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We propose a modification of the predictions of the Cohen–
Lenstra heuristic for class groups of number fields in the case
that roots of unity are present in the base field. As evidence for
this modified formula we provide a large set of computational
data that show close agreement with it. Furthermore, our pre-
dicted formula agrees with results on class groups of function
fields in positive characteristic for which the base field contains
appropriate roots of unity.

1. INTRODUCTION

The distribution of class groups of number fields remains

mysterious. The Cohen–Lenstra philosophy, extended in

[Cohen and Martinet 90], gives a heuristic approach with

very precise predictions that is widely expected to be

accurate, but only very few isolated instances have been

proved. Recently, though, we presented computational

evidence [Malle 08] that the Cohen–Lenstra heuristic fails

for the p-part of class groups in the presence of pth roots

of unity in the base field. In particular, it never seems to

apply for the case p = 2.

Here, we propose a modified prediction in this case,

and present various computational data in support of this

new formula.

In Section 3 we compare our prediction with results

on class groups of function fields that are related to the

distribution of elements in finite symplectic groups with

given eigenspace for the eigenvalue 1.

In order to explain our computational results, let us

consider a situation Σ := (G,K0, σ) consisting of a num-

ber field K0, a transitive permutation group G of degree

n ≥ 2, and a possible signature σ of a degree-n extension

K/K0 with Galois group (of the Galois closure) permu-

tation isomorphic to G. For such a situation Σ, let K(Σ)
denote the set of degree-n extensions K/K0 of K0 (inside

a fixed algebraic closure of Q) with Galois group G and

signature σ. We are interested in the structure of the

relative class group Cl(K/K0) of K/K0 for K ∈ K(Σ)
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(the kernel in the class group ClK of the norm map from

K to K0).

Here we present numerical data for the distribution of

p-parts of class groups for the following situations Σ and

primes p :

(1) Σ =
(
C2,Q

(√−3) , complex
)
, p = 3,

(2) Σ = (C2,Q (μ5) , complex), p = 5,

(3) Σ = (S3,Q, totally real), p = 2,

(4) Σ = (C3,Q, totally real), p = 2,

(5) Σ =
(
C3,Q

(√−3) , complex
)
, p = 2,

(6) Σ =
(
C3,Q

(√
5
)
, totally real

)
, p = 2,

(7) Σ =
(
C3,Q

(√−1) , complex
)
, p = 2,

(8) Σ = (D5,Q, complex), p = 2,

(9) Σ = (D5,Q, real), p = 2.

2. CLASS GROUPS IN THE PRESENCE
OF pTH ROOTS OF UNITY

We begin by recalling the setting and the fundamental

heuristic assumption in [Cohen and Martinet 90].

Let K0 be a number field, K1/K0 a finite exten-

sion, L/K0 its Galois closure with Galois group G =

Gal(L/K0). (All number fields here are taken inside a

fixed algebraic closure of Q.) Then G acts on the differ-

ent embeddings of K1 into L by the transitive permuta-

tion representation on its subgroup Gal(L/K1). The cor-

responding permutation character χ contains the trivial

character 1G exactly once, and we let χ1 := χ− 1G. Let

Q[G] denote the rational group ring of the Galois group

G. We make the following two assumptions, which will

be satisfied in all examples considered:

(1) χ1 is the character of an irreducible (but not neces-

sarily absolutely irreducible) Q[G]-module;

(2) any absolutely irreducible constituent ϕ of χ1 has

Schur index 1, that is, ϕ is the character of a repre-

sentation of G over the field of values of ϕ.

Note that (1) implies in particular that Gal(L/K1) is a

maximal subgroup of G, or equivalently that the exten-

sion K1/K0 is simple. We write O for the ring of inte-

gers of the field of values of any absolutely irreducible

constituent ϕ of χ1. (This is an abelian, hence normal,

extension of Q, and thus independent of the choice of

constituent ϕ by (1) above.)

Denote by EL the group of units of the ring of inte-

gers of L. Then the action of G makes EL ⊗Z Q into

a Q[G]-module, whose character we denote by χE . (It

can be computed explicitly in terms of the signature σ

of L/K0 by Herbrand’s theorem; see [Cohen and Mar-

tinet 90, Theorem 6.7].) We set

u := 〈χE , ϕ〉
(see [Cohen and Martinet 90, p. 63]), the scalar prod-

uct of the character χE with an absolutely irreducible

constituent ϕ of χ1. Since χE is rational, this does not

depend on the choice of ϕ.

