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We show that the edge graph of a 6-dimensional polytope with
12 facets has diameter at most 6, thus verifying the d-step con-
jecture of Klee and Walkup in the case d = 6. This implies that
for all pairs (d, n) with n − d ≤ 6, the diameter of the edge graph
of a d-polytope with n facets is bounded by 6, which proves
the Hirsch conjecture for all n − d ≤ 6. We prove this result by
establishing this bound for a more general structure, so-called
matroid polytopes, by reduction to a small number of satisfiabil-
ity problems.

1. INTRODUCTION

It is a longstanding open problem to determine the maxi-
mal diameter ∆(d, n) of a d-dimensional polytope with n

facets. Not much is known even in small dimensions. The
Hirsch conjecture states that ∆(d, n) ≤ n − d. The spe-
cial case ∆(d, 2d) ≤ d is known as the d-step conjecture.
Proving the d-step conjecture for a fixed d implies (by
an argument in [Klee and Walkup 67]) that the Hirsch
conjecture holds for all pairs (n′, d′) with n′ − d′ = d. To
date, the d-step conjecture has been proved for all d ≤ 5
by Klee and Walkup.

We show that the d-step conjecture is true in dimen-
sion 6 as well. We derive this result by considering a
more general class of objects, namely matroid polytopes,
i.e., oriented matroids, which, if realizable, correspond to
convex polytopes. We show that no 6-dimensional ma-
troid polytope with 12 vertices and a shortcut-free facet
path of length 7 exists. Then ∆(6, 12) = 6 follows by con-
sidering polarity and the already known bounds.

To show that ∆(6, 12) ≤ 6, we first give combinatorial
conditions for matroid polytopes that violate this bound.
This is achieved through the study of path complexes (cf.
Section 2). We then show that these conditions cannot be
satisfied by an oriented matroid. To prove this, we use a
satisfiability solver to produce the desired contradiction
(see Section 3). We will use the same method to show
that ∆(4, 11) = 6, which settles another special case of
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n − d

d 4 5 6 7
4 4 5 5 {6, 7}
5 4 5 6 [7, 9]
6 4 5 {6, 7} [7, 9]
7 4 5 {6 , 7} [7, 10]

TABLE 1. Bounds on ∆(d, n) known before the work described
in this article. The values printed in italics follow from obser-
vation (iv) of Lemma 1.1.

the Hirsch conjecture. The latter result allows us also to
improve the upper bound on ∆(5, 12) from 9 to 8.

For small parameters there are known general bounds
that allow us to compute or at least bound the diam-
eter of polytopes. We summarize them in the following
lemma. For an overview of the known bounds, we refer
to the books [Grünbaum 03, Ziegler 95] and the survey
[Klee and Kleinschmidt 87].

Lemma 1.1. [Klee 64, Klee and Walkup 67, Holt 04] The
following relations hold for the maximal diameter ∆(d, n)
of a d-polytope with n facets:

(i) ∆(3, n) =
⌊ 2

3 n
⌋− 1.

(ii) ∆(d, 2d + k) ≤ ∆(d − 1, 2d + k − 1) + � k
2 � + 1 for

all d and k = 0, 1, 2, 3.

(iii) ∆(d, n) ≤ ∆(n − d, 2(n − d)) for all (d, n).

(iv) ∆(d, n) = ∆(n − d, 2(n − d)) for all (d, n) with n ≤
2d.

(v) ∆(d, n) ≥ n − d for all n > d ≥ 7

Apart from these general results, some special cases
have been solved in [Goodey 72]:

Lemma 1.2. [Goodey 72] The following relations hold for
the maximal diameter ∆(d, n) of a d-polytope with n
facets:

(i) ∆(4, 10) = 5 and ∆(5, 11) = 6.

(ii) ∆(6, 13) ≤ 9 and ∆(7, 14) ≤ 10.

Table 1 summarizes the bounds on ∆(d, n) that follow
from Lemmas 1.1 and 1.2. The values printed in italics
follow from observation (iv) of Lemma 1.1. The results
in this article make it possible to strengthen the bounds;
we give an overview in Table 2.

