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For many meta-Fibonacci sequences it is possible to identify a
partition of the sequence into successive intervals (sometimes
called blocks) with the property that the sequence behaves “sim-
ilarly” in each block. This partition provides insights into the
sequence properties. To date, for any given sequence, only ad
hoc methods have been available to identify this partition. We
apply a new concept—the spot-based generation sequence—to
derive a general methodology for identifying this partition for a
large class of meta-Fibonacci sequences. This class includes the
Conolly and Conway sequences and many of their well-behaved
variants, and even some highly chaotic sequences, such as Hof-
stadter’s famous Q-sequence.

1. INTRODUCTION

In this paper we explore certain properties of the solu-
tions to the recurrence relations in two very general fam-
ilies, both of which have received increasing attention
of late (see, for example, [Grytczuk 04, Isgur et al. 09,
Ruskey and Deugau 09] and the references cited therein).
The first of these recurrence families is defined as follows:
for a positive integer k > 1 and nonnegative integer pa-
rameters ap , bp , p = 1, . . . , k,

C(n) =
k∑

p=1

C(n − ap − C(n − bp)). (1–1)

We often abbreviate a recurrence in this family by
(a1 , b1 , a2 , b2 , . . . , ak , bk ). The second family of recurrence
relations is defined by

A(n) = A(n − Ak (n − 1)) + A(Ak (n − 1)), (1–2)

where k > 0 and Ak (n) means a k -fold composition of
the function A. For convenience, in our notation for both
recurrence families we suppress the parameter k from the
variable name. It will be evident from the context when
a specific value of k is intended.

The recurrence relations (1–1) and (1–2) are exam-
ples of meta-Fibonacci recurrences, which refers to the
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“self-referencing” nature of these recurrence relations. An
integer sequence is a meta-Fibonacci sequence if it is a so-
lution to a meta-Fibonacci recurrence. Many well-known
meta-Fibonacci recurrences, with specified initial condi-
tions, are special cases of the above two recurrence fami-
lies. Examples of (1–1) include Hofstadter’s Q-recurrence
(0, 1, 0, 2) [Hofstadter 79, Guy 04], the Conolly recurrence
(0, 1, 1, 2) [Conolly 89, Tanny 92], and the celebrated V-
recurrence (0, 1, 0, 4) [Balamohan et al. 07]. Two spe-
cial cases of (1–2) have been examined in detail. For
k = 1 this is the meta-Fibonacci recurrence variously at-
tributed to Conway, Hofstadter, and Newman (see [Kubo
and Vakil 96, Mallows 91, Newman 88] for more on this),
while the case k = 2 is explored in [Grytczuk 04].

For the last four of these examples (that is, excluding
the Q-recurrence), the solution with initial conditions all
set to 1 is completely understood. In particular, each of
the resulting sequences is monotonically increasing, with
the difference between successive terms always 0 or 1.
Following Ruskey, we call such a sequence slow-growing,
or slow. For each of these meta-Fibonacci sequences, and
indeed for many others (including the Q-sequence), it is
possible to identify a partition of the domain of the se-
quence into successive intervals (sometimes called blocks)
with the property that the sequence behaves roughly “in
the same way” in each block. See, for example, [Conolly
89, Mallows 91, Tanny 92, Balamohan et al. 07], where
the nature of the block structure has been character-
ized precisely for the slow-growing sequences mentioned
above.

In each case, the approach to identifying this par-
tition and what is meant precisely by behaves “in the
same way” varies from one sequence to the next; in all
cases, however, the basic idea is that there appears to
be a discernible pattern in the behavior of the sequence
that repeats in successive blocks. This property can also
be found in meta-Fibonacci sequences with much more
chaotic behavior; in [Pinn 99], the author provides con-
siderable experimental evidence for the existence of an
underlying block structure in Hofstadter’s Q-sequence.