Let us denote by K(Σ), where Σ = (G,K0, σ), the

set of number fields K/K0 with signature σ and Galois

group of the Galois closure permutation isomorphic to G.

Note that both the isomorphism type of the Q[G]-module

EL ⊗ Q and the integer u depend only on the situation

Σ, not on K1 or L. We are interested in the distribution

of relative class groups of fields in K(Σ).
By the fundamental assumption of [Cohen and Mar-

tinet 90, Hypothesis 6.6] there should be a notion of good

primes for Σ, including in particular all primes not divid-

ing |G|, and maybe even those not dividing the permuta-

tion degree of G, such that whenever p is good for Σ and

u ≥ 1, then a given finite p-torsion O-module H should

occur as a Sylow p-subgroup of a class group Cl(K/K0)

for K ∈ K(Σ) with probability

c

|H |u |AutO(H)|
for some constant c depending only on p and Σ (see [Co-

hen and Martinet 90, Theorem 5.6(ii)]).

The computational data obtained in [Malle 08] in-

dicate that this latter assertion is probably wrong for

primes p such that K0 contains pth roots of unity; that

is, such primes are not good for Σ. Based on further

and more extensive computations, instead we propose a

modified formula at least for the case that no p2th roots

of unity lie in K0, and O = Z.

Conjecture 2.1. Assume that p does not divide the per-

mutation degree of G and that K0 contains the pth but

not the p2th roots of unity. Then a given finite p-group

H of p-rank r occurs as a Sylow p-subgroup of a relative

class group Cl(K/K0) for K ∈ K(Σ) with probability

c

∏r+u
i=1 (p

i − 1)

pr(u+1)
· 1

|H |u |Aut(H)| ,

where

c =
1∏∞

i=u+1(1 + p−i)
=

(p2)u(p)∞
(p)u(p2)∞
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and u = u(Σ) is as introduced above.

Here, for q, k ∈ N we let

(q)k :=

k∏
i=1

(1 − q−i), (q)∞ :=

∞∏
i=1

(1− q−i).

Proposition 2.2. Assume that the Sylow p-subgroups of

class groups Cl(K/K0) for K ∈ K(Σ) are distributed

according to Conjecture 2.1. Then the probability that

Cl(K/K0) has p-rank equal to r is given by

pr(rnkp(Cl(K/K0)) = r) =
(p2)u(p)∞
(p)u(p2)∞

· 1

pr(r+2u+1)/2(p)r

with nth higher moments

n∏
k=1

(1 + pk−u−1), n ∈ N.

Proof. This follows easily as in [Malle 08, Lemmas 2.1

and 2.2].

Computationally, only very few cases with O �= Z are

in reach. The data obtained there seem to indicate the

following generalization of the above formula: Assume

that p is good for Σ and that K0 contains the pth but

not the p2th roots of unity. Then a given finite p-torsion

O-module H of O-rank r should occur as a Sylow p-

subgroup of a class group with probability

c
dr
∏r+u

i=1 (q
i − 1)

qr(u+1)
· 1

|H |u |AutO(H)|

for some constant c depending only on p and Σ, where

q := |O/pO| and d = (O : Z).

Computations for cases in which the base field contains

the p2th roots of unity, for example on the 2-parts of class

groups of cubic extensions of the field of fourth roots of

unity (see Section 6.4) or on the 3-parts of class groups of

quadratic extensions of the field of ninth roots of unity,

show that while the distribution of p-ranks might still

be given as in Proposition 2.2, the distribution of Sylow

p-subgroups seems to be different from that provided by

the formula given in Conjecture 2.1. We hope to return

to this question in some future investigation.

In Sections 4–7, we consider several instances of situ-

ations Σ for which we specialize the conjecture and give

supporting computational data.

3. RELATION TO CLASS GROUPS OF FUNCTION
FIELDS

First, we compare our new formula to results and heuris-

tics for class groups of global fields in positive character-

istic, that is, function fields over finite fields F. Here, the

base field contains pth roots of unity if p divides |F| − 1.

