
Experimental Mathematics, 20(3):304–322, 2011
Copyright C© Taylor & Francis Group, LLC
ISSN: 1058-6458 print / 1944-950X online
DOI: 10.1080/10586458.2011.565240

Numerical Analysis of Nodal Sets for Eigenvalues of
Aharonov–Bohm Hamiltonians on the Square with
Application to Minimal Partitions
V. Bonnaillie-Noël and B. Helffer
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This paper is devoted to presenting numerical simulations and a
theoretical interpretation of results for determining the minimal
k-partitions of a domain � as considered in [Helffer et al. 09].
More precisely, using the double-covering approach introduced
by B. Helffer, M. and T. Hoffmann-Ostenhof, and M. Owen
and further developed for questions of isospectrality by the au-
thors in collaboration with T. Hoffmann-Ostenhof and S. Ter-
racini in [Helffer et al. 09, Bonnaillie-Noël et al. 09], we ana-
lyze the variation of the eigenvalues of the one-pole Aharonov–
Bohm Hamiltonian on the square and the nodal picture of
the associated eigenfunctions as a function of the pole. This
leads us to discover new candidates for minimal k-partitions
of the square with a specific topological type and without
any symmetric assumption, in contrast to our previous works
[Bonnaillie-Noël et al. 10, Bonnaillie-Noël et al. 09]. This illus-
trates also recent results of B. Noris and S. Terracini; see
[Noris and Terracini 10]. This finally supports or disproves con-
jectures for the minimal 3- and 5-partitions on the square.

1. INTRODUCTION

1.1. Minimal Partitions

For a given partition D of an open set Ω by k disjoint
open subsets Di , we consider

Λ(D) = max
i=1,...,k

λ(Di),

where λ(Di) is the ground-state energy of the Dirichlet
Laplacian on Di . We denote the infimum of Λ over all
k-partitions of Ω by

Lk (Ω) = inf
D∈Ok

Λ(D).

We look for minimal k-partitions, i.e. partitions D =
(D1 , . . . , Dk ) such that

Lk (Ω) = Λ(D).
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We recall that these minimal k-partitions, whose ex-
istence was proven in [Conti et al. 03, Conti et al. 05b,
Conti et al. 05a], share with nodal domains many prop-
erties of regularity, except that the number of half-lines
meeting (with equal angle) at critical points of their
boundary set can be odd [Helffer et al. 09]. Here by crit-
ical points we mean points that are at the intersection of
at least three distinct ∂Di ’s. Moreover, it was shown in
[Helffer et al. 09] that if all these numbers are even, then
the k-minimal partition indeed consists of the k-nodal
domains of some eigenfunction of the Dirichlet Lapla-
cian in Ω.

In [Bonnaillie-Noël et al. 10], we combined results of
[Helffer et al. 09] and [Helffer et al. 10] with efficient nu-
merical computations to exhibit some candidates for min-
imal 3-partitions for the square, the disk, etc. This ap-
proach was based on the assumption that the minimal
3-partition should inherit from one of the symmetries of
the domain. This permits a reduction to a more stan-
dard spectral analysis and consequently can give only
symmetric candidates. Using two different symmetries of
the square, we get the surprise of finding two candidates
D1 and D2 with Λ(D1) = Λ(D2) (≈ 66.581) and give nu-
merical evidence that the unique critical point for these
partitions is at the center of the square. These candidates
are represented in Figure 1(a).

This leads naturally to questions of isospectrality,
which were solved using the Aharonov–Bohm Hamilto-
nian with a singularity at the center of the square; see
[Bonnaillie-Noël et al. 09]. This kind of argument also
appears in a similar context in [Levitin et al. 06] and
[Jakobson et al. 06]. Use of this operator could provide
new asymmetric candidates for the 3-minimal partition
(see Figure 1(b)), and it is one of the aims of this paper
to exhibit them.

1.2. Aharonov–Bohm Hamiltonian

Let us recall some definitions and results about
the Aharonov–Bohm Hamiltonian (ABX-Hamiltonian
for short) with a singularity at X introduced in
[Bonnaillie-Noël et al. 09, Helffer et al. 99] and moti-
vated by [Berger and Rubinstein 99]. We denote by X =
(x0 , y0) the coordinates of the pole and consider the mag-
netic potential with renormalized flux

Φ
2π

=
1
2

at X:

AX (x, y) = (AX
1 (x, y), AX

2 (x, y))

=
1
2

(
−y − y0

r2 ,
x − x0

r2

)
.

We know that the magnetic field vanishes identically in
Ω̇X . The ABX-Hamiltonian is defined by considering the
Friedrichs extension starting from C∞

0 (Ω̇X ), and the as-
sociated differential operator is

−∆AX := (Dx − AX
1 )2 + (Dy − AX

2 )2

with

Dx = −i∂x and Dy = −i∂y .

Let KX be the antilinear operator

KX = eiθX Γ,

with

(x − x0) + i(y − y0) =
√

|x − x0 |2 + |y − y0 |2eiθX ,

and Γ the complex conjugation operator Γu = ū. We say
that a function u is KX -real if it satisfies KX u = u. Then
the operator −∆AX preserves the KX -real functions, and
we can consider a basis of KX -real eigenfunctions. Hence
we analyze only the restriction of the ABX-Hamiltonian

FIGURE 1. Candidates for the minimal 3-partition of the square.
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to the KX -real space L2
KX

, where

L2
KX

(Ω̇X ) = {u ∈ L2(Ω̇X ) | KX u = u}.
It has been shown that the nodal set of such a KX -real
eigenfunction has the same structure as the nodal set of
an eigenfunction of the Laplacian, except that an odd
number of half-lines should meet at X. When no ambi-
guity exists, we sometimes omit the reference to X and
write more simply θ, K, L2

K , −∆A .

1.3. Main Goals

Although we will return to many of these points in the
next sections, let us comment on some of the difficulties
we met in this analysis.

As mentioned previously, we have proposed in
[Bonnaillie-Noël et al. 10] some symmetric candidates for
the minimal 3-partition. If we do not assume a priori
symmetries for a minimal 3-partition, a first method, in-
spired by [Bozorgnia 09], is to test the following iterative
method (see [Bonnaillie-Noël and Vial 07]):

Initialization. Let D0 = (D0
1 ,D0

2 ,D0
3 ) be a 3-partition

of Ω.

Iteration. For n ≥ 1, we define the partition Dn =
(Dn

1 ,Dn
2 ,Dn

3 ) by:

� Dn
1 = Dn−1

3 ,
� (Dn

2 ,Dn
3 ) is the nodal partition associated to the

second eigenvector of the Dirichlet Laplacian on
Int(Ω \ Dn

1 ).