In this paper we introduce an approach that formalizes
and unifies this heuristic notion of an underlying block
structure for a meta-Fibonacci sequence that is a solu-
tion to recurrence (1–1) or (1–2). In so doing we explicitly
connect the block structure to the form of the recurrence
and its parameters in an intuitive way. As a result, for
an arbitrary sequence defined by these recurrences, we
identify a partition that often appears to highlight im-
portant properties of the sequence for further considera-
tion. Such insight into the apparent block structure of a

yet unknown sequence can provide helpful guideposts for
developing conjectures and proofs.1

2. SPOT-BASED GENERATIONS

We define a homogeneous meta-Fibonacci recurrence to
be any recurrence of the form

T (n) =
k∑

p=1

T (Sp(n, T<n )). (2–1)

We refer to the function Sp(n, T<n ) as the pth spot
function; it depends on the index n and values of T (j)
for j < n, which we indicate by the symbol T<n . In
the homogeneous recurrence (1–1), the spot functions
are Sp(n,C<n ) = n − ap − C(n − bp) for 1 ≤ p ≤ k.
In the homogeneous recurrence (1–2), there are two
spot functions, namely S1(n,A<n ) = n − Ak (n − 1) and
S2(n,A<n ) = Ak (n − 1). For convenience and when
the context is clear, we often write Sp(n) in place of
Sp(n, T<n ).

To ensure that T (n) is defined by (2–1) for all n, we
require that for 1 ≤ p ≤ k, Sp(n) < n for all n follow-
ing the initial conditions. We assume that this holds for
the recurrences that we discuss.2 For each spot function
Sp(n), we define a new sequence by the recurrence

Mp(n) = Mp(Sp(n)) + 1 (2–2)

with initial conditions Mp(n) = 1 for n = 1, . . . , r, where
r is to be the same as the number of initial conditions
used in the definition of T (n).3

We call the sequence Mp(n) the generation sequence
for T (n) based on spot p.4 For g ≥ 1 we define the gth
generation with respect to the pth spot function to be
the set M−1

p ({g}), which we denote by Gp(g). For ease of
notation we may omit reference to the index p in Gp(g)
when the index p is clear from the context. The defini-
tion of Mp(n) is motivated by considering the index n
to be in the “next generation” of its pth spot ancestor
Sp(n), which itself is a member of a previous generation

1See, for example, [Callaghan et al. 05], where block structure in-
sights are used to help identify and formulate the appropriate ap-
proach and specific induction assumptions required to prove the
behavior of a family of sequences related to (1−1).
2If it fails, then for the smallest integer n for which it fails, we say
that the sequence terminates at index n.
3In general, this value of r will be greater than the minimum value
that is required by the specific nature of the recurrence (2–2); fur-
ther, this minimum value can differ for different values of p.
4We often refer to Mp (n) as the generation structure for T (n) based
on spot p, especially when we are considering the overall character-
istics of this sequence rather than the behavior of individual terms.
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with generation number Mp(Sp(n)). When there are two
spot functions, we call M1(n) the mother function and
M2(n) the father function (here we adapt terminology in-
troduced in [Pinn 99]). We call the generation sequences
that result from these spot functions the maternal and
paternal generation sequences, respectively. Similarly, the
gth generations in this case are called the gth maternal
and paternal generations, respectively.

It follows immediately from the recurrence (2–2) for
Mp and the initial conditions that the generation se-
quence begins at 1 and is onto either all of the positive
integers or an interval of the positive integers beginning
at 1. For fixed p, it is often the case that the gth gener-
ation Gp(g) is a finite interval of positive integers for all
g ≥ 1, and the generations partition the positive integers
into intervals. However, this is not always the case. We
discuss this, together with a variety of other issues, in the
following sections, where we apply our generation notion
to specific meta-Fibonacci sequences.

At this point an example may be helpful. In the nota-
tion we introduced above, the Conolly sequence (0, 1, 1, 2)
[Conolly 89] is given by

C(n) = C(n − C(n − 1)) + C(n − 1 − C(n − 2)),

with initial conditions C(1) = C(2) = 1. It is well known
that C(n) is slow, and that for each n, C(n) equals n
exactly ν2(2n) times, where ν2(n) is the highest power of
2 that divides n. The behavior of C(n) between successive
powers of 2 provided important insights for formulating
the original induction-based proofs of the properties of
C(n) (see [Tanny 92]).

The maternal generation sequence for C(n) is given as

M1(n) = M1(n − C(n − 1)) + 1

with M1(1) = M1(2) = 1. In the next section we prove
that M1(n), the maternal generation sequence of the
Conolly sequence, is slow-growing, and further, that

G1(g) = [2g−1 + 1, 2g ]

for all g ≥ 2. In this case the generation structure aligns
at successive powers of 2, exactly where the natural divi-
sion points for the “frequency” function ν2(2n) of C(n)
are observed to occur.