It is not difficult to see (e.g., by a perturbation argu-
ment) that ∆(d, n) is always attained by a simple poly-

n − d

d 4 5 6 7
4 4 5 5 6
5 4 5 6 {7, 8}
6 4 5 6 [7, 9]
7 4 5 6 [7, 10]

TABLE 2. Summary of bounds for ∆(d, n). The bold entries
are from the computations described in this article.

tope. Thus, it is sufficient for our purposes to restrict our
attention to this class of polytopes. It will also be use-
ful to investigate the problem in a polar setting. Thus,
we will be looking at d-dimensional simplicial polytopes
with n vertices. In this setting ∆(d, n) is just the maximal
length of a shortest facet path in the polytope.

The rest of this article is organized as follows: We
will first explain the notion of path complexes (combi-
natorial generalizations of facet paths). It will turn out
that in the cases we are interested in, there are many
fewer relevant types of path complexes than of simplicial
polytopes. We then outline the method that allows us to
transform each of the resulting (non)realizability prob-
lems into an (un)satisfiability problem. The generation
of a particular set of constraints—the forbidden short-
cuts constraints—is derived in a dedicated section. We
conclude with a discussion of possible extensions of our
approach.

2. PATH COMPLEXES

In this section we outline a combinatorial model for the
facet paths of simplicial polytopes: path complexes. Since
we are proving our main result by making a case distinc-
tion whereby each candidate path complex needs to be
investigated, it is important to restrict the number of
cases we need to deal with. We adopt the terminology of
[Bremner et al. 05]. We also mention several propositions
from the same source; for the most part we repeat proofs
here to make this article self-contained.

Recall that in a pure simplicial complex of dimension
d − 1, the 0, d − 1, and d − 2 simplices are called respec-
tively vertices, facets, and ridges. The generalization of a
facet path in this setting is a path complex : a pure sim-
plicial complex whose dual graph (with facets as nodes
and ridges shared by two facets as edges) is a path.

We will use the path complex given in Figure 1 as a
running example.

It is known [Klee and Walkup 67] that when n ≥ 2d,
the maximum diameter of an (n, d)-polytope is always re-
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FIGURE 1. Example of a path complex; canon-
ical representation 〈1, 2, 1, 3, 1〉; pivot sequence
(1, 4), (2, 5), (4, 6), (3, 7), (6, 8); restricted growth string
1, 1, 2, 1.

alized by some end-disjoint path (i.e., one whose end ver-
tices do not share a facet). We thus assume that the start
and end facets of all path complexes considered here are
vertex disjoint; we sometimes call such complexes end-
disjoint path complexes to emphasize this feature. It will
be convenient to discuss directed path complexes with a
fixed ordering on the facets. Each undirected path com-
plex corresponds to at most two directed path complexes.

We fix notation for path complexes as follows. Let
F be a (d − 1)-dimensional directed path complex with
facets F0 , . . . , Fk . Without loss of generality, we fix F0 =
{ 1, . . . , d }.

From the definition of a path complex, we know that
Fj , j > 0, can be obtained from Fj−1 by a pivot (lj , ej ),
where Fj = Fj−1 \ { lj } ∪ { ej }. A path complex is thus
encoded by a pivot sequence (l1 , e1), (l2 , e2), . . . , (lk , ek ).
The pivot sequence of the path complex in Figure 1, for
instance, is given by (1, 4), (2, 5), (4, 6), (3, 7), (6, 8).

A revisit occurs when a vertex leaves Fp and reen-
ters in Fq . A nonrevisiting path complex is thus one in
which no entering vertex ej is equal to leaving vertex lk ;
equivalently, | ∪k

j=0 Fj | = d + k.
The path complex in Figure 1 is nonrevisiting. An ex-

ample of a path complex with one revisit can be found
in Figure 2.

In the case of a nonrevisiting path, we may give an
alternative representation for the pivot sequence that

is more convenient for computational purposes. Write
F0 , . . . , Fk as the rows of a d × (k + 1) table so that lj
and ej are in the same column. We call the list of col-
umn indices corresponding to pivots an index sequence
for the path complex. A basic property of index sequences
is that successive indices are distinct, since a repeated
index would cause three successive facets to intersect
in a ridge, which is impossible in a path complex (cf.
[Bremner et al. 05, Section 2.1]).

In our example (Figure 1), we have written the rows
of the table directly in each facet of the complex; the
column that is affected by the pivot is underlined. In this
case, we can read off the index sequence as 〈1, 2, 1, 3, 1〉.