If the algorithm converges to the partition D =
(D1 ,D2 ,D3), then Λ(D) = λ1(D1) = λ1(D2) = λ1(D3).
The results obtained in [Bonnaillie-Noël and Vial 07] are
at the moment puzzling. Depending on the initial data,
the accuracy, and the form of the domain, all possi-
ble situations occur: convergence to the candidate, no
convergence, convergence to a nonminimal 3-partition.
The case of the equilateral triangle is very strange. The
authors indeed obtain, for one of the models, conver-
gence to a three-partition whose energy is clearly above
the expected energy, whose singular point is at the cen-
ter of the symmetry, and that is not an eigenvalue of
the Aharonov–Bohm Hamiltonian. Another method, fol-
lowed by [Cybulski et al. 05], also looks interesting, but
the paper does not give enough details to permit an anal-
ysis of its efficiency.

In any case, admitting that there exists a perfectly
good iterative numerical method, it remains interesting

on the mathematical level to see that the obtained can-
didate for a minimal partition is (or is not) a nodal par-
tition for some Hamiltonian. We will return to this ques-
tion in the conclusion.

When working on this problem, we realized that we
get as a byproduct a nice illustration of the general ques-
tion of analyzing the deformations of the nodal sets and
the transition between different nodal structures when a
parameter is varied. There are actually very few theoret-
ical papers on this question, and we also explain the role
of the symmetries for solving some questions of avoided
crossings or effective crossings; see Section 5.3. This ques-
tion is very difficult to solve numerically.

We will push a numerical analysis associated with the
ABX-Hamiltonians with several goals:

� Illustrate the fact that the two symmetric candi-
dates (see Figure 1(a)) for minimal 3-partitions on
the square belong actually to a continuous family
of not necessarily symmetric candidates (see Fig-
ures 1(b) and 8).

� Check, by moving the pole X of the ABX-
Hamiltonian, the conjecture that the singular point
of the minimal 3-partition of the square is at the
center.

� Understand and illustrate the mecha-
nism of deformation of the nodal set, and
hence extend or guess, in connection with
[Noris and Terracini 10], some of the proper-
ties described in [Berger and Rubinstein 99] and
[Helffer et al. 99] for the ground-state energy (see
also [Alziary et al. 03]).

Finally, let us mention that an extended version of
this paper, with more computations, is available in
[Bonnaillie-Noël and Helffer 09]. We have chosen here to
focus on the most interesting phenomena.

1.4. Organization of the Paper

In Section 2, we explain how we implement the compu-
tations on the double covering of the punctured square.
In Section 3, we apply Courant’s theorem for comparing
the eigenvalues of the Dirichlet Laplacian on the square
to the Aharonov–Bohm eigenvalues associated with this
puncturing. Section 4 analyzes the dependence of the
eigenfunctions of the Dirichlet Laplacian on the double
covering with respect to the puncturing point. Section 5
is more specifically devoted to an analysis of the behavior
of the nodal sets and eigenvalues when the poles belong
respectively to the perpendicular bisector y = 1

2 and the
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diagonal y = x, which correspond to cases in which some
symmetry of the square is respected in the puncturing.
We treat also the case of the axis y = 1

4 + x
2 as an exam-

ple of a generic situation. Section 6 describes the possible
applications of our analysis of nodal sets to the research
of minimal partitions with a given topological type. We
conclude with a presentation of a conjecture motivated
by our computations.

2. NUMERICAL IMPLEMENTATION

The ABX-Hamiltonian has a singularity at the pole X,
and the eigenfunctions are complex-valued. For these rea-
sons, we prefer to deal with the Dirichlet Laplacian on
the double covering Ω̇R

X , whose eigenfunctions are real-
valued. Some of these eigenfunctions, which will be de-
scribed below, are directly related to the KX -real eigen-
functions of the ABX-Hamiltonian, as mentioned in
[Bonnaillie-Noël et al. 09, Section 6.3]. For the construc-
tion of the double covering, we choose a simple line γX

joining the pole to the boundary such that Ω \ γX is sim-
ply connected. This path makes it possible to go from one
sheet to the other.

The numerical results were realized using the Finite
Element Library Mélina [Martin 07]. The method is
completely standard, but the new idea is to work on the
double covering of a pointed domain. The computations
consist only of the determination of the eigenfunctions
of a Dirichlet Laplacian on a double covering domain.
Nevertheless, since we are interested in the nodal lines of
these eigenfunctions, computations have to be quite ac-
curate, and we chose the package Mélina, which permits
the implementation of high-order elements.

The main point of the numerical part consists in mesh-
ing the double covering Ω̇R

X of the punctured domain
Ω \ {X}. To do this, we use the two-dimensional mesh
generator Triangle [Shewchuk 05]. Let us explain in
more detail how we proceed.

Let Ω be the square [0, 1] × [0, 1] and X a point in[
0, 1

2

] × [
0, 1

2

]
. We start with meshing the domain Ω so

that (see Figure 2):

� the segment joining (0, 0) to the pole X, the dashed
line in Figure 2, does not go through any element
of the mesh;

� the segment [(0, 0); X] is the union of edges of an
even number of triangles;

� the pole X is the vertex of some triangles.

FIGURE 2. Mesh of the double covering Ω̇R
X .

This first mesh is essentially done for the first sheet,
and we repeat this mesh for the second sheet. To ob-
tain a mesh of the double covering Ω̇R

X , we choose as a
cutting line the segment γX = [(0, 0); X], and we have
to exchange the vertex along the segment [(0, 0); X] be-
tween the first and second sheets. Then we remove the
point X of the second sheet by equating it to the vertex
X of the first sheet. For the numerics, X will be chosen
on the lattice P =

{(
i

100 , j
100

) | 1 ≤ i, j ≤ 50
}

.
Theoretically, the eigenvalues and eigenfunctions de-

pend only on the pole and are independent of the cut
chosen for our construction. The introduction of the seg-
ment [(0, 0); X] is only a technical point, and we have
verified that the numerical computations of the eigen-
functions and eigenvalues are (with a rather good accu-
racy ≈ 10−3) independent of the choice of the line joining
the pole to the boundary, that is, the line between the
first and second sheets.1 The computed eigenvalues are
given throughout this paper within the value 5 · 10−4 .

In the following, we use a P 6 approximation with at
least 6000 elements. To detect the nodal lines, we use a
program realized by G. Vial. The idea is that it is very
easy to compute the zero set of linear functions. In our
case, we deal with a function that is piecewise P k and
given by a finite element method. We know the values of
this function at some points. As soon as we have these
values, we can replace this function by a new function
that is piecewise linear. For this, we introduce some new

1 Many computations corresponding to two different choices of
cutting lines are available on the web page http://w3.bretagne.
ens-cachan.fr/math/simulations/MinimalPartitions/covering.php
(see [Bonnaillie-Noël and Vial 07]).
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points by an interpolation method. Then we detect the
zero set of this new function.

3. A FEW THEORETICAL COMPARISON THEOREMS

3.1. Notation

We denote by Ω the square [0, 1] × [0, 1] and by C =( 1
2 , 1

2

)
the center of the square. We compute the eigen-

functions of the Laplacian on the double covering Ω̇R
X of

Ω̇X = Ω \ {X}. By a symmetry argument, it is enough
to consider X = (x0 , y0) in the quarter square

[
0, 1

2

] ×[
0, 1

2

]
.