For any homogeneous meta-Fibonacci recurrence, we
define the beginning of the gth generation with re-
spect to Mp by αp(g) = min{n | n ∈ Gp(g)}. Similarly,
we define the end of the gth generation with respect to
Mp by βp(m) = max{n | n ∈ Gp(g)}, provided it exists.
When the context is clear we will drop the subscript p
from the notation. By definition, Gp(g) ⊆ [αp(g), βp(g)].

If Gp(g) �= [αp(g), βp(g)], we say that the gth gener-
ation Gp(g) is fragmented . Otherwise, when Gp(g) =
[αp(g), βp(g)] for all g ≥ 1, we say that the generational
structure with respect to Mp has an interval structure.
This is the case for the Conolly sequence above.

3. GENERATION SEQUENCES BASED ON
SLOW-GROWING SPOT SEQUENCES

For the recurrences (1–1) and (1–2) the spot sequences
are of the form S(n) = n − a − Tk (n − b) or S(n) =
Tk (n − b), respectively. These spot sequences will be
slow-growing if the original sequence itself is slow-
growing. For this reason we turn our attention to the
situation that the spot sequence Sp(n) in (2–1) is slow-
growing. In this case much can be deduced about the
generational structure of T (n) based on spot p.

Theorem 3.1. For the meta-Fibonacci sequence T (n) in
(2-1), if the spot function Sp(n) is slow-growing, then so
is the pth spot-based generation sequence Mp(n).

Proof: The proof is by induction on n. For the base case,
note that by the initial conditions in (2–2), M(n) = 1 for
1 ≤ n ≤ r. Let ∆M(n) = M(n + 1) − M(n); note that if
r > 1, then ∆M(1) = 0. If r = 1, then for T (2) to be well
defined, we must have Sp(2) = 1, from which it follows
that

∆M(1) = M(2) − M(1) = M(Sp(2)) − M(Sp(1))
= M(1) − M(1) = 0.

Thus, in all cases, ∆M(1) ∈ {0, 1}.
For n > 1, assume that ∆M(k) ∈ {0, 1} for all k < n.

Since Sp(i) is slow-growing, observe that

M(n + 1) = M(Sp(n + 1)) + 1 = M(Sp(n) + t) + 1,

where t = 0 or t = 1. Since T (n) is well defined, we must
have Sp(n) + t ≤ n. Thus, by the induction assumption,

M(Sp(n) + t) = M(Sp(n)) + j,

where j ∈ {0, 1}. It follows that

M(n + 1) = [M(Sp(n)) + 1] + j = M(n) + j,

from which we get that ∆M(n) = j ∈ {0, 1}. This com-
pletes the induction. �

Corollary 3.2. If Sp(n) is slow-growing, then the gen-
eration sequence of T (n) based on spot p is an inter-
val structure. Further, in this case, for g ≥ 1, βp(g) =
αp(g + 1) − 1.
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Proof: Since Mp(n) is slow-growing, for any g ≥ 1 there
are a minimum index αp(g) and a maximum index βp(g)
such that Mp(αp(g)) = Mp(βp(g)) = g. If Sp(n) becomes
constant, then for some g∗ we have βp(g∗) = ∞, and
thus there is only a finite number of generations. Other-
wise, for every g ≥ 1, Gp(g) = [αp(g), βp(g)] and βp(g) =
αp(g + 1) − 1. ��

For a slow-growing spot sequence Sp(n), there is an
elegant relation between this spot sequence and the gen-
eration sequence Mp(n) that it induces. By the definition
of αp(g + 1), we have that

g + 1 = Mp(αp(g + 1)) = Mp(Sp(αp(g + 1))) + 1.

So Sp(αp(g + 1)) ≥ αp(g), since αp(g) is the beginning of
generation g . To see that equality holds, assume the con-
trary, namely, that Sp(αp(g + 1)) > αp(g). Since Sp(n)
is slow-growing, there exists γ < αp(g + 1) such that
Sp(γ) = αp(g). But this implies that

Mp(γ) = Mp(Sp(γ)) + 1 = Mp(αp(g)) + 1 = g + 1,

which contradicts the definition of αp(g + 1). Thus,
Sp(αp(g + 1)) = αp(g).

