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A matching on a set X is a collection of pairwise disjoint sub-
sets of X of size two. Using computers, we analyze the inte-
gral homology of the matching complex Mn, which is the sim-
plicial complex of matchings on the set {1, . . . , n}. The main
result is the detection of elements of order p in the homology
for p ∈ {5, 7, 11, 13}. Specifically, we show that there are el-
ements of order 5 in the homology of Mn for n ≥ 18 and for
n ∈ {14, 16}. The only previously known value was n = 14,
and in this particular case we have a new computer-free proof.
Moreover, we show that there are elements of order 7 in the ho-
mology of Mn for all odd n between 23 and 41 and for n = 30.
In addition, there are elements of order 11 in the homology of
M47 and elements of order 13 in the homology of M62. Finally,
we compute the ranks of the Sylow 3- and 5-subgroups of the
torsion part of H̃d(Mn;Z) for 13 ≤ n ≤ 16; a complete descrip-
tion of the homology already exists for n ≤ 12. To prove the
results, we use a representation-theoretic approach, examining
subcomplexes of the chain complex of Mn obtained by letting
certain groups act on the chain complex.

1. INTRODUCTION

Recall that a matching on a set X is a collection of pair-
wise disjoint subsets of X of size two. Using terminology
from graph theory, we refer to a subset of size two as an
edge on X. The matching complex Mn is the family of
matchings on the set {1, . . . , n}. Since Mn is closed under
deletion of edges, Mn is an abstract simplicial complex.

Despite its simple definition, the topology of Mn re-
mains a mystery. Its rational simplicial homology is
well known and has been computed by Bouc and others
[Bouc 92, Karaguezian 04, Reiner and Roberts 00, Dong
and Wachs 02], but the integral homology is known only
in special cases. Specifically, the bottom nonvanish-
ing homology group of Mn is known to be an elemen-
tary 3-group for almost all n [Bouc 92, Shareshian and
Wachs 07]. In fact, there is a nearly complete char-
acterization of all (n, d) such that the homology group
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H̃d(Mn;Z) contains elements of order 3 [Jonsson 08]; see
Proposition 1.8(4), (5) for a summary. As for the exis-
tence of elements of order p for primes different from 3,
nothing is known besides the recent discovery [Jons-
son 09] that H̃4(M14;Z) contains elements of order 5.

Computers have not been able to tell us much more
about the homology of Mn. A complete description is
known only for n ≤ 12; already for n = 13, there are too
many cells in Mn to allow for a direct homology compu-
tation, at least with the existing software.

The goal of this paper is to cut Mn into smaller pieces
and then use a computer to search for torsion in the ho-
mology of those pieces. Via this technique, we come fairly
close to a complete description of the homology of Mn for
13 ≤ n ≤ 16. Moreover, and maybe more importantly,
for each of the primes 5, 7, 11, and 13, we find new values
of n such that the homology of Mn contains elements of
order p.

More precisely, we do the following: First, we split
the chain complex C(Mn;Z) of Mn into smaller pieces
with the property that the homology of Mn is isomor-
phic to the direct sum of the homology of the smaller
complexes, except that the Sylow 2-subgroups of the tor-
sion part may differ. Using this splitting technique, we
determine the 3- and 5-ranks of the homology of Mn for
13 ≤ n ≤ 16. Here we define the p-rank of an abelian
group to be the rank of the Sylow p-subgroup of the tor-
sion part of the group.

Second, we use a similar technique to produce even
smaller pieces. While it does not seem to be possible to
compute the entire homology of Mn from these pieces, we
may still deduce useful information about the existence
of elements of order p for various primes p. Specifically,
our computations show that there are elements of order 5
in H̃4+u(M14+2u;Z) for 0 ≤ u ≤ 8, in H̃6+u(M19+2u;Z)
for 0 ≤ u ≤ 4, and in H̃8(M24;Z).

This turns out to imply that there are elements of or-
der 5 in the homology of Mn whenever n = 14, n = 16,
or n ≥ 18. Moreover, there are elements of order 7 in
H̃8+u(M23+2u;Z) for 0 ≤ u ≤ 9 and in H̃11(M30;Z), el-
ements of order 11 in H̃13(M47;Z), and elements of or-
der 13 in H̃19(M62;Z).

Almost all results are computer-based, but in Section 7
we present a computer-free proof that H̃4(M14;Z) con-
tains elements of order 5.

Based on our computations, we derive conjectures
about the existence of elements of order p in the homol-
ogy of Mn for arbitrary odd primes p. For example, the
above data suggest that there are elements of order p in
the homology of M(p2+6p+1)/4 for any odd prime p.

Let us explain the underlying method in some de-
tail. For a given group G acting on the simplicial chain
complex C(Mn;Z) of Mn, let C̃d(Mn;Z)/G be the sub-
group of the chain group C̃d(Mn;Z) consisting of all sums∑

g∈G g(c) such that c ∈ C̃d(Mn;Z). As long as the order
of G is not a multiple of a given prime p, the homology
of the subcomplex does not contain elements of order p

unless the homology of Mn contains elements of order p;
see Section 2.

In particular, if we indeed detect elements of order p in
the subcomplex, then we can deduce that the homology
of Mn also contains elements of order p.

To give an example, we first introduce some notation.
For a sequence λ = (λ1, . . . , λr) of nonnegative integers
summing to n, let Sλ be the Young group Sλ1×· · ·×Sλr

.
Given a set partition (U1, . . . , Ur) of {1, . . . , n} such that
|Ua| = λa for 1 ≤ a ≤ r, we obtain a natural action on
C(Mn;Z) by letting Sλa act on Ua in the natural manner
for each a; for a group element π ∈ Sλ, the action is given
by replacing the edge xy = {x, y} with the edge π(x)π(y)
for each choice of distinct elements x, y ∈ {1, . . . , n}.

In Section 4, we demonstrate that C(Mn;Z)/Sλ is iso-
morphic to the chain complex of a certain simplicial com-
plex BDλ

r . The vertices of this complex are all edges
and loops on {1, . . . , r}; a loop is a multiset of the form
xx = {x, x}). A collection of edges and loops is a face
of BDλ

r if and only if the total number of occurrences of
the element a in the edges and loops is at most λa for
1 ≤ a ≤ r. By a computer-based result from [Ander-
sen 92], H̃4(BD2

7;Z) is a cyclic group of order five. As a
consequence, the following is true.

Proposition 1.1. [Jonsson 09] The homology group
H̃4(M14;Z) contains elements of order 5.

The proof in [Jonsson 09] of Proposition 1.1 uses a
definition of C(Mn;Z)/Sλ that differs slightly from the
one given above. As alluded to earlier, we present a
computer-free proof of the proposition in Section 7.

Using similar but more-refined methods, we have man-
aged to deduce more information about the presence of
elements of order 5 in the homology of M14 and other
matching complexes.

Theorem 1.2. By computer calculations, the following
properties hold:

(i) The 5-rank of H̃4(M14;Z) is 233.

(ii) The 5-rank of H̃5(M16;Z) is 8163.
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(iii) H̃4+u(M14+2u;Z) contains elements of order 5 for
0 ≤ u ≤ 8, as do H̃6+u(M19+2u;Z) for 0 ≤ u ≤ 4
and H̃8(M24;Z).

Note that 233 is a Fibonacci number. As we will see
in Section 9.1, this does not appear to be purely a coin-
cidence.

To prove the theorem, we consider various actions of
the Young group Sλ on the chain complex of Mn for
certain choices of λ = (λ1, . . . , λr). Specifically, for each
sequence s = (s1, . . . , sr) of signs, we obtain an action
given by

(π, c) 7→
∏

1≤a≤r:sa=−1

sgn(πa) · π(c), (1–1)

where π = π1 · · ·πr and πa ∈ SUa . Here SUa denotes
the symmetric group Sλa , viewed as the group of per-
mutations on the set Ua. Whenever we refer to an action
on Mn as being induced by the pair (λ, s), we mean this
action. For clarity, we will often write the pair in matrix
form as

(
λ
s

)
=

(
λ1 λ2 · · · λr

s1 s2 · · · sr

)
. (1–2)

If all sa are equal to −1, then the action is simply
(π, c) 7→ sgn(π) · π(c). We refer to this action as the
natural signed action and the action (π, c) 7→ π(c) as
the natural unsigned action.

To prove (i) and (ii) in Theorem 1.2, we split the
chain complexes into many small pieces using the ac-
tions defined in (1–1) for the group (S2)r for 2r = 14
and 2r = 16, respectively. For the proof of (iii), we con-
sider the natural signed action of certain Young groups
Sλ on the chain complex of Mn. In some cases, we need
to pick an even larger group whose elements permute
not only the elements within each Ua but also the sets
Ua themselves. We describe this construction in greater
detail in Section 6.

It is important to stress that the choice of signs has a
significant impact on the homology of the resulting piece.
For many of the choices of λ used for proving Theo-
rem 1.2, the piece resulting from the natural signed action
of Sλ contains plenty of elements of order 5, whereas the
piece resulting from the unsigned action of Sλ does not
contain any such elements at all.

By the following proposition, the result that
H̃6(M19;Z) and H̃8(M24;Z) contain elements of order 5
turns out to be of particular importance.

Proposition 1.3. [Jonsson 08] For q ≥ 3, if
H̃2q(M5q+4;Z) contains elements of order 5, then so does
H̃2q+u(M5q+4+2u;Z) for each u ≥ 0.

Theorem 1.2 and Proposition 1.3 imply the following
result.

Theorem 1.4. The homology groups H̃6+u(M19+2u;Z)
and H̃8+u(M24+2u;Z) contain elements of order 5 for
each u ≥ 0. Thus the homology of Mn contains elements
of order 5 for all n ≥ 18 and for n = 14 and n = 16.

We do not know whether Proposition 1.3 can be ex-
tended to include q = 2. In particular, we cannot tell
whether H̃4+u(M14+2u;Z) contains elements of order 5
for u ≥ 9, though we do conjecture that this is the case.

Next, we consider higher torsion, in which case we
have the following results.

Theorem 1.5. By computer calculations, the following
properties hold:

(i) The homology group H̃8+u(M23+2u;Z) contains el-
ements of order 7 for 0 ≤ u ≤ 9. The same is true
for the group H̃11(M30;Z).

(ii) The homology group H̃19(M47;Z) contains elements
of order 11.

(iii) The homology group H̃26(M62;Z) contains elements
of order 13.