There are two ways of labeling the eigenvalues: We
can label them in the standard way and then denote by
λk (Ω̇R

X ) the kth eigenvalue of the Dirichlet Laplacian on
Ω̇R

X . We can also take account of the symmetry relative
to the deck map DR

X , which associates with a given point
in the covering the distinct point with same projection
by the covering map πR

X of Ω̇R
X onto Ω̇X . This splits the

spectrum into two independent spectra relative to two
orthogonal spaces in L2(Ω̇R

X ).
The eigenvalues correspond either to

(1) eigenfunctions lifted from the eigenfunctions (of the
Dirichlet Laplacian)2 on the square by the covering
map (sometimes called DR

X -symmetric because they
are symmetric with respect to the deck map,

(2) or to eigenfunctions that are DR
X -antisymmetric with

respect to the deck map.

We also call them ABX-eigenvalues because they can
be seen as eigenvalues of an AB-Hamiltonian with a pole
X creating a renormalized flux equal to 1

2 . We use the
shorthand “ABX-Hamiltonian” if we want to make ex-
plicit the reference to the pole. We denote by λABX

j =

Eigenvalues of the Square (m, n)-Labeling Nodal Sets for φm n

λ1 (Ω) = 2π2 ≈ 19.739 (1, 1)

λ2 (Ω) = λ3 (Ω) = 5π2 ≈ 49.348 (2, 1) , (1, 2)

λ4 (Ω) = 8π2 ≈ 78.957 (2, 2)

λ5 (Ω) = λ6 (Ω) = 10π2 ≈ 98.696 (3, 1) , (1, 3)

λ7 (Ω) = λ8 (Ω) = 13π2 ≈ 128.305 (3, 2) , (2, 3)

TABLE 1. First eight eigenvalues of the Dirichlet Laplacian on Ω and nodal sets for the associated basis φm n .

2 We sometimes, for brevity, speak simply of the spectrum of the
square.

λAB
j (Ω̇X ) the jth eigenvalue of the AB-Hamiltonian with

pole at X.
In consequence, for any pole X and any integer k, the

eigenvalue λk (Ω̇R
X ) of the Dirichlet Laplacian on the dou-

ble covering is either an eigenvalue λj (Ω) of the square
or an eigenvalue λABX

j of the AB-Hamiltonian on Ω̇X

with pole at X.

3.2. Eigenvalues of the Square

The eigenvalues of the square are well known and given
by the double sequence π2(m2 + n2) with m ∈ N \ {0},
n ∈ N \ {0}, with corresponding basis of eigenfunctions
given by

Ω � (x, y) �→ φmn (x, y) := sin(mπx) sin(nπy).

Labeling the eigenvalues in increasing order leads to the
sequence denoted by λk (Ω), k ∈ N ∗. Table 1 gives the
first eight eigenvalues and the nodal set of the associ-
ated eigenfunctions belonging to the above basis. The
second, fifth, and seventh eigenvalues are double, and
consequently, it is also natural to look at the nodal sets of
linear combinations in order to determine all the possible
nodal configurations associated with this eigenvalue.

We note that the DR
X -symmetric spectrum of the

Dirichlet Laplacian on the double covering Ω̇R
X is the

spectrum of the square and is independent of the pole.
This is a consequence of the fact that the spectra of
the Dirichlet Laplacian in Ω and Ω̇X are the same, the
puncturing point being of capacity 0. So it is more the
ABX-spectrum that is of interest, because it depends
on the position of the pole. Nevertheless, the standard
labeling of all the eigenvalues on Ω̇R

X can play a role in
the application of Courant’s theorem. Of course, we have
λ1(Ω̇R

X ) = λ1(Ω).
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3.3. Theoretical Estimates of the Eigenvalues

This subsection is concerned with a comparison among
the spectrum on the square, the spectrum on the double
covering Ω̇R

X , and the ABX-spectrum. We propose
some equalities and upper bounds between the eigenval-
ues essentially based on the minimax principle and on
Courant’s nodal theorem, which is recalled now.

Theorem 3.1. Let k ≥ 1, λk (D) be the kth eigenvalue for
the Dirichlet Laplacian on D. Then any associated eigen-
function has at most k nodal domains.

We would also like to apply this theorem to the KX -
real eigenfunctions of the ABX-Hamiltonian on Ω̇X .
Equivalently, this corresponds to a Courant nodal the-
orem for the DR

X -antisymmetric eigenfunctions on Ω̇R
X ,

already discussed in [Bonnaillie-Noël et al. 09]. A combi-
nation of the Courant nodal theorem and the max–min
principle for the ABX-Hamiltonian leads to the follow-
ing proposition.

Proposition 3.2. Let X ∈ [
0, 1

2

] × [
0, 1

2

]
. Then

λ1(Ω) = λ1(Ω̇R
X ), λABX

1 = λ2(Ω̇R
X ), λABX

2 = λ3(Ω̇R
X ),
(3–1)

and for k = 2, 4, 5, 7, 9, 11, there exists an integer �k such
that

λABX
2 < λ2(Ω) = λ�2 (Ω̇R

X ) with �2 ≥ 4 (3–2)
(with multiplicity at least 2),

λABX
3 ≤ λ4(Ω) = λ�4 (Ω̇R

X ) with �4 ≥ 7, (3–3)

λ5(Ω) = λ�5 (Ω̇R
X ) with �5 ≥ 8, (3–4)

λABX
5 ≤ λ7(Ω) = λ�7 (Ω̇R

X ) with �7 ≥ 12, (3–5)

λ9(Ω) = λ�9 (Ω̇R
X ) with �9 ≥ 14, (3–6)

λABX
8 ≤ λ11(Ω) = λ�1 1 (Ω̇R

X ) with �11 ≥ 19. (3–7)

If X belongs to the perpendicular bisectors of the square,
we have more accurately the following:

�4 = �4(X) ≥ 8, (3–8)

λABX
6 ≤ λ7(Ω). (3–9)

Remark 3.3. The multiplicity of λ�(Ω) as an eigenvalue of
the Dirichlet Laplacian on Ω̇R

X is of course greater than or
equal to its multiplicity on Ω. This could make it possible
to improve some inequalities above when we can find for a
given pole, an eigenfunction u of the Dirichlet Laplacian
on Ω vanishing at the pole. The number of nodal domains
of the lifted symmetric function on the covering is then
2µ(u) instead of 2µ(u) − 1, where µ(u) is the number of

nodal domains of u. To find this eigenfunction could be
easier when the eigenspace is of higher dimension. This
appears, for example, for λ2(Ω).

