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We prove asymptotic formulas for the first discrete moment of the
Riemann zeta function on certain vertical arithmetic progressions
inside the critical strip. The results give some heuristic arguments
for a stochastic periodicity that we observed in the phase portrait
of the zeta function.

1. INTRODUCTION

The Riemann zeta function ζ(s) is of special interest in
number theory and complex analysis. The real zeros of
ζ(s) are located at s = −2n, n ∈ N , and are said to be
trivial. All other zeros are called nontrivial and lie inside
the critical strip 0 < Re s < 1. The famous Riemann hy-
pothesis claims that all nontrivial zeros lie on the critical
line Re s = 1/2.

We are interested in the values of the zeta function on
certain vertical arithmetic progressions. In [Putnam 54a,
Putnam 54b], it was shown that there exists no in-
finite arithmetic progression of nontrivial zeros, and
in [Frankenhuijsen 05], the author obtained bounds for
the length of any hypothetical arithmetic progression.
Asymptotic formulas proved for the second and fourth
moments of the Riemann zeta function on arbitrary arith-
metic progressions to the right of the critical line were
proved in [Good 78]. Here we shall investigate the dis-
crete first moments

A(s, d,M) :=
1
M

∑
0≤m<M

ζ(s+ imd) (1–1)

for positive real numbers d. It turns out that for special
values of d > 0, the asymptotic behavior of A(s, d,M) for
M → ∞ can be described explicitly.

Theorem 1.1. Fix s ∈ C \ {1} with 0 < σ := Re s ≤ 1,
t := Im s ≥ 0, and let d = 2π/ log �, where � ≥ 2 is an in-
teger. Then for M → +∞,

1
M

∑
0≤m<M

ζ(s+ imd) =
1

1 − �−s
+O(M−σ logM).
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FIGURE 1. A phase portrait of f (z) = z (color figure
available online).

We would like to mention that our interest in sums
of the Riemann zeta function on arithmetic progressions
has also been motivated by phase portraits.

The phase portrait (or phase plot) of a meromorphic
function f : D → Ĉ visualizes f directly on its domain
D by color-coding its phase ψ := f/|f |. In Figure 1, the
standard hsv color scheme is used to encode the phase
of all points in a square (with the origin at its center),
which yields the phase portrait of f(z) = z.

For an introduction to phase plots and related
phase diagrams we refer to [Wegert and Semmler 11] and
[Wegert 10], respectively. Here we just point out that
meromorphic functions can be reconstructed from their
phase portraits uniquely up to a positive scaling factor.
Figure 2 shows the phase plot of the Riemann zeta func-
tion in the square −40 ≤ Re z ≤ 10, −2 ≤ Im z ≤ 48.

Visual inspection of the phase plot of ζ in the critical
strip almost immediately reveals a surprising “stochastic
periodicity” of the phase ψ = ζ/|ζ|. This is illustrated
in Figure 3, which shows 20 consecutive rectangles of
width 1 and height 20 from the critical strip, with a small
overlapping region between neighboring domains.

The eye–catching yellow diagonal stripes led us to the
conjecture that the phase plot of zeta in the critical strip
has a sort of stochastic period, and some heuristic argu-
ments suggest that its length equals 2π/ log 2. One option
to make this statement more precise is to study mean val-
ues of the phase on arithmetic progressions,

1
M

∑
0≤m<M

ζ(s+ imd)
|ζ(s+ imd)| . (1–2)

FIGURE 2. A phase portrait of the Riemann zeta func-
tion (color figure available online).

If the phase is randomly distributed (on the unit circle),
these mean values should be almost independent of the
choice of d and s for sufficiently large M . On the other
hand, a periodic color pattern should manifest itself in
the behavior of the mean values if d is in resonance with
the period.

The investigation of (1–2) seems to be a hard prob-
lem, and we decided to omit the normalization of the
summands, i.e., to investigate (1–1) instead of (1–2), hop-
ing that the latter sums reflect the behavior of the for-
mer. This is, in a sense, confirmed by Theorem 1.1. If
d = 2π/ log � with � ∈ Z and � ≥ 2, then there is indeed
an asymptotic periodicity of s �→ A(s, d,M) for large M .
Moreover, among all values of �, the strongest effect
comes from � = 2, which coincides with our observations.