To prove Theorem 1.5(i) for u = 0, we consider the
action induced by ( λ

s ) =
(

3 4 4 4 4 4
+ − − − − −

)
as defined in

(1–1). A computer calculation yields that the homology
in degree eight of the resulting chain complex is a group
of order 7.

The action induced by
(

3 4 4 4 4 4
+ − − − − −

)
fits nicely into

a pattern starting with
(

1 2 2 2
+ − − −

)
and

(
2 3 3 3 3
+ − − − −

)
.

The action induced by
(

1 2 2 2
+ − − −

)
on M7 yields a chain

complex with a homology group of order 3 in de-
gree one, whereas the corresponding action induced by(

2 3 3 3 3
+ − − − −

)
on M14 induces a chain complex with a ho-

mology group of order 5 in degree four.
Parts (ii) and (iii) in Theorem 1.5 fit the same pattern;

we pick the group actions induced by
(

5 6 6 6 6 6 6 6
+ − − − − − − −

)
and

(
6 7 7 7 7 7 7 7 7
+ − − − − − − − −

)
. The resulting chain complexes

are much too large for a computer to handle, but since
almost all λa are the same, we may extend the group
to include elements that permute the sets Ua; see the
discussion above after Theorem 1.2.
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d = 0 1 2 3 4 5 6

n = 3 Z2 − − − − − −
4 Z2 − − − − − −
5 − Z6 − − − − −
6 − Z16 − − − − −
7 − Z3 Z20 − − − −
8 − − Z132 − − − −
9 − − Z42 ⊕ (Z3)

8 Z70 − − −
10 − − Z3 Z1216 − − −
11 − − − Z1188 ⊕ (Z3)

45 Z252 − −
12 − − − (Z3)

56 Z12440 − −
13 − − − Z3 Z24596 ⊕ (Z3)

220 Z924 −
14 − − − − (Z5)

233 ⊕ (Z3)
2157 Z138048 −

15 − − − − (Z3)
92 Z472888 ⊕ (Z3)

1001 Z3432

16 − − − − Z3 Z24024 ⊕ (Z5)
8163 ⊕ (Z3)

60851 Z1625288

TABLE 1. The homology H̃d(Mn;Z) for n ≤ 16. For n ≥ 13, the second-highest nonvanishing homology group is a guess
based on computations over some small fields Zp of odd characteristic; the torsion part might be a strictly larger group.

For completeness, let us mention that the correspond-
ing group action induced by

(
4 5 5 5 5 5 5
+ − − − − − −

)
yields a

cyclic homology group of order 9 in degree 13. Since the
order of the acting group is a multiple of 9, we cannot
conclude anything about the existence of elements of or-
der 9 in the homology of M34.

In addition, we establish precise results about the
3-rank of the homology of Mn for 13 ≤ n ≤ 16. The
methods used are exactly the same as those used for prov-
ing Theorem 1.2(i) and (ii).

Theorem 1.6. By computer calculations, the following
properties hold:

(i) The 3-rank of H̃4(M13;Z) is 220.

(ii) The 3-rank of H̃4(M14;Z) is 2157.

(iii) The 3-ranks of H̃4(M15;Z) and H̃5(M15;Z) are 92
and 1001, respectively.

(iv) The 3-rank of H̃5(M16;Z) is 60851.

It is well known [Shareshian and Wachs 07] that
H̃4(M15;Z) is an elementary 3-group. We do not know
whether the other 3-groups are elementary. See Table 1
for a summary of the situation for n ≤ 16.

It is known that H̃1(M7;Z) ∼= Z3, H̃2(M9;Z) ∼= Z42 ⊕
(Z3)8, and H̃3(M11;Z) ∼= Z1188 ⊕ (Z3)45. This suggests
the following conjecture.

Conjecture 1.7. For k ≥ 0, we have that H̃k+1(M2k+7;Z)
is the direct sum of a free group and an elementary
3-group of rank

(
2k+6

k

)
.

See Table 3 for a schematic overview of the situation
for 17 ≤ n ≤ 28.

The proofs of Theorems 1.2, 1.5, and 1.6 involve chain
complexes that are not simplicial. To handle such chain
complexes, we use Pilarczyk’s excellent computer pro-
gram HOMCHAIN (version 2.08), which is part of the
advanced version of the CHomP package [Pilarczyk 04].

1.1 The Big Picture

Note that the first occurrence of elements of order 3 in
Hd(Mn;Z) is for (n, d) = (7, 1), and the first occurrence
of elements of order 5 is for (n, d) = (14, 4). Let us
provide a heuristic argument explaining why it seemed
reasonable to look for elements of orders 7, 11, and 13
in Hd(Mn;Z) for (n, d) = (23, 8), (47, 19), and (62, 26),
respectively. The argument is best understood when ex-
pressed in terms of a pair (k, r) of parameters, introduced
in a previous paper [Jonsson 08], defined as

{
k = 3d− n + 4,

r = n− 2d− 3,
⇐⇒

{
n = 2k + 1 + 3r,

d = k − 1 + r.
(1–3)

The following proposition and corollary provide a ratio-
nale for this parameter choice.
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k = 0 1 2 3 4 5 6 7 8 9 10

r = 0 ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞
1 ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞
2 3 ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞
3 5 ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞
4 7 ∞ ∞ ∞ ∞ ∞
5 (∗) ∞

TABLE 2. Boxes marked with “∞” correspond to pairs (k, r) such that H̃k−1+r(M2k+1+3r;Z) is infinite. We have marked
boxes corresponding to the first known occurrences of elements of order p for p = 3, 5, 7. The next box to form a corner
of the region of finite homology is marked with (∗).

d = 5 6 7 8 9 10 11 12

n = 17 3 ∞, (3) ∞ − − − − −
18 3 ∞, 3, 5 ∞ − − − − −
19 3 3, 5 ∞, (3) ∞ − − − −
20 − 3 ∞, 3, 5 ∞ − − − −
21 − 3 3, 5 ∞, (3) ∞ − − −
22 − 3 3 ∞, 3, 5 ∞ − − −
23 − − 3 3, 5, 7 ∞, (3) ∞ − −
24 − − 3 3, 5 ∞, 3, 5 ∞ − −
25 − − 3 3 ∞, 3, 5, 7 ∞, (3) ∞ −
26 − − − 3 3, 5 ∞, 3, 5 ∞ −
27 − − − 3 3 ∞, 3, 5, 7 ∞, (3) ∞
28 − − − 3 3 3, 5 ∞, 3, 5 ∞

TABLE 3. List of known infinite and prime orders of elements in the group H̃d(Mn;Z) for 17 ≤ n ≤ 28. Legend: ∞ =
group is infinite; p = group contains elements of order p; (p) = group is conjectured to contain elements of order p.

Proposition 1.8. Let n ≥ 1. Then the following hold for
the homology group Hd(Mn;Z) = H̃k−1+r(M2k+1+3r;Z):

(1) [Bouc 92] The group is infinite if and only if k ≥
r(r − 1)/2 and r ≥ 0.

(2) [Björner et al. 94] The group is zero unless k ≥ 0 and
r ≥ 0.

(3) [Bouc 92, Shareshian and Wachs 07] The group is
a nonvanishing elementary 3-group whenever k ∈
{0, 1, 2} and r ≥ k + 2.

(4) [Jonsson 08] The group is a nonvanishing 3-group
whenever 0 ≤ k ≤ r − 2.

(5) [Jonsson 08] The group contains elements of order 3
whenever k ≥ 0 and r ≥ 3.

Corollary 1.9. For n ≥ 1, the group H̃d(Mn;Z) =
H̃k−1+r(M2k+1+3r;Z) is nonzero if and only if k ≥ 0
and r ≥ 0.

Regarding Proposition 1.8(4), (5), we conjecture that
the following stronger properties hold.

Conjecture 1.10. The group H̃d(Mn;Z) =
H̃k−1+r(M2k+1+3r;Z) contains elements of order 3
if and only if k ≥ 0 and r ≥ 2. The homology group
is an elementary nonvanishing 3-group if and only if
0 ≤ k ≤ r − 2.

In Conjecture 1.7 above, we conjectured that the 3-
rank of H̃k+1(M2k+7;Z) is

(
2k+6

k

)
for k ≥ 0. This would

imply the first part of Conjecture 1.10; it is well known
and easy to prove that H̃k−1+r(M2k+1+3r;Z) is free if
r ≤ 1 (equivalently, d ≥ n−4

2 ). Conjecture 1.12 below
implies the “only if” part of the second statement.

Note that (n, d) = (7, 1) corresponds to (k, r) = (0, 2)
and that (n, d) = (14, 4) corresponds to (k, r) = (2, 3).
Both these pairs satisfy the equation

k =
r(r − 1)

2
− 1. (1–4)

In particular, the pairs just barely fail to meet the re-
quirement in Proposition 1.8(1). An alternative way to
put it is to say that the pairs (k, r) satisfying (1–4) are
the corners of the region of finite homology as illustrated
in Table 2. The next corner after (0, 2) and (2, 3) is (5, 4),
which yields (n, d) = (23, 8), exactly the pair for which we
detected elements of order 7. The subsequent corners are
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k = 0 1 2 3 4 5 6 7 8

r = 0 ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞
1 ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞
2 3 ∞, 3 ∞, 3 ∞, 3 ∞, 3 ∞, (3) ∞, (3) ∞, (3) ∞, (3)
3 3 3 3, 5 ∞, 3, 5 ∞, 3, 5 ∞, 3, 5 ∞, 3, 5 ∞, 3, 5 ∞, 3, 5
4 3 3 3 3, 5 3, 5 3, 5, 7 ∞, 3, 5, 7 ∞, 3, 5, 7 ∞, 3, 5, 7
5 3 3 3 3 3, 5 3, 5 3, 5 3, 5, 7 3, 5, (7)
6 3 3 3 3 3 3, (5) 3, (5) 3, (5) 3, (5)
7 3 3 3 3 3 3 3, (5) 3, (5) 3, (5)

TABLE 4. List of known infinite and prime orders of elements in the group H̃k−1+r(M2k+1+3r;Z) for k ≤ 8 and r ≤ 7;
notation is as in Table 3.

(9, 5), (14, 6), and (20, 7), which yield (n, d) = (34, 13),
(47, 19), and (62, 26), respectively. The latter two pairs
are the places where we detected elements of order 11
and 13, respectively.

