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We find and prove relationships between Riemann zeta values

and central binomial sums. We also investigate alternating bino-

mial sums (also called Apéry sums). The study of nonalternating

sums leads to an investigation of different types of sums which

we call multiple Clausen values. The study of alternating sums

leads to a tower of experimental results involving polylogarithms

in the golden ratio.

1. INTRODUCTIONWe shall begin by studying the central binomial sumS(k), given as
S(k) := 1Xn=1 1nk �2nn �for integer k. A classical evaluation is S(4) = 1736�(4).Using a mixture of integer relation and other compu-tational techniques, we uncover remarkable links tovalues of multi-dimensional polylogarithms of sixthroots of unity which we call multiple Clausen values.We are thence able to prove some surprising identi-ties|and empirically determine many more. Ourexperimental integer relation tools are described insome detail in [Borwein and Lison�ek 2000].We shall �nish by discussing the correspondingalternating sum:A(k) := 1Xn=1 (�1)n+1nk �2nn � :These are related to polylogarithmic ladders in thegolden ratio 12(p5�1). A classical evaluation isA(3) = 25�(3);with its connections to Ap�ery's proof of the irra-tionality of �(3); see [Borwein and Borwein 1987],for example.
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2. DEFINITIONS AND PRELIMINARIESWe start with some de�nitions which for the mostpart follow [Lewin 1981; Borwein et al. 1997; 1998;2001]. A useful multi-dimensional polylogarithm isde�ned byLia1;:::;ak(z) := Xn1>:::>nk>0 zn1na11 : : : nakk ;
with the parameters required to be positive integers.This is a generalization of the familiar polylogarithmLin(z) :=P1k=1 zk=kn. Note that Lin(1) = �(n).We will be most concerned with the value of themulti-dimensional polylogarithm at the sixth rootof unity, ! := ei�=3. We refer to such a value as amultiple Clausen value (MCV) and write�(a1; : : : ; ak) := Lia1;:::;ak(!):This MCV is analogous to the multiple zeta value(MZV), at z = 1, which has been studied in workssuch as [Borwein et al. 1997; 1998; 2001]. We mightalso have viewed these values as generalizations ofthe Lerch zeta function. It transpires to be advan-tageous to separate the real and imaginary parts ofan MCV in a manner that is based on the sum ofthe arguments. We refer to these parts as multipleGlaishers (mgl) and multiple Clausens (mcl). Theyare de�ned bymgl(a1; : : : ; ak) := Re(ia1+���+ak�(a1; : : : ; ak));mcl(a1; : : : ; ak) := Im(ia1+���+ak�(a1; : : : ; ak));and may be written explicitly as multiple sin or cossums depending on the parity. For example, whena+ b is odd,mgl(a; b) = � Xn>m>0 sin(n�=3)namb ;
as is the case in Theorem 3.3 below.As elsewhere, the weight of a sum isPki=i ai whilethe depth k is the number of parameters. This sep-aration corresponds, in the case k = 1, to Lewin's[1981] separation of the polylogarithm at complexexponential arguments into Clausen and Glaisherfunctions.We record the following di�erential properties ofour multi-dimensional polylogarithm:dLia1+2;a2;:::;an(z)dz = Lia1+1;:::;an(z)z ; (2–1)

dLi1;a2;:::;an(z)dz = Lia2;:::;an(z)1� z : (2–2)

Repeated application of (2{2) yields
Lif1gn(z) = (� log(1� z))nn! ; (2–3)where f1gn denotes the string 1; : : : ; 1 with n ones.We will make use of the Bernoulli polynomialslater in this paper. Recall that Bn(x) is de�ned bytextet � 1 = 1Xn=0Bn(x) tnn! ;and that Bn(0) is called the n-th Bernoulli numberand is written Bn.For convenience we choose the following notationfor log-sine integrals :

j(a; b) := Z �=30 � log�2 sin �2��a�bd� (2–4)

and
r(a; b) := ib+1a!b! Z �=30 �log �2 sin �2�+ i2������a�bd�:

(2–5)Finally, a standard result involving the gammafunction will prove very useful:
a�n�(n) = Z 10 ya�1(� log y)n�1dy:

3. NONALTERNATING CENTRAL BINOMIAL SUMSOur �rst step is to write S(k) in integral form.
Lemma 3.1. For all positive integers k,

S(k) = (�2)k�2(k � 2)! j(k�2; 1):
Proof. We employ the gamma function and variousstandard tricks. First

S(k) = 1Xn=1 1�2nn �nk= 1Xn=1 1�2nn ��(n) Z 10 (� log x)k�1xn�1dx;
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setting y2 = x and integrating by parts, this be-comes= 1Xn=1 1�2nn ��(n) Z 10 (�2 log y)k�1y2n�2(2y) dy
= � 1Xn=1 (�2)k�1�2nn ��(n) �Z 10 y2n2n 2(k�1)(log y)k�2y dy�
= (�2)k�1(k � 2)! Z 10 (log y)k�2y 1Xn=1 y2nn�2nn �dy:Using [Borwein and Borwein 1987, p. 384] we getS(k) = (�2)k�1(k � 2)! Z 10 (log y)k�2y y arcsin(y=2)p1� (y=2)2 dy= (�2)k�2(k � 2)! Z �=30 (log(2 sin �=2))k�2�d�with the change of variables y = 2 sin �=2. �Hence to evaluate the sums S(k), it is enough to de-termine log-sine integrals of the special form j(k; 1).The key is the following identity:

Lemma 3.2. For all k > 2,k�2Xr=0 (�i�=3)rr! �(k � r; f1gn)= �(k; f1gn)� (�1)k+nr(n+ 1; k � 2): (3–1)

Proof. First note the formal identitylog(1� ei�) = log �2 sin �2�+ i2(� � �): (3–2)We have, by (2{1),�(k; f1gn) = �(k; f1gn) + Z !1 Lik�1;f1gn(z)z dz:We now integrate by parts repeatedly to obtain�(k; f1gn) = �(k; f1gn)� k�2Xr=1 (�1)r�(n�r; f1gk) logr !r!+(�1)k�2(k�2)! Z !1 Lif1gn+1(z) logk�2 zz dz:Observe that log! = i�=3. Let z = ei�. Then,using (2{3),�(k; f1gn) = �(k; f1gn)� k�2Xr=1 (�i�=3)r�(n�r; f1gk)r!+ i(�1)k(k�2)! (n+1)! Z �=30 (� log(1�ei�))n+1(i�)k�2d�;

which gives us the desired result upon applicationof (3{2). �Now, note that r(a; b), de�ned in (2{5), can be ex-panded out binomially and written as linear rationalcombination of j(c; d), de�ned in (2{4), for variousc; d, including a nonzero multiple of j(a; b). So wemay repeatedly use the above identity to solve foreach j(a; b) in terms of multiple Clausen, Glaisherand zeta values|all of the same form mcl(n; f1gk),mgl(n; f1gk) and �(n; f1gk).In particular, for all k, j(k�2; 1) and hence S(k)can be written as a linear rational combination ofmultiple zeta, Clausen and Glaisher values of thisform. This method, which we have automated inReduce and in Maple, recovers all previously knownresults in a uniform fashion. It does not in gen-eral give especially nice looking identities, but weare able to apply some other results about multipleClausen values derived in the next section to cleanthings up for small k. After doing this, we obtainthe following evaluations of central binomial sums:
Theorem 3.3.S(2) = 13�(2)S(3) = � 23�mcl(2)� 43�(3)S(4) = 1736�(4)S(5) = 2�mcl(4)� 193 �(5) + 23�(3)�(2)S(6) = � 43�mgl(4; 1) + 33411296�(6)� 43�(3)2S(7) = �6�mcl(6)�49324 �(7)+2�(5)�(2)+ 1718�(4)�(3)S(8) = �4�mgl(6; 1) + 3462601233280 �(8)� 1415�(5; 3)� 383 �(5)�(3) + 23�(2)�(3)2:The results for S(2) and S(4) are classical evalua-tions. That for S(3) seems �rst to have appeared inprint in [Ghusayni 1998]. The others, and the gen-eral analysis, are new and it is hoped that they willshed light on odd �-values, which remain a sourceof many unanswered questions. We observe thatgenuine MCVs, with depth k > 1, �rst occur forn = 6 and 8. Moreover, David Bailey and DavidBroadhurst have explicitly obtained S(n) for n � 20through a very high level application of integer re-lation algorithms. The result for S(20) is presentedin [Bailey and Broadhurst 2001].
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4. MULTIPLE CLAUSEN VALUESCentral binomial sums naturally led us into a studyof multiple Clausen values. This study proved tobe quite fruitful and we were led to many strikingresults.To start with, we quote from [Lewin 1981] someresults about depth-one Clausen values:
mgl(n) = (�1)n+12n�1�nBn( 16)n! ;mcl(2n+1) = (�1)n2 (1�2�2n)(1�3�2n)�(2n+1):(4–1)

