68
2—1; 1, 1, 1 022><C4, 02 XC4, CQXDg, Ds 8 62 179
2-1; 2-1; 1 Cyx(Cy, T 2 5 12
2-2'2-2": 1 Cyx (3, Cs 2 2 2
2-2; ]., ]., 1 CgXCg, 03 2 3 3
2-2:1,1; 1 C2xC3,CyxC3, CyxS3, S3 10 27 31
2-2:1;1; 1 C3xC3,C2xC3,C3xS3, CyxS3 7 12 42
2—2; 2—1; 1 02 X03X04, 03 ><C4 3 3 3
2-2;2-2; 1 CyxCj3, Cy ><C§, Cg, C3xS3 4 8 10
3; ]., 1 A4, CQXA4 2 4 4
3; 151 Cs ><A4,C§><A4,S4 5 9 11
4-1"51 Cs 1 1 1
4—2’; 1 C3XC4 1 1 1
4—3’; 1 CQXC5, 05 2 2 2
total 75 269 959

TABLE 3. Five-dimensional Bieberbach groups with nontrivial centre.
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number of classes

family symbol isomorphism type of point-group Q Z affine
1,1,1,1;1;1 C2 1 1 1
1,1,1;1,1;1 C2 1 2 2
1,1,1;1;1; 1 Cc3 2 3 18
1,1;1,1;1,1 C2 1 4 4
1,1;1,1;1; 1 Cc3 2 7 62
1,1;1;1;1;1 Cs, 3<i<4 5 36 791
1;1;1;1;1;1 s, 3<i<5 6 49 2727
2-1,2-1; 1,1 Dsg 1 1 1
2-1,2-1; 1; 1 Cy x Dg, Dg 2 7 11
2-1;1,1,1;1 Dy 2 3 3
2-1;1,1;1,1 Dsg 1 2 3
2-1; ]., ]., ]., 1 C2 ><C4, 02 XDs, Dg 15 67 173
2-1;1; 1; 151 C2xCy, C2 x Dg, Cyx Dy 16 113 883
2-1;2-1; 1,1 CoxDg, T 3 7 9
2-1;2-1; 1; 1 CyxCy, Cox Dg, CoxT', T, [16,10], [32,33], [32,36] 20 74 197
2-1; 2-1; 2-1 I, [32,33] 2 4 5
2-2; ]., ]., ]., 1 022 XSg, 02 XSg 6 13 13
2-2;1;1;1;1 C2xS; 6 13 71
2-2;2-1; 1; 1 Doy, [24,11] 4 10 10
3;1;1;1 Cyx Sy 3 3 4
3;2-2; 1 Cs XS4, Sy 2 9 9
415151 Dy 1 1 1
4-1;1; 1 [16,13], [16,8], [32,47] 3 3 3
4-1; 2-1 [32,46], [64,250] 3 3 3
total 108 435 5004

TABLE 4. Six-dimensional Bieberbach groups with trivial centre.

ELECTRONIC AVAILABILITY

The complete list of isomorphism types of Bieber-
bach groups up to dimension 6 can be found at
http://wwwb.math.rwth-aachen.de/carat/.
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TABLE 5. Six-dimensional Bieberbach groups with nontrivial centre.
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