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We describe CW complexes for complex projective algebraic
surfaces in the context of practical computation of topological
invariants.

1. INTRODUCTION

Let X be a nonsingular projective algebraic surface over
the complex numbers given by explicit defining equa-
tions. The practical computation of topological invari-
ants of the underlying complex manifold X(C) is a desir-
able goal in many settings in algebraic geometry. That
topological invariants are effectively computable is a well-
established fact, since X(C) may be embedded in a Eu-
clidean space, and a cell complex on X(C) may be ob-
tained from a suitable subdivision of the Euclidean space.
This paper explores the practicality of the computation.

For the computation, one first uses the defining equa-
tions of X to obtain discrete data, and then computes the
desired invariants from those data. The discrete data
could be a structure of a CW complex on X(C), pre-
sented in such a way that the boundary of a cell can be
effectively represented in terms of cells of the next lower
dimension. Then the computation of, say, homology or
cohomology with integer coefficients reduces to compu-
tation of the Smith normal form of an integer matrix.
The focus in this paper is on the first step; practicality
is assessed by comparing the numbers of cells of vari-
ous dimensions obtained in several examples against the
practical capability of Smith normal form computation
as presently known.

The link between the algebraic geometry of X and
the algebraic topology of X(C) underlies some of the
anticipated applications. For instance, the verification
that a collection of algebraic divisor classes on X (given
by explicit equations) generates a saturated sublattice
of H2(X(C),Z)/tors could be approached directly, given
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the ability to compute the topological intersection num-
ber of an algebraic divisor class and a topological homol-
ogy class. (The need for this arises in arithmetic geome-
try, such as in [Várilly-Alvarado and Viray 10], where it
is addressed by a purely algebraic technique of Stoll and
Testa.)

2. BACKGROUND

The computational topology of manifolds has been
treated extensively. From Whitney we have not only
his famous embedding theorem [Whitney 44], but also
an effective algorithm for the computation of topologi-
cal invariants of an (explicitly given) compact manifold
in Euclidean space, by restricting a subdivision of the
ambient Euclidean space [Whitney 57]. A general algo-
rithm with complexity analysis is given in [Schwartz and
Sharir 83].

2.1 Cell Decompositions of Manifolds

The practicality of the computation of a cell decompo-
sition of a manifold is the subject of intensive study in
dimensions one and two, with surfaces treated, for in-
stance, in [Berberich et al. 10] and [Cheng et al. 05]. See
also [Alberti et al. 09], and especially the introduction,
with its thorough overview and references. As mentioned
there, an analysis of cylindrical algebraic decomposition
[Collins 75], an algorithm that has been both well studied
and widely implemented, yields a bound of O(d2n+3n

)
for a degree-d real algebraic hypersurface of dimension
n. A recent preprint [Kerber and Sagraloff 10] focuses
on the case of hypersurfaces and delivers triangulations
with O(d3·2n−1−1) cells.

2.2 Smith Normal Form Computation

Focusing on the case of (co)homology with integer co-
efficients, once the discrete data have been obtained as
in Section 2.1, the computation is reduced to finding the
Smith normal form of an integer matrix. This is known to
be possible in polynomial time [Kannan and Bachem 79],
and algorithms that do not exploit any particular sparse-
ness structure can in practice handle matrices with up to
1000 rows and columns [Jäger 03].

Exploiting sparseness, which is a characteristic of the
matrices representing the boundary maps that arise,
probabilistic analysis yields an algorithm quadratic in
the number of cells [Donald and Chang 91]. This raises
the practicality limit to the tens of thousands, with im-
provements for simplicial or cubical cell complexes per-
mitting computations with hundreds of thousands of cells

[Mrozek and Batko 09, Mrozek et al. 08]. Regular CW
complexes have been treated more recently [DÃlotko et
al. 10], but since the CW complexes that we produce be-
low are not regular, we accept tens of thousands of cells
as a practical limit.