Since Sp(n) is slow, Mp(n) is also slow. Thus, for ev-
ery g ≥ 1, βp(g) = αp(g + 1) − 1. By what we have just
shown, Sp(αp(g + 2)) = αp(g + 1), so using the fact that
Sp(n) is slow, we have that

Sp(βp(g + 1)) ∈ {αp(g + 1) − 1, αp(g + 1)}.
However, Sp(βp(g + 1)) = αp(g + 1) would imply that

Mp(βp(g + 1)) = Mp(αp(g + 1)) + 1 = g + 2.

This is a contradiction to the definition of βp(g + 1).
Thus,

Sp(βp(g + 1)) = αp(g + 1) − 1 = βp(g),

and we have proved the following result:

Theorem 3.3. Suppose that Sp(n) is a slow-growing spot
of T (n). Then for every g > 0, Sp(n) maps the (g + 1)th
generation onto the gth generation. That is, Sp(αp(g +
1)) = αp(g) and Sp(βp(g + 1)) = βp(g).

Any slow-growing spot Sp(n) of T (n) specifies a gen-
eration structure that is uniquely determined by the se-
quence of generation interval starting points αp(g) for all
positive integers g . If the recurrence for T (n) has r initial
conditions, then the starting points of the generations are
uniquely determined by the property that αp(2) = r + 1
and for all subsequent αp(g), g > 2, αp(g) is the smallest
number with the property that Sp(αp(g + 1)) = αp(g).

FIGURE 1. Graph of Conway sequence A(n) for 1 ≤ n ≤
1024.

We use this fact extensively in what follows, where we
compute the maternal generation structure for several
well-known slow-growing sequences. In so doing, we show
how our spot-based maternal generations are essentially
congruent to the block structures for these sequences that
are identified in an ad hoc way in the literature.

We begin with the Conway sequence and several of its
variants. The Conway sequence is defined by

A(n) = A(n − A(n − 1)) + A(A(n − 1)),

with A(1) = A(2) = 1. The graph of the Conway se-
quence in Figure 1 provides striking evidence of what
is usually meant by a block structure: a series of arcs be-
tween successive powers of 2 indicating that the behavior
of the sequence is essentially the same on these intervals
of the domain.

The interval [2m , 2m+1) has been termed the mth “oc-
tave” of the sequence [Conolly 89]. Various patterns in
the Conway sequence have been shown to persist from
one octave to the next. For example, A(2m ) = 2m−1 for
m ≥ 1; that is, the beginning of each octave is mapped
to the beginning of the previous one. Also, for m ≥ 2,
A(n) = 2m−1 for exactly the last m indices in the mth
octave, and A(n) ≥ n/2 with equality only when n is a
power of 2.

It is readily confirmed that the maternal generation
structure of A(n) conforms naturally to these octaves.

Proposition 3.4. For the Conway sequence, α1(g) =
2g−1 + 1 for g > 1.
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g 1 2 3 4 5 6 7 8 9 10

G1(g) [1, 2] [3, 4] [5, 8] [9, 16] [17, 32] [33, 64] [65, 128] [129, 256] [257, 512] [513, 1024]

TABLE 1. First ten maternal generations of the Conway Sequence.

Proof: We proceed by induction on g . The base case is
clear from Table 1. We use the fact that for g > 0,

A(2g ) = A(2g − 1) = 2g−1

[Kubo and Vakil 96]. Assume the proposition up to gen-
eration g . For g + 1 we have that

M(2g + 1) = M(2g + 1 − A(2g )) + 1.

Since A(2g ) = 2g−1 , we get 2g + 1 − A(2g ) = 2g−1 + 1.
By the induction hypothesis we have that α1(g) = 2g−1 +
1, and so

M(2g + 1) = M(α1(g)) + 1 = g + 1.

On the other hand, M(2g ) = M(2g − A(2g − 1)) + 1, and
since A(2g − 1) = 2g−1 , this implies

2g − A(2g − 1) = 2g−1 = α1(g) − 1.

Hence,

M(2g ) = M(α1(g) − 1) + 1 = g − 1 + 1 = g.

Since M(n) is slow, it follows that M(2g + 1) is the first
occurrence of g + 1, so α1(g + 1) = 2g + 1. This com-
pletes the induction. �

Next we show that an analogous result holds for the
Newman–Conway sequences (see [Newman 88]). These
sequences are defined by

fr (n) = fr (n − fr (n − 1)) + fr (fr (n − 1))

with initial conditions fr (i) = 1 for 1 ≤ i ≤ r + 1 and r ≥
1. Note that the Conway sequence corresponds to r = 1.
For any fixed r > 1, the following hold:

(1) The sequence fr (n) is slow-growing.