Now for a prime power q and for g, r ≥ 0, let

αq(g, r) :=
|{x ∈ Sp2g(q) | dim(ker(x− id)) = r}|

|Sp2g(q)|
,

where Sp2g(q) denotes the symplectic group of dimen-

sion 2g over Fq. In [Achter 06, Theorem 3.1], the author

proves that the probability for the class group of a func-

tion field over F of genus g to have p-rank r converges

to αq(g, r) as |F| → ∞ with p dividing |F| − 1 (see also

[Achter 08, Theorem 3.1]). In [Achter 06, Lemma 2.4] it

is shown that αq(g, r) has a limit for g →∞. In the fol-

lowing proposition we give an explicit value for this limit,

using the explicit formulas for αq(g, r) that were obtained

by Rudvalis and Shinoda; see [Fulman 00, Corollary 1].

Proposition 3.1. For any prime power q and r ≥ 0 we

have

lim
g→∞αq(g, r) =

(q)∞
(q2)∞

· 1

qr(r+1)/2(q)r
.

Thus, the distribution of elements in Sp2g(p) according

to the dimension of their eigenspace for the eigenvalue

1 converges to the conjectured distribution of p-ranks of

class groups in Proposition 2.2 for unit rank u = 0.

Proof. First assume that r = 2k is even. By [Fulman 00,

Corollary 1] and using

|Sp2k(q)| = qk
2

k∏
i=1

(q2i − 1),

we have

αq(g, 2k) =
1

|Sp2k(q)|
g−k∑
i=0

(−1)iqi(i+1)

|Sp2i(q)|q2ik

=
1

|Sp2k(q)|
g−k∑
i=0

(−1)iq−i2−2ik

(1− q−2) · · · (1 − q−2i)

=
1

|Sp2k(q)|

(
1 +

g−k∑
i=1

(q2)−(
i
2)(−q)i(2k+1)

(1− q−2) · · · (1− q−2i)

)
.

(Note that the exponent
(
i
2

)
at q2 in the numerator in the

cited corollary should correctly read
(
i+1
2

)
.) For g →∞,

the latter converges to

1

|Sp2k(q)|
∞∏
i=k

(1 − q−2i−1)
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by [Andrews 76, Corollary 2.2]. A trivial rewriting gives

the value stated in the conclusion.

For odd r = 2k + 1 we have

αq(g, 2k + 1) =
1

q2k+1|Sp2k(q)|
g−k−1∑
i=0

(−1)iqi(i+1)

|Sp2i(q)|q2i(k+1)

by [Fulman 00, Corollary 1] (again with the corrected

power of q in the numerator), so by a completely analo-

gous calculation we obtain

lim
g→∞αq(g, r) =

1

q2k+1|Sp2k(q)|
∞∏

i=k+1

(1 − q−2i−1),

from which the claim follows easily.

It seems tempting to speculate that even the distribu-

tion of class groups in the number field case is as given

in [Achter 06, Achter 08] for the corresponding function

field case in the presence of roots of unity. We have not

(yet) been able to match that with our Conjecture 2.1.

4. QUADRATIC EXTENSIONS AND ODD PRIMES p

We now turn to experimental evidence for Conjecture 2.1.

Our first set of examples concerns the p-part of class

groups of quadratic extensions of a number field contain-

ing the pth roots of unity, where p = 3 or p = 5. Here, in

the notation of the previous section, G = Z2 is of order

2, and χ1 = sgn is its nontrivial linear character, the sign

character of S2 = Z2.

4.1 Quadratic Extensions of Q
(√−3

)
The smallest such situation occurs for quadratic ex-

tensions of the field K0 := Q(
√−3) of third roots of

unity. Here, K0 has a unique place at infinity, and Her-

brand’s formula gives χE = sgn, so u = 1. The prime

p = 3 is good for this situation, but since the third

roots of unity are present, we expect the Cohen–Lenstra–

Martinet heuristic to fail. In [Malle 08, (3)], we proposed

that the distribution of 3-ranks r of class groups should

be given by

pr(rnk3(ClK) = r) =
4

3
· (3)∞
(9)∞

· 1

3r(r+3)/2(3)r
(4–1)

with higher moments

n∏
k=1

(1 + 3k−2)

(see Proposition 2.2).

According to [Cohen et al. 02, Corollary 1.3], asymp-

totically the number of quadratic extensions of K0 of dis-

criminant at most X grows linearly with X , with propor-

tionality factor 0.02613532018111 . . . . Those extensions

that are Galois over Q have density zero, so generically,

the Galois closure over Q has dihedral Galois group D4

of order 8. In particular, generically the quadratic exten-

sions come in pairs with the same Galois closure over Q.