2. PROOF OF THE MAIN THEOREM

In what follows, we consider d > 0 and s ∈ C with 0 <
σ := Re s < 1, t := Im s ≥ 0 as being fixed. The basic tool

FIGURE 3. Phase plots of the Riemann zeta function
along the critical strip (color figure available online).
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in proving Theorem 1.1 is the representation

ζ(s) =
x1−s

s− 1
+
∑
n≤x

n−s +O(x−σ ), (2–1)

valid for any s with 0 < σ ≤ 2 and x ≥ t/π (see [Ivić 85,
Theorem 1.8]). Note that the O(x−σ ) term is uniform
with respect to t and σ for |t| ≤ πx and 0 < σ0 ≤ σ ≤ 2.
Evaluating the sums (1–1) with the asymptotic formula
(2–1), we obtain

M ·A(s, d,M) =
∑

0≤m<M

x1−s−imd

s+ imd− 1
(2–2)

+
∑

0≤m<M

∑
n≤x

n−s−imd +O(Mx−σ ),

where x ≥ (t+ dM)/π. A straightforward estimate yields∣∣∣∣∣ ∑
0≤m<M

x1−s−imd

s+ imd− 1

∣∣∣∣∣ ≤ x1−σ
(

1
σ

+
∑

1≤m<M

1
t+md

)
= O

(
x1−σ logM

)
. (2–3)

In the next step we fix M,N ∈ N and study the double
sums

ΣN,M (s) :=
∑

1≤n≤N

∑
0≤m<M

n−s−imd. (2–4)

In order to estimate the inner sums, we introduce
∆ := d/(2π) and remark that n− i d = e2π i αn or n− i d =
e−2π i αn , where αn := ‖∆log n‖ denotes the distance of
∆ log n to the integers. Setting b := e1/∆, we have

αn = min
j∈Z

|j − ∆log n| = ∆min
j∈Z

∣∣ log(nb−j )
∣∣. (2–5)

The outer sum is split into three parts by grouping the
summands according to the values of αn . A positive in-
teger n is said to be special if it belongs to the set

S :=
{
n ∈ N : min

j∈Z
|n− bj | < 1

2

}
.

The remaining integers in N := N \ S are called normal.
The set S is the disjoint union of S0 and S+,

S0 := {n ∈ S : αn = 0}, S+ := {n ∈ S : αn > 0}.

Note that we always have 1 ∈ S0 . Further, S0 	= {1} if
and only if ∆ = k/ log l with k, l ∈ Z and l ≥ 2, i.e., d
belongs to the exceptional set

E :=
{
d ∈ R + : d =

2kπ
log l

, k, l ∈ Z, l ≥ 2
}
. (2–6)

According to the decomposition of N we have

ΣN,M (s) =
∑

1≤n ≤N
n ∈S0

∑
0≤m<M

· · · +
∑

1≤n ≤N
n ∈N

∑
0≤m<M

· · · (2–7)

+
∑

1≤n ≤N
n ∈S+

∑
0≤m<M

· · · .

The first sum extends over those integers n with αn = 0
and can be computed explicitly. If S0 = {1}, then∑

1≤n ≤N
n ∈S0

∑
0≤m<M

n−s−imd = M. (2–8)

If S0 	= {1}, we denote by � the smallest integer n with
n ≥ 2 and αn = 0. Then αn = 0 if and only if n = �j with
j ∈ N ∪ {0}. Hence, with J := �logN/ log �� + 1,∑

1≤n ≤N
n ∈S0

∑
0≤m<M

n−s−imd = M
∑

1≤n ≤N
α n = 0

n−s

= M
∑

0≤j≤J−1

�−js = M
1 − �−sJ

1 − �−s
(2–9)

=
M

1 − �−s
+O

(
MN−σ ).

The estimations of the second and the third sum in (2–7)
are based on the following lemma.

Lemma 2.1. Fix ∆ := d/(2π) and n ∈ N . If αn =
‖∆log n‖ 	= 0, then for all M ∈ N ,∣∣∣ ∑

0≤m<M

e− imd log n
∣∣∣ < 1

2αn
. (2–10)

Proof. Recall that e− i d log n = e±2π i αn . Since 0 <
2παn ≤ π,/break it follows that

∣∣1 − e±2π i αn
∣∣ ≥ 4αn ,

and thus∣∣∣ ∑
0≤m<M

e− imd log n
∣∣∣ = ∣∣∣ ∑

0≤m<M

e±2π imαn
∣∣∣

=
∣∣∣∣1 − e±2π iMα

1 − e±2π iαn

∣∣∣∣ < 2
4αn

.

The second sum in (2–7) is estimated using
Lemma 2.1,∣∣∣ ∑

1≤n ≤N
n ∈N

∑
0≤m<M

n−s−imd
∣∣∣ ≤ ∑

1≤n ≤N
n ∈N

1
2nσαn

. (2–11)

Since b = e1/∆ > 1, it follows that every nonnegative in-
teger n satisfies

bj − 1
2
≤ n < bj+1 − 1

2
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for some natural number j. We denote by k+
n and k−n the

nearest integers to n− bj and n− bj+1, respectively,

k+
n := �n− bj + 1/2�, k−n := �n− bj+1 + 1/2�.