(2) Like that of the Conway sequence, the graph
of fr (n) consists of successive arcs that begin
and end at the “Fibonacci-type” numbers En de-
fined by En = En−1 + En−r , with initial condi-
tions Ei = 1 for 1 ≤ i ≤ r.

(3) These arcs identify a natural partition of the do-
main at the points En .

(4) For n > r, fr (En ) = fr (En − 1) = En−r (see
[Kleitman 91]).

As is the case for the Conway sequence, the ma-
ternal generations for the Newman–Conway sequences
create essentially this same partition of the domain.
More precisely, for g > 1, the maternal generation begins
at α1(g) = E2r+g−2 + 1. Clearly this holds for the sec-
ond generation, which starts at r + 2 = E2r + 1. By def-
inition, S1(En + 1) = En + 1 − fr (En ). Since fr (En ) =
En−r for n > r, we have that

S1(En + 1) = En − En−r + 1 = En−1 + 1

by the recurrence for En . But fr (En − 1) = En−r for n >

r, so we have that

S1(En ) = En − fr (En − 1) = En − En−r = En−1 .

By Theorem 3.3, S(α1(g + 1)) = α1(g), and α1(g + 1) is
the smallest number with this property. Since α1(2) =
E2r + 1, S(En ) = En−1 , and S(En + 1) > En , we can use
induction together with the discussion following Theorem
3.3 to deduce that α1(g) = E2r+g−2 + 1.

We conclude our consideration of Conway sequence
variants with the sequences defined by (1–2) for k >

1, and with initial conditions A(1) = A(2) = 1 (see
[Grytczuk 04]). For k = 2, Grytczuk proved that the re-
sulting sequence is slow-growing. He also showed that the
last occurrence of the Fibonacci number Fn in the se-
quence occurs at position Fn+1. This prompts Grytczuk
to observe that this sequence has a clearly identifi-
able block structure, in which the Fibonacci numbers
play a prominent role. He states, “This suggests to di-
vide A(n) into segments of the form [A(Fn + 1), A(Fn +
2), . . . , A(Fn+1)]” [Grytczuk 04, p. 149].

Once again, just as we found for the Conway and
Newman–Conway sequences, the maternal generation
structure for Grytczuk’s sequence matches the natural
block structure that he identified. In fact, even more is
true: an analogous result holds for (1–2) with any positive
k > 1 and the same initial conditions

A(1) = A(2) = 1.

We now outline the argument for this, which follows
the same lines as that given above.5 For any fixed k > 1
the sequence A(n) defined by (1–2) is slow-growing. For

5The interested reader may contact us for additional details.
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n > k, define En by En = En−1 + En−k , with initial con-
ditions Ei = 1 for 1 ≤ i ≤ k. Then for n > k, we can show
that A(En+1) = En , En+1 marks the last occurrence of
the value En , and Ak (En − 1) = En−k . It follows that
A(n) has a natural block structure whose division points
are at the points En .

Using these properties, we will show that the mater-
nal generations of A(n) based on the spot n − Ak (n − 1)
have an interval structure, where for g > 1 the gth gener-
ation begins at α1(g) = Ek+g−1 + 1. As such, the mater-
nal generation structure coincides with the block struc-
ture for A(n) that we just described. To see this, note first
that α1(2) = 3 = Ek+1 + 1. For g > 2, using the afore-
mentioned properties of A(n), we get

S1(Ek+g−1 + 1) = Ek+g−1 + 1 − Ak (Ek+g−1)
= Ek+g−1 − Eg−1 + 1
= Ek+g−2 + 1.

Also, we have that

S1(Ek+g−1) = Ek+g−1 − Ak (Ek+g−1 − 1)
= Ek+g−1 − Eg−1

= Ek+g−2 .

By the remarks immediately following Theorem 3.3, these
properties uniquely determine the start points for the
maternal generations. Thus, for g > 2, we have that
α1(g) = Ek+g−1 .

In our final example we show, as asserted in Section 2,
that the maternal generation sequence of the Conolly se-
quence C(n) discussed in Section 2 is slow-growing. Fur-
ther, for g > 1, G1(g) = [2g−1 + 1, 2g ], that is, the gth
maternal generation is a shift of 1 from the gth block
[2g−1 , 2g − 1] identified in [Conolly 89].