Many path complexes with distinct pivot sequences
are actually symmetric copies of each other (i.e., isomor-
phic as simplicial complexes). We thus need a method
to remove symmetric copies of a path complex. One
way to do so would be to associate a colored graph
with each path complex and remove copies when these
graphs are isomorphic. Another way is to use explicit
rules to identify redundant complexes. We have imple-
mented the first way (using the graph isomorphism tool
nauty [McKay 05]). We will, however, describe only the
second approach in this article: in the cases described
here, the number of path complexes is small enough to
check the reduction directly using the relevant rules (see
the discussion in the following paragraph and Lemmas 2.2
and 5.1). We used the graph-isomorphism variant, how-
ever, to check the correctness of the resulting list of path
complexes.

There are at least two different kinds of symmetry of
a path complex to be considered. In the first case, we
may relabel the vertices of the initial simplex in d! ways.
This symmetry can be removed by insisting on a partic-
ular labeling. We call an index sequence whose column
indices occur in order, i.e., the vertex of F0 in column
c leaves before the vertex in column c + 1, a canonical
index sequence.

The second kind of symmetry to be considered is the
choice of initial facet. In general, the two choices may
lead to different canonical index sequences. For nonrevis-
iting paths, we simply keep the lexicographically smaller
canonical index sequence.

To give an example, we have provided the canonical
index sequences on three symbols of length 5 in Table 3.

If two nonrevisiting directed path complexes (with
the same dimension and number of elements) have the
same index sequence, then a compatible (i.e., inclusion-
preserving) labeling of the two complexes can be con-
structed inductively as follows. Start with a common la-
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Canonical Reverse Complex
〈1, 2, 1, 2, 3〉 〈1, 2, 3, 2, 3〉 {{1, 2, 3}, {2, 3, 4}, {3, 4, 5}, {3, 5, 6}, {3, 6, 7}, {6, 7, 8}}
〈1, 2, 1, 3, 1〉 〈1, 2, 1, 3, 1〉 {{1, 2, 3}, {2, 3, 4}, {3, 4, 5}, {3, 5, 6}, {5, 6, 7}, {5, 7, 8}}
〈1, 2, 1, 3, 2〉 〈1, 2, 3, 1, 3〉 {{1, 2, 3}, {2, 3, 4}, {3, 4, 5}, {3, 5, 6}, {5, 6, 7}, {6, 7, 8}}
〈1, 2, 3, 1, 2〉 〈1, 2, 3, 1, 2〉 {{1, 2, 3}, {2, 3, 4}, {3, 4, 5}, {4, 5, 6}, {5, 6, 7}, {6, 7, 8}}
〈1, 2, 3, 2, 1〉 〈1, 2, 3, 2, 1〉 {{1, 2, 3}, {2, 3, 4}, {3, 4, 5}, {4, 5, 6}, {4, 6, 7}, {6, 7, 8}}

TABLE 3. Canonical index sequences on three symbols of length 5 and the corresponding simplicial complexes. The second
column lists noncanonical index sequences for the same complex.

bel set for the initial facets. For each vertex that enters
according to the index sequence, choose a previously un-
used label.

On the other hand, if we have two isomorphic directed
path complexes, then a compatible labeling of vertices
labels the pivots in the same way. Consider the table
representation of the two (compatibly labeled) directed
path complexes (with columns canonically ordered by
first pivot). At least the first d rows of the two tables
are identical. Let j be the first step at which the index
sequences differ. Since the first j rows of the two tables
are identical, the two leaving labels are distinct, a con-
tradiction.

We will next sketch the enumeration of all paths with
at most one revisit as derived in [Bremner et al. 05]. The
authors’ first result concerns the number of directed non-
revisiting d-paths of length l. They show that this number
can be expressed as a Stirling number of the second kind;
we denote these numbers by

{
n
k

}
. The basic recurrence

of the Stirling numbers can then be used to give a re-
cursive algorithm for generating these paths. The proof
uses one intermediate structure: restricted growth strings,
i.e., k-ary strings whose symbols occur in order, and all k

symbols occur. Or put more formally: a restricted growth
string is a sequence e1 , . . . , en of symbols from {1, . . . , k}
that starts with e1 = 1 and has the property that for each
element ej , j > 1, the property ej = l holds only if there
exists an element ei with i < j such that ei = l − 1.

Lemma 2.1. [Bremner et al. 05] The number of directed
nonrevisiting d-paths of length l is

{
l−1
d−1

}
.