2.3 Case of a Complex Surface

Given a nonsingular projective surface X, a first ap-
proach to the computation of topological invariants of
X(C) would be to view it as a real manifold, embed it in
a Euclidean space, and apply existing techniques. If we
seek a triangulation, then we face the bounds attached
to known algorithms described in Section 2.1. These
are theoretical bounds (we have no other guide due to
the lack of treatment of practicality issues in dimensions
greater than two in the literature), applicable to the case
of a hypersurface (which X(C) will not generally be; for
example, in the simplest case X = P2 it is known that a
7-dimensional Euclidean space is required [Whitney 44]),
but they suggest that for the present technology it is in-
feasible to determine a cell decomposition of X(C) in this
way.

Another method, also for real manifolds, is Morse the-
ory. This has been implemented for surfaces, for exam-
ple in [Fortuna et al. 03], but in ways that rely on the
structure of the nonsingular fibers of a Morse function
(unions of circles). In higher dimensions we would face
practicality issues such as the determination of bound-
ary relations between the critical points (corresponding
to gradient flow lines). The literature offers computa-
tional approaches such as [Gyulassy et al. 08], but these
require a cell decomposition of the manifold as part of
the input data. Beyond the practicality issues, a further
issue would be to maintain the link between algebraic
geometry and topology mentioned in the introduction.

A third approach, using that X is a complex projective
variety, is to consider a Lefschetz pencil on X (an alge-
braic analogue of a Morse function that yields topologi-
cal information about X). While computations abound
(see, e.g., [Gompf and Stipsicz 99]), the general use of
Lefschetz pencils brings up the same kinds of issues as
with Morse theory.

3. CELL COMPLEXES ON COMPLEX CURVES AND
SURFACES

Following [Moishezon 81], we start with X presented as
a branched cover of P2 with some branch curve B ⊂ P2,
and by projecting, B as a branched cover of P1. We will
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construct a cell complex on P2 that extends one on B;
this then lifts to X.

3.1 Cell Complexes on Curves

Given a nonsingular complex projective algebraic curve,
a general projection to P1 of suitable degree will represent
the curve as a branched cover of P1 such that over each
branch point there is just one ramification point, which
is a double point. The curve may have nodes and cusps
as singularities, in which case for a general projection the
branch points will include as well the images of the nodes
and cusps. A cell complex on P1 with the branch points
as 0-cells will lift to a cell complex on the algebraic curve.

We define a finite cell complex on P1 to be standard
when the union of 1-cells is homeomorphic to a circle.
The complement of the union of 1-cells then has two con-
nected components, which must be the 2-cells.

3.2 Cell Complexes on Surfaces

Now let X be a nonsingular complex projective algebraic
surface. A morphism f : X → P2 will be called a generic
covering if f is a finite covering whose only singularities
are double points (analytically equivalent to the projec-
tion to the (x, y)-plane from the surface x = z2) and
cuspidal-type singular points (analytically equivalent to
y = z3 + xz), the branch curve B ⊂ P2 has only nodes
and cusps as singularities, and the restriction of f to the
ramification locus of f is a birational isomorphism onto
B. Given an embedding of X in a projective space, it
is known that a general linear projection X → P2 is a
generic covering [Ciliberto and Flamini 10].

We suppose that a generic covering f : X → P2 has
been fixed, and we choose coordinates (x : y : z) on P2

such that (i) the point (0 : 0 : 1) does not lie on the
branch curve B of f , and the projection g : P2 99K P1

given by g(x : y : z) = (x : y) has the property that (ii)
the restriction of g to B is unramified over ∞ = (0 : 1),
and the preimage in B of every branch point contains just
one ramification point, which is a double point (possibly
a singular point of B).

We let d denote the degree of the curve B. Our con-
struction is the following.

Algorithm 3.1.

Step 1. Choose an ordering p1, . . . , pN of the points in
the branch locus of B → P1 and a standard cell

complex

{p1, . . . , pN} (0-cells),
{L1, . . . , LN} (1-cells),
{H+,H−} (2-cells),

on P1 such that the 1-cell L1 joining pN with p1

passes through ∞.

Step 2. Choose a continuously varying family of stan-
dard cell complexes on g−1(t) ∼= P1 for t ∈ L1∪· · ·∪
LN :

{(0 : 0 : 1)} ∪ (g−1(t) ∩B) (0-cells)
{M1(t), . . . , Me(t)} (1-cells)

(where e = d if t ∈ {p1, . . . , pN}, and e = d + 1
otherwise),

{H+(t),H−(t)} (2-cells).

