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Normal and almost normal surfaces are essential tools for algo-
rithmic 3-manifold topology, but to use them requires exponen-
tially slow enumeration algorithms in a high-dimensional vector
space. The quadrilateral coordinates of Tollefson alleviate this
problem considerably for normal surfaces by reducing the di-
mension of this vector space from 7n to 3n (where n is the com-
plexity of the underlying triangulation). Here we develop an
analogous theory for octagonal almost normal surfaces, using
quadrilateral and octagon coordinates to reduce this dimension
from 10n to 6n. As an application, we show that quadrilateral–
octagon coordinates can be used exclusively in the streamlined
3-sphere recognition algorithm of Jaco, Rubinstein, and Thomp-
son, reducing experimental running times by factors of thou-
sands. We also introduce joint coordinates, a system with only
3n dimensions for octagonal almost normal surfaces that has ap-
pealing geometric properties.

1. INTRODUCTION

The theory of normal surfaces, introduced in [Kneser 29]
and developed in [Haken 61, Haken 62], is central to algo-
rithmic 3-manifold topology. In essence, normal surface
theory allows us to search for “interesting” embedded
surfaces within a 3-manifold triangulation T by enumer-
ating the vertices of a polytope in a high-dimensional vec-
tor space. Normal surfaces are defined by their intersec-
tions with the tetrahedra of T , which must be collections
of disjoint triangles and/or quadrilaterals, collectively re-
ferred to as normal disks.

In the early 1990s, Rubinstein introduced the concept
of an almost normal surface, for use with problems such
as 3-sphere recognition and finding Heegaard splittings
[Rubinstein 97]. Almost normal surfaces are essentially
normal surfaces with a single unusual intersection piece,
which may be either an octagon or a tube. Thompson
subsequently refined the 3-sphere recognition algorithm
to remove any need for tubes [Thompson 94], and since
then almost normal surfaces have appeared in algorithms
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such as determining Heegaard genus [Lackenby 08], rec-
ognizing small Seifert fibered spaces [Rubinstein 04], and
finding bridge surfaces in knot complements [Wilson 08].

In this paper we focus on octagonal almost normal
surfaces, that is, almost normal surfaces in which the un-
usual intersection piece is an octagon, not a tube. The
reason for this restriction is that octagonal almost normal
surfaces are both tractable and useful, and have impor-
tant applications beyond 3-manifold topology. In detail:

• For practical computation, octagonal almost normal
surfaces are significantly easier to deal with than
general almost normal surfaces. In particular, the
translation between surfaces and high-dimensional
vectors becomes much simpler, and the enumeration
of these vectors is less fraught with complications.

• As shown by Thompson, octagonal almost normal
surfaces are sufficient for running the 3-sphere recog-
nition algorithm [Thompson 94].

• Following on from the previous point, an efficient 3-
sphere recognition algorithm is important for com-
putation in 4-manifold topology. For example, an-
swering even the basic question, “is T a 4-manifold
triangulation?” requires us to run the 3-sphere recog-
nition algorithm over a neighborhood of each vertex
of T . Therefore, improving the efficiency of 3-sphere
recognition is an important step toward a general
efficient computational framework for working with
4-manifold triangulations.

As suggested above, our focus here is on the efficiency
of working with almost normal surfaces. The fundamen-
tal problem that we face is that the underlying poly-
tope vertex enumeration can grow to become exponen-
tially slow in the number of tetrahedra. This means that
in practice, normal surface algorithms cannot be run on
large triangulations. Moreover, this exponential growth
is not the fault of the algorithms, but an unavoidable
feature of the problems that they try to solve. For illus-
trations of this, see [Burton 10b], which describes cases
in which the underlying vertex enumeration problem has
exponentially many solutions, or see the proof in [Agol
et al. 02] that computing a 3-manifold knot genus (one of
the many applications of normal surface theory) is NP-
complete.

For almost normal surfaces, our efficiency troubles are
even worse than for normal surfaces. This is because
the polytope vertex enumeration is exponentially slow
not just in the number of tetrahedra n, but also in the
dimension of the underlying vector space. For normal

surfaces this dimension is 7n, whereas for octagonal al-
most normal surfaces this dimension is 10n, a significant
difference when one is dealing with an exponential algo-
rithm.

In the realm of normal surfaces, much progress has
been made in improving the efficiency of enumeration al-
gorithms [Burton 09b, Burton 10a, Tollefson 98]. One
key development has been Tollefson’s quadrilateral coor-
dinates [Tollefson 98], in which we work only with quadri-
lateral normal disks and then reconstruct the triangular
disks afterward. This allows us to perform our expen-
sive polytope vertex enumeration in dimension 3n instead
of 7n, which yields substantial efficiency improvements.

There are two complications with Tollefson’s ap-
proach:

• When reconstructing a normal surface from its
quadrilateral disks, we cannot recover any vertex-
linking components (these components lie at the
frontiers of small regular neighborhoods of vertices
of the triangulation). This is typically not a prob-
lem, since such components are rarely of interest.

• When we use quadrilateral coordinates for the un-
derlying polytope vertex enumeration, some solu-
tions are “lost.” That is, the resulting set of normal
surfaces (called vertex normal surfaces) is a strict
subset of what we would obtain using the traditional
7n-dimensional framework of Haken.

This latter issue can be resolved in two different
ways. For some high-level topological algorithms,
such as the detection of two-sided incompressible
surfaces [Tollefson 98], it has been proven that at
least one of the surfaces that we need to find will not
be lost. As a more general resolution to this prob-
lem, there is a fast quadrilateral-to-standard conver-
sion algorithm through which we can recover all of
the lost surfaces [Burton 09b].

The main purpose of this paper is to develop an analo-
gous theory for octagonal almost normal surfaces. Specif-
ically, we show that we can work with only quadrilateral
normal disks and octagonal almost normal disks, and
then reconstruct the triangular disks afterwards. As a
consequence, the dimension for our vertex enumeration
drops from 10n to 6n.

We run into the same complications as before—vertex-
linking components cannot be recovered, and we may
lose some of our original solutions. Here we show that
as with quadrilateral coordinates, these are not serious
problems. In particular, we show that despite this loss
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of information, quadrilateral–octagon coordinates suffice
for the 3-sphere recognition algorithm. More generally,
we observe that the fast quadrilateral-to-standard con-
version algorithm of [Burton 09b] works seamlessly with
octagonal almost normal surfaces.

As a practical measure of benefit, we use the software
package Regina [Burton 04, Burton 09a] to compare run-
ning times for the 3-sphere recognition algorithm with
and without quadrilateral–octagon coordinates. Here we
see quadrilateral–octagon coordinates improving perfor-
mance by factors of thousands in several cases. Read-
ers can experiment with quadrilateral–octagon coordi-
nates for themselves by downloading Regina version 4.6
or later.

We finish this paper by introducing joint coordinates,
in which we exploit natural relationships between quadri-
laterals and octagons to reduce our 6n dimensions for oc-
tagonal almost normal surfaces down to just 3n dimen-
sions. Although these coordinates cannot be used with
existing enumeration algorithms (due to a loss of con-
vexity in the underlying polytope), they have appealing
geometric properties that make them useful for visual-
ization, and which may help develop intuition about the
structure of the corresponding solution space.

All of the results in this paper apply only to compact
3-manifold triangulations. In particular, they do not
cover the ideal triangulations of [Thurston 78], where the
reconstruction of triangular disks can result in patholog-
ical (but nevertheless useful) objects such as spun nor-
mal surfaces, which contain infinitely many disks [Till-
mann 08].

The layout of this paper is as follows. Section 2 be-
gins with an overview of normal surfaces and Tollefson’s
quadrilateral coordinates, and Section 3 follows with an
overview of almost normal surfaces. In Section 4 we de-
velop the core theory for quadrilateral–octagon coordi-
nates, including necessary and sufficient conditions for a
6n-dimensional vector to represent an octagonal almost
normal surface.

For the remainder of the paper we focus on appli-
cations and extensions of this theory. In Section 5
we describe the streamlined 3-sphere recognition algo-
rithm of Jaco, Rubinstein, and Thompson [Jaco and
Rubinstein 03], and show that this algorithm remains
correct when we work in quadrilateral–octagon coor-
dinates instead of the original 10n-dimensional vector
space. Section 6 focuses on the underlying polytope ver-
tex enumeration algorithm, where we observe that state-
of-the-art algorithms for enumerating normal surfaces
[Burton 09b, Burton 10a] can be used seamlessly with

octagonal almost normal surfaces and quadrilateral–octa-
gon coordinates. In Section 7 we offer experimental mea-
sures of running time that show how quadrilateral–octa-
gon coordinates improve the 3-sphere recognition algo-
rithm in practice, and in Section 8 we finish with a dis-
cussion of joint coordinates.

2. NORMAL SURFACES

We assume that the reader is already familiar with the
theory of normal surfaces (if not, a good overview can be
found in [Hass et al. 99]). In this section we outline the
relevant aspects of the theory, concentrating on the dif-
ferences between Haken’s original formulation [Haken 61]
and Tollefson’s quadrilateral coordinates [Tollefson 98].
For a more detailed discussion of these two formulations
and the relationships between them, the reader is referred
to [Burton 09b].

Throughout this paper we assume that we are working
with a compact 3-manifold triangulation T formed from
n tetrahedra. By a compact triangulation, we mean that
every vertex of T has a small neighborhood whose fron-
tier is a sphere or a disk. This ensures that T is a triangu-
lation of a compact 3-manifold (possibly with boundary),
and rules out the ideal triangulations of [Thurston 78] in
which vertices form higher-genus cusps.

To help keep the number of tetrahedra in T small,
we allow different faces of a tetrahedron to be identified
(and likewise with edges and vertices). Some authors
refer to triangulations with this property as pseudotrian-
gulations or semisimplicial triangulations. Faces, edges,
and vertices of T that lie entirely within the 3-manifold
boundary are called boundary faces, boundary edges, and
boundary vertices of T respectively.

An embedded normal surface in T is a properly em-
bedded surface (possibly disconnected or empty) that in-
tersects each tetrahedron of T in a collection of disjoint
normal disks. Each normal disk is either