Sketch of the proof. We first argue that there is a bi-
jection between these directed nonrevisiting d-paths of
length l and restricted growth strings on d − 1 sym-
bols of length l − 1. The bijection between directed facet
paths and index sequences was discussed above. Here
we consider the correspondence between index sequences
and restricted growth strings. Given a canonical index
sequence p1 , . . . , pl , we can output a restricted growth

string s1 , . . . , sl−1 by setting s1 = 1 and sj−1 to the rank
of pj in { 1, . . . , d } \ pj−1 for j > 2. This transformation
is evidently a bijection.

The Stirling numbers of the second kind
{

n
k

}
count the

number of partitions of an n-element set into k nonempty
parts. The bijection between these partitions and re-
stricted growth strings of length n on k elements can
be given as follows. Let π = (πi)k

i=1 be a partition of
the n-element set with k parts. We may assume that
the k parts are ordered according to their minimal el-
ements, i.e., min π1 = 1 and minπi ≤ min πi+1 for all
i ∈ {1, . . . , k − 1}.

Then we can construct a restricted growth string
(ei)n

i=1 of length n on k elements by setting ei = j if
i ∈ πj . We omit the verification that this mapping is a
bijection.

In the case l = d + 1, the number of canonical index
sequences is

{
d

d−1

}
=
(
d
2

)
, since the partition of a d-set

into d − 1 parts is determined by what pair of elements
are grouped together. More directly, the canonical index
sequences are determined by the

(
d+1

2

)− d =
(
d
2

)
choices

of nonadjacent pairs of equal indices.
Single-revisit paths are generated from nonrevisiting

paths on one more vertex by identifying two vertices.
We represent this by partitioning the index sequence into
three possibly empty parts: the prefix, the loop, and the
suffix. The loop represents the actual revisit, where the
first pivot is the vertex in question leaving the facet and
the last pivot in the loop is the vertex returning to the
facet.

The following lemma gives two necessary conditions
for identifications of vertices of path complexes; thus we
do not omit any valid path complexes by pruning accord-
ing to them.

Lemma 2.2. [Bremner et al. 05] Let P |L|S be an index
sequence of a nonrevisiting path. Let us identify the first
and last elements of L. Then the following conditions are
necessary for the resulting complex to be an end-disjoint
path complex:
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FIGURE 2. Example of a single-revisit path complex.

(i) The loop L must contain at least three distinct sym-
bols.

(ii) Either the first symbol of L must appear in P or the
last symbol of L must appear in S.

Proof. The first condition prevents the creation of a new
ridge, which would violate the condition that the dual
graph is a path. The second condition makes sure that
the identified vertex is not on both the first and last
facets, which would violate end-disjointness. Note that
both disjuncts can hold, which just means that the iden-
tified vertex is on neither the first nor the last facet.

For revisiting paths, rather than keeping the lexico-
graphically smaller canonical index sequence, it seems to
be better to use a different symmetry-breaking strategy
that uses the second condition of Lemma 2.2.

Lemma 2.3. [Bremner et al. 05] Every combinatorial type
of end-disjoint single-revisit path has an encoding as an
index sequence without a revisit on the first facet.

Proof. Consider a path complex with an index sequence
π with an identification in the first facet. Since the path
complex is end-disjoint, π must not have an identification
in the last facet. Thus, the reverse index sequence has no
revisit on the first facet. Since both of these sequences
describe the same combinatorial type, we may choose the
latter.

As with Lemma 2.2, it is clear that the condition of
(the proof of) Lemma 2.3 is necessary, and we lose no
combinatorial types of path complexes in filtering by it.
Note that in general, our two symmetry-breaking strate-
gies for choice of an initial facet are incompatible, and we
must choose one. In the case of l = d + 1, insisting that
the first symbol of L be contained in P , along with the
restriction |L| ≥ 3, yields that the repeated symbol must

1 2 1 3 4 5 6
1 2 3 1 4 5 6
1 2 3 4 1 5 6
1 2 3 2 4 5 6
1 2 3 4 2 5 6
1 2 3 4 2 5 6

TABLE 4. Permissible canonical index sequences for a single
revisit, the case l = 7, d = 6.

1 2 (1 3 4) 5 6
1 2 (1 3 4 5) 6
1 2 (1 3 4 5 6)
1 2 3 (1 4 5) 6
1 2 3 (1 4 5 6)
1 2 3 4 (1 5 6)
1 2 3 (2 4 5) 6
1 2 3 (2 4 5 6)
1 2 3 4 (2 5 6)
1 2 3 4 (3 5 6)

TABLE 5. Canonical index sequences (with loops indicated) for
l = 7, d = 6.

be within the first d + 1 positions. Applying this restric-
tion for d = 6, we derive the canonical index sequences
in Table 4.