So we expect to find roughly 0.01306766X quartic exten-

sions of Q with intermediate field K0 and of discriminant

at most X .

Extending the data presented in [Malle 08, Table 9],

we have compiled lists S consisting of the first |S| quad-
ratic extensions of K0 of discriminant at least D, for var-

ious values of D. The numbers of fields obtained are in

very close accordance with the asymptotic formula de-

rived above. In Table 1 we give the results of our com-

putations of 3-ranks for these fields. Visibly, the data fit

the prediction in (4–1) quite closely.

Conjecture 2.1 now predicts more precisely that a 3-

group H of 3-rank r occurs as a Sylow 3-subgroup of

a class group of a quadratic extension of Q(
√−3) with

probability

2 · (3)∞
(9)∞

· 3
(r2−r)/2(3)r+1

|H | · |Aut(H)| , (4–2)

while the original Cohen–Lenstra–Martinet heuristic [Co-

hen and Martinet 87, Cohen and Martinet 90] predicts a

relative frequency of

(3)∞
(3)1

· 1

|H | · |Aut(H)| .

Table 2 contains detailed statistics for the Sylow 3-

subgroups for the same sets of data as in Table 1 by giving

the quotient of the actual number of fields with given

Sylow 3-subgroup and the number expected according to

(4–2).

The last line of Table 2 lists the proportion predicted

by (4–2).

The table shows a remarkably good agreement with

our prediction.

4.2 Quadratic Extensions of Q(
√
5) and of Q(

√−1)

We have computed similar data as above for totally real

quadratic extensions of Q(
√
5) and of quadratic exten-

sions of Q(
√−1). Here, according to [Cohen et al. 02,

Corollary 1.3], the number of expected fields (over Q)

of discriminant at most X should grow linearly, with

respective proportionality factors 0.001852542 . . . and
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D |S| r = 0 1 2 3 n = 1 2 3

≥ 1016 2 · 106 0.8528 0.141 0.0058 0.71E–4 1.331 2.648 10.55

≥ 1020 4 · 106 0.8521 0.142 0.0059 0.68E–4 1.333 2.656 10.43

≥ 1024 2 · 105 0.8525 0.142 0.0057 0.80E–4 1.331 2.650 10.43

formula (4–1) 0.8520 0.142 0.0059 0.76E–4 1.333 2.667 10.67

CL-prediction 0.8402 0.158 0.0023 0.33E–5 1.333 2.444 6.81

TABLE 1. C2-fields over Q(
√−3): 3-ranks and higher moments.

D 1 3 9 32 27 9× 3 81 27× 3 33

≥ 1016 1.0009 0.995 0.998 0.981 0.991 0.944 0.985 0.954 0.873

≥ 1020 1.0001 1.000 0.997 0.989 1.016 1.009 0.999 0.942 0.858

≥ 1024 1.0006 0.998 1.001 0.983 0.943 0.913 0.924 0.720 1.248

(4–2) 0.852 0.126 0.014 0.0051 0.0016 0.75E–3 0.17E–3 0.83E–4 0.64E–4

TABLE 2. C2-fields over Q(
√−3): Sylow 3-subgroups.

D |S| r = 0 1 2 n = 1 2 3

≥ 1014 105 0.99089 0.91E–2 0.10E–4 1.0366 1.2246 2.285

≥ 1018 105 0.99052 0.95E–2 0.10E–4 1.0381 1.2335 2.330

≥ 1022 105 0.98987 1.01E–2 0.10E–4 1.0407 1.2491 2.411

formula (4–3) 0.99008 0.99E–2 0.16E–4 1.0400 1.2480 2.496

CL-prediction 0.99002 1.00E–2 0.33E–5 1.0400 1.2416 2.290

TABLE 3. C2-fields over Q(µ5): 5-ranks and higher moments.

0.008144834 . . . . In these situations, K0 does not con-

tain the third roots of unity. Our results for p = 3-parts

of class groups are in close agreement with the Cohen–

Lenstra–Martinet prediction, so we do not show the de-

tails.

4.3 Quadratic Extensions of Q(µ5)

Our final set of examples in this section consists of quad-

ratic extensions of the field K0 := Q(μ5) of fifth roots

of unity. Here, we expect the prime p = 5 to behave

differently. The base field has two places at infinity, so

χE = 1 + 2 sgn and u = 2. According to Conjecture 2.1,

a 5-group H of 5-rank r occurs as a Sylow 5-subgroup

of a class group of a quadratic extension of Q(μ5) with

probability

13

8

(5)∞
(25)∞

5(r
2−r)/2(5)r+2

|H |2 |Aut(H)| .