Proof. Let us first prove (3–2). We first observe that
for any X ∈ [

0, 1
2

] × [
0, 1

2

]
, there exists an eigenfunc-

tion uX of the Dirichlet Laplacian associated with λ2(Ω)
and uX (X) = 0. We have just to look for uX of the
form uX = αφ1,2 + βφ2,1 with (α, β) �= (0, 0) satisfying
αφ1,2(X) + βφ2,1(X) = 0. By lifting on Ω̇R

X , this gives a
DR

X -symmetric eigenfunction uX ◦ πR
X for the Dirichlet

Laplacian on Ω̇R
X associated with λ2(Ω) and with four

nodal domains. Hence by Courant’s theorem, λ2(Ω) =
λ�2 (Ω̇R

X ) with �2 ≥ 4. To establish the first inequal-
ity in (3–2), we consider the functions max(uX , 0) and
max(−uX , 0), which span a two-dimensional space in the
form domain of the ABX-Hamiltonian for which the en-
ergy is less than λ2(Ω). We can conclude the proof by the
minimax principle. It is easy to see that the inequality is
strict. Hence at this stage we also get (3–2).

Let us now prove (3–3). Using the three functions ob-
tained by restriction to one nodal domain of the function
φ2,2 (then extended by 0) that does not contain X, we
obtain a 3-dimensional space of functions in the form do-
main of the ABX-Hamiltonian for which the energy is
less than λ4(Ω) (or a 4-dimensional space if X is on the
perpendicular bisector of the side of the square because
in this case, we can get a 4-dimensional space; see Re-
mark 3.3). We then conclude the proof by the minimax
principle. The relation with λ�4 (Ω̇R

X ) is an application of
Courant’s nodal theorem using the function φ2,2 ◦ πR

X .
Relation (3–4) is a consequence of (3–3). For (3–5), we

can use the function φ3,2 , which has at least five nodal
domains not containing X. For X on the perpendicular
bisector, we get (3–9).

The function φ4,1 has at least three nodal domains not
containing X. Using (3–5) and the multiplicity of λ9(Ω),
we obtain (3–6). Using the function φ3,3 , which has at
least eight nodal domains not containing X, we deduce
(3–7).

The lower bound for �7 , �9 , and �11 results immedi-
ately from the upper bounds of λABX

5 by λ7(Ω) (hence
by λ9(Ω)) and of λABX

8 by λ11(Ω) established in (3–5)
and (3–7).

Lemma 3.4. The nodal set of the second KX -real eigen-
function uABX

2 consists of one line joining the pole X to
the boundary.

Proof. We know from [Helffer et al. 99] that a piecewise
regular line in the nodal set should join the pole X to
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the boundary. Another piece in the nodal set should nec-
essarily create an additional nodal domain that will lead
to λ2 ≤ λABX

2 , in contradiction to (3–2).

The inequality λABX
1 ≥ λ1(Ω) is of course a particular

case of the diamagnetic inequality. We will observe in the
figures that the situation is much more complicated for
excited states. Except in the case of additional symme-
tries, where some monotonicity will be proven, we have
no theoretical results.

Remark 3.5. We will see in Figures 11, 12, and 16 that the
upper bounds (3–2), (3–3), and (3–5) in Proposition 3.2
for the ABX-eigenvalues are optimal in the sense that
we can find a pole such that the upper bound is false
with a smaller eigenvalue of the square.

4. BEHAVIOR OF THE EIGENVALUES ON THE
DOUBLE COVERING OF THE PUNCTURED
SQUARE WHEN MOVING THE POLE

In this section, we begin to discuss the influence of the
location of the puncturing point X (or pole) on the topo-
logical structure of the nodal set of the first eigenfunc-
tions.

4.1. Behavior When the Pole Tends to the Boundary

It was announced in [Noris and Terracini 10] that the
kth ABX-eigenvalue of the punctured square tends to
the kth eigenvalue of the Dirichlet Laplacian on the
square as the pole tends to the boundary (see also
[Hillairet and Judge 10] for related results). Also estab-
lished in [Noris and Terracini 10] is the continuity with
respect to a pole, and the authors prove that X �→ λABX

k

is of class C1 if λABX
k is simple.

Because after a translation by X, we get a fixed op-
erator with moving regular boundary and fixed pole at
(0, 0), the regularity is actually easy. These results are
illustrated in Figures 3 through 7, which represent the
eigenvalues λk (Ω̇R

X ), k = 2, 3, 6, 7, according to the loca-
tion of the pole X ∈ P, and Table 2, which gives the first
12 eigenvalues of the Dirichlet Laplacian on Ω̇R

X for three
points X: one near the boundary, denoted by A; one at
the center, denoted by C; and one other, denoted by B.

4.2. Eigenvalues 2 to 5

We observe numerically, see Figure 3, that for X ∈ P,
the function X �→ λ2(Ω̇R

X ) has a global maximum, de-
noted by λmax

2 for X = C, and is minimal when X be-
longs to the boundary x = 0 or y = 0. This minimum

equals λ2(Ω). Moreover, we do not observe other critical
points in P. Looking at Figure 4, we observe numerically
that the function X �→ λ3(Ω̇R

X ) behaves conversely: it has
a global minimum, denoted by λmin

3 , for X = C, and the
maximum is reached at the boundary x = 0 or y = 0 and
equals λ3(Ω). We have monotonicity along lines joining a
point of the boundary to the center C. Furthermore, we
notice that λmax

2 = λmin
3 .

Figure 5 gives the eigenvalues and the nodal lines
of the eigenfunctions associated with the second and
third eigenvalues of the Dirichlet Laplacian on Ω̇R

X on
the first and second lines respectively. The jth column
corresponds to the domain Ω̇R

Xj
with Xj =

( 1
5 , j

10

)
, j =

1, . . . , 5. These figures are an illustration of the theory
of [Berger and Rubinstein 99] and [Helffer et al. 99]; see
also [Alziary et al. 03].

For the ground-state energy, we recover the theo-
rem of these authors that the nodal set is composed
of a line joining the pole to the boundary. We ob-
serve that the nodal line in the first case is choosing
a kind of minimal distance between the pole and the
boundary, whereas the nodal line in the second case
seems to choose a kind of maximal distance. We do
not have a rigorous explanation for this property ex-
cept that it should be related to the theorem proved in
[Berger and Rubinstein 99, Helffer et al. 99] that λABX

1
is the infimum over the Dirichlet eigenvalue of the Lapla-
cian in Ω \ γ, where γ is a regular path joining the pole X

to the boundary. We also recover the two last equations
in (3–1).

Using (3–2), we have proved that λ2(Ω) ≥ λ5(Ω̇R
X ). We

observe numerically (see also Figures 11 and 12 for poles
along a symmetry axis and Figure 16) that for any X ∈
P, we have

λ4(Ω̇R
X ) = λ5(Ω̇R

X ) = λ2(Ω). (4–1)

4.3. Eigenvalues 6 and 7

Computations show that the sixth eigenvalue λ6(Ω̇R
X ) is

minimal at the boundary and has a unique maximum
λmax

6 ≈ 66.581, attained for the pole at the center. We do
not observe other critical points. The seventh eigenvalue
λ7(Ω̇R

X ) is minimal when the pole is at the center, and its
minimum λmin

7 is equal to λmax
6 . When the pole is at the

center, the zero set of the sixth eigenfunction provides,
by projection, a candidate for a 3-partition, and λmax

6 is
the conjectured value for L3(Ω).