Since the start of L is fixed at the first repeated index,
the remaining choice is the end of L. Making loops of
length at least 3 yields the sequences of Table 5.

In Table 6 we have listed the pivot sequences for the
canonical index sequences of Table 5, i.e., possible path
complexes of length 7 for polytopes of dimension 6 on
12 vertices according to the results so far. We summarize
our discussion (and the previous bounds on ∆(6, 12)) in
the following proposition. We will give an algorithmic
way to prove that the necessary condition outlined in the
proposition is true. This is the topic of the next section.

Proposition 2.4. If none of the path complexes in Table 6
can be realized as a matroid polytope, then ∆(6, 12) = 6
holds.

3. GENERATION OF ORIENTED MATROIDS USING
SAT SOLVERS

To show that a given path complex cannot be completed
to a simplicial polytope, we prove the stronger statement
that it cannot be completed to a matroid polytope, i.e.,
there exists no oriented matroid with the given path com-
plex in its boundary.



234 Experimental Mathematics, Vol. 20 (2011), No. 3

(1, 7) (2, 8) (7, 9) (3, 10) (4, 7) (5, 11) (6, 12)
(1, 7) (2, 8) (7, 9) (3, 10) (4, 11) (5, 7) (6, 12)
(1, 7) (2, 8) (7, 9) (3, 10) (4, 11) (5, 12) (6, 7)
(1, 7) (2, 8) (3, 9) (7, 10) (4, 11) (5, 7) (6, 12)
(1, 7) (2, 8) (3, 9) (7, 10) (4, 11) (5, 12) (6, 7)
(1, 7) (2, 8) (3, 9) (4, 10) (7, 11) (5, 12) (6, 7)
(1, 7) (2, 8) (3, 9) (8, 10) (4, 11) (5, 8) (6, 12)
(1, 7) (2, 8) (3, 9) (8, 10) (4, 11) (5, 12) (6, 8)
(1, 7) (2, 8) (3, 9) (4, 10) (8, 11) (5, 12) (6, 8)
(1, 7) (2, 8) (3, 9) (4, 10) (9, 11) (5, 12) (6, 9)

TABLE 6. Possible pivot sequences in the (6, 12) case.

This section is devoted to defining oriented matroids
and explaining how the nonexistence of certain oriented
matroids (and consequently the nonexistence of certain
point sets) can be proved using SAT solvers.

The use of SAT solvers to generate oriented matroids
was first described in [Schewe 07] and [Schewe 10]. The
method used there is the basis for the approach outlined
in this section. In our computations we used the SAT
solver Minisat [Eén and Sörensson 03].

Oriented matroids have been used before to treat di-
ameter questions of polytopes; one reference that is par-
ticularly interesting is the thesis [Schuchert 95], where
among other things, the author confirms that ∆(4, 11) =
6 in the special case of neighborly matroid polytopes.

Oriented matroids are a combinatorial abstraction of
point configurations in R

d . We will use the chirotope
axioms of oriented matroids in the sequel; for further
axiom systems and proofs of equivalence we refer to
[Björner et al. 99, Chapter 3].

Since we are dealing only with simplicial polytopes,
we may always assume that our oriented matroids are
uniform, i.e., χ(b) �= 0 for all (d + 1)-sets b. This further
simplifies the axioms, so that we need to check the fol-
lowing axioms.

Definition 3.1. Let E = {1, . . . , n}, r ∈ N, and χ : Er →
{−1,+1}. We call M = (E,χ) a uniform oriented ma-
troid of rank r if the following conditions are satisfied:

(B1) The mapping χ is alternating.

(B2) For all σ ∈ ( n
r−2

)
and all subsets {x1 , . . . , x4} ⊆ E \

σ,

{χ(σ, x1 , x2)χ(σ, x3 , x4),−χ(σ, x1 , x3)χ(σ, x2 , x4),
χ(σ, x1 , x4)χ(σ, x2 , x3)} = {−1,+1}.

These relations can be seen as abstractions of
the Grassmann–Plücker relations on determinants
[Björner et al. 99].