Then

0 ≤ k+
n ≤ bj+1 − bj , bj − bj+1 − 1 ≤ k−n ≤ −1,

(2–12)

and n can be represented as

n = bj + k+
n + µn , n = bj+1 + k−n + νn , (2–13)

with −1/2 < µn , νn ≤ 1/2. To simplify notation we just
write µ, ν, k−, and k+, respectively. From (2–5) we infer
that αn log b is the minimum of the two numbers

∣∣∣∣log
(

1 +
µ+ k+

bj

)∣∣∣∣ , ∣∣∣∣log
(

1 +
ν + k−

bj+1

)∣∣∣∣ .
Now it follows from (2–12) that

− 1
2bj

≤ µ+ k+

bj
< b, − 1

2bj+1 <
ν + k−

bj+1 < 0,

and since | log(1 + x)| ≥ |x|/(1 + a) for −1 < x ≤ a, we
have

∣∣∣∣log
(

1 +
µ+ k+

bj

)∣∣∣∣ ≥ |µ+ k+ |
bj (1 + b)

≥ k+

2bj (1 + b)
≥ k+

4bj+1 ,∣∣∣∣log
(

1 +
ν + k−

bj+1

)∣∣∣∣ ≥ |ν + k−|
bj+1 ≥ |k−|

2bj+1 .

Consequently,

αn ≥ min{|k−n |, k+
n }

4bj+1 log b
. (2–14)

As n ∈ N runs through the interval
[
bj − 1/2, bj+1

−1/2
)
, k−n attains every integer in

[
bj − bj+1 − 1,−1] at

most once, and k+
n attains every integer in

[
1, bj+1 − bj ]

at most once.
Setting J := �logN/ log b� + 1 and using (2–11),

(2–14), and n ≥ bj − 1/2 ≥ bj /2, we estimate the sec-
ond sum on the right-hand side of (2–7) for all N ≥

max{3, b},∣∣∣ ∑
1≤n ≤N
n ∈N

∑
0≤m<M

n−s−imd
∣∣∣

≤
∑

1≤n ≤N
n ∈N

1
2nσαn

≤
∑

0≤j≤J

∑
1≤k<bj + 1

8bj+1 log b
bjσ k

≤ 8b log b
∑

0≤j<J
b(1−σ )j

∑
1≤k<bj + 1

1
k

(2–15)

≤ 8b log b
∑

0≤j<J
b(1−σ )j(1 + (j + 1) log b

)
≤ 8b log b
b1−σ − 1

(
bJ (1−σ )(J log b+ 1)

)
= O

(
N 1−σ logN

)
.

Before we study the last sum of (2–7) over n ∈ S+, we
summarize the results.

Lemma 2.2. Let d > 0, s = σ + i t 	= 1 with 0 < σ < 1 and
t ≥ 0, and set

ΣN,M (s) :=
∑

1≤n≤N

∑
0≤m<M

n−s−imd.

(i) If d does not belong to the exceptional set E defined
in (2–6), then

ΣN,M (s) = M +
∑

1≤n ≤N
n ∈S+

∑
0≤m<M

n−s−imd

+O
(
N 1−σ logN

)
.

(ii) If d ∈ E and � ≥ 2 is the smallest integer with d =
2kπ/ log �, then

ΣN,M (s) =
M

1 − �−s
+
∑

1≤n ≤N
n ∈S+

∑
0≤m<M

n−s−imd

+O
(
N−σ (M +N logN)

)
.

(iii) If d = 2π/ log � with � ∈ N and � ≥ 2, then

ΣN,M (s) =
M

1 − �−s
+O

(
N−σ (M +N logN)

)
.

Proof. The first two statements follow from (2–8), (2–9),
and (2–15). If d = 2π/�, then ∆ = 1/ log � and αn = 0 if
and only if n = �p for some p ∈ N . Moreover, if αn 	= 0,
then |n− �j | ≥ 1 for all j ∈ Z, i.e., S+ is void.

To complete the proof of Theorem 1.1 it suffices to
choose x = N = �Md+ t� and to apply the asymptotic
formula (2–1) to ζ(s+ imd). This yields (2–2), and the
desired result then follows from (2–3) and Lemma 2.2(iii).
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In the cases that are not covered by Theorem 1.1, the
behavior of the sum over n ∈ S+ is crucial. Again we have
the estimate∣∣∣ ∑

1≤n ≤N
n ∈S+

∑
0≤m<M

n−s−imd
∣∣∣ ≤ ∑

1≤n ≤N
n ∈S+

1
2nσαn

,

but even in the case that ∆ = k/ log � with k ≥ 2 (and
the smallest possible value of �), the sum on the right-
hand side is difficult to estimate. If, for example, there
exists a fixed value c such that 1 ≤ |nk − �j | ≤ c for an
infinite number of positive integers n and j, then

αn ∼ ∆
k

∣∣ log
(
1 ± c�−j

)∣∣ ∼ c∆
k

�−j ∼ c∆
k

nk .