4A. MCV DualityIn MZV analysis, one of the central results is thenow well-known MZV duality theorem recapitulatedin [Borwein et al. 1997]:�(a1+2; f1gb1 ; : : : ; ak+2; f1gbk)= �(bk+2; f1gak ; : : : b1+2; f1ga1);For all positive integers a1; a2; : : : ; an.For MCV's, we have found two such duality re-sults, with the �rst result applying if the �rst argu-ment of the MCV is one (such sums converge as inthe classical Fourier setting) while the second holdsif the �rst argument of the MCV is two or more. Thepattern in Theorem 4.2 is somewhat complicated. Aprior example may make things clearer.
Example 4.1. �(1; 3; 1; 2) � �(1) �(3; 1; 2) + �(2)��(2;1;2)��(3)�(1;1;2)+�(1;3)�(1;2)��(1;1;3)��(2) + �(2;1;3)�(1) � �(1;2;1;3) = 0:Each summand di�ers from its predecessor by sub-tracting `1' from the �rst argument of the right MCVand adding `1' to the �rst argument of the left MCV.In the case where there is a `1' as the �rst argumentof the right MCV, this `1' is dropped and concate-nated onto the left MCV.
Theorem 4.2. For all positive integers a1; a2; : : : ; an,we have�(1; a1; : : : ; an)� �(1)�(a1; : : : ; an)+ �(2)�(a1�1; : : : ; an) + � � � � �(a1)�(1; a2; : : : ; an)� �(1; a1)�(a2; : : : ; an) + � � � � �(1; an; :::; a1) = 0:
Proof.We prove this by repeated integration by parts.We use the di�erential properties (2{1) and (2{2)