Thus, by Proposition 2.2, the distribution of 5-ranks

should be given by

pr(rnk5(ClK) = r) =
156

125
· (5)∞
(25)∞

· 1

5r(r+5)/2(5)r
(4–3)

with higher moments

n∏
k=1

(1 + 5k−3), n = 1, 2, . . . .

We have compiled lists S of the first 105 such extensions

of discriminant D ≥ 10i, i = 14, 18, 22. Again by [Cohen

et al. 02, Corollary 1.3], the number of such fields (over

Q) of discriminant at most X should equal roughly

0.12444267 . . . · 10−5X,

which agrees closely with the numbers obtained here. Ta-

ble 3 shows the distribution of 5-ranks for these sets of

fields, together with old and new predictions. The pre-

dictions for rank 0 and rank 1 are very close together, but

according to (4–3), rank 2 should occur about five times

more frequently than for the original prediction, which

fits with the data.

The amount of data computed in this case is insuf-

ficient to obtain reliable results on the distribution of

Sylow subgroups, so these are not shown.
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D1 D2 |S| expected

1011 1011 + 14816837 106 1 000 421

1012 1012 + 14672596 106 999 129

1013 1013 + 14613109 106 1 000 810

1014 1014 + 14544488 106 999 997

1015 1015 + 14467409 106 997 331

1016 1016 + 14496840 106 1 001 158

1017 1017 + 14464985 106 1 000 181

TABLE 4. Totally real S3-fields: asymptotic versus actual numbers.

D |S| r = 0 1 2 3 n = 1 2 3 4

≥ 1012 106 0.798 0.188 0.0135 0.354E–3 1.231 1.79 3.35 8.72

≥ 1014 106 0.793 0.192 0.0149 0.431E–3 1.240 1.83 3.53 9.84

≥ 1016 106 0.789 0.195 0.0157 0.507E–3 1.246 1.85 3.64 10.47

≥ 1017 106 0.788 0.195 0.0158 0.538E–3 1.247 1.86 3.68 10.76

formula 5–2 0.786 0.197 0.0164 0.585E–3 1.250 1.87 3.75 11.25

CL-prediction 0.770 0.220 0.0098 0.090E–3 1.250 1.81 3.20 7.18

TABLE 5. Totally real S3-fields: 2-ranks and higher moments.

D 1 2 4 22 8 4× 2 23 16 8× 2 42

≥ 1010 1.032 0.905 0.885 0.670 0.883 0.667 0.32 0.85 0.70 0.57

≥ 1012 1.015 0.956 0.955 0.829 0.927 0.814 0.62 0.91 0.79 0.80

≥ 1014 1.008 0.975 0.983 0.917 0.969 0.885 0.72 1.05 0.88 0.78

≥ 1016 1.003 0.990 1.008 0.964 1.009 0.954 0.87 0.97 0.86 0.95

≥ 1017 1.002 0.993 0.997 0.958 1.001 0.994 0.89 0.95 1.04 0.91

(5–2) 0.852 0.126 0.014 0.0051 0.0016 0.75E–3 0.17E–3 0.8E–4 0.6E–4 0.2E–4

CL-prediction 0.840 0.140 0.016 0.0019 0.0017 0.29E–3 0.19E–3 0.3E–4 0.3E–5 0.2E–5

TABLE 6. Totally real S3-fields: Sylow 2-subgroups.

5. NON-GALOIS CUBIC FIELDS

A further interesting situation for our conjecture oc-

curs for non-Galois cubic extensions of Q with the prime

p = 2.

5.1 Totally Real Non-Galois Cubic Fields

The number of totally real S3-fields of discriminant at

most X is expected to behave asymptotically as

c1 X − c2
1√
3 + 1

X5/6 + o(X1/2),

where

c1 = 0.06932561438172562 . . . ,

c2 = 0.403483636663946799 . . .

(see [Roberts 01, Conjecture 3.1]). We have computed

the first 106 such fields of discriminant at least 10i, where

11 ≤ i ≤ 17. Table 4 compares the actual number of S3-

fields of discriminant D between D1 ≤ D ≤ D2 with the

number predicted by the asymptotic formula.