We want to show that for g > 1 we have α1(g) =
2g−1 + 1. Similar to our earlier arguments, since

C(n) = C(n − C(n − 1)) + C(n − 1 − C(n − 2)),

it suffices to verify that

S1(2g−1 + 1) = 2g−2 + 1 and S1(2g−1) = 2g−2 .

Since S1(n) = n − C(n − 1), these are equivalent to
C(2g ) = C(2g − 1) = 2g−1 , which is a well-known prop-
erty of the Conolly sequence (see, for example, [Tanny
92]). This completes the proof.

4. GENERATIONAL STRUCTURE FOR SELECTED
NONSLOW SEQUENCES

Based on our initial experimental evidence, we believe
that an analysis of generation structures can provide use-

n

1 2 3 4 5 6 7 8 9 10

µ(n + 0) 1 1 1 2 2 2 3 3 4 4
µ(n + 10) 4 5 5 6 7 7 7 8 8 8
µ(n + 20) 9 9 10 11 11 11 13 12 14 13
µ(n + 30) 14 15 15 15 16 16 16 17 17 18
µ(n + 40) 19 19 19 21 20 22 21 22 24 24

TABLE 2. First 50 terms of µ(n).

ful insights for sequences with more erratic behavior than
that of the slow-growing sequences addressed in the pre-
vious section. For example, a sequence of interest is µ(n)
generated by the recurrence (1, 2, 2, 1) with three initial
conditions all equal to 1:

µ(n) = µ(n − 1 − µ(n − 2)) + µ(n − 2 − µ(n − 1)),
µ(1) = µ(2) = µ(3) = 1. (4–1)

Table 2 contains the first 50 values of µ(n). The se-
quence µ(n) is neither slow-growing nor monotonic. It is
not even known whether µ(n) is defined for all positive
integers n, that is, whether n − 2 − µ(n − 1) > 0 for all
integers n ≥ 4.

At the same time, an examination of the first 106 terms
of µ(n) indicates that the sequence appears to have many
regularities. For example, µ(n) hits every power of 2 ex-
actly three times, and for each power of 2, the three oc-
currences are for consecutive arguments. Each of these
runs of 2k is also preceded by at least two consecutive
occurrences of 2k − 1 and succeeded by precisely two oc-
currences of 2k + 1 (see Table 2 for examples of this be-
havior). Additional regularities are evident in the graph
of µ(n): the graph alternately widens and narrows, and
the general appearances on each interval, defined by suc-
cessive narrowing of the sequence, are similar (see Fig-
ure 2). The narrowing of µ(n) occurs where the sequence
takes on the values of a power of 2. The lengths of these
successive intervals double, as does the amplitude of the
variation about the trend line of the graph.

It is fascinating that the maternal generation struc-
ture for the first 106 terms of µ(n) corresponds precisely
to the intervals identified from the graph. Based on our
experimental evidence we conjecture the following:

Conjecture 4.1. The sequence µ(n) is defined for all pos-
itive integers n. The maternal generation sequence of
µ(n) is slow-growing. For each g ≥ 3, the gth maternal
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FIGURE 2. Graph of µ(n) for 1 ≤ n ≤ 106 . (Figure is
available in color online).

generation begins at index 2g−1 + g, which is the first oc-
currence of 2g−2 + 1 in µ(n), and ends at index 2g + g,
which is the last occurrence of 2g−1 in µ(n).

We conclude by describing some intriguing exper-
imental findings concerning the maternal generation
structure for Hofstadter’s famous Q-sequence (0, 1, 0, 2)
[Hofstadter 79]. First we set the stage. It is well known
(for example, see [Pinn 99]) that Q(n) exhibits the fol-
lowing repetitive behavior about its underlying trend line
y = n/2: a period of relatively large oscillations, some-
times initiated by a large “spike,” followed by gradually
decreasing oscillation that tapers to a portion of relative
quiet with very small differences, and then the process
repeats (see Figure 3). In [Pinn 99], the first 20 “tran-
sition points” where the large oscillations in Q(n) − n/2
recur following a period of relative calm are identified
(see the right-hand side of Table 3). Pinn identifies these
points with the start points of the intervals that parti-
tion the domain into an underlying block structure for
the Q-sequence (he terms these blocks “generations”).
Pinn finds the first eleven of these transition points “by
eye” from the graph of Q(n).6 For subsequent genera-
tions, Pinn observes that “the onset of the new gener-
ations is a little less well defined” [Pinn 99, p. 8]. By
applying certain statistical approaches, Pinn concludes

6The transition points double for generations 2 through 10, as does
the value of Q(n) at each of these nine points, these values being
the first occurrences of 2, . . . , 29 respectively. This pattern fails for
the start point of the 11th Pinn generation.