to move weight from one multidimensional polylog-arithm to another:�(1; a1; : : : ; an)= Z !0 Lia1;:::;an(z)1� z dz= �Li1(z) Lia1;:::;an(z)�!0�Z !0 Li1(z) Lia1�1;:::;an(z)z dz= � � � = � � � � �(1; an; : : : ; a1): �As in other duality results, it is interesting to exam-ine what happens in the self-dual case. Suppose that(a1; : : : ; an) = (an; : : : ; a1); then, if a1 + � � � + an iseven, the equation in Theorem 4.2 reduces to 0 = 0.If the sum is odd, the same equation shows that�(1; a1; : : : ; an) reduces to a sum and product oflower weight MCVs.The pattern in Theorem 4.4 below is more com-plicated. Hence an example will be even more in-structive. The bar denotes complex conjugation.
Example 4.3. �(4; 3; 1) + �(1) �(3; 3; 1) + �(1;1)��(2; 3; 1) + �(1;1;1) �(1; 3; 1) + �(2;1;1) �(3; 1) +�(1;2;1;1)�(2;1)+�(1;1;2;1;1)�(1;1)+�(2;1;2;1;1)��(1) + �(3;1;2;1;1) = �(3;1;2;1;1):Each summand di�ers from its predecessor by sub-tracting `1' from the �rst argument of the right MCVand concatenating `1' onto the left MCV. In the casewhere there is a 1 as the �rst argument of the rightMCV, this `1' is dropped and `1' is added to the �rstargument of the left MCV .Theorem 4.4 is specialization of the H�older con-volution [Borwein et al. 2001, (44)] with p = ! andq = 1� ! = !. That paper gives a more formal de-scription of the pattern of summation that we haveoutlined above.
Theorem 4.4. For all positive integers a1; a2; � � � ; an,�(a1+2; f1gb1 ; : : : ; ak+2; f1gbk)+ �(1)�(a1+1; f1gb1 ; : : : ; ak+2; f1gbk) + : : :+ �(f1ga1+1)�(1; f1gb1 ; : : : ; ak+2; f1gbk)+ �(2; f1ga1)�(f1gb1 ; : : : ; ak+2; f1gbk) + : : :+ �(b1+2; f1ga1)�(a2+2; : : : ; ak + 2; f1gbk) + : : :+ �(bk+2; f1gak ; : : : ; b1+2; f1ga1)= �(bk+2; f1gak ; : : : ; b1+2; f1ga1):
Proof. As stated above, this follows by H�older con-volution, since Li~a(!) = �(~a). It can also be proved
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using a similar integration by parts as above, usingthe di�erentiation propertiesdLia1+2;a2;:::;an(1� z)dz = �Lia1+1;a2;:::;an(1� z)1� z ;dLi1;a2;:::;an(1� z)dz = �Lia2;:::;an(1� z)z :This identity allows us to move weight from amulti-dimensional polylogarithm at z to one at 1�z.�This suggested integration by parts technique alsoyields a new proof for this type of H�older convo-lution. Hence, it provides another proof of MZVduality.In this case, self-dual strings do not tell us thatmuch. The only thing to note is that all the imag-inary terms on left side of the equation in Theo-rem 4.4 will vanish, since ab + ab is real. Whenk = 1, the equation simpli�es, on using (4{1), to�(a+ 2; f1gb) + (�1)a(i�=3)a+b+2(a+ 1)!(b+ 1)!= aXr=0 (�i�=3)rr! �(a+ 2� r; f1gb)
+ bXr=0 (i�=3)rr! �(b+ 2� r; f1ga): (4–2)

We initially derived (4{2) by means of (3{1) and asatisfying identity involving log-sine integrals, whichwe proved using contour integration:(�1)a+b�(a+2; f1gb�1)= (i�=3)a+1(�i�=3)b(a+1)!b! � r(a+1; b�1)� r(b; a):
4B. Special values of MCVsTo illustrate the utility of this last duality result,consider (4{2) when a = 1 and b = 1. We obtain�(3; 1)� 2mgl(3; 1)� 2�3 mgl(2; 1)� �4324 = 0:Using MZV analysis [Borwein et al. 2001], we knowthat �(3; 1) = �4=360, which is the �rst case in anin�nite series of evaluations in terms of powers of�4, conjectured by Zagier and proved in [Borweinet al. 1998]. Now from (4{5) below we havemgl(2; 1) = �3324 :

This rewards us withmgl(3; 1) = �2319440�4:Next, we use the duality result to extract somemore general evaluations. LetF (x; y) := Xa;b�0�(a+2; f1gb)xa+1yb+1:According to [Borwein et al. 2001], we know thatthis generating function is hypergeometric:F (x; y) = 1� 2F1(�x; y; 1�x;!): (4–3)Unfortunately, this is not a very convenient equa-tion for extracting coe�cients or proving formulas.To get a more useful representation, we take (4{2),multiply through by xa+1yb+1 and sum over all a; b �0. This givese�i�x=3F (x; y)+ei�y=3F (y; x)+(e�i�x=3�1)(ei�y=3�1)= G(x; y);where G(x; y) := Xa;b�0 �(a+ 2; f1gb)xa+1yb+1
is the generating function for the corresponding mul-tiple zeta values. Now from prior work on MZVs[Borwein et al. 1997] it is known thatG(x; y) = 1� exp�Xk�2 xk + yk � (x+ y)kk �(k)�:
We shall use this generating function identity to ob-tain more general results about special values ofmgl's and mcl's. First we put the last identity ina more symmetric form by lettingM(x; y) := F (ix;�iy) =Xa;b�0(�1)b+1�mgl(a+2;f1gb)+imcl(a+2;f1gb)�xa+1yb+1:
Thene�x=3M(x; y) + e�y=3M(y; x) + (e�x=3�1)(e�y=3�1)= G(ix;�iy): (4–4)