One may ask whether there are elements of order 2r−1
in the group corresponding to the pair

(k, r) =
(

r(r − 1)
2

− 1, r

)

for all r ≥ 2 or at least all r such that 2r − 1 is a prime.
As already alluded to, we do not know whether there
are elements of order 9 in the group corresponding to
(k, r) = (9, 5).

Expressing Theorems 1.2 and 1.4 in terms of the pa-
rameters k and r, we obtain the following characteriza-
tion of groups known to contain elements of order 5.

Corollary 1.11. The homology group H̃d(Mn;Z) =
H̃k−1+r(M2k+1+3r;Z) contains elements of order 5 when-
ever either of the following holds:

• r = 3 and 2 = r − 1 ≤ k ≤ 10;

• r ∈ {4, 5} and k ≥ r − 1.

This suggests the following conjecture.

Conjecture 1.12. The group H̃k−1+r(M2k+1+3r;Z) con-
tains elements of order 5 whenever r ≥ 3 and k ≥ r − 1.
Equivalently, H̃d(Mn;Z) contains elements of order 5
whenever

2n− 8
5

≤ d ≤ n− 6
2

.

Proceeding to the next prime, Theorem 1.5 yields that
there are elements of order 7 in H̃k−1+r(M2k+1+3r;Z) for
r = 4 and 5 ≤ k ≤ 14 and also for (k, r) = (7, 5). While
this is very little evidence for a conjecture, we do hope
that the following is true.

Conjecture 1.13. The group H̃k−1+r(M2k+1+3r;Z) con-
tains elements of order 7 whenever r ≥ 4 and k ≥ 2r−3.
Equivalently, H̃d(Mn;Z) contains elements of order 7
whenever

3n− 13
7

≤ d ≤ n− 7
2

.

Table 4 gives a schematic overview similar to the one
in Table 3 but with rows and columns indexed by r and
k rather than n and d.

We have even less evidence for the following conjecture
about the existence of elements of order p for general p

in the homology of Mn.

Conjecture 1.14. Let p = 2q − 1 be an odd prime. Then
H̃k−1+r(M2k+1+3r;Z) contains elements of order p when-
ever r ≥ q and k ≥ (q − 2)r − (

q−1
2

)
. Equivalently,

H̃d(Mn;Z) contains elements of order p whenever

(q − 1)(n− q/2)
2q − 1

− 1 ≤ d ≤ n− q − 3
2

.

2. GENERAL CONSTRUCTION

Let

C : · · · ∂−−−−→ Cd+1
∂−−−−→ Cd

∂−−−−→ Cd−1

∂−−−−→ · · ·
be a chain complex of abelian groups. Let G be a finite
group acting on C; thus we have a map α : G×⊕

d Cd →⊕
d Cd satisfying

αg(∂(c)) = ∂(αg(c)),

αg ◦ αh(c) = αgh(c),

for all g, h ∈ G and c ∈ ⊕
d Cd.

Let Cd/(G,α) be the subgroup of Cd consisting of all
elements

[c] =
∑

g∈G

αg(c),
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c ∈ Cd. Writing Cd/G = Cd/(G,α), this yields a chain
subcomplex

C/G : · · · ∂−−−−→ Cd+1/G
∂−−−−→ Cd/G

∂−−−−→ Cd−1/G
∂−−−−→ · · · .

Proposition 2.1. Let q be a positive integer. If Hd(C/G)
contains elements of order q, then Hd(C) contains ele-
ments of order q/ gcd(q, |G|). In particular, if q and |G|
are coprime, then Hd(C) contains elements of order q.

Proof. Defining ι : Cd/G 7→ Cd to be the natural in-
clusion map, we obtain the following diagram of maps
between homology groups:

Hd(C/G) ι∗−−−−→ Hd(C) [·]∗−−−−→ Hd(C/G).

Now suppose that z is an element of order q in Hd(C/G).
Let w be an element from Cd/G in the homology class z.
By construction, w = [w′] for some w′. As a consequence,

[ι(w)] =
∑

g∈G

∑

h∈G

αg(αh(w′)) =
∑

g∈G

∑

h∈G

αgh(w′) =
∑

g∈G

w

= |G| · w.

This implies that [ι∗(z)]∗ = |G| · z, which is an element
of order q/ gcd(q, |G|). It follows that the order of ι∗(z)
in Hd(C) is divisible by q/ gcd(q, |G|).

Note that C/G is a subcomplex of the complex of
G-invariant elements. In our applications with Young
groups acting on matching complexes, the two complexes
are not identical in general. The reason for examining
C/G rather than the G-invariant complex is that the for-
mer complex turns out to be more attractive in our sit-
uation. For example, the results presented in Sections 4
and 5 are not valid in general for the G-invariant complex
unless |G| is a unit in the underlying coefficient ring.

3. A CHAIN COMPLEX STRUCTURE ON A FAMILY
OF MULTISETS

We want to understand the chain complex obtained from
that of Mn by acting on Mn as in (1–1). In this section,
we look at a more general situation, thereby postponing
the special case of importance to us until the next section.

A loop on a set X is a multiset of the form xx = {x, x},
where x ∈ X. Let V be a finite totally ordered set,
and let E be a subset of the set of edges and loops on
X. We say that two elements a and b in V commute if
ab belongs to E; a commutes with itself if the loop aa

belongs to E. Otherwise, a and b anticommute. Given
a sequence (v0, . . . , vd) of elements from V , we say that
the pair (i, j) forms an inversion if i < j and vi > vj .
The inversion is commuting if vi and vj commute, and
anticommuting otherwise.

In what follows, we will consider multisets. Given a
multiset σ and an element x ∈ σ, we define σ \ {x} to be
the multiset obtained by decreasing the multiplicity of x

in σ by one. We extend this to larger submultisets in the
obvious manner: σ \ {x, y} = (σ \ {x}) \ {y} and so on.

Let ∆ be a family of multisets of elements from V

satisfying the following properties:

(A) If σ, τ ∈ ∆ and σ ⊆ ρ ⊆ τ , then ρ ∈ ∆.

(B) For each multiset σ in ∆, if x and y commute and
{x, y} ⊆ σ, then the multiset σ \ {x, y} does not
belong to ∆.

(C) For each σ ∈ ∆, any element a ∈ V appearing more
than once in σ commutes with itself.

Our goal is to define a chain complex associated to
∆ and E. As we will see, if E is empty, meaning that
no pairs of elements commute, and ∆ is closed under
deletion of elements, then the resulting chain complex
coincides with the simplicial chain complex on ∆.

For a coefficient ring R, define a chain complex
C((∆, E); R) in the following manner. The chain group
Cd((∆, E); R) is the free R-module with one generator
x0 ⊗ · · · ⊗ xd for each multiset σ = {x0, . . . , xd} in ∆
of size d + 1 (x0 ≤ · · · ≤ xd). By convention, we set
x0 ⊗ · · · ⊗ xd equal to zero whenever {x0, . . . , xd} /∈ ∆.

Sometimes we will need to consider generators in
which the elements are not arranged according to the
total order on V . For a permutation π ∈ S{0,...,d}, we
define

xπ(0) ⊗ · · · ⊗ xπ(d) = (−1)η · x0 ⊗ · · · ⊗ xd, (3–1)

where η is the number of anticommuting inversions
of (xπ(0), . . . , xπ(d)). Equivalently, for any sequence
(x0, . . . , xd), ordered or not, and any integer i, we have
that the element γ′ = x0 ⊗ · · · ⊗ xi−2 ⊗ xi ⊗ xi−1 ⊗
xi+1 ⊗ · · · ⊗ xd obtained by swapping xi−1 and xi in
γ = x0 ⊗ · · · ⊗ xd equals γ if xi−1 and xi commute and
−γ if xi−1 and xi anticommute (hence the choice of ter-
minology). Here note that property (C) yields that xi−1

and xi always commute when they are equal.
Let ∂ be the boundary operator defined on a given

generator γ = x0 ⊗ · · · ⊗ xd as

∂(γ) =
d∑

i=0

(−1)d−ηi · γi. (3–2)
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Here γi denotes the element x0⊗· · ·⊗xi−1⊗ x̂i⊗xi+1⊗
· · · ⊗ xd obtained by removing the element xi, and ηi =
ηi(γ) is the number of indices j ∈ {i+1, . . . , d} such that
xi and xj anticommute.

We need to show that (3–1) and (3–2) are consistent
for any (x0, . . . , xd). Now, the coefficient of γj in the
boundary of γ equals (−1)d−ηj . Let γ′ be the element
obtained from γ by swapping xi−1 and xi. For j /∈
{i−1, i}, let γ′j be the element obtained from γj by swap-
ping xi−1 and xi. The coefficient of γ′j in the boundary
of γ′ remains equal to (−1)d−ηj , aligning with the fact
that either (γ′, γ′j) = (γ, γj) or (γ′, γ′j) = (−γ,−γj). For
j = i, the coefficient of γi in the boundary of γ′ equals
(−1)d−ηi if and only if xi−1 and xi commute, aligning
with the fact that γ′ = γ if and only if xi−1 and xi com-
mute. The case j = i− 1 follows by symmetry.

Proposition 3.1. We have that C((∆, E); R) =
(C∗((∆, E); R), ∂) defines a chain complex. Equivalently,
∂ ◦ ∂ = 0.

Proof. Let γ and γi be defined as above. We want to
prove that ∂ ◦ ∂(γ) = 0.

It suffices to show that either the coefficient of γi,j =
x0 ⊗ · · · ⊗ x̂i ⊗ · · · ⊗ x̂j ⊗ · · · ⊗ xd in ∂ ◦ ∂(γ) is zero or
γi,j itself is zero whenever 0 ≤ i < j ≤ d. We obtain γi,j

either by first removing xi to get γi and then removing
xj or by first removing xj to get γj and then removing
xi. By properties (A) and (B), γi,j is zero unless each of
γi and γj is nonzero and xi and xj anticommute; hence
assume that these properties are satisfied.

If we remove first xi and then xj , then the sign of γi,j

equals

(−1)d−ηi(γ) · (−1)d−1−ηj−1(γi) = (−1)2d−1−ηi(γ)−ηj−1(γi).

If we proceed the other way around, then the sign be-
comes

(−1)d−ηj(γ) · (−1)d−1−ηi(γj) = (−1)2d−1−ηj(γ)−ηi(γj).

In the first case, we take 2d− 1 and subtract from it the
number of indices k > i such that xi and xk anticommute
and then the number of indices k > j such that xj and
xk anticommute. In the second case, we again take 2d−1
and subtract from it the number of indices k > j such
that xj and xk anticommute and then the number of
indices k > i, excluding k = j, such that xi and xk

anticommute. Thus since xi and xj anticommute, the
two signs cancel out. This concludes the proof.