Consequently, if the considered sum admits an estimate∑
1≤n ≤N
n ∈S+

1
2nσαn

≤ CNβ ,

then β ≥ k − σ, which is useless for k ≥ 2.

3. CONCLUDING REMARKS

The asymptotic formula of Theorem 1.1 holds in a wider
range, namely the right half-plane Re s > 0, provided
that no term of the arithmetic progression s+ imd is
identical to the pole of the zeta function at 1. Actually, in
the half-plane Re s > 1, where the zeta function is given
by an absolutely convergent Dirichlet series,

ζ(s) =
∞∑
n=1

1
ns
,

the asymptotic behavior of A(s, d,M) can be found quite
easily for all d in the exceptional set E. Using the same
notation as above, we have, for some positive integer N ,∑

0≤m<M

ζ(s+ imd)

= M
∑
n

n ∈S0

n−s +
{∑

n < N
n 	∈S0

+
∑
n ≥N
n 	∈S0

}
n−s

∑
0≤m<M

e− imd log n

= S1 + S2 + S3 ,

say. The first sum S1 yields the main term as in the proof
of Theorem 1.1. In view of Lemma 2.1, the sum over m in
S2 is bounded by 1/minn<N αn , and thus S2 is bounded
by some constant independent of M . For S3 we use the
trivial bound to obtain

S3 �M
∑
n≥N

n−Re s �MN 1−Re s .

Since Re s > 1, this implies

1
M

∑
0≤m<M

ζ(s+ imd) = C(s, d) + o(1) (3–1)

as M → ∞, where C(s, d) = (1 − �−s)−1 for d ∈ E, and
C(s, d) = 1 otherwise. For Re s = 1, the proof of Theorem
1.1 has to be modified in an obvious way.

As mentioned in the introduction, asymptotic formu-
las were obtained in [Good 78] for the second and fourth
moments of the zeta function on arbitrary vertical arith-
metic progressions for Re s > 1/2, for instance,

1
M

∑
0≤m<M

|ζ(σ + imd)|4 =
∞∑
n=1

d(n)2

n2σ + o(1)

as M → ∞, provided that d is not of the form
2πl(log m

n )−1 with integral l 	= 0 and positive integers
m 	= n. Here the coefficients of the Dirichlet series on
the right-hand side are defined by the divisor function
d(n) :=

∑
d|n 1; hence the series on the right does not

converge for σ = 1/2. Good’s approach yields asymptotic
formulas with remainder term if the common difference
d of the arithmetic progression is of special Diophantine
type. Applying the Cauchy–Schwarz inequality, we see
that the results of [Good 78] can be used to show that the
first moment A(s, d,M) is bounded as M → ∞ for every
value of d, provided that σ > 1/2 (and s+ imd 	= 1).

In contrast to Good’s results, Theorem 1.1 provides
an asymptotic formula for the whole critical strip 0 <
Re s < 1 for specific values of d.

REFERENCES

[Borwein et al. 07] P. Borwein, S. Choi, B. Rooney, and A.
Weirathmueller (editors). The Riemann Hypothesis. A re-
source for the Afficionado and Virtuoso Alike. Springer,
2007.

[Frankenhuijsen 05] M. van Frankenhuijsen. “Arithmetic Pro-
gressions of Zeros of the Riemann Zeta Function.” J.
Number Theor. 115 (2005), 360–370.

[Good 78] A. Good. “Diskrete Mittel für einige Zetafunktio-
nen.” J. Reine Angew. Math. 303/304 (1978), 51–73.

[Ivić 85] A. Ivić. The Riemann Zeta Function. John Wiley &
Sons, 1985.

[Putnam 54a] C. R. Putnam. “On the Non-periodicity of the
Zeros of the Riemann Zeta Function.” Amer. J. Math. 76
(1954), 97–99.



240 Experimental Mathematics, Vol. 21 (2012), No. 3

[Putnam 54b] C. R. Putnam. “Remarks on Periodic Sequen-
ces and the Riemann Zeta Function.” Amer. J. Math. 76
(1954), 828–830.

[Wegert 10] E. Wegert. “Phase Diagrams of Meromorphic
Functions.” Comput. Methods Funct. Theory 10:2 (2010),
639–661.

[Wegert and Semmler 11] E. Wegert and G. Semm-
ler. “Phase Plots of Complex Functions: A Jour-
ney in Illustration.” Notices of the AMS 58 (2011)
768–780.

Jörn Steuding, Department of Mathematics, Würzburg University, Am Hubland, 97 218 Würzburg, Germany
(steuding@mathematik.uni-wuerzburg.de)

Elias Wegert, Institute of Applied Analysis, TU Bergakademie Freiberg, 09596 Freiberg, Germany
(wegert@math.tu-freiberg.de)