Theorem 4.5. For nonnegative integers a and b,mgl(f1ga; 2; f1gb) = (�1)a+b+1 (�=3)a+b+22(a+ b+ 2)! ; (4–5)and this value depends only on a+ b.
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Proof. First we show thatmgl(2; f1gb) = (�1)b+1 (�=3)b+22(b+ 2)! :We give two proofs of this result.
(i) Multiply by y=x in (4{4), and let x go to zero.Set B(y) := 1Xb=0(�1)b+1mgl(2; f1gb)yb+2;

C(y) := 1Xb=0(�1)b+1mgl(b+ 2)yb+2;
D(y) := 1Xm=1(�1)2m+m�1�(2; f1g2m�2)y2m:Comparing real parts on each side of (4{4) yieldsB(y) + e�y=3C(y) + �y3 (e�y=3 � 1) = D(y):The value of mgl(n) and so of C(y) is given by (4{1),while MZV duality yields �(2; f1g2m�2) = �(2m)with its familiar Bernoulli number evaluation. Com-bining these results and using the generating func-tion for the Bernoulli polynomials, we arrive atB(y) = e�y=32 � �y6 � 12 ;which impliesmgl(2; f1gb) = (�1)b+1 (�=3)b+22(b+ 2)! :

(ii) Alternatively, we start with (4{3). Dividing byx, setting y = iy, and letting x go to zero yields�i 1Xn=1 (iy)n!nnn! = P1b=0 �(a+2; f1gb)(iy)b+2y :Now we know that1Xn=1 (iy)nzn�1n! = (1� z)�iy � 1z :Integrate both sides of this expression from 0 to !along z = 1+ei(���), where 2�=3 � � � �, to obtain1Xn=1 (iy)n!nn n! =
�iZ �=30 (e��y�1)(1� cos �+i sin �)2� 2 cos � d�

� i�e��y=3y � 1y + �3�:

This again gives usIm� 1Xn=1 (iy)n!nnn! � = �e��y=3 + �y=3� 12yas required.Armed with this special case, we now prove thefull result for mgl(f1ga; 2; f1gb). We start with asimilar integration by parts as for the proof of (3{1).We have�(f1gb; 2; f1ga) = Z !0 Lif1gb�1;2;f1ga(z)1� z dz
= i�3 �(f1gb�1; 2; f1ga) + � � �

+(�1)b+1 (i�=3)bb! �(2; f1ga)
+ Z !0 (log(1� z))b Lif1ga+1(z)b! z dzby repeated integration by parts, which in turn isseen to equali�3 �(f1gb�1; 2; f1ga)+� � �+(�1)b+1 (i�=3)bb! �(2; f1ga)+ (�1)b�a+b+1b ��(2; f1ga+b)using (2{3).Now, multiplying through by ia+b+2, extractingreal parts and proceeding by induction we �nd thatwe must show that�a+b+20 �+ � � �+ (�1)b�a+b+2b �

= (�1)b�a+b+1b �:However,�a+b+2i � = �a+b+1i �+ �a+b+1i�1 �;and it is now easily seen that the left side telescopes.�
4C. Additional EvaluationsWe can use (4{4) to obtain a clean expression for thealternating sum of all mgl's of the form mgl(a; f1gb)of �xed weight. LetA(x) := 1Xn=1� n�2Xm=0(�1)m+1mgl(n+2�m; f1gm)�xn:
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If we set x = y in(4{4), after some work we obtainA(x) = 12 ���xe��x=3sinh�x � e�x=3 + 2�
= 12 ��2�xe2�x=3e2�x � 1 � e�x=3 + 2� :This leads ton�2Xm=0(�1)m+1mgl(n+ 2�m; f1gm)= ��n2n! �Bn� 13�2n + � 13�n� :We note that this equation is equivalent toRe�1� 2F1(�ix;�ix; 1� ix;!)�= Re� 1Xn=1 (�ix)(�ix)nn� ix !n�

= �12��xe��x=3sinh(�x) + e�x=3 � 2�;on using the hypergeometric representation of theunderlying generating function. We have not man-aged to prove this by more direct methods.An unusual-looking class of identities may be ex-tracted from (4{3) on setting y = 1� x. This gives1� e�i�x=3 = Xa;b�0�(a+ 2; f1gb)xa+1(1� x)b+1;
which|when we extract the coe�cients of variouspowers of x on both sides|gives us curious in�nitesums of MCVs of di�erent weight, reminiscent ofsimilar rational �-evaluations [Borwein et al. 2000].For example, extracting the coe�cient of x yields1Xb=0 �(2; f1gb) = i�3 :More generally, we obtain1Xb=0��(n+ 1; f1gb)� (b+ 1)�(n; f1gb) + � � �+ (�1)n+1� b+1n�1��(2; f1gb)� = �(�i�=3)nn! :
5. MCV DIMENSIONAL CONJECTURESWhile there do not appear to be many other closedform evaluations, it is apparent that there is stillmore to be learned by examining all MCVs|andespecially their integral representations. This is a

subject we have largely ignored in this paper, butwhich �gures large in [Broadhurst 1999], where poly-logarithms of the sixth root of unity were studied inthe context of integrals arising from quantum �eldtheory.Experiments using linear relation algorithms sug-gested that the only MCVs that evaluate to rationalmultiples of powers of � are those already identi�ed,namely mgl(3; 1) and mgl(f1gb; 2; f1ga). Moreoverwe found no other nontrivial reduction of an MCV toa single rational multiple of powers of other MCVs.Nevertheless, our integer relation searches suggesteda very simple enumeration of the basis size for MCVsof a given weight.Consider the setC(n) := fmcl(a1; : : : ; ak) : a1 + � � �+ ak = ngof all multiple Clausen values of �xed weight, n. Wewish to determine the smallest set of real numberssuch that each element of C(n) can be written asa rational linear combination of elements from thisset. This will consist of mcl's of that weight or prod-ucts of lower weight mcl's, mgl's, MZV's and powersof �. We denote by I(n) the size of the basis forC(n). Similarly, we denote by R(n) the basis sizefor multiple Glaisher values of weight n.Our �rst conjecture is quite striking:
Conjecture 5.1. The following twisted Fibonacci re-cursion obtains :R(n) = R(n� 1) + I(n� 2);I(n) = I(n� 1) +R(n� 2);R(0) = R(1) = 1; I(0) = I(1) = 0:A corollary is that W (n) := R(n) + I(n), the totalsize of a rational basis for MCV's of weight n, shouldsatisfy W (n) =W (n� 1) +W (n� 2);which delightfully gives the Fibonacci sequence.Looking at things more �nely, we examined thenumber P (n; k) of irreducibles of weight n and depthk, such that a rational basis at this weight anddepth is formed from a minimum number of irre-ducibles, augmented by products of irreducibles oflesser weight and depth. Again, we are lead to arather striking conjecture:
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Conjecture 5.2. This weight and depth �ltration isgenerated byYn>1;k>0(1� xnyk)P (n;k) = 1� x2y1� x:Both conjectures have been intensively checked bythe PSLQ algorithm [Bailey and Broadhurst 2001]for k � n � 7. They provide compelling evidencethat there is a great deal of structure to MCVs. Itseems unlikely that they will be proved soon, sincethey imply, inter alia, the irrationality of �(n) forall odd n. The interested reader has online accessto some of the code we have used and also an inter-face for more general integer relation problems; seesection on Electronic Availability at the end.
6. APÉRY SUMS AND THE GOLDEN LADDERBy way of comparison we present results for the al-ternating binomial sumsA(k) :=Xn>0 (�1)n+1�2nn �nk :
As we now describe, we found that the cases k = 2,3, 4, 5, 6 reduce to classical polylogarithms of powersof � := p5� 12 ;the reciprocal of the golden section. The ladder thatgenerates these results extends up to �(9). Detailsof polylogarithmic ladder techniques are to be foundin [Lewin 1991].The results for k < 5 were proved by classicalmethods (and also obtained by John Zucker, privatecommunication). For k � 5, we were content to relyon the empirical methods adopted in [Lewin 1991],determining rational coe�cients from high precisionnumerical computations.� At k = 2 one easily obtains from Clausen's hy-pergeometric square [Abramowitz and Stegun 1972;Borwein and Borwein 1987] the resultA(2) = 2L2;where L := log �:Indeed, we found 6 integer relations between A(2),�(2), and the dilogarithms fLi2(�p) j p 2 Cg, where