We also need to express the fact that the path complex
we are given is in the boundary of the oriented matroid.
The fact that an ordered d-set F is a facet of the matroid
polytope can be expressed by enforcing that χ(F, e) have
the same sign for all e ∈ E \ F . We call an oriented ma-
troid every element of which is contained in a facet a
matroid polytope. Since the chirotope axioms are invari-
ant under negation, we may always assume that the sign
of one base is positive. Using the fact that the facet in-
cidence graph of the path complex is connected, we can
infer the signs of the other bases that contain a facet of
the path complex.

In the case n = 2d (we consider more-general situa-
tions below), end-disjointness implies that every point in
the oriented matroid must be on some facet of the input
path complex.

This property implies that we do not need to add ad-
ditional constraints enforcing convexity; the points of the
oriented matroid are already in convex position. To make
sure that the starting path complex is actually a geodesic
path in the boundary complex of the oriented matroid,
we need to forbid “shortcuts,” i.e., shorter paths that
connect the end facets of our starting path complex. To
enforce this, we need to ensure that for each such possible
shortcut, at least one facet is missing. The generation of
these shortcuts is the subject of the next section.

As mentioned above, we use the approach of
[Schewe 07, Schewe 10] to transform these conditions into
an instance of SAT. We introduce variables [b] for each
r-tuple b. The interpretation of these variables is that in
a satisfying assignment, [b] should be true if χ(b) = +. It
follows from condition (B1) that we will need only

(
n
d

)
of

these variables in the final SAT instance.
It turns out that axiom (B2) yields 16

(
n

r−2

)(
n−r+2

4

)
CNF constraints, which are shown in Table 7. For details
we refer to [Schewe 07, Schewe 10].

It remains to explain how to encode the facet path
and the forbidden shortcuts. Given a d-tuple F and an
ordering x1 , . . . , xn−d of the set X = {1, . . . , n} \ F , to
enforce that F is a facet we need to add the following
clauses: (

n−d−1∧
i=1

[F, xi ] ∨ ¬[F, xi+1]

)

∧
(

n−d−1∧
i=1

¬[F, xi ] ∨ [F, xi+1]

)
.
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GP (α, β, γ, δ, ε, ζ)
= (¬[α] ∨ ¬[β] ∨ ¬[γ] ∨ [δ] ∨ ¬[ε] ∨ ¬[ζ ])
∧ (¬[α] ∨ ¬[β] ∨ ¬[γ] ∨ [δ] ∨ [ε] ∨ [ζ ])
∧ (¬[α] ∨ ¬[β] ∨ [γ] ∨ ¬[δ] ∨ ¬[ε] ∨ ¬[ζ ])
∧ (¬[α] ∨ ¬[β] ∨ [γ] ∨ ¬[δ] ∨ [ε] ∨ [ζ ])
∧ (¬[α] ∨ [β] ∨ ¬[γ] ∨ ¬[δ] ∨ ¬[ε] ∨ [ζ ])
∧ (¬[α] ∨ [β] ∨ ¬[γ] ∨ ¬[δ] ∨ [ε] ∨ ¬[ζ ])
∧ (¬[α] ∨ [β] ∨ [γ] ∨ [δ] ∨ ¬[ε] ∨ [ζ ])
∧ (¬[α] ∨ [β] ∨ [γ] ∨ [δ] ∨ [ε] ∨ ¬[ζ ])
∧ ([α] ∨ ¬[β] ∨ ¬[γ] ∨ ¬[δ] ∨ ¬[ε] ∨ [ζ ])
∧ ([α] ∨ ¬[β] ∨ ¬[γ] ∨ ¬[δ] ∨ [ε] ∨ ¬[ζ ])
∧ ([α] ∨ ¬[β] ∨ [γ] ∨ [δ] ∨ ¬[ε] ∨ [ζ ])
∧ ([α] ∨ ¬[β] ∨ [γ] ∨ [δ] ∨ [ε] ∨ ¬[ζ ])
∧ ([α] ∨ [β] ∨ ¬[γ] ∨ [δ] ∨ ¬[ε] ∨ ¬[ζ ])
∧ ([α] ∨ [β] ∨ ¬[γ] ∨ [δ] ∨ [ε] ∨ [ζ ])
∧ ([α] ∨ [β] ∨ [γ] ∨ ¬[δ] ∨ ¬[ε] ∨ ¬[ζ ])
∧ ([α] ∨ [β] ∨ [γ] ∨ ¬[δ] ∨ [ε] ∨ [ζ])

TABLE 7. CNF constraints corresponding to a given σ,
x1 , . . . , x4 in axiom (B2). Each of α, . . . , ζ is a (d + 1)-set of
indices. [α] . . . [ζ ] are the corresponding SAT variables.