We observe that the seventh eigenvalue becomes
constant, equal to λmax

7 = λ4(Ω) = 8π2 , as a function
of the pole when the pole is close to the boundary.
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FIGURE 3. X �→ λ2 (Ω̇R
X ) for X ∈ P.

FIGURE 4. X �→ λ3 (Ω̇R
X ) for X ∈ P.

FIGURE 5. Nodal set for the eigenfunctions associated with λk (Ω̇R
X ), k = 2, 3, for poles X =

(
1
5 , j

10

)
, 1 ≤ j ≤ 5 (color

figure available online).
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FIGURE 6. λ6 (Ω̇R
X ), as a function of the pole X ∈ P.

FIGURE 7. λ7 (Ω̇R
X ), as a function of the pole X ∈ P.

FIGURE 8. Continuous family of 3-partitions with the same energy.
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n λn (Ω̇R
A ) λn (Ω̇R

B ) λn (Ω̇R
C )

1 19.739 19.739 19.739
2 19.739 20.269 33.528
3 49.348 49.325 33.534
4 49.348 49.348 49.348
5 49.348 49.348 49.348
6 49.348 51.480 66.581
7 78.957 78.957 66.581
8 78.957 79.536 78.957
9 98.696 98.658 98.696
10 98.696 98.696 98.696
11 98.696 98.696 111.910
12 98.696 102.647 111.910

TABLE 2. First 12 eigenvalues of the Dirichlet Laplacian on Ω̇R
A , Ω̇R

B , and Ω̇R
C , with A = ( 1

100 , 1
100 ), B = ( 1

10 , 2
5 ), C = ( 1

2 , 1
2 ).

This corresponds to a crossing when X approaches the
boundary between the spectrum of the square (i.e., the
DR

X -symmetric spectrum on the covering) and the X-
dependent ABX-spectrum (i.e., the DR

X -antisymmetric
spectrum on the covering Ω̇R

X ).
Applying relation (3–3), we have proved theoretically

that λ4(Ω) ≥ λ7(Ω̇R
X ). We observe numerically that this

relation is optimal in the sense that we have equality for
X close to the boundary.

Considering the linear combination of the eigenfunc-
tions u6 and u7 associated respectively with λ6(Ω̇R

C )
and λ7(Ω̇R

C ), with C =
( 1

2 , 1
2

)
, we can construct a fam-

ily of 3-partitions with the same energy. Figure 8 gives
the projection by πR

C of the nodal set for the functions
tu6 + (1 − t)u7 with t = k

8 , k = 0, . . . , 8.
It is interesting to consider whether we can prove the

numerically observed inequality

λABX
3 ≥ λ2(Ω). (4–2)

This is directly related to a conjecture proposed by
S. Terracini:3

Conjecture 4.1. Except at the center X = C =
( 1

2 , 1
2

)
,

λABX
3 is simple, and the corresponding nodal set of the

KX -real eigenfunction is the union of a line joining the
pole to the boundary and of another line joining two
points of the boundary.

3 Personal communication.

We note that if the conjecture is true, we will get (4–2)
by the minimax principle.

4.4. Eigenvalues 8 to 10

Figures 9 and 10 represent the numerical computations
of λ8(Ω̇R

X ) and λ9(Ω̇R
X ) for X ∈ P. We observe numeri-

cally that the function X �→ λ8(Ω̇R
X ) has a unique maxi-

mum denoted by λmax
8 at a point C1 on the diagonal and

X �→ λ9(Ω̇R
X ) reaches its unique minimum, λmin

9 , at this
point. We can recover this behavior in Figure 11, where
are drawn the eigenvalues for poles on the diagonal. Nu-
merically, λmax

8 = λmin
9 and we return to this equality in

Section 5, where we look at the nodal lines of the eigen-
functions associated with λ8(Ω̇R

X ) and λ9(Ω̇R
X ) and pre-

dict the existence of the point C1 ; see Figure 14(a).
According to (3–8), we have proved that λ8(Ω̇R

X ) ≤
λ7(Ω). This theoretical upper bound is rough, and the
numerics suggest that we have in fact the better bound
λ8(Ω̇R

X ) ≤ λ5(Ω). Moreover, C1 is singular for the maps
X �→ λ8(Ω̇R

X ) and λ9(Ω̇R
X ).

We observe numerically that for any X ∈ P, we have

λ10(Ω̇R
X ) = λ5(Ω).

What we have proven in (3–4) is weaker.

5. MOVING THE POLE ALONG THE SYMMETRY AXIS

5.1. Analysis of the Symmetries

Let us begin with some considerations about the ABX-
Hamiltonian on the X-punctured square, using the sym-
metry along the perpendicular bisector y = 1

2 or the
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FIGURE 9. X �→ λ8 (Ω̇R
X ) for X ∈ P.

FIGURE 10. X �→ λ9 (Ω̇R
X ) for X ∈ P.

diagonal y = x. We refer to [Bonnaillie-Noël et al. 09] for
more details. The square is invariant under the symme-
tries

σ1(x, y) = (x, 1 − y) and σ2(x, y) = (y, x).

We consider the antilinear operators

Σc
j = ΓΣj , j = 1, 2,

where Γ is the complex conjugation (Γu = u) and Σj is
associated with σj by the relations Σ1u(x, y) = u(x, 1 −
y) and Σ2u(x, y) = u(y, x).

We use the symmetry of the X-punctured square to
give an orthogonal decomposition of L2

K = L2
KX

:

L2
K = L2

K,Σ j
⊕ L2

K,a Σ j
,

where

L2
K,Σ j

= {u ∈ L2
K | Σc

j u = u}, (5–1)

L2
K,aΣ j

= {u ∈ L2
K | Σc

j u = −u}.
As established in [Bonnaillie-Noël et al. 09, Lemma 5.6],
we can prove that:
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if X =
(
x0 ,

1
2

)
:

� if u ∈ C∞(Ω̇X ) ∩ L2
K,Σ1

, then its nodal set
contains [0, x0 ] × { 1

2

}
,

� if u ∈ C∞(Ω̇X ) ∩ L2
K,aΣ1

, then its nodal set
contains [x0 , 1] × { 1

2

}
,

if X = (x0 , x0):

� if u ∈ C∞(Ω̇X ) ∩ L2
K,Σ2

, then the nodal set
of u contains {(x, x), 0 < x < x0},

� if u ∈ C∞(Ω̇X ) ∩ L2
K,aΣ2

, then the nodal
set of u contains {(x, x), x0 < x < 1}.

Dealing with a mixed Dirichlet–Neumann condition
on the half-domain, we deduce that the eigenvalues for
which the eigenfunctions are symmetric are increasing
with respect to x0 , whereas the eigenvalues for which
the eigenfunctions are antisymmetric are decreasing with
respect to x0 .

5.2. Spectral Variation

Figures 11 and 12 give the eigenvalues for poles along the
axes y = 1

2 and y = x respectively and 0 < x ≤ 1
2 . Poles

are denoted by X(x) =
(
x, 1

2

)
and X̌(x) = (x, x). The

below-mentioned symmetry (respectively antisymmetry)
is in this section with respect to Σc

j (see (5–1)) and de-
noted by Σj (respectively aΣj ) in the figures, where j = 1
when we consider poles X(x) and j = 2 for poles X̌(x).