For the totally real case, Herbrand’s theorem gives

u = 2. So Proposition 2.2 predicts the distribution

pr(rnk2(ClK) = r) =
15

8
· (2)∞
(4)∞

· 1

2r(r+5)/2(2)r
(5–1)

for the 2-ranks of class groups, with higher moments

n∏
k=1

(1 + 2k−3), n = 1, 2, . . .

(this was proposed in our previous paper [Malle 08, (5)]).

Computational data for this case reaching considerably
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D |S| 1 22 42 24 82 42 × 22 26 162

≥ 1020 105 1.003 0.988 1.010 0.878 0.749 0.995 0.578 1.23

≥ 1022 105 1.000 0.999 0.994 0.969 0.999 1.288 0.868 0.61

≥ 1024 105 1.001 0.989 1.067 1.063 0.749 1.054 1.157 0.31

≥ 1026 105 1.000 1.002 0.996 0.963 0.960 1.024 0.868 1.84

formula (6–2) 0.853 0.133 0.0083 0.0044 0.52E–3 0.34E–3 0.35E–4 0.33E–4

CL-prediction 0.918 0.076 0.0048 0.0003 0.30E–3 0.25E–4 0.79E–7 0.19E–4

TABLE 7. C3-fields: Sylow 2-subgroups.

D |S| 1 22 42 24 82 42 × 22 26 162

≥ 1022 6 · 106 1.001 0.997 0.999 0.988 0.980 1.005 1.051 0.96

≥ 1028 106 1.000 1.002 1.004 0.979 1.074 0.954 1.186 1.26

≥ 1032 105 1.000 1.003 0.992 0.983 0.980 0.790 0.868 0.61

TABLE 8. C3-fields of prime conductor: Sylow 2-subgroups.

beyond those in [Malle 08, Table 10] are displayed in

Table 5.

Conjecture 2.1 predicts that a 2-group H of 2-rank r

occurs as a Sylow 2-subgroup of a class group of a totally

real non-Galois cubic number field with probability

5 · (2)∞
(4)∞

· 2
(r2−r)/2(2)r+2

|H |2 · |Aut(H)| . (5–2)

As evidence for this we give in Table 6 the quotient of the

actual number of fields with given Sylow 2-subgroup and

the number expected according to (5–2). In addition, in

the last two lines we print the relative frequency accord-

ing to (5–2) and according to the original Cohen–Lenstra

heuristic.

The table shows a reasonably good agreement with

our prediction.

6. CYCLIC CUBIC FIELDS

Our third set of examples concerns Sylow 2-subgroups of

cyclic cubic fields over various base fields. Here G = Z3

is of order 3, O = Z[μ3], and χ1 is the sum of the two

nonrational linear characters of G.

6.1 Cyclic Cubic Fields over Q

The smallest situation, in which K0 = Q, was considered

already in [Malle 08, Section 2], where extensive compu-

tational results for 2-ranks of class groups were presented.

Here u = 1, so according to Proposition 2.2, the 2-ranks

of class groups should be distributed according to

pr(rnk2(ClK) = 2r) =
3

2
· (2)∞(16)∞

(4)2∞
· 1

2r(r+2)(4)r
(6–1)

(see [Malle 08, (1)]), while a given 2-torsion O-module H

of (even) 2-rank 2r should occur with probability

2
(2)∞(16)∞

(4)2∞
· 2r

2

(4)r+1

|H | · |AutO(H)| (6–2)

as a Sylow 2-subgroup of a class group of a cyclic cu-

bic number. As evidence for this, we list in Table 7

the relative proportions of certain 2-groups as a Sylow

2-subgroup of class groups of C3-fields. Also, in Table 8

we give the corresponding results for fields of prime con-

ductor. The predicted values for some small 2-groups are

given in the last line of Tables 7 and 8 (see also [Cohen

and Martinet 87, 2(a)]).

6.2 Cyclic Cubic Extensions of Q(
√−3)

As a second case we have investigated cyclic cubic ex-

tensions of the complex quadratic number field K0 =

Q(
√−3). Here again u = 1, so according to Conjec-

ture 2.1, a given 2-torsion O-module H of 2-rank 2r

should occur with the same probability (6–2) as in the

previous case. Table 9 gives results on this case by listing

the quotient of the observed densities and the predicted

density, for sets of 105 fields of discriminant at least 10i,

for i ∈ {16, 20, 24}. Again, the data seem in agreement

with our conjecture.