Here we use the convention that for a d-tuple F =
(f1 , . . . , fd), the variable [F, x] denotes the variable
[(f1 , . . . , fd , x)].

In order to enforce that some F ∈ F is not a facet,
we first construct constraints implied by all F ∈ F being
on the boundary, then negate them. Let τ(Y ) = (−1)k ,
where k transpositions are required to sort tuple Y .

Lemma 3.2. Let F = {F1 , F2 , . . . Fm } be a path complex.
For i > 1, let ei = Fi \ Fi−1 , li = Fi−1 \ Fi. Let σ1 = 1,
and for i > 1, let σi = τ(Fi−1 , ei)τ(Fi, li)σi−1 . If Fi and
Fi−1 are both facets, then

σiχ(Fi, x) = σi−1χ(Fi−1 , y), x �∈ Fi, y �∈ Fi−1 .

Proof. Suppose that Fi−1 and Fi are both facets, and let
x �∈ Fi , y �∈ Fi−1 , Ti = Fi ∪ Fi−1 . Then

χ(Fi−1 , ei)χ(Fi−1 , y) = χ(Fi, li)χ(Fi, x) = 1,
χ(Fi−1 , ei)χ(Fi, li) = τ(Fi−1 , ei)τ(Fi, li)χ(Ti)2

= τ(Fi−1 , ei)τ(Fi, li).

It follows that
τ(Fi−1 , ei)τ(Fi, li)χ(Fi, x) = χ(Fi−1 , y). (1)

The lemma now follows from the definition of σi and
(1):

σiχ(Fi, x) = σi−1τ(Fi−1 , ei)τ(Fi, li)χ(Fi, x)
= σi−1χ(Fi−1 , y).

From Lemma 3.2, it follows that to force path com-
plex F = {F1 , F2 , F3 , . . . , Fm } not to be entirely on the
boundary, it suffices that

{σjχ(Fj , x) | 1 ≤ j ≤ m,x /∈ Fj } = {+1,−1 }.

Let zi(x) be the CNF literal corresponding to σiχ(Fi, x).
Then the two corresponding CNF constraints are

( ∨
i∈{2,...,|F|−1}
x∈{1,...,n}\Fi

zi(x)

)
∧
( ∨

i∈{2,...,|F|−1}
x∈{1,...,n}\Fi

¬zi(x)

)
.

In our setting, we may assume that the first and last
elements of F are facets.

We get a large number of these clauses, and each of
them—on its own—is quite weak (since it contains many
literals). However, taken together, they lead to the de-
sired contradiction. We note that since we are looking
for a contradiction, it is not necessary to generate all of
these clauses.

4. SHORTCUTS

In the context of testing a k-step path complex ∆ =
F0 , . . . , Fk for geodesic (non)realizability, we call any
path complex (on the same set of vertices) from F0 to Fk

with fewer than k pivots a shortcut. Our general scheme
in establishing that a given path complex is not geodesi-
cally realizable is to find a set of shortcuts S and show
that no matroid polytope (and hence no convex polytope)
can contain ∆ but no element of S.

A path π = v0 , v1 , . . . , vk in a graph G is called
inclusion-minimal if no proper subset of {v0 , . . . , vk} is
a path from v0 to vk . Every inclusion-minimal path is
evidently simple, and every geodesic (shortest path) is
inclusion-minimal.

Lemma 4.1. The inclusion-minimal (s, t)-paths of length
k in a graph G are exactly π, t, where π is an inclusion-
minimal (s, t′)-path of length k − 1, t′ is a neighbor of t,
and no other v ∈ π is adjacent to t.

Proof. Let π = v0 , . . . , vk be an inclusion-minimal path of
length k. The path π′ = v0 , . . . , vk−1 must be inclusion-
minimal, for otherwise, π would also not be inclusion-
minimal. Similarly, if vk is adjacent to some vj , j < k − 1,
then π is not inclusion-minimal.

Suppose, on the other hand, we have an inclusion-
minimal path π′ = v0 , . . . , vk−1 such that vk is



236 Experimental Mathematics, Vol. 20 (2011), No. 3

adjacent to vk−1 , but not to any other vertex in
π′. Then π = v0 , . . . , vk is a path from v0 to vk , and if
this path is not inclusion-minimal, then a shortcut must
exist in π′, which is a contradiction.