Let us first mention some numerical observations avail-
able for these two configurations:

1. limx→0 λ
ABX (x)
k = λk (Ω) and limx→0 λ

ABX̌ (x)
k =

λk (Ω).

2. For any integer 0 ≤ k ≤ 3, λABC
2k+1 = λABC

2k+2 .

3. x �→ λ1(Ω̇R
X (x)) and x �→ λ1(Ω̇Ř

X (x)) equal λ1(Ω),
in accord with the theoretical result (3–1).

4. x �→ λ2(Ω̇R
X (x)) = λ

ABX (x)
1 and x �→

λ2(Ω̇Ř
X (x)) = λ

ABX̌ (x)
1 are strictly increas-

ing from
[
0, 1

2

]
onto [λ1(Ω), λABC

1 ] and the
eigenfunctions are symmetric. The equality
between λ2(Ω̇R

X ) and λABX
1 was proved in

(3–1).

5. x �→ λ3(Ω̇R
X (x)) = λ

ABX (x)
2 and x �→

λ3(Ω̇Ř
X (x)) = λ

ABX̌ (x)
2 are strictly decreas-

ing from
[
0, 1

2

]
onto [λABC

2 , λ2(Ω)] and the
eigenfunctions are antisymmetric. The equality
between λ3(Ω̇R

X ) and λABX
2 was proved in (3–1).

6. λ4(Ω̇R
X ) = λ5(Ω̇R

X ) = λ2(Ω), for X = X(x) or
X = X̌(x). This numerical observation is more
accurate than the theoretical result deduced
from (3–2): λ4(Ω̇R

X ) ≤ λ2(Ω). This relation
seems to be an equality for any X; see Sec-
tion 4.2.

7. x �→ λ6(Ω̇R
X (x)) = λ

ABX (x)
3 and x �→

λ6(Ω̇Ř
X (x)) = λ

ABX̌ (x)
3 are strictly increas-

ing from
[
0, 1

2

]
onto [λ3(Ω), λABC

3 ] and the
eigenfunctions are symmetric.

Once the symmetry is admitted, the monotonicity re-
sults directly in a domain monotonicity.

Let us now discuss properties specific to each symme-
try.

Spectral variation for poles along the axis y = 1
2 . We ob-

serve that when X(x) =
(
x, 1

2

)
, x �→ λ

ABX (x)
k is mono-

tonically increasing for k = 1, 3, 5, whereas it is decreas-
ing for k = 2, 4.

We introduce Aj = X(aj ), Bj = X(bj ), specific points
that can be seen in Figure 11. We observe the following
numerically:

(8a) x �→ λ7(Ω̇R
X (x)) = λ

ABX (x)
4 is strictly decreasing

from
[
0, 1

2

]
onto [λABC

4 , λ4(Ω)] and the eigenfunc-
tions are antisymmetric.

(9a) λ8(Ω̇R
X (x)) = λ4(Ω). We have proved in (3–8) that

λ8(Ω̇R
X (x)) ≤ λ4(Ω) and we observe that this upper

bound is actually an equality. We notice that there
is a gap between λ4(Ω) and λ5(Ω), where there is
no eigenvalue λk (Ω̇R

X ) for X on the perpendicu-
lar bisector. This observation is no longer true for
poles on the diagonal (see Figure 12).

(10a) λ9(Ω̇R
X (x)) = λ10(Ω̇R

X (x)) = λ5(Ω).

(11a) x �→ λ11(Ω̇R
X (x)) = λ

ABX (x)
5 is strictly increasing

from
[
0, 1

2

]
onto [λ5(Ω), λABC

5 ] and the eigenfunc-
tions are symmetric. This observation shows that
the theoretical upper bound λ11(Ω̇R

X ) ≤ λ7(Ω) de-
duced from (3–5) cannot be improved.

(12a) x �→ λ12(Ω̇R
X (x)) = λ

ABX (x)
6 is strictly increasing

from [0, a1 ] onto [λ6(Ω), λABA 1
6 ] and the eigenfunc-

tions are symmetric. It is strictly decreasing from[
a1 ,

1
2

]
onto [λABC

6 , λABA 1
6 ], and the eigenfunc-

tions are antisymmetric. This illustrates a theoreti-
cal result deduced from (3–9), λ12(Ω̇R

X (x)) ≤ λ7(Ω),
and shows that this result is optimal.
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FIGURE 11. Moving the pole along the axis y = 1
2 .

(13a) x �→ λ13(Ω̇R
X (x)) = λ

ABX (x)
7 is strictly decreasing

from [0, a1 ] onto [λ7(Ω), λABA 1
7 ], and the eigen-

functions are antisymmetric. It is strictly increas-
ing from

[
a1 ,

1
2

]
onto [λABC

7 , λABA 1
7 ], and the

eigenfunctions are symmetric. We observe then
that λ13(Ω̇R

X ) can be bounded from above by
λ7(Ω), whereas we have proved in (3–6) the up-
per bound by λ9(Ω).

(14a) λ14(Ω̇R
X (x)) equals λ8(Ω) on [0, b1 ]. It equals

λ
ABX (x)
8 on

[
b1 ,

1
2

]
and is strictly decreasing from[

b1 ,
1
2

]
onto [λABC

8 , λ8(Ω)] with antisymmetric
eigenfunctions.

(15a) λ15(Ω̇R
X (x)) = λ8(Ω).

Spectral variation for poles along the axis y = x. Fig-
ure 12 gives the eigenvalues for poles along the diagonal
line of the square x = y with 0 < x ≤ 1

2 .
We introduce Cj = X̌(cj ), Dj = X̌(dj ), specific cross-

ing points appearing in the figure. Then, we observe the
following:

(8b) x �→ λ7(Ω̇Ř
X (x)) equals λ4(Ω) on [0, d1 ] and

λ
ABX̌ (x)
4 on

[
d1 ,

1
2

]
, where it is strictly decreasing

onto [λABC
4 , λ4(Ω)] and the eigenfunctions are an-

tisymmetric. These numerical computations show
that the theoretical estimate λ7(Ω̇R

X ) ≤ λ4(Ω) de-
duced from (3–3) is optimal.

(9b) λ8(Ω̇Ř
X (x)) equals λ

ABX̌ (x)
4 on [0, d1 ] and λ4(Ω)

on
[
d1 ,

1
2

]
. It is strictly increasing from [0, c1 ]

onto [λ4(Ω), λ4(Ω̇R
C1

)] with symmetric eigenfunc-
tions and strictly decreasing from [c1 , d1 ] onto
[λ4(Ω), λ4(Ω̇R

C1
)] with antisymmetric eigenfunc-

tions. This illustrates that (3–4) is optimal.

(10b) λ9(Ω̇Ř
X (x)) equals λ

ABX̌ (x)
5 on [0, d2 ] and λ5(Ω)

on
[
d2 ,

1
2

]
. It is strictly decreasing from [0, c1 ]

onto [λ4(Ω̇R
C1

), λ5(Ω)] with antisymmetric eigen-
functions and strictly increasing from [c1 , d1 ] onto
[λ4(Ω̇R

C1
), λ5(Ω)] with symmetric eigenfunctions.

(11b) λ10(Ω̇Ř
X (x)) = λ5(Ω) .

(l2b) x �→ λ11(Ω̇Ř
X (x)) equals λ5(Ω) on [0, d2 ] and

λ
ABX̌ (x)
5 on

[
d2 ,

1
2

]
, where it is strictly increasing



Bonnaillie-Noël and Helffer: Numerical Analysis of Nodal Sets for Eigenvalues of Aharonov–Bohm Hamiltonians on the Square 317

FIGURE 12. Moving the poles on the diagonal.

onto [λ5(Ω), λABC
5 ] and the eigenfunctions are

symmetric. This illustrates the fact that relation
(3–5) is optimal.

(13b) x �→ λ12(Ω̇Ř
X (x)) = λ

ABX̌ (x)
6 is strictly increasing

from [0, c2 ] onto [λ6(Ω), λABC2
6 ] and the eigenfunc-

tions are symmetric. It is strictly decreasing from[
c2 ,

1
2

]
onto [λABC

6 , λABC2
6 ] and the eigenfunctions

are antisymmetric.

(14b) x �→ λ13(Ω̇Ř
X (x)) = λ

ABX̌ (x)
7 is strictly decreasing

from [0, c2 ] onto [λ7(Ω), λABC2
7 ] and the eigen-

functions are antisymmetric. It is strictly increas-
ing from

[
c2 ,

1
2

]
onto [λABC

7 , λABC2
7 ] and the

eigenfunctions are symmetric. We then observe
λ13(Ω̇Ř

X (x)) ≤ λ7(Ω), whereas we have proved the
weaker upper bound by λ9(Ω) in (3–6).

(15b) λ14(Ω̇Ř
X (x)) equals λ7(Ω) on [0, d3 ]. It equals

λ
ABX̌ (x)
8 on

[
d3 ,

1
2

]
and is strictly decreasing from[

d3 ,
1
2

]
onto [λABC

8 , λ8(Ω)] with antisymmetric
eigenfunctions.

(16b) λ15(Ω̇Ř
X (x)) = λ8(Ω).

5.3. Exchange of Symmetry and Crossing Points

In moving the pole on one bisector or one diagonal, and
for each eigenvalue of multiplicity 1, the correspond-
ing KX -real eigenfunction should be either symmetric
or antisymmetric with respect to Σc

j . Figure 11 suggests
that there exist two poles A1 =

(
a1 ,

1
2

)
and A2 =

(
a2 ,

1
2

)
on the perpendicular bisector such that λ12(Ω̇R

A 1
) and

λ16(Ω̇R
A 2

) are eigenvalues of multiplicity 2. Taking the
Aharonov–Bohm point of view, this corresponds to a
crossing between λ

ABX (x)
6 and λ

ABX (x)
7 for x = a1 , with

a1 ∈ ] 42
100 , 43

100

[
, and to a crossing between λ

ABX (x)
8 and

λ
ABX (x)
9 at x = a2 , with a2 ∈ ] 28

100 , 29
100

[
. The nodal sets

of the corresponding eigenfunctions are given in Fig-
ure 13. The first line gives the eigenvalues λABX

6 , λABX
8

and the associated nodal sets, and the second line λABX
7 ,

λABX
9 and the corresponding nodal set for X along the

perpendicular bisector and close to A1 , A2 .
Figure 12 suggests that there are three points, C1 , C2 ,

and C3 , on the diagonal such that λ8(Ω̇R
C1

), λ12(Ω̇R
C2

),
and λ16(Ω̇R

C3
) are eigenvalues of multiplicity 2. This cor-

responds to a crossing between λ
ABX̌ (x)
4 and λ

ABX̌ (x)
5

at x = c1 , with c1 ∈ ] 28
100 , 29

100

[
. Similarly, there is a
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FIGURE 13. Change of symmetry on the nodal sets associated with λ
ABX (x )
k (color figure available online).

FIGURE 14. Nodal set for the eigenfunctions associated with λABX
k (color figure available online).

FIGURE 15. Nodal set for the fifth eigenfunction of the AB-Hamiltonian with poles X =
(

i
100 , 1

2

)
, i =

1, 7, 30, 42, 43, 44, 45, 49 (color figure available online).

crossing between λ
ABX̌ (x)
6 and λ

ABX̌ (x)
7 at x = c2 , with

c2 ∈ ] 36
100 , 37

100

[
, and also between λ

ABX̌ (x)
8 and λ

ABX̌ (x)
9

at x = c3 , with c3 ∈ ] 23
100 , 24

100

[
. The nodal sets of the cor-

responding eigenfunctions are given in Figure 14.
Looking at Figures 13 and 14, we can verify that there

exists an exchange of symmetry4 predicting the existence
of the points Aj and Cj .

4 Look at the horizontal or diagonal nodal line joining the pole to
the boundary!

5.4. Nodal Deformation: An Example

Figure 15 gives the deformation mechanism for the nodal
set associated with the fifth eigenvalue of the ABX-
Hamiltonian for poles X =

(
i

100 , 1
2

)
, 1 ≤ i ≤ 50, on the

perpendicular bisector of one side of the square. Between
the fourth and fifth subfigures, we have a nodal structure
where there are two double points at the boundary.

5.5. Moving the Pole without Respecting the
Symmetries of the Square

Figure 16 gives the eigenvalues λk (Ω̇R
X ) for 1 ≤ k ≤ 12

when the pole X belongs to the line y = 1
4 + x

2 . We
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FIGURE 16. Moving the pole along the axis y = 1
4 + x

2 , 0 ≤ x ≤ 1
2 .

choose this axis to exhibit a case without symmetry, and
we observe that the AB-eigenvalues λABX

k are no longer
monotone with respect to x when X =

(
x, 1

4 + x
2

)
.

The result should be the same for any arbitrary line
(except the perpendicular bisector and the diagonal). We
choose to present the simulations for this line, because
this line contains enough points in P to use the previous
numerical computations.

It would be interesting to make computations for a
finer grid of X =

(
x, 1

4 + x
2

)
for x around 0.44 to detect

possible crossings between λABX
5 , λABX

6 , and λABX
7 .

6. NODAL SETS AND MINIMAL PARTITIONS

The analysis of λABX
5 and λABX

6 leads us to guess nu-
merically the existence of a double eigenvalue when X

is the center. As for the pairs λABX
3 and λABX

4 , which
lead us to the family of candidates for the minimal 3-
partitions of the square (see Section 4.3), we are led to
produce a candidate for a minimal 5-partition for the
square, with the property that it is minimal inside the
class of 5-partitions that can be lifted to Ω̇R

C .

Although λABC
5 = λ11(Ω̇R

C ) is not Courant-sharp5 for
the Dirichlet Laplacian on Ω̇R

C , we observe that it is
Courant-sharp for the ABC-Hamiltonian.

This time, neither numerics nor theory gives the ex-
istence of a continuous family of 5-partitions. Actually,
one knows from elementary results on the perturbation
of harmonic polynomials of order 2 that the perpendic-
ular crossing of two lines will generically disappear by
perturbation.

In the unit ball of the 2-dimensional eigenspace of
λ11(Ω̇R

C ) we find only four eigenfunctions, leading to four
distinct configurations whose projection on one sheet
has five domains. These eigenfunctions are symmetric or
antisymmetric with respect to one of the four bisectors
of the square (see Figure 17). The other configurations
seem to have (see below) four symmetric (for the deck
map) pairs of domains. Looking at the linear combi-
nation tu11 + (1 − t)u12 of the eigenfunction associated
with λ11(Ω̇R

C ) and λ12(Ω̇R
C ), we observe in Figure 17 that

5 The index is 11 and not 10.
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FIGURE 17. Nodal sets of the linear combination of u11 and u12 tu11 + (1 − t)u12 with t =
1

200 (0, 25, 55, 96, 125, 138, 175, 194, 200).

FIGURE 18. Dirichlet-Neumann problem on one-eighth
of the square.

FIGURE 19. Three candidates for the 5-partition of the
square.

FIGURE 20. Two candidates for the 5-partition of the
disk.

the triple point is very unstable and appears only for
t ≈ 96

200 and t ≈ 194
200 when we consider 0 ≤ t ≤ 1.

Of course it is interesting to compare with what
can be obtained by looking at other topological types
for the minimal 5-partitions. We recall that these
types can be classified using Euler’s formula (see
[Helffer and Hoffmann-Ostenhof 10] for the case of 3-
partitions). Inspired by [Cybulski et al. 05], we look for a

partition that has the symmetries of the square and four
critical points. We get two types of models, and using
the symmetries, we can reduce to a Dirichlet–Neumann
problem on a triangle corresponding to one-eighth of the
square (see Figure 18, where we impose Neumann condi-
tions on dashed lines).

Moving the Neumann boundary on one side as in
[Bonnaillie-Noël et al. 10] leads to two candidates. Nu-
merical computations demonstrate a lower energy in
one case, which coincides with one of the pictures in
[Cybulski et al. 05] (see Figure 19).

Remark 6.1. Note that in the case of the disk a similar
analysis leads to a different answer. The partition of the
disk by five half-rays with equal angles has a lower energy
than the minimal 5-partition with four singular points
(see Figure 20). We note that on the basis of standard
computations (see, for example, [Helffer et al. 09, (A1)
and (A5)]) this energy corresponds to the eleventh eigen-
value of the Dirichlet problem on the double covering on
the punctured disk (hence is not Courant-sharp) but cor-
responds to the fifth eigenvalue of the Aharonov–Bohm
spectrum on the punctured disk at the center. Hence it is
Courant-sharp in the sense developed in [Helffer et al. 10]
(for the sphere), and it shows the minimality of this 5-
partition inside the class of the 5-partitions of the disk
having a unique critical point that is, in addition, at the
center.

7. CONCLUSION

We have explored rather systematically how minimal par-
titions can be obtained by looking at nodal domains of
a problem on the double covering of a punctured square.
We have analyzed the behavior of the nodal set in moving
the pole in the square. This has permitted us to confirm
the status of the “main” candidate for some 3-partitions
in the case of the square. This has also permitted us to
exhibit a natural candidate for a minimal 5-partition that
finally appears to be less favorable than another partition
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with four critical points. This is a starting point for a pro-
gram that can be developed in at least two directions:

� analyze other domains,
� do the same work by considering the double cov-

ering of a multipunctured domain and moving the
poles.

This program is related to the following conjecture.

Conjecture 7.1. Let Ω be a simply connected open set of
R 2 . Then

Lk (Ω) = inf
�∈N

inf
X 1 ,...,X�

LAB
k (Ω̇X 1 ,...,X�

).

Here, for � distinct points X = (X1 , . . . , X�) in Ω,
LAB

k (ΩX 1 ,...,X�
) is defined as follows. First we can ex-

tend our construction of an Aharonov–Bohm Hamilto-
nian in the case of a configuration with � points (putting
a (renormalized) flux 1

2 at each of these points). We
can also construct (see [Helffer et al. 99]) the antilinear
operator KX and consider the KX -real eigenfunctions.
Here LAB

k (Ω̇X 1 ,...,X�
) denotes the smallest eigenvalue of

the AB-(X1 , . . . , X�) Hamiltonian for which there is an
eigenfunction with k-nodal domains.

Let us present a few examples to illustrate the conjec-
ture. When k = 2, there is no need to consider punctured
Ω’s. The infimum is obtained for � = 0. When k = 3, it is
possible to show that it is enough to minimize over � = 0,
� = 1, and � = 2. In the case of the disk and the square,
it is proven that the infimum cannot be for � = 0, and
we conjecture that the infimum is for � = 1 and attained
for the punctured domain at the center. For k = 5, in the
case of the square, it seems that the infimum is for � = 4
and for � = 1 in the case of the disk.

Let us explain very briefly why this conjecture is nat-
ural. Considering a minimal k-partition, we denote by
X1 , . . . , X� the critical points of the partition correspond-
ing to an odd number of intersecting half-lines. Then
we suspect that Lk (Ω) = λAB

k (Ω̇X 1 ,...,X�
) (Courant-sharp

situation). Conversely, any family of nodal domains of
an Aharonov–Bohm operator on Ω̇X 1 ,...,X�

correspond-
ing to LAB

k gives a k-partition. Using Euler’s formula,
see [Helffer and Hoffmann-Ostenhof 10], we obtain eas-
ily that the maximal number of critical points with an
odd number of intersecting half-lines � is bounded from
above by 2k − 3.

In other words, when the minimal partition is not
nodal, we conjecture that it is actually the projection

of a nodal partition of a suitable eigenfunction on the
double covering for a suitable puncturing X.
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(2009), 101–138.

[Helffer et al. 10] B. Helffer, T. Hoffmann-Ostenhof, and
S. Terracini. “On Spectral Minimal Partitions: The
Case of the Sphere.” Around the Research of Vladimir
Maz’ya III, International Math. Series 13 (2010), 153–
178.

[Hillairet and Judge 10] L. Hillairet and C. Judge. “The
Eigenvalues of the Laplacian on Domains with Small
Slits.” Trans. Amer. Math. Soc. 362:12 (2010), 6231–
6259.

[Jakobson et al. 06] D. Jakobson, M. Levitin, N. Nadirashvili,
and I. Polterovich. “Spectral Problems with Mixed
Dirichlet–Neumann Boundary Conditions: Isospectrality
and Beyond.” J. Comput. Appl. Math. 194:1 (2006), 141–
155.

[Levitin et al. 06] M. Levitin, L. Parnovski, and I. Polterovich.
“Isospectral Domains with Mixed Boundary Conditions.”
J. Phys. A 39:9 (2006), 2073–2082.

[Martin 07] D. Martin. “Mélina, bibliothèque de cal-
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