C := f1; 2; 3; 4; 6; 8; 10; 12; 20; 24g, generates the cor-responding cyclotomic relations [Lewin 1991].In general, it is more convenient to work with theset Kk := fLk(�p) j p 2 Cgof Kummer-type polylogarithms, of the formLk(x) : = 1(k � 1)! Z x0 (� log jyj)k�1dy1� y= k�1Xr=0 (� log jxj)rr! Lik�r(x)where as before Lik(x) :=Pn>0 xn=nk.� At k = 3 one has Ap�ery's resultA(3) = 25�(3):Moreover there are 5 integer relations between K3,L3, and �(3).� At k = 4 we recently proved a result, using classi-cal polylogarithmic theory, which simpli�es toA(4) = 4~L4(�)� 12L4 � 7�(4)where~Lk(x) := Lk(x)� Lk(�x) = 2Lk(x)� 21�kLk(x2):In fact, there are 5 integer relations between K4, L4,�(4) and A(4). Another simple example isA(4) = 169 ~L4(�3)� 2L4 � 239 �(4):� At k = 5 we found four empirical integer relationsbetween K5, L5, �(5) and A(5). The simplest resultis A(5) = 52L5(�2) + 13L5 � 2�(5):More explicitly, with � := (p5� 1)=2, this produces1Xk=1 (�1)k+1k5�2kk � = 2�(5)� 43 log(�)5 + 83 log(�)3�(2)+4 log(�)2�(3) + 80Xn>0� 1(2n)5 � log(�)(2n)4 � �2n;which, along with previous integer relation exclusionbounds (see [Bailey and Borwein 2000; Borwein andLison�ek 2000], for example), helps explain why no`simple' evaluation for A(5) such as those for S(2),A(3), and S(4) has ever been found.� At k = 6 we found the empirical relation11�A(6)� 25�2(3)	= 144~L6(�)� 649 ~L6(�3) + 95L6 � 24349 �(6);
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which is the simplest of three integer relations be-tween K6, L6, �(6) and the combination A(6) �25�2(3).� At k = 7 there are 2 integer relations between K7,L7, and �(7). There is no result for A(7) from thisset; presumably A(7) occurs in combination withsome other weight-7 irreducible, of which �2(3) wasa harbinger, at k = 6.� At k = 8 there is a single integer relation.� At k = 9 the ladder terminates with a single inte-ger relation, namely2791022262�(9)= 15750L9(�24) + 74277L9(�20)� 8750000L9(�12)� 19014912L9(�10)� 206671500L9(�8)+ 1295616000L9(�6)� 3180657375L9(�4)+ 4907952000L9(�2)� 52537600 log9(�):This still falls short of the ladder for �(11) found in[Broadhurst 1998]. The current record is set by theladder for �(17) in [Bailey and Broadhurst 1999],which extends the weight-16 analysis of Henri Co-hen, Leonard Lewin and Don Zagier [Cohen et al.1992], in the number �eld of the Lehmer polynomialof conjecturally smallest Mahler measure.
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NOTE ADDED IN PROOFSince this paper was accepted we've learned that E.Remiddi and J. A. M. Vermaseren [2000] studied acognate class of polylogarithms. Relations like thoseof Theorem 4.2 are also in their paper.
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