6.3 Cyclic Cubic Extensions of Q(
√
5)

In the case of a real quadratic base field K0 we have

u = 2, so Proposition 2.2 predicts the distribution

pr(rnk2(ClK) = 2r) =
27

16
· (2)∞(16)∞

(4)2∞
· 1

2r(r+4)(4)r
(6–3)
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D |S| 1 22 42 24 82 42 × 22 26 162

≤ 1014 499 815 1.034 0.820 0.817 0.307 0.815 0.316 0 0.615

≥ 1016 105 1.018 0.901 0.951 0.546 0.999 0.732 0 0.307

≥ 1020 105 1.007 0.967 0.965 0.780 0.922 0.732 1.157 0.921

≥ 1024 105 1.002 0.991 0.987 0.949 0.922 0.966 1.157 0.615

(6–2) 0.853 0.133 0.0083 0.0044 0.52E–3 0.34E–3 0.35E–4 0.33E–4

TABLE 9. C3-fields over Q(
√−3): Sylow 2-subgroups.

D |S| r = 0 2 4 n = 1 2 3 4

≤ 1016 236 832 0.9672 0.0327 0.11E–3 1.100 1.518 3.51 16.5

≥ 1020 105 0.9627 0.0370 0.30E–3 1.115 1.631 4.56 30.1

≥ 1024 105 0.9596 0.0401 0.27E–3 1.124 1.670 4.63 28.9

≥ 1028 105 0.9594 0.0402 0.34E–3 1.126 1.690 4.93 33.5

(6–3) 0.9597 0.0400 0.33E–3 1.125 1.687 5.06 45.6

CL-prediction 0.9793 0.0207 0.02E–3 1.062 1.316 2.39 7.7

TABLE 10. C3-fields over Q(
√
5): 2-ranks and higher moments.

D 1 22 42 24 82 42 × 22 26

≤ 1016 1.008 0.816 0.906 0.336 1.318 0 0

≥ 1020 1.003 0.923 1.073 0.918 0 0 0

≥ 1024 1.000 1.003 1.008 0.826 2.081 0 0

≥ 1028 1.000 1.005 1.089 1.010 2.081 1.567 0

(6–4) 0.960 0.039 0.61E–3 0.33E–3 0.96E–5 0.64E–5 0.65E–6

TABLE 11. C3-fields over Q(
√
5): Sylow 2-subgroups.

D |S| r = 0 2 4 6 n = 1 2 3 4

≤ 1015 227 756 0.8642 0.1327 0.303E–2 0 1.444 3.76 21.7 233

≥ 1020 5 · 105 0.8555 0.1403 0.419E–2 0.1E–4 1.485 4.23 30.7 546

≥ 1024 5 · 105 0.8541 0.1412 0.470E–2 0.2E–4 1.496 4.42 35.4 747

≥ 1028 5 · 105 0.8533 0.1419 0.473E–2 0.5E–4 1.499 4.52 41.4 1119

≥ 1032 4 · 105 0.8527 0.1425 0.472E–2 0.5E–4 1.502 4.56 43.1 1227

(6–1) 0.8530 0.1422 0.474E–2 0.4E–4 1.500 4.50 40.5 1336

TABLE 12. C3-fields over Q(
√−1): 2-ranks and higher moments.

D 1 22 42 24 82 42 × 22 26 162 82 × 22

≤ 1015 0.864 0.115 0.016 0.25E–2 0.12E–2 0.50E–3 0 0.7E–4 0.6E–4

≥ 1016 0.859 0.120 0.016 0.30E–2 0.13E–2 0.42E–3 0 0.2E–3 0.4E–4

≥ 1024 0.854 0.123 0.017 0.40E–2 0.11E–2 0.64E–3 0.1E–4 0.7E–4 0.3E–4

≥ 1032 0.853 0.125 0.017 0.40E–2 0.10E–2 0.62E–3 0.4E–4 0.6E–4 0.4E–4

fomrula (6–2) 0.853 0.133 0.0083 0.44E–2 0.52E–3 0.34E–3 0.35E–4 0.33E–4 0.21E–4

CL-prediction 0.918 0.076 0.0048 0.03E–2 0.30E–3 0.25E–4 0.79E–7 0.19E–4 0.16E–4

TABLE 13. C3-fields over Q(
√−1): Sylow 2-subgroups.
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D |S| r = 0 2 4 6 n = 1 2 3

≤ 1015 1 183 056 0.9266 0.0724 0.097E–2 0.8E–6 1.232 2.34 9.7

≥ 1017 200 000 0.9110 0.0869 0.216E–2 0.05E–4 1.293 2.87 16.6

≥ 1019 200 000 0.9049 0.0922 0.290E–2 0.55E–4 1.324 3.35 33.1

≥ 1021 200 000 0.8992 0.0972 0.354E–2 0.20E–4 1.346 3.46 28.2

(6–1) 0.8530 0.1422 0.474E–2 0.38E–4 1.5 4.5 40.5

TABLE 14. Nonreal D5-fields over Q: 2-ranks and higher moments.

D |S| r = 0 2 4 6 n = 1 2 3

≤ 1014 147 683 0.9876 0.0124 0.14E–4 0 1.037 1.19 1.84

≥ 1017 200 000 0.9789 0.0210 0.85E–4 0 1.064 1.34 2.67

≥ 1021 200 000 0.9721 0.0276 0.19E–3 0 1.086 1.46 3.54

(6–3) 0.9597 0.0400 0.33E–3 0.66E–6 1.125 1.69 5.06

TABLE 15. Totally real D5-fields over Q: 2-ranks and higher moments.

for the 2-ranks of class groups, with higher moments

n∏
k=1

(1 + 22k−5).

More precisely, Conjecture 2.1 predicts that a 2-torsion

O-module H of 2-rank 2r should occur with probability

12

5
· (2)∞(16)∞

(4)2∞
· 2r

2

(4)r+2

|H |2 · |AutO(H)| (6–4)

as a Sylow 2-subgroup of a class group of a cyclic cubic

number. Data for the case K0 = Q(
√
5) are listed in

Tables 10 and 11.

6.4 Cyclic Cubic Extensions of Q(
√−1)

Now we choose the base field K0 = Q(
√−1) containing

the fourth roots of unity. The relevant unit rank u is

1. This situation is not covered by the predictions made

in Section 2. Still, the data in Table 12 seem to confirm

that the 2-ranks behave according to (6–1). On the other

hand, the distribution of individual Sylow 2-subgroups

shown in Table 13 does not seem to follow the formulas

from (6–2).

7. D5-EXTENSIONS OF Q

The fourth test case consists of quintic extensions of Q

with dihedral Galois group G = D5. Here, O = Q(
√
5),

and χ1 is the sum of the two nonrational characters of G

of degree 2. Again, the behavior of the prime p = 2 is

interesting.

Here, in contrast to the previous cases, we do not

have a fast method to enumerate all D5-fields between

given discriminant bounds, nor is there a proven asymp-

totic formula for the number of such fields. Nevertheless,

assuming the Cohen–Lenstra heuristic for the 5-rank of

quadratic fields, an obvious asymptotic lower bound for

the number of fields is obtained by just counting those

fields whose Galois closure is unramified over the quad-

ratic subfield. According to this, for largeX there should

exist at least 0.07599
√
X complex quintic D5-fields of

discriminant at most X , and at least 0.01507
√
X totally

real such fields.

We have produced large sets of fields by specializing

the D5-polynomial

X5 − 2 vX4 − u(5u2 − 10uv + 4v2)X2

+ 2u2(5u− 4v)(u− v)X − 4u3(u− v)2 −X2(X − u)t

∈ Q(u, v, t)[X ]

for integral |u|, |v| ≤ 2500 with gcd(u, v) = 1 and |t| ≤
50000. Of these several billion fields, in both possible

signatures we retained the first 200,000 of discriminant

at least 10i, where 15 ≤ i ≤ 21. A priori there is no

reason why the class groups of the fields obtained in this

way should show the same behavior as class groups of

random D5-fields. Thus our tables here should be taken

with even more care than those in the previous examples.

7.1 Nonreal D5-Extensions of Q

For complex D5-extensions we obtain u = 1, so according

to Conjecture 2.1, the (necessarily even) 2-ranks of class

groups should be distributed according to the probability

in (6–1), that is, as in the case of cyclic cubic fields.
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Despite the fact that our lists of fields are not com-

plete, it turns out that the distributions of 2-ranks given

in Table 14 is not too far away from the prediction (6–1).

7.2 Totally Real D5-Extensions of Q

For totally realD5-extensions we obtain u = 2, so accord-

ing to Conjecture 2.1 the 2-ranks of class groups should

be distributed according to (6–3). Our computational

results for this case are displayed in Table 15.
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