Step 3. Describe a continuous extension of the cell com-
plexes of Step 2 to cell complexes on g−1(t) for
t ∈ H+, as well as to g−1(t) for t ∈ H−, such that
the cells of g−1(pj) for j = 1, . . . , N , the unions
over t ∈ Lj of the respective cells of g−1(t) for
j = 1, . . . , N , and the unions over t ∈ H± of the
respective cells of g−1(t) together form a cell com-
plex on P2.

Step 4. Lift the cell complex on P2 to obtain one on X.

In Step 2, a natural definition of the Mk(t) for t in
the interior of some Lj suggests itself, provided that
the points of g−1(t) that approach each other as t ap-
proaches an endpoint of Lj are adjacent for the ordering
in the standard cell complexes. In the first example (Sec-
tion 4.1), this holds. Generally, we carry out Step 2 using
a scheme described in Section 4.2 based on adding extra
0-cells to {p1, . . . , pN}. We will also need to add ex-
tra 0-cells in order to accomplish Step 3, as explained in
Section 4.1. With these modifications, the standard cell
complexes of Step 2 will be supplemented with 1- and
2-cells; for instance, for some t, we may have M1+(t) and
M1−(t) instead of just M1(t). The construction is then
determined by fixing the standard cell complexes used: in
Section 4.1 they are given explicitly, while in Sections 4.2
and 4.3 the 0-cells are connected in the order of their
real parts, using line segments in C as 1-cells. The latter
choice is one that could be applied in any example, as
long as the points of g−1(pj) have distinct real parts for
each j (which after a complex rescaling of coordinates is
always the case).
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4. EXAMPLES

4.1 Quadric

For the first example we take X to be the double cover
of

B : x2 + y2 + z2 = 0

in P2, i.e., X is a quadric surface. The projection B → P1

is branched over the points p1 = i and p2 = −i, where
i =

√−1 and we identify t ∈ C with (1 : t) ∈ P1 \ {∞}.
In Step 1, we take the 1-cells to be

L1 = {i + t | t ∈ R≤0} ∪ {∞} ∪ {−i + t | t ∈ R≥0},
L2 = {ti | t ∈ R, |t| ≤ 1}.

For Step 2, when t = ∞ we have g−1(∞) ∼= P1 by
(0 : y : z) 7→ (y : z), and there is the standard cell
complex with 1-cells

M1(∞) = i + R≤0 ∪ {∞},
M2(∞) = i[−1, 1],

M3(∞) = −i + R≥0.

For t ∈ P1\{∞} we identify g−1(t) with P1 by (x : tx : z)
7→ (x : z). We have the following cell complexes on
g−1(t), t ∈ L1\{∞, i,−i}, compatible with the one at∞:

M2−sgn(Re(t))(t) = i
√

1 + t2 + R≤0,

M2(t) = i
√

1 + t2[−1, 1],

M2+sgn(Re(t))(t) = −i
√

1 + t2 + R≥0,

where the analytic function
√

1 + z2 is extended to C \
{ti | t ∈ R, |t| ≥ 1}, by convention taking the value 1 at
z = 0. The cell complex at t = ±i is taken to have 1-cells
R≤0 and R≥0. For t ∈ L2 \ {i,−i} we take

M1(t) = −i
√

1 + t2 + R≥0,

M2(t) = i
√

1 + t2[−1, 1],

M3(t) = i
√

1 + t2 + R≤0.

With only these definitions it is impossible to complete
Step 3. This is because when the 1-cells M1(∞) and
M3(∞) vary continuously to t in a neighborhood of ∞,
there must be 1-cells with paths to∞ along line segments
of varying slope, not only line segments parallel to R ⊂ C.
Here g−1(t) for t 6= ∞ is identified with P1 and C with
P1 \ {∞} as indicated above.

A remedy is to choose

0 = t2 < t3 < t4 < t5 < t6 < t7 < t8 < t9 ∈ R,

j = 3: M1(t) = −i
√

1 + t2 + R≥0,

M2(t) = i
√

1 + t2[−1, 1],

M3(t) = i
√

1 + t2 + R≤0,

j = 4: M1+ = −i
√

1 + t2 + R≥0,

M1− = −i
√

1 + t2 + e
−πi

t−t3
t4−t3 R≥0,

M2 = i
√

1 + t2[−1, 1],

M3+ = i
√

1 + t2 + R≤0,

M3− = i
√

1 + t2 + e
−πi

t−t3
t4−t3 R≤0,

j = 5: M1± = −i
√

1 + t2 ± R≥0,

M2+ ∪M2− = i
√

1 + t2[−1, 1],

M3+ = i t4+t5−2t
t5−t4

√
1 + t2 + R≤0,

M3− = i
√

1 + t2 + R≥0,

j = 6: M1 = i t5+t6−2t
t5−t6

√
1 + t2 + R≥0,

M2+ ∪M2− = i
√

1 + t2[−1, 1],

M3+ = −i
√

1 + t2 + R≤0,

M3− = i
√

1 + t2 + R≥0,

j = 7: M1+ = i
√

1 + t2 + R≥0,

M1− = i
√

1 + t2 + e
πi

t−t6
t7−t6 R≥0,

M2 = i
√

1 + t2[−1, 1],

M3+ = −i
√

1 + t2 + R≤0,

M3− = −i
√

1 + t2 + e
πi

t−t6
t7−t6 R≤0,

j = 8: M1± = i
√

1 + t2 ± R≥0,

M2+ ∪M2− = i
√

1 + t2[−1, 1],

M3+ = i t7+t8−2t
t7−t8

√
1 + t2 + R≤0,

M3− = −i
√

1 + t2 + R≥0,

j = 9: M1 = i t8+t9−2t
t9−t8

√
1 + t2 + R≥0,

M2+ ∪M2− = i
√

1 + t2[−1, 1],

M3+ = i
√

1 + t2 + R≤0,

M3− = −i
√

1 + t2 + R≥0.

TABLE 1. Definition of the Mk(t) on the segments
where t+ i is real and strictly between tj−1 and tj , for
j = 3, . . . , 9.

set pj = −i + tj for 3 ≤ j ≤ 9, redefine

L1 = {i + t | t ∈ R≤0}
∪ {∞} ∪ {−i + t9 + t | t ∈ R≥0}

(this is a subset of the original L1), and introduce

Lj = {−i + t | tj−1 ≤ t ≤ tj}

for 3 ≤ j ≤ 9 with the Mk(t) appearing in Table 1. (The
specification of Mk(t) for t in the interiors of the Lj , given
in the table, determines Mk(pj) for 3 ≤ j ≤ 9.)

Then there exist families of cell complexes over t ∈ H+

and t ∈ H−, built out of line segments in C, extending the
Mk(t) for t ∈ L1∪· · ·∪L9. For instance, the line segments
that approach ∞ may be taken parallel to R ⊂ C when
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Images of basis elements of homological chain complex under ∂2 (with w± = L±3 + · · ·+ L±9 )

2-cell boundary 2-cell boundary 2-cell boundary
H+

+ L+
1 + L+

2 + w+ L53− L+
5 + p53− − p43− p−1 p11 + p12

H−
+ L−1 + L−2 + w− L61 p61 − L0

6 − p51 p+
2 −p21 − p22

H+
− −L+

1 − L−2 − w+ L62+ L0
6 − L+

6 − p52 p−2 p21 + p22

H−
− −L−1 − L+

2 − w− L62− L−6 + p62 − L0
6 p+

3 −p31 − p32 − p33

L11 p11 − L+
1 + p93 L63+ L−6 + p63 − p53+ p−3 p31 + p32 + p33

L12 L−1 − L+
1 − p92 L63− L+

6 − p61 − p53− p+
4 −p43+ + p43−

L13 L−1 + p12 + p91 L71+ p71+ − L+
7 − p61 p<

4 p41− + p42 + p43+

L21 p21 − L−2 − p11 L71− p71− − L+
7 − p61 p>

4 −p41+ − p42 − p43−

L22 L−2 − L+
2 L72 L−7 + p72 − L+

7 − p62 p−4 p41+ − p41−

L23 L+
2 + p22 − p12 L73+ L−7 + p73+ − p63 p+

5 p52 − p53+ + p53−

L31 p31 − L−3 − p21 L73− L−7 + p73− − p63 p>
5 −p51 − p52 − p53−

L32 L−3 + p32 − L+
3 L81+ p81 − L+

8 − p71+ p−5 p51 + p53+

L33 L+
3 + p33 − p22 L81− −p83+ − L+

8 − p71− p+
6 −p61 + p62 − p63

L41+ p41+ − L−4 − p31 L82+ L0
8 − L+

8 − p72 p−6 p61 − p62 + p63

L41− p41− − L−4 − p31 L82− L−8 + p82 − L0
8 p+

7 −p71+ + p71−

L42 L−4 + p42 − L+
4 − p32 L83+ L0

8 + p83+ − p73+ p<
7 −p71− + p72 − p73+

L43+ L+
4 + p43+ − p33 L83− L−8 + p83− − p73− p>

7 p71+ − p72 + p73−

L43− L+
4 + p43− − p33 L91 p91 − L0

9 − p81 p−7 p73+ − p73−

L51+ p51 − L−5 − p41+ L92+ L0
9 + p92 − L+

9 p+
8 −p81 − p83+

L51− −p53+ − L−5 − p41− L92− L−9 − L0
9 − p82 p>

8 p81 − p82 + p83−

L52+ L0
5 + p52 − L+

5 L93+ L+
9 + p93 − p83+ p−8 p82 + p83+ − p83−

L52− L−5 − L0
5 − p42 L93− L−9 − p91 − p83− p+

9 −p91 − p92 − p93

L53+ L0
5 + p53+ − p43+ p+

1 −p11 − p12 p−9 p91 + p92 + p93

and ∂3 (with u = L32 + · · ·+ L92± and vj± = (2− j)H2−j
± ± (L1j + L2j + L3j))

v1+ + u + L22 + L41− + L51− − L63+ − L73+ − L82− − L83+ − L92± − L93+ ,
v3+ + u + L22 + L43− + L53− + L63− − L71+ − L81+ − L92+ − L91,

v1− − L32 − L42 − L41+ − L51+ − L52± − L61 − L62+ − L71− − L81− + L93+ ,
v3− − L32 − L42 − L43+ − L52− − L53+ − L63+ − L73− − L83− − L93− ,

H+
+ −H−

+ + u + L12 + L22, H+
− −H−

− − u− L12 + L22,
p±1 − p∓9 ± (L11 − L12 + L13), p±j − p±j−1 ± (Lj1 + Lj2 + Lj3) (j = 2, 3),

p>
4 − p+

3 + L41+ + L42 + L43− , p+
4 + L43+ − L43− , p−4 − L41+ + L41− ,

p<
4 − p−3 − L41− − L42 − L43+ , p+

5 − p+
4 − L52+ + L53+ − L53− ,

−p<
4 − L51− − L52− − L53+ , p>

5 − p>
4 + L51+ + L52± + L53− ,

p−5 − p−4 − L51+ + L51− , p+
6 − p+

5 − L62± + L63+ − L63− , −p>
5 + L61 + L62+ + L63− ,

p−6 − p−5 − L61 + L62− − L63+ , p<
7 − p+

6 + L71− − L72 + L73+ , p−7 − L73+ + L73− ,
p+
7 + L71+ − L71− , p>

7 − p−6 − L71+ + L72 − L73− , p+
8 − p+

7 + L81+ − L81− ,
−p<

7 + L81− − L82+ + L83+ , p>
8 − p>

7 − L81+ + L82± − L83− ,
p−8 − p−7 − L82− − L83+ + L83− , p+

9 − p+
8 + L91 + L92+ + L93+ ,

−p>
8 − L91 + L92− − L93− , p−9 − p−8 − L92± − L93+ + L93−

TABLE 2. Data for computation in Section 4.1.

|Re(t)| ≤ t9 + 1, | Im(t)| ≤ 2, and
{

Re(t) ≤ t3 or Re(t) ≥ t4, when t ∈ H+,
Re(t) ≤ t6 or Re(t) ≥ t7, when t ∈ H−.

Suitable cell complexes on g−1(t) for t ∈ H−
close to Lk for k = 5, 6, and 7 are depicted in
Figure 1.
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FIGURE 1. Neighborhood of 0 ∈ C of cell complex on
g−1(t) for t ∈ H− close to L5 (left), to L6 (middle),
and to L7 (right).
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The cell complex of Step 3 has 17 0-cells, 53 1-cells,
69 2-cells, 34 3-cells, and 4 4-cells. If we orient the cells
so that

• Lj is a path from tj−1 (or t9, when j = 1) to tj ,

• M1(t) (or M1±(t)) is a path from (0 : 0 : 1) to a
point of g−1(t) ∩ B, Me(t) (or Me±(t)) is a path
from a point of g−1(t) ∩ B to (0 : 0 : 1), and M2(t)
for t 6= ±i with nonnegative real part is a path from
the point with negative imaginary part to the point
with positive imaginary part,

• open subsets of C are given the canonical orienta-
tion,

then we have, in a straightforward manner, a homological
chain complex for P2. For instance, we may compute
H2(P2(C),Z) = ker(∂2)/ im(∂3) ∼= Z, where ∂2 : Z69 →
Z53 and im(∂3) are given in Table 2.

In the table, 1-cells L±j denote the point of g−1(t) ∩
B (t ∈ Lj) with indicated sign of the imaginary part,
L0

j the point with varying sign of the imaginary part,
pjk(±) (respectively Ljk(±)) the 1- (respectively 2-) cells
in g−1(t) (respectively over Lj), and p>

j , p<
j , p+

j , p−j the
2-cells in g−1(t) (with > and < indicating the respective
signs of the real parts, and + and − the signs of the
imaginary parts).

Step 4 produces a cell complex with 18 0-cells, 88 1-
cells, 134 2-cells, 68 3-cells, and 8 4-cells.

4.2 Cubic

It is known classically that the branch curve of a general
cubic surface is a sextic curve with six cusps lying on a
conic [Zariski 29]. For this example we take

X : x2z + x2t + y3 + z2t + t3 = 0.

This is a triple cover of P2 branched over

B : 4x6 + 39x4z2 + 54x2y3z + 12x2z4 + 27y6 + 4z6 = 0.

Under projection B → P1 we find 12 ordinary branch
points and 6 images of cusps, for a total of 18 branch
points.

As mentioned in Section 3.2, for the Mk(t) we join the
points of g−1(t)∩B in the order of their real parts (under
the usual identification of C with the complement of∞ in
g−1(t) ∼= P1) using line segments in C. This means that
on some Lj the order in which the points are joined will
change. This may be accomplished by suitably enlarging
the set {p1, . . . , pN} just as in the first example, e.g., with
L5 and L6. To accomplish m adjacent point swaps along

Lj we replace Lj by 2(m + 1) 1-cells (by adding 2m + 1
additional points on Lj to {p1, . . . , pN}).

Choosing {L1, . . . , LN} (Step 1) and making modifica-
tions as in the previous paragraph for Step 2, we find (for
Step 3 adding additional cells in analogy with the specifi-
cations of Table 1) the following total numbers of cells in
Step 3: 2143 0-cells, 5012 1-cells, 3636 2-cells, 768 3-cells,
and 4 4-cells. Taking account of the cells that make up
B (2142 0-cells, 2160 1-cells, and 12 2-cells, with cusps
accounting for 6 0-cells), we obtain 4281 0-cells, 12876 1-
cells, 10896 2-cells, 2304 3-cells, and 12 4-cells in Step 4.

4.3 K3 surface

A K3 surface of degree 2 is a double cover of the plane
branched along a nonsingular sextic curve [Mayer 72].
The construction may be carried out just as in Sec-
tion 4.2; we report the total numbers of cells (Step 4)
obtained in a particular example (B : x6 + y5z = z6):
1676 0-cells, 6120 1-cells, 5692 2-cells, 1232 3-cells, and 8
4-cells.

5. CONCLUSION

We have described a construction of CW complexes for
complex algebraic surfaces that in examples yields sizes
amenable to computation. The examples encompass sim-
ple classes of rational surfaces as well as a first instance
of K3 surfaces, which are actively studied with the in-
teractions of the algebraic and topological points of view
playing an important role due to the presence of tran-
scendental (nonalgebraic) homology classes.
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