4. PROPERTIES OF THE CHAIN COMPLEX
INDUCED BY (λ, s)

Let n ≥ 1, let λ1, . . . , λr be positive integers summing
to n, and let s = (s1, . . . , sr) be a sequence of signs. Let
(U1, . . . , Ur) be a set partition of {1, . . . , n} such that
|Ua| = λa for 1 ≤ a ≤ r. In this section, we examine the
chain complex obtained from that of Mn by acting on Mn

as in (1–1).
In this chain complex, it turns out that we may choose

generators that admit an interpretation as multisets of
edges and loops on the set {1, . . . , r}. Specifically, a
given matching {x0y0, . . . , xdyd} ∈ Mn corresponds to
the multiset {a0b0, . . . , adbd}, where ai and bi are such
that xi ∈ Uai and yi ∈ Ubi for 0 ≤ i ≤ d.

Let R be a commutative ring. We consider the action
in (1–1). To be precise, this is the action by the Young
group Sλ = Sλ1 × · · · ×Sλr on C(Mn; R) given by

(π, c) 7→
∏

1≤a≤r
sa=−1

sgn(πa) · π(c),

where π = π1 · · ·πr, πi ∈ SUa
∼= Sλa for 1 ≤ a ≤ r, and

π(x0y0 ∧ · · · ∧ xdyd) = π(x0)π(y0) ∧ · · · ∧ π(xd)π(yd).

Write
π(s)(c) =

∏

1≤a≤r
sa=−1

sgn(πa) · π(c).

For a chain group element c, write

[c] =
∑

π=π1···πr∈Sλ

π(s)(c).

We want to describe the chain subcomplex generated by
elements of the form [c]. By some abuse of notation,
we write this chain complex as C(Mn; R)/(λ, s). For any
π ∈ Sλ and chain group element c, we note for future
reference that

[π(s)(c)] = [c]. (4–1)

It turns out to be helpful to describe generators of
C(Mn; R)/(λ, s) in terms of multisets of edges and loops
on the set {1, . . . , r}. We refer to an element a ∈
{1, . . . , r} as positively charged if sa = +1 and negatively
charged if sa = −1. Two edges ab and cd commute if the
intersection {a, b}∩{c, d} contains exactly one negatively
charged element. Otherwise, the two edges anticommute.
Every loop anticommutes with all edges and loops. As
we will see, this aligns with the terminology used in Sec-
tion 3.

For a multiset σ of edges and loops on {1, . . . , r} and
an element a ∈ {1, . . . , r}, define degσ(a) to be the degree
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of a in σ; this is the number of times a occurs as a member
of an edge or a loop in σ. Note that a occurs twice in
the loop aa, which means that this loop contributes two
to the degree of a. Let ∆λ,s be the family of all multisets
σ of edges and loops on the set {1, . . . , r} satisfying the
following properties:

(i) If the element a is positively charged, then 0 ≤
degσ(a) ≤ λa.

(ii) If the element a is negatively charged, then λa−1 ≤
degσ(a) ≤ λa, and the loop aa does not appear in σ.

(iii) An edge ab does not appear more than once in σ

unless a and b have opposite charges. In particular,
no loop appears more than once in σ.

Let Eλ,s be the set consisting of those edges and loops
{ab, cd} on the set {ab : 1 ≤ a ≤ b ≤ r} with the property
that ab and cd commute. In Section 3, we needed a total
order on the underlying set V . In the case of Eλ,s, the
set V is the set of edges and loops on the set {1, . . . , r}.
We order the elements of V lexicographically: ab ≤ cd if
either a < c or a = c and b ≤ d, where we assume that
a ≤ b and c ≤ d (recall that ab and ba denote the same
edge).

Choosing ∆ = ∆λ,s and E = Eλ,s, note that properties
(i)–(iii) imply properties (A)–(C) in Section 3. Namely,
each of the families defined by (i), (ii), and (iii) satisfies
(A); hence ∆λ,s satisfies (A), being the intersection of
these families. Moreover, suppose that σ ∈ ∆λ,s contains
two commuting edges e and e′; let a be the unique neg-
atively charged element in the intersection of e and e′.
Since the degree of a in σ is at most λa, the degree of a

in σ \ {e, e′} is at most λa − 2, which implies by (ii) that
σ \ {e, e′} does not belong to ∆λ,s; thus (ii) implies (B).

Finally, by construction, an edge commutes with itself
if and only if it contains exactly one negatively charged
element; hence (iii) implies (C). In particular, the con-
struction in Section 3 yields a well-defined chain complex
C((∆λ,s, Eλ,s); R).

Theorem 4.1. Suppose that |Sλ| =
∏r

a=1 λa! is not a zero
divisor in R. Then C(Mn; R)/(λ, s) and C((∆λ,s, Eλ,s); R)
are isomorphic as chain complexes.

Proof. Let σ = {a0b0, . . . , adbd} be a multiset on
{1, . . . , r} such that 0 ≤ degσ(a) ≤ λa for all a ∈
{1, . . . , r} and such that a0b0 ≤ · · · ≤ adbd; we assume
that ak ≤ bk for 0 ≤ k ≤ d. Since |Ua| ≥ degσ(a)
for all a, there exist matchings {x0y0, . . . , xdyd} satisfy-
ing xk ∈ Uak

and yk ∈ Ubk
for 0 ≤ k ≤ d. Among

all such matchings, let {x0y0, . . . , xdyd} be the lexico-
graphically smallest matching when viewed as a sequence
(x0, y0, x1, y1, · · · , xd, yd). Write

γ̂ = x0y0 ∧ · · · ∧ xdyd

and γ = [γ̂], and define

ϕ(a0b0 ⊗ · · · ⊗ adbd) = γ.

We want to show that ϕ defines an isomorphism from
C((∆λ,s, Eλ,s); R) to C(Mn; R)/(λ, s).

First, note that ϕ would be surjective if we extended
its domain to include all elements a0b0 ⊗ · · · ⊗ adbd such
that 0 ≤ degσ(a) ≤ λa for all a ∈ {1, . . . , r}; ev-
ery generator of C(Mn; R) corresponds to such a gen-
erator. In particular, to prove that ϕ is surjective, it
suffices to prove that ϕ(a0b0 ⊗ · · · ⊗ adbd) is zero when-
ever σ = {a0b0, . . . , adbd} violates (i), (ii), or (iii). Since
(i) is true by assumption, we may assume that either (ii)
or (iii) is violated.

Suppose first that condition (ii) is violated for some
negatively charged element a; hence the loop aa appears
in σ or degσ(a) ≤ λa − 2.

• If the loop aa appears in σ, then γ̂ contains an edge
xiyi such that xi, yi ∈ Ua. Let x = xi and y = yi in
this case.

• If degσ(a) ≤ λa−2, then there are elements x, y ∈ Ua

such that x, y /∈ {xi, yi} for all i.

In both cases, the action of the transposition (x, y) on γ̂

yields −γ̂, implying that 2γ = 0 by (4–1). Since |Ua| ≥ 2,
we obtain that |Sλ| is divisible by 2. In particular, 2 is
not a zero divisor in R, which yields that γ = 0.

Now suppose that condition (iii) is violated. This
means that there are two identical edges or loops aibi =
ajbj such that ai and bi have the same charge. Swapping
xiyi and xjyj , we obtain an element ε that is equal to
−γ̂. However, ε is also the element obtained by acting on
γ̂ with the group element (xi, xj)(yi, yj), because ai and
bi have the same charge. We deduce that

−γ = [ε] = [γ̂] = γ;

the second equality is (4–1). Again, we obtain that γ = 0.
To prove that ϕ defines an isomorphism of modules, it

remains to show that ϕ(κ) is nonzero for every nonzero
generator κ of C((∆λ,s, Eλ,s); R).

Saying that γ = x0y0 ∧ · · · ∧ xdyd is zero in
C(Mn;R)/(λ, s) is equivalent to saying that there is a
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group element π ∈ Sλ such that π(s)(γ̂) = −γ̂. Namely,
suppose that such a group element π exists. Then

γ = [γ̂] = [π(s)(γ̂)] = [−γ̂] = −γ,

which implies that γ = 0 by the assumption on R. If
such an element π does not exist, then the coefficient of
γ̂ in γ is a divisor of |Sλ|, which is not a zero divisor in
R by assumption.

Let π be such that π(s)(γ̂) = −γ̂. For each a ≤ b ∈
{1, . . . , r}, let πa,b be the restriction of π to the union of
the sets {xi, yi} satisfying xi ∈ Ua and yi ∈ Ub. For each
a ∈ {1, . . . , r}, let πa be the restriction of π to the set of
elements x ∈ Ua such that x /∈ {xi, yi : i ∈ {0, . . . , d}}.
We may decompose π as the product of all πa,b and πa,
extending each factor to {1, . . . , n} by defining it to be
the identity outside its domain. In particular, either
π

(s)
a (γ̂) = −γ̂ for some a or π

(s)
a,b(γ̂) = −γ̂ for some a ≤ b.

In the former case, a is negatively charged, and there
are at least two elements x and y in Ua outside the set
{xi, yi : i ∈ {1, . . . , r}}. This violates (ii), since the de-
gree of a is then at most λa − 2. In the latter case, ab

anticommutes with itself, meaning that a and b have the
same charge. This violates (iii).

It remains to show that the boundary operators coin-
cide. Consider the ith term εi = (−1)i ·x0y0∧· · ·∧ ˆxiyi∧
xdyd in the boundary of γ̂ in C(MN ;R). Write δi = [εi].
If ai 6= bi, then let (z1 = xi, z2, . . . , zq) be the sequence of
elements appearing in Uai ∩ {xj , yj : i ≤ j ≤ d} and let
(z′1 = yi, z

′
2, . . . , z

′
q′) be the sequence of elements appear-

ing in Ubi ∩ {xj , yj : i ≤ j ≤ d}, arranged in increasing
order. To obtain the lexicographically smallest element
δ̂i from εi, we need to act on εi with the permutation
(zq, . . . , z2, z1)(z′q′ , . . . , z

′
2, z

′
1). There are three cases:

Case 1: ai and bi are both negatively charged. By
construction, aibi appears only once in γ, meaning that
there are q + q′ − 2 edges ajbj commuting with aibi such
that j > i; hence ηi = d − i − (q + q′ − 2), where ηi

is the number of indices j > i such that aibi and ajbj

anticommute. We conclude that the sign of δ̂i equals
(−1)i+q+q′−2 = (−1)d−ηi , which aligns with (3–2).

Case 2: ai and bi are both positively charged. This
means that no edges commute with aibi; hence ηi = d− i

and the sign of δ̂i equals (−1)i = (−1)d−ηi .
Case 3: ai and bi have opposite charges. By symme-

try, we may assume that ai is negatively charged and
bi positively charged. In that case, there are q − 1
edges ajbj commuting with aibi such that j > i; hence
ηi = d−i−(q−1). We conclude that the sign of δ̂i equals
(−1)i+q−1 = (−1)d−ηi .

If ai = bi, then ai is positively charged by construc-
tion, and there are no edges or loops commuting with
aiai; hence ηi = d− i. We conclude that the sign of δ̂i is
(−1)i = (−1)d−ηi .

When all signs si are positive, we may identify
C(Mn; R)/(λ, s) with the chain complex of a certain sim-
plicial complex. Specifically, define BDλ

r to be the family
of sets σ of edges and loops on the set {1, . . . , r} such
that degσ(a) ≤ λa for each a ∈ {1, . . . , r}. It is clear
that BDλ

r is a simplicial complex.

Proposition 4.2. If sa = +1 for all a ∈ {1, . . . , r}, then
C((∆λ,s, Eλ,s); R) and C(BDλ

r ; R) are isomorphic. In par-
ticular, if |Sλ| =

∏r
a=1 λa! is not a zero divisor in R,

then C(Mn; R)/(λ, s) and C(BDλ
r ;R) are isomorphic.

Proof. By assumption, all elements are positively
charged, which implies by (i)–(iii) that the individual
chain groups are isomorphic for the two chain complexes.
Since all pairs of edges anticommute, the boundary op-
erator ∂ on C((∆λ,s, Eλ,s); R) defined in (3–2) has the
property that

∂(γ) =
d∑

i=0

(−1)i · γi,

which is the usual simplicial boundary operator. For the
last statement of the proposition, apply Theorem 4.1.

It turns out that we can transform C(Mn; R)/(λ, s) into
a smaller chain complex with the same homology such
that the description of the generators is symmetric with
respect to charge.

Theorem 4.3. The homology of C((∆λ,s, Eλ,s); R) is
isomorphic to the homology of the quotient complex
C((λ, s); R) obtained by restricting to multisets σ satis-
fying the following two conditions:

(I) For each element a, we have that λa − 1 ≤
degσ(a) ≤ λa, and the loop aa does not appear
in σ.

(II) An edge ab does not appear more than once in σ

unless a and b have opposite charges.

In particular, if |Sλ| =
∏r

a=1 λa! is not a zero divisor in
R, then the homology of C(Mn; R)/(λ, s) is isomorphic to
that of C((λ, s); R).

Proof. Let a1, . . . , ap be the positively charged elements.
For 0 ≤ q ≤ p, let C(q) be the quotient complex
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obtained by removing all generators in which ai does
not satisfy (I) for some i ≤ q. Note that C(0) coin-
cides with C((∆λ,s, Eλ,s); R) and that C(p) coincides with
C((λ, s); R). To prove the theorem, it suffices to prove
that the homology of C(q−1) is isomorphic to that of C(q)

for 1 ≤ q ≤ p and that an isomorphism is induced by the
natural quotient map. Namely, this implies that the nat-
ural quotient map from C((∆λ,s, Eλ,s); R) to C((λ, s); R)
induces an isomorphism on homology.

Note that we may view C(q) as the quotient complex
of C(q−1) by the subcomplex W(q) consisting of those
generators in which aq does not satisfy (I). Given a
chain group element c in W(q), we may decompose c as
c = aqaq ⊗ c′ + c′′, where no generators appearing in c′

and c′′ contain the loop aqaq. This means that the de-
gree of aq is at most λaq

− 2 in each generator appearing
in c′ or c′′. Let ∂ denote the boundary operator in W(q)

induced by that in C((∆λ,s, Eλ,s); R). Since

∂(c) = c′ − aqaq ⊗ ∂(c′) + ∂(c′′),

c is a cycle if and only if ∂(c′) = 0 and c′ = −∂(c′′).
However, in this case we have that c equals ∂(aqaq⊗ c′′).
This is indeed a boundary in W(i), because the degree of
aq is at most λaq−2 in each generator appearing in c′′. As
a consequence, the homology of W(i) is zero. By the long
exact sequence for the pair (C(i−1),W(i)), it follows that
C(i−1) and C(i) have the same homology. This concludes
the proof.

5. CONNECTION TO THE FREE TWO-STEP
NILPOTENT LIE ALGEBRA

Before proceeding, we discuss a closely related Koszul
complex [Józefiak and Weyman 88, Sigg 96]. Let R be a
commutative ring. Let λ = (λ1, . . . , λr) and

λ− =
(

λ1 · · · λr

− · · · −
)

.

Let Xλ
d+1 be the free R-module generated by elements of

the form e0 ∧ · · · ∧ ed ⊗ v1 ∧ · · · ∧ vt, where v1, . . . , vt ∈
{1, . . . , r} and e0, . . . , ed are edges on {1, . . . , r} (loops are
not allowed) such that the total number of occurrences of
a in (e0, . . . , ed, v1, . . . , vt) is λa for 1 ≤ a ≤ r. If ei = ej

or vi = vj for some i 6= j, then we define e0∧· · ·∧ed⊗v1∧
· · · ∧ vt to be zero. For any permutations ρ of {0, . . . , d}
and τ of {1, . . . , t}, we define

eρ(0) ∧ · · · ∧ eρ(d) ⊗ vτ(1) ∧ · · · ∧ vτ(t)

= sgn(ρ) sgn(τ) · e0 ∧ · · · ∧ ed ⊗ v1 ∧ · · · ∧ vt.

Note that 2d+2+t = |λ|. For example, for λ = (2, 2, 2, 1),
the element 12 ∧ 23⊗ 1 ∧ 3 ∧ 4 appears in Xλ

2 .
We define a boundary operator by

δ(x0y0 ∧ · · · ∧ xdyd ⊗ v1 ∧ · · · ∧ vt)

=
d∑

i=0

(−1)i · x0y0 ∧ · · · ∧ ˆxiyi ∧ · · · ∧ xdyd

⊗ xi ∧ yi ∧ v1 ∧ · · · ∧ vt;

we assume that xj < yj for 0 ≤ j ≤ d. This indeed yields
a chain complex X λ = (Xλ

∗ , δ). What we just defined is
the chain complex associated to the free two-step nilpo-
tent Lie algebra analyzed in [Józefiak and Weyman 88]
and [Sigg 96].

For a sequence w = (w1, . . . , wk) of elements from
{1, . . . , r}, let inv(w) be the number of inversions of w,
i.e., the number of pairs (i, j) such that i < j and wi >

wj . For a generator γ = x0y0 ∧ · · · ∧ xdyd ⊗ v1 ∧ · · · ∧ vt,
let

〈γ〉 = (x0, y0, . . . , xd, yd, v1, . . . , vt).

Define sgn(γ) to be (−1)inv(〈γ〉). For example,

sgn(12 ∧ 23⊗ 1 ∧ 3 ∧ 4) = −1,

because (1, 2, 2, 3, 1, 3, 4) contains three inversions: (2, 5),
(3, 5), (4, 5).

Define a map ϕ from Xλ
d+1 to C̃d(λ−;R) by

ϕ(γ) = ϕ(e0∧· · ·∧ed⊗v1∧· · ·∧vt) = sgn(γ)·e0⊗· · ·⊗ed.

We need to show that this map is well defined. For this,
it suffices to show that ϕ(γ′) = −ϕ(γ) for any γ′ obtained
from γ by swapping either ei−1 and ei or vi−1 and vi for
some i.

Suppose we obtain γ′ by swapping ei−1 and ei. If
the two edges are disjoint, then the number of inversions
changes by an even number, because the inversion status
changes for exactly four pairs of indices. In particular,
sgn(γ′) = sgn(γ). Since ei−1 and ei anticommute, we
obtain that ϕ(γ′) = −ϕ(γ).

If the two edges have one element in common, then the
number of inversions changes by an odd number, because
there are three pairs of indices for which the inversion
status changes. This means that sgn(γ′) = − sgn(γ).
Since ei−1 and ei commute, we again deduce that ϕ(γ′) =
−ϕ(γ).

Now suppose we obtain γ′ by swapping vi−1 and vi.
Since the number of inversions either increases or de-
creases by one, we obtain that sgn(γ′) = − sgn(γ), which
implies that ϕ(γ′) = −ϕ(γ).
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Complex Group Action (G, α) d βd ρd(2) ρd(3) ρd(5) ρd(7)

M14

(
2 2 2 2 3 3
−−−−−−

)
4 − − 19 2 −
5 112 − − − −

M16

(
2 2 3 3 3 3
−−−−−−

)
5 6 − 43 8 −
6 76 − − − −

M18

(
2 2 3 3 4 4
−−−−−−

)
6 20 − 18 2 −
7 20 − − − −

(
2 3 3 3 3 4
−−−−−−

)
6 28 − 44 8 −
7 28 − − − −

(
3 3 3 3 3 3
−−−−−−

)
6 40 − 90 20 −
7 40 − − − −

M20

(
3 3 3 3 4 4
−−−−−−

)
7 76 − 43 8 −
8 6 − − − −

M22

(
3 3 4 4 4 4
−−−−−−

)
8 112 − 19 2 −
9 − − − − −

TABLE 5. Examples yielding elements of order 5 in H̃4+u(M14+2u;Z) for 0 ≤ u ≤ 4; ρd(p) = dimTor(H̃d((G, α);Z);Zp) is
the p-rank of H̃d((G, α);Z) and βd is the free rank of the same group.

Complex Group Action (G, α) d βd ρd(2) ρd(3) ρd(5) ρd(7)

M22

{
4× 3

−
}
∗
(

3 3 4
−−−

)
8 58 36 53 14 −
9 − − − − −

M24

{
4× 3

−
}
∗
(

4 4 4
−−−

)
9 93 32 29 5 −
10 − 1 − − −

M26

{
4× 4

−
}
∗
(

3 3 4
−−−

)
10 141 25 22 2 −
11 − − − − −

M28

{
4× 4

−
}
∗
(

4 4 4
−−−

)
11 167 35 18 3 −
12 − − − − −

M30

{
4× 4

−
}
∗

{
3× 4

−
}
∗

(
2
−

)
11 − − 8 − −
12 550 53 29 2 −

TABLE 6. Examples yielding elements of order 5 in H̃4+u(M14+2u;Z) for 4 ≤ u ≤ 8 (notation as in Table 5).

Theorem 5.1. The map ϕ defines an isomorphism be-
tween X λ and C(λ−; R).

Proof. It is straightforward to check that we have an iso-
morphism between the individual chain groups. Consider
a generator

γ = e0 ∧ · · · ∧ ed ⊗ v1 ∧ · · · ∧ vt,

and define

γi = e0 ∧ · · · ∧ êi ∧ · · · ∧ ed ⊗ xi ∧ yi ∧ v1 ∧ · · · ∧ vt,

where ei = xiyi. The coefficient of γi in the boundary of
γ in X λ equals (−1)i, which implies that the coefficient
of e0⊗· · ·⊗ êi⊗· · ·⊗ ed in ϕ◦ δ(γ) equals sgn(γi) · (−1)i.

Moreover, the coefficient of the same generator in ∂◦ϕ(γ)
equals (−1)d−ηi · sgn(γ), where ηi is the number of edges
among ei+1, . . . , ed that are disjoint from ei. For these
two coefficients to be the same, we need that

sgn(γi) = (−1)d−ηi · (−1)i · sgn(γ). (5–1)

Now, we may get from 〈γ〉 to 〈γi〉 by applying 4(d− i)
transpositions of adjacent elements; we first move yi to
its new position via 2(d−i) transpositions and then move
xi via the same number of transpositions.

The number of inversions increases or decreases by one
whenever we transpose two distinct elements, and stays
the same otherwise. Since all edges are distinct, the total
number of times the number of inversions changes is equal
to 4(d− i) minus the number of edges among ei+1, . . . , ed
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Complex Group Action (G, α) d βd ρd(2) ρd(3) ρd(5) ρd(7)

M19

{
4× 3

−
}
∗
(

2 2 3
−−−

)
6 − − 4 1 −
7 96 5 1 − −

M21

{
4× 3

−
}
∗
(

3 3 3
−−−

)
7 − 1 20 3 −
8 167 7 − − −

M23

{
4× 3

−
}
∗
(

3 4 4
−−−

)
8 − − 22 2 −
9 141 − 2 − −

M25

{
4× 4

−
}
∗
(

3 3 3
−−−

)
9 − 2 27 5 −
10 93 1 1 − −

M27

{
4× 4

−
}
∗
(

3 4 4
−−−

)
10 − 12 51 14 −
11 58 2 2 − −

TABLE 7. Examples yielding elements of order 5 in H̃6+u(M19+2u;Z) for 0 ≤ u ≤ 4 (notation as in Table 5).

Complex Group Action (G, α) d βd ρd(3) ρd(5) ρd(7)

M23

{
3× 2

−
}
∗

{
3× 3

−
}
∗

{
2× 4

−
}

8 − 29 3 1
9 332 − − −

M25

{
2× 2

−
}
∗

{
3× 3

−
}
∗

{
3× 4

−
}

9 − 73 11 2
10 407 1 − −

M27

{
5× 4

−
}
∗
(

2 2 3
−−−

)
10 − 77 27 9
11 150 1 − −

M29

{
5× 4

−
}
∗
(

2 2 5
−−−

)
11 4 84 33 7
12 66 − − −

M31

{
5× 4

−
}
∗
(

2 3 6
−−−

)
12 9 98 36 4
13 32 1 − −

M33

{
5× 4

−
}
∗
(

2 5 6
−−−

)
13 32 98 36 4
14 9 1 − −

M35

{
5× 4

−
}
∗
(

3 6 6
−−−

)
14 66 94 33 7
15 4 − − −

M37

{
5× 4

−
}
∗
(

5 6 6
−−−

)
15 150 86 27 9
16 − − − −

M39

{
3× 4

−
}
∗

{
3× 5

−
}
∗

{
2× 6

−
}

16 407 75 11 2
17 − 1 − −

M41

{
2× 4

−
}
∗

{
3× 5

−
}
∗

{
3× 6

−
}

17 332 30 3 1
18 − − − −

TABLE 8. Examples yielding elements of order 7 in H̃8+u(M23+2u;Z) for 0 ≤ u ≤ 9 (notation as in Table 5).

Complex Group Action (G, α) d βd ρd(3) ρd(5) ρd(7)

M24

{
4× 3

−
}
∗
{

4× 3
−

}
8 − − 1 −
9 67 28 6 −
10 − 2 − −

M30

{
3× 2

−
}
∗

{
6× 4

−
}

11 − 6 − 1
12 174 8 − −
13 1 2 − −

TABLE 9. One example yielding elements of order 5 in H̃8(M24;Z) and another yielding elements of order
7 in H̃11(M30;Z) (notation as in Table 5).
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that are not disjoint from ei. This equals

4(d−i)−((d−i)−ηi) = 3d−3i+ηi ≡ i+d−ηi (mod 2),

which implies (5–1).

For R = Q, it is shown in [Dong and Wachs 02] that
the homology of Xλ is isomorphic to that of C(λ+; Q),
where λ+ is obtained from λ− by replacing all minus
signs with plus signs. As it turns out, this property does
not remain true if we replace Q with Z. Namely, in gen-
eral, the homology of C(λ+; Z) is not isomorphic to the
homology of C(λ−; Z). The smallest example is given by
λ = (1, 2, 2, 2), in which case we obtain elements of or-
der 3 for the natural signed action but not for the natural
unsigned action. Computational evidence suggests that
the torsion subgroup of the homology of C(λ+; Z) tends
to be smaller than the torsion subgroup of the homology
of C(λ−; Z), but we have not been able to make this ob-
servation more precise, let alone prove anything in this
direction.

All results listed in Tables 5 through 9 can be inter-
preted as results about the homology of Xλ for various
λ; all signs si are −1. For example, the homology of
each of X (3,3,3,3,3,3), X (3,3,3,3,3,3,3), X (3,3,3,3,3,3,3,3), and
X (4,4,4,4,4,4,4) contains elements of order 5. Keep in mind
that all degrees should be shifted one step up.

6. ACTIONS INDUCED BY DIRECT PRODUCTS OF
WREATH PRODUCTS

In some situations in which the complex C((λ, s);R) re-
mains too large to admit a direct analysis, we will con-
sider a group action on C((λ, s);R). Specifically, let
T = (T1, . . . , Tq) be a partition of {1, . . . , r} such that
(λa, sa) = (λb, sb) for all a and b in the same set Tk. The
Young group ST = ST1 × · · · × STq acts on C((λ, s);R)
by permuting the elements in each Tk. In this paper, we
will consider only the natural unsigned action.

Assume that |Sλ| and |ST | are not zero divisors in R.
Note that we obtain the chain complex C((λ, s);R)/ST

from C(Mn;R) in three steps:

1. Let Sλ act on C(Mn;R) to form C(Mn;R)/(λ, s).

2. Transform C(Mn;R)/(λ, s) ∼= C((Δλ,s, Eλ,s);R) into
C((λ, s);R) via the natural quotient map.

3. Let ST act on C((λ, s);R) to form C((λ, s);R)/ST .

One may interchange steps 2 and 3, thus first letting
the group ST act on C(Mn;R)/(λ, s) and then forming a

quotient complex satisfying properties I and II in Theo-
rem 4.3. In this manner, we may view (C((λ, s);R)/ST

as a quotient complex of C̃d(Mn; Z)/G(λ, s, T ), where
G(λ, s, T ) is a direct product of certain wreath products
defined in terms of Sλ and ST .

Specifically, define μk = |Tk|. For simplicity, assume
that k ∈ Tk for 1 ≤ k ≤ q and that μk = 1 if and only
if k is greater than a given value p. Then G(λ, s, T ) is
isomorphic to

(Sλ1 � Sμ1) × · · · × (Sλp � Sμp) × Sλp+1 × · · · × Sλq ,

where Sλk
� Sμk

denotes the wreath product of Sλk
by

Sμk
. We represent the action as

{
μ1 × λ1

s1

}
∗
{
μ2 × λ2

s2

}
∗ · · · ∗

{
μp × λp

sp

}

∗
(
λp+1 λp+2 · · · λq
sp+1 sp+2 · · · sq

)
. (6–1)

Let W be the subcomplex of C(Mn;R)/(λ, s) with the
property that the complex C((λ, s);R) is the quotient of
C(Mn;R)/(λ, s) by W . Since W is acyclic by the proof
of Theorem 4.3, the homology of W/ST has exponent
dividing |ST | and is hence finite; apply Proposition 2.1.
By the exact sequence

H̃i(W/ST ) −−−−→ H̃i((C(Mn;R)/(λ, s))/ST )

−−−−→ H̃i(C((λ, s);R)/ST )

−−−−→ H̃i−1(W/ST ),

we may hence deduce that H̃i((C(Mn;R)/(λ, s))/ST ) and
H̃i(C((λ, s);R)/ST ) nearly coincide, the exception being
that the Sylow p-subgroups of their torsion parts may
differ when p divides |ST |.

If some block Tj of size at least two consists of posi-
tively charged elements, then the homology of W/ST is
indeed not necessarily zero. For example, if λ =

(
3 3 3
+ + +

)
and ST = S3, then the homology in degree two is a
group of order two.

However, if each block Tj of size at least two consists of
negatively charged elements, then the homology groups
do coincide; it is not hard to adapt the proof of Theo-
rem 4.3 to prove that W/ST has vanishing homology.
All examples considered in this paper are of this type.

The problem of finding a combinatorial description
of the generators of C((λ, s);R)/ST appears to be im-
mensely hard in general; we are not aware of any simple
characterization similar to the one in Theorem 4.3.
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E5
a,b,c,d = A6

a,b,c,d =

FIGURE 1. Multigraphs for which we have one generator, where {a, b, c, d} = {1, 2, 3, 4}.

7. DETECTING ELEMENTS OF ORDER 5 IN THE
HOMOLOGY OF M14

We present a computer-free proof that H̃4(M14; Z) con-
tains elements of order 5. The proof consists of two steps.
In the first step we consider the action on M14 induced
by
(

2 3 3 3 3
+ − − − −

)
. In the second step we proceed with the

unsigned action induced by the natural action by S4 on
the four parts of size three, thus analyzing the action in-
duced by

(
2
+

) ∗ {4 × 3−
}
. The resulting chain complex

consists of two free groups of rank four, one in degree
four and one in degree five. An explicit calculation of the
boundary map yields a matrix with determinant ±5.

Unfortunately, the proof does not shed much light on
why we end up with the value 5. In particular, we do not
know how to generalize the proof to deduce the existence
of elements of order (2r−1) in the homology of M(r+1)2−2

for general r. We expect that this can be done by analyz-
ing the action induced by

(
r−1
+

) ∗ {(r + 1) × r− }; recall
the discussion after Theorem 1.5 in Section 1 and in Sec-
tion 1.1.

Thus pick the action on M14 induced by ( λs ) =(
2 3 3 3 3
+ − − − −

)
. By Theorem 4.3, the homology of the re-

sulting chain complex C(M14; Z)/(λ, s) is isomorphic to
the homology of the chain complex C((λ, s); Z). In this
complex, we have one generator for each loopless multi-
graph on the vertex set {o, 1, 2, 3, 4} such that the degree
of o is 1 or 2, the degrees of the other vertices are 2
or 3, and there are no multiple edges between vertices in

{1, 2, 3, 4}; we identify each multigraph with its multiset
of edges. A careful examination yields that we have one
generator for each of the multigraphs in Figure 1, where
{a, b, c, d} = {1, 2, 3, 4}.

Arrange the set of edges on {o, 1, 2, 3, 4} lexicographi-
cally according to the order o < 1 < 2 < 3 < 4:

o1 < o2 < o3 < o4 < 12 < 13 < 14 < 23 < 24 < 34.

Consider the unsigned action on C((λ, s); Z) by S4 in-
duced by the natural action on the set {1, 2, 3, 4}. In the
resulting chain complex C′, we have one generator for
each of the above isomorphism classes of multigraphs.

Yet note that

E5
1,2,3,4 = E5

2,1,3,4 = {o1, o2, 13, 14, 23, 24}.

Writing γ = o1 ⊗ o2 ⊗ 13 ⊗ 14 ⊗ 23 ⊗ 24, we have that

(1, 2) ◦ γ = o2 ⊗ o1 ⊗ 23 ⊗ 24 ⊗ 13 ⊗ 14

= −o1 ⊗ o2 ⊗ 13 ⊗ 14 ⊗ 23 ⊗ 24 = −γ;

this is because the sequence (o2, o1, 23, 24, 13, 14) con-
tains the three anticommuting inversions (1, 2), (3, 6),
and (4, 5). In particular, the generator corresponding
to the isomorphism class of E5

1,2,3,4 is zero. For similar
reasons, the generator corresponding to the isomorphism
class of A6

1,2,3,4 is also zero.
The remaining eight generators are nonzero, though.

For example, the identity and (1, 2)(3, 4) are the two
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group elements in S4 that leave C4
1,2,3,4 fixed. Since

(1, 2)(3, 4)◦(o1⊗o2⊗13⊗24⊗34) = o2⊗o1⊗24⊗13⊗34,

and since the sequence (o2, o1, 24, 13, 34) contains two
anticommuting inversions (1, 2) and (3, 4), we obtain the
desired claim. The seven other generators are treated
similarly.

For any multigraph G on the vertex set {o, 1, 2, 3, 4},
fix the orientation given by the lexicographic order
defined earlier. For example, we identify B4

3,1,4,2 =
{o3, 13, 34, 12, 24} with the oriented simplex o3 ⊗ 12 ⊗
13⊗ 24⊗ 34. Identify each generator G with its isomor-
phism class. Moreover, write A4 = A4

1,2,3,4 and so on.
We obtain the following:

∂(A5) = A4
1,2,3,4 + A4

1,3,2,4 −B4
1,2,3,4 = 2A4 −B4;

∂(B5) = −A4
1,3,2,4 − C4

1,2,3,4 = −A4 − C4;

∂(C5) = −B4
1,2,3,4 + B4

2,1,4,3 + C4
1,2,3,4 = −2B4 + C4;

∂(D5) = A4
1,2,3,4 + A4

1,2,3,4 + D4
1,2,3,4 = 2A4 + D4.

In matrix form, we get

∂




A5

B5

C5

D5


 =




2 −1 0 0
−1 0 −1 0

0 −2 1 0
2 0 0 1







A4

B4

C4

D4


 .

Since the determinant is −5, we conclude that H̃4(C′) ∼=
Z5. As a consequence, since the order of S4 is not divis-
ible by five, H̃4((λ, s);Z) contains elements of order five,
as does H̃4(M14;Z) for similar reasons.

8. THE CASE OF AN ABELIAN 2-GROUP

Let us discuss the special case that all values in the se-
quence λ are at most two. Before considering the match-
ing complex, we look at a more general situation. Let R

be a commutative ring such that 2 is a unit. Let

C : · · · ∂−−−−→ Cd+1
∂−−−−→ Cd

∂−−−−→ Cd−1
∂−−−−→ · · ·

be a chain complex of R-modules. Write C =
⊕

d Cd.
Suppose that τ is an involution on C; τ generates a group
of size 2 acting on C. Consider the subgroups C+

d and C−d
of Cd induced by the unsigned and signed actions on C,
respectively:

C+
d = {c + τ(c) : c ∈ Cd},

C−d = {c− τ(c) : c ∈ Cd}.

We obtain two chain complexes C+ and C−. Write C+ =⊕
C+

d and C− =
⊕

C−d .

Proposition 8.1. With notation as above, we have that

C = C+ ⊕ C−.

In particular,

Hd(C) ∼= Hd(C+)⊕Hd(C−).

Proof. Note that we may decompose the identity as a
sum of two orthogonal idempotent endomorphisms; we
have that

Id =
1
2
(Id+τ) +

1
2
(Id−τ).

Since 1
2 (Id+τ)(C) = C+ and 1

2 (Id−τ)(C) = C−, we are
done.

More generally, assume that we have r pairwise com-
muting involutions τ1, . . . , τr and hence an elementary
abelian 2-group of order 2r. For any given sequence of
signs s = (s1, . . . , sr) ∈ {+1,−1}r, define

Cs
d = Cs1,...,sr

d =
{ r∏

i=1

(id+siτi) ◦ c : c ∈ Cd

}
.

Similarly to the proof of Proposition 8.1, we may write
the identity as a sum

∑

s∈{+1,−1}r

1
2r

r∏

i=1

(id+siτi)

of endomorphisms. Since the endomorphisms are mutu-
ally orthogonal and idempotent, we obtain the following
generalization of Proposition 8.1.

Proposition 8.2. With notation as above, we have that

C =
⊕

s∈{+1,−1}r

Cs.

In particular,

Hd(C) ∼=
⊕

s∈{+1,−1}r

Hd(Cs).

For the matching complex Mn, a natural choice of in-
volutions is τ1 = (1, 2), τ2 = (3, 4), . . . , τr = (2r − 1,
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s d = 1 Factor

++ Z̃ 1

+− Z̃2 2

−− Z̃ 1

H̃d(M5; Z̃) Z̃6

TABLE 10. The groups H̃d(((2, 2, 1), s); Z̃) yielding
H̃d(M5; Z̃).

s d = 1 Factor

+ + + Z̃2 1

+ +− Z̃2 3

+−− Z̃2 3

−−− Z̃2 1

H̃d(M6; Z̃) Z̃16

TABLE 11. The groups H̃d(((2, 2, 2), s); Z̃) yielding
H̃d(M6; Z̃).

2r), where 2r ≤ n. Defining λ = (2r, 1n−2r) =
(2, . . . , 2, 1, . . . , 1), we obtain that

C̃d(Mn;R)/(λ, s)

=
{ r∏

i=1

(id+siτi) ◦ c : c ∈ Cd(Mn;R)
}

.

By Proposition 8.2 and Theorem 4.3, we have that

H̃d(Mn;R) ∼=
⊕

s∈{+1,−1}r

H̃d(Mn; R)/(λ, s)

∼=
⊕

s∈{+1,−1}r

H̃d((λ, s); R).

Define (+)a(−)b to be the sequence consisting of a plus
signs followed by b minus signs.

Proposition 8.3. With notation as above, we have that

H̃d(Mn; R) ∼=
r⊕

i=0

⊕

(r
i)

H̃d

(
(λ, (+)r−i(−)i); R

)
.

Proof. This is immediate from the fact that C((λ, s); R)
and C((λ, s′); R) are isomorphic whenever s and s′ consist
of the same number of plus signs.

We use this decomposition to analyze the homology of
Mn for 5 ≤ n ≤ 16; see Section 9.1.

s d = 1 d = 2 Factor

+ + + − Z̃ 1

+ +− − Z̃3 3

+−− − Z̃3 3

−−− Z3 Z̃ 1

H̃d(M7; Z̃) Z3 Z̃20

TABLE 12. The groups H̃d(((2, 2, 2, 1), s); Z̃) yielding
H̃d(M7; Z̃).

s d = 2 Factor

+ + ++ Z̃6 1

+ + +− Z̃9 4

+ +−− Z̃8 6

+−−− Z̃9 4

−−−− Z̃6 1

H̃d(M8; Z̃) Z̃132

TABLE 13. The groups H̃d(((2, 2, 2, 2), s); Z̃) yielding
H̃d(M8; Z̃).

9. OVERVIEW OF COMPUTATIONS

The purpose of this section is to present an overview
of the computations leading to the results presented in
Section 1.

9.1 The Homology of Mn for n ≤ 16

Applying the decomposition described in Section 8, we
analyze the homology of Mn for 5 ≤ n ≤ 16 using the
computer program HOMCHAIN [Pilarczyk 04]; see Ta-
bles 10–19 for a summary. Since the underlying group
has order a power of 2, our computations do not give
us any immediate information about the existence of ele-
ments of order 2 in the homology of Mn. For this reason,
we express our results in terms of the coefficient ring

Z̃ = {a · 2−b : a, b ∈ Z, b ≥ 0},

thus ignoring the Sylow 2-subgroup of the torsion part of
the homology.

In some cases, we managed to compute the homology
only over finite fields Zp and not over Z̃. Using the uni-
versal coefficient theorem, one may still obtain the p-rank
of the homology; see [Hatcher 02, Corollary 3A.6]. We
refer to Theorems 1.2 and 1.6 and Table 1 for a summary
of our results.
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s d = 2 d = 3 Factor

+ + ++ Z̃3 Z̃ 1

+ + +− Z̃3 Z̃4 4

+ +−− Z̃2 Z̃6 6

+−−− Z̃3 ⊕ Z3 Z̃4 4

−−−− Z̃3 ⊕ (Z3)
4 Z̃ 1

H̃d(M9; Z̃) Z̃42 + (Z3)
8 Z̃70

TABLE 14. The groups H̃d(((2, 2, 2, 2, 1), s); Z̃) yielding
H̃d(M9; Z̃).

s d = 2 d = 3 Factor

+ + + + + − Z̃28 1

+ + + +− − Z̃36 5

+ + +−− − Z̃40 10

+ +−−− − Z̃40 10

+−−−− − Z̃36 5

−−−−− Z3 Z̃28 1

H̃d(M10; Z̃) Z3 Z̃1216

TABLE 15. The groups H̃d(((2, 2, 2, 2, 2), s); Z̃) yielding
H̃d(M10; Z̃).

The next value, n = 17, is certainly not out of reach
of the existing software, but it does not seem worth
the considerable effort to compute the homology of M17.
We already know the homology in the top dimension 7
[Bouc 92] and also have a qualified guess about the ho-
mology in degree 6 (see Conjecture 1.7). This leaves us
with the rank of the elementary 3-group in degree 5 (the
smallest degree with nonvanishing homology), likely a
random-looking number that will not tell us much use-
ful unless we also get to know the rank of the bottom
nonvanishing homology of Mn for more values of n.

Define f0 = 1, f1 = 0, and fi = fi−1 + fi−2 for i ≥ 2;
these are the Fibonacci numbers. By Table 21, the 5-
rank of H̃4(((2, 2, 2, 2, 2, 2, 2), (+)7−i(−)i); Z̃) is equal to
fi. It is not hard to show that this implies the following;
see Section 4 for the definition of BDλ

r .

Corollary 9.1. For 0 ≤ i ≤ 7, the 5-rank of
H̃4(BD27−i12i

7+i ; Z̃) is f2i.

It is known [Andersen 92, Jonsson 09] that the Sylow
5-subgroup is elementary for i = 0.

s d = 3 d = 4 Factor

+ + + + + Z̃39 Z̃ 1

+ + + +− Z̃39 Z̃5 5

+ + +−− Z̃36 Z̃10 10

+ +−−− Z̃36 + Z3 Z̃10 10

+−−−− Z̃39 + (Z3)
5 Z̃5 5

−−−−− Z̃39 + (Z3)
10 Z̃ 1

H̃d(M11; Z̃) Z̃1188 + (Z3)
45 Z̃252

TABLE 16. The groups H̃d(((2, 2, 2, 2, 2, 1), s); Z̃) yield-
ing H̃d(M11; Z̃).

s d = 3 d = 4 Factor

+ + + + ++ − Z̃140 1

+ + + + +− − Z̃170 6

+ + + +−− − Z̃200 15

+ + +−−− − Z̃206 20

+ +−−−− Z3 Z̃200 15

+−−−−− (Z3)
5 Z̃170 6

−−−−−− (Z3)
11 Z̃140 1

H̃d(M12; Z̃) (Z3)
56 Z̃12440

TABLE 17. The groups H̃d(((2, 2, 2, 2, 2, 2), s); Z̃) yield-
ing H̃d(M12; Z̃).

9.2 Detecting Elements of Order 5

To detect elements of order 5 in H̃4+u(M14+2u;Z) for
0 ≤ u ≤ 4, we use the action induced by

(
λ1λ2λ3λ4λ5λ6

− − − − − −
)

for choices of partitions (λ1, λ2, λ3, λ4, λ5, λ6) such that
2 ≤ λa ≤ 4 for all a. This does not bring us beyond
u = 4, but a similar action based on a partition with
seven instead of six parts helps us find elements of order
5 for 5 ≤ u ≤ 7. The resulting chain complexes are
too large for our computer to handle, so we reduce them
further using group actions of the form

{
4× λ1

−
}
∗

(
λ2λ3λ4

− − −
)

.

Yet another construction yields elements of order 5 in
H̃12(M30;Z). See Tables 5 and 6 for a summary of our
computations for even n.

The same kind of action turns out to yield elements of
order 5 in the group H̃6+u(M19+2u;Z) for 0 ≤ u ≤ 4; see
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s d = 4 d = 5 d = 6 Factor

+ + + + + + + − Z̃3309 Z̃ 1

+ + + + + +− − Z̃3543 Z̃7 7

+ + + + +−− − Z̃3689 Z̃21 21

+ + + +−−− − Z̃3739 + Z3 Z̃35 35

+ + +−−−− − Z̃3739 + (Z3)
7 Z̃35 35

+ +−−−−− Z3 Z̃3689 + (Z3)
21 Z̃21 21

+−−−−−− (Z3)
7 Z̃3543 + (Z3)

35 Z̃7 7

−−−−−−− (Z3)
22 Z̃3309 + (Z3)

35 Z̃ 1

H̃d(M15; Z̃) (Z3)
92 Z̃472888 + (Z3)

1001 Z̃3432

TABLE 18. The groups H̃d(((2, 2, 2, 2, 2, 2, 2, 1), s); Z̃) yielding H̃d(M15; Z̃). The torsion parts for d = 5 are guesses based
on computations over Z3 and Z5.

s d = 4 d = 5 d = 6 Factor

+ + + + + + ++ − Z̃126 + (Z5)
7 Z̃4060 1

+ + + + + + +− − Z̃105 + (Z5)
7 Z̃5019 8

+ + + + + +−− − Z̃100 + (Z5)
12 + (Z3)

10 Z̃5894 28

+ + + + +−−− − Z̃91 + (Z5)
18 + (Z3)

55 Z̃6545 56

+ + + +−−−− − Z̃90 + (Z5)
27 + (Z3)

159 Z̃6768 70

+ + +−−−−− − Z̃91 + (Z5)
41 + (Z3)

350 Z̃6545 56

+ +−−−−−− − Z̃100 + (Z5)
61 + (Z3)

635 Z̃5894 28

+−−−−−−− − Z̃105 + (Z5)
91 + (Z3)

966 Z̃5019 8

−−−−−−−− Z3 Z̃126 + (Z5)
134 + (Z3)

1253 Z̃4060 1

H̃d(M16; Z̃) Z3 Z̃24024 + (Z5)
8163 Z̃1625288

+(Z3)
60851

TABLE 19. The groups H̃d(((2, 2, 2, 2, 2, 2, 2, 2), s); Z̃) yielding H̃d(M16; Z̃). The torsion parts for d = 5 are guesses based
on computations over Z3, Z5, and Z7.

Table 7. Moreover, the specific action represented as

{
4× 3

−
}
∗

{
4× 3

−
}

yields elements of order 5 in H̃8(M24;Z); see Table 9.

9.3 Detecting Elements of Order 7

To detect elements of order 7 in H̃8+u(M23+2u;Z) for 0 ≤
u ≤ 9, we use partitions with eight parts as summarized
in Table 8. The actions are of the forms

{
5× λ1

−
}
∗

(
λ2λ3λ4

− − −
)

and {
2× λ1

−
}
∗

{
3× λ2

−
}
∗

{
3× λ3

−
}

.

We detect elements of order 7 in H̃11(M30;Z) by analyz-
ing the complex induced by the action represented as

{
3× 2

−
}
∗

{
6× 4

−
}

;

see Table 9.

9.4 Detecting Elements of Orders 11 and 13

As alluded to in the introduction, one may dis-
close elements of order (2r − 1) in the group
H̃(r+1

2 )−2(M(r+1)2−2;Z) for 2r − 1 ∈ {5, 7, 11, 13} by an-
alyzing the complex induced by the action

{
(r + 1)× r

−
}
∗

(
r − 1

+

)
;

see Table 22. We have not been able to detect any further
elements of order 11 or 13, let alone larger primes p.
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s d = 3 d = 4 d = 5 Factor

+ + + + ++ − Z̃369 Z̃ 1

+ + + + +− − Z̃384 Z̃6 6

+ + + +−− − Z̃387 Z̃15 15

+ + +−−− − Z̃382 + Z3 Z̃20 20

+ +−−−− − Z̃387 + (Z3)
6 Z̃15 15

+−−−−− − Z̃384 + (Z3)
15 (∗) Z̃6 6

−−−−−− Z3 Z̃369 + (Z3)
20 Z̃ 1

H̃d(M13; Z̃) Z3 Z̃24596 + (Z3)
220 (∗) Z̃924

TABLE 20. The groups H̃d(((2, 2, 2, 2, 2, 2, 1), s); Z̃) yielding H̃d(M13; Z̃). In boxes marked with (∗), the torsion part is a
guess based on computations over Z3 and some additional small fields Zp.

s d = 4 d = 5 Factor

+ + + + + + + Z5 Z̃732 1

+ + + + + +− − Z̃900 7

+ + + + +−− Z5 Z̃1052 21

+ + + +−−− Z5 + (Z3)
3 Z̃1140 35

+ + +−−−− (Z5)
2 + (Z3)

15 Z̃1140 35

+ +−−−−− (Z5)
3 + (Z3)

40 Z̃1052 21

+−−−−−− (Z5)
5 + (Z3)

81 Z̃900 7

−−−−−−− (Z5)
8 + (Z3)

120 Z̃732 1

H̃d(M14; Z̃) (Z5)
233 + (Z3)

2157 Z̃138048

TABLE 21. The groups H̃d(((2, 2, 2, 2, 2, 2, 2), s); Z̃) yielding H̃d(M14; Z̃). The torsion parts are guesses based on compu-
tations over Z3, Z5, and Z7.

Complex Group Action (G, α) d H̃d((G, α);Z)

M7

(
1
+

)
∗

{
3× 2

−
}

1 Z3

2 −
M14

(
2
+

)
∗

{
4× 3

−
}

4 Z5

5 −
M23

(
3
+

)
∗

{
5× 4

−
}

8 Z7

9 Z

M34

(
4
+

)
∗

{
6× 5

−
}

13 Z9

14 Z6 ⊕ Z3

M47

(
5
+

)
∗

{
7× 6

−
}

19 Z11

20 Z18 ⊕ (Z3)
2

21 Z3 ⊕ Z2

M62

(
6
+

)
∗

{
8× 7

−
}

26 Z13

27 Z55 ⊕ (Z3)
6

28 (Z3)
3 ⊕ (Z2)

4

TABLE 22. The integral homology H̃d((G, α);Z) for certain choices of parameters.
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