FIGURE 3. Graph of Q(n) for 1 ≤ n ≤ 800. (Figure is
available in color online).

that a good estimate for the start point for generation
g > 11 is 	2g−1/2
.7

As we now show, our spot-based maternal generation
structure for Q(n) does a much better job than Pinn’s
statistical estimation techniques at identifying the loca-
tions of the transitions in Q(n), at least for all the first 18
generations that we have checked. Let α(g, π) denote the
start point of the gth Pinn generation, while α1(g) will
denote the start point of the gth maternal generation of
Q(n) based on spot n − Q(n − 1). In Table 3 we compare
the start points for the first 20 maternal generations of
Q(n) with those for the first 20 Pinn generations.

From Table 3 we see that the start points match for
the first eleven maternal and Pinn generations, respec-
tively. This is very surprising, since the two approaches
for identifying these points are entirely unrelated. For the
remaining generations there are substantial differences in
the start points, with the maternal generation start point
bigger in every case.

In Table 4 we calculate the absolute percent deviation
of Q(α1(g)) from its previous value Q(α1(g) − 1), that is,
the value

|Q(α1(g)) − Q(α1(g) − 1)|
Q(α1(g) − 1)

× 100%,

for maternal generations 12 to 18. We then compare that
with the corresponding absolute deviation for Q(α(g, π)).
Note how these deviations are almost always higher for
the maternal generation start point, suggesting that these
points are more closely located to the upcoming transi-
tion point. In the last column of Table 4 we locate the

7Observe the typographical error in [Pinn 99, p. 8], where he writes
	2g +1/2 
.
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Maternal Generation g Pinn Generation g

1 2 3 4 1 2 3 4

α1(g + 0) 1 3 6 12 α(g + 0;π) 1 3 6 12
α1(g + 4) 24 48 96 192 α(g + 4;π) 23 48 96 192
α1(g + 8) 384 768 1522 3031 α(g + 8;π) 384 768 1522 2896
α1(g + 12) 6043 12056 24086 48043 α(g + 12;π) 5792 11585 23170 46340
α1(g + 16) 95286 189268 376996 750285 α(g + 16;π) 92681 185363 370727 741455

TABLE 3. Comparison of start points for maternal generations with Pinn’s generations.

g α1(g) Absolute Deviation (%) α(g, π) Absolute Deviation (%) Transition Points

12 3031 9.48 2896 0.68 3032
13 6043 1.52 5792 0.48 6042
14 12056 1.00 11585 0.22 12069
15 24086 5.72 23170 0.46 24064
16 48043 0.42 46340 1.00 48013
17 95286 2.60 92681 0.36 95182
18 189268 1.73 185363 0.28 189266

TABLE 4. Deviations in Q(n) at start points of maternal and Pinn generations. The last column shows the transition points for
Q(n) − n/2.

actual transition points of Q(n).8 We observe that
for each generation g from 12 through 18, α1(g) is
much closer to the transition point for generation g
than α(g, π). For example, for g = 14, α1(14) = 12,056,
α(14, π) = 11,585, and we estimate the transition point
to be 12,069 (see Figure 4; notice that Pinn’s start point
for generation 14 is located in the midst of a relatively
quiet portion of the values of Q(n) − n/2, while the start
point for maternal generation 14 is much closer to the
upcoming spike in Q(n) situated at the end of this quiet
region).

Further investigation is required to determine for how
many generations beyond 18 this apparent connection
between the start point of the maternal generations and
the transition points for Q(n) persists, and to understand
its significance. But this tantalizing property of the ma-
ternal generation function for Q(n) provides a further
suggestion that a close examination of spot-based gen-
eration structures may provide potentially important in-
sights into the intrinsic structure of many meta-Fibonacci
sequences, including those with highly complex behavior
such as Q(n).

8This is done via a careful examination of the behavior of the
sequence Q(n) − n/2. The interested reader may contact us for
details.

FIGURE 4. Comparison of α1 (14) = 12,056 and
α(14; π) = 11,585 on the graph of Q(n).
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