From this lemma we can derive an algorithm that gen-
erates all the potential shortcuts for the given path com-
plex, taking as the graph G the so-called pivot graph,
whose nodes are d-sets and whose edges are pivots.

As we noted at the end of the previous section, we need
only find sufficient shortcuts such that every candidate
long facet path is shown to have at least one of them. We
therefore implemented a variant of the oriented matroid
search algorithm that finds shortcuts in a current candi-
date realization in the style of cutting-plane algorithms.
This is the algorithm we used to prove Proposition 2.4.
It yields nonrealizability for all cases in Table 6. Thus,
we get the following proposition, which, together with
Proposition 2.4, proves that ∆(6, 12) = 6.

Proposition 4.2. None of the path complexes of Table 6
can be realized as part of the boundary complex of a ma-
troid polytope.

5. THE CASE �(4, 11)

The method outlined in the sections above can also be
used to show that ∆(4, 11) = 6. The difference is the
generation of the path complexes. Since we can restrict
ourselves to end-disjoint paths, the number of revisits is
bounded by 3. The paths with up to one revisit can be
generated as outlined in Section 2.

Here we can use the symmetry-breaking methods out-
lined previously. The paths with two and three revisits
are generated similarly, but this time we get two (respec-
tively three) loops. Here we did not use any symmetry
reduction.

We need, however, an additional result from
[Bremner et al. 05].

Lemma 5.1. If ∆(d − 1, n − 1) < l − 1, then an index se-
quence of length l on d symbols in which (a) the symbol
1 appears uniquely at the beginning or in which (b) d ap-
pears uniquely at the end cannot correspond to a shortest
path.

Sketch of proof. Either of the given conditions means
that the corresponding nonrevisiting path complex con-
tains a common vertex on the last l − 1 facets in case (a)
and the first l − 1 facets in case (b).

# revisits # path complexes
0 35
1 185
2 354
3 96

TABLE 8. Number of path complexes after symmetry reduction
for the case (4, 11).

Note that the pruning of Lemma 5.1 takes place before
any identifications, but the condition of having a common
vertex in l − 1 facets is not changed by identifying ver-
tices. Further, note that Lemma 5.1 eliminates candidate
complexes only when we have a sufficiently strong bound
on ∆(d − 1, n − 1).

We can combine the results of this section to generate
a set of possible index sequences that satisfy all of the
given criteria. The number of path complexes generated
can be found in Table 8.

We can then use the methods outlined in Sections 3
and 4 to check that none of these path complexes can
be realized as part of a matroid polytope. One compli-
cation is that revisiting paths need not use all of the
vertices when n > 2d. Although it is relatively straight-
forward to add constraints to enforce that all points of
the oriented matroid be contained in some facet (see
[Bokowski et al. 09] for details), here we rely on the ob-
servation that any realization of a k-path that fails to
have all of the points on the boundary is also a realiza-
tion for fewer points. Since it is known [Goodey 72] that
for k ≤ 10, ∆(4, k) ≤ 5, we may ignore such a possibility.

6. CONCLUSION

The actual SAT computations took less than one hour
for each of the ten cases in the (6, 12) case on a regu-
lar desktop computer. However, the problems get more
difficult for higher parameters. The key parameter seems
to be n − d; so far, we have not been able to finish the
computations for the (5, 12) case in reasonable time, even
though they are in a lower dimension. In these cases, the
SAT solver can be made to produce an actual proof of
infeasibility. However, the produced proofs are too un-
wieldy to be checked manually.

To be able to finish our computation, it is crucial that
we do not rely on an explicit enumeration of all matroid
polytopes that attain a given bound. All neighborly ma-
troid polytopes of dimension 4 with 11 vertices are enu-
merated in [Schuchert 95]. Schuchert found 6 492 neigh-
borly matroid polytopes with these parameters having
diameter 6.
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For larger computations, the SAT problems become
considerably harder. However, it might be more interest-
ing to study the path complexes in more detail. It would
be potentially useful to give criteria that further reduce
the number of equivalence classes of path complexes to
be considered. However, the number of classes will prob-
ably still grow too fast to make dealing with cases with
much larger parameters feasible.

NOTE ADDED IN PROOF

Recently, Francisco Santos announced a 43-dimensional
counterexample to the d-step conjecture [Santos 10].
There remains a great deal of interest in the status of
the Hirsch conjecture in lower dimensions, and in whether
some polynomial bound on the diameter of convex poly-
topes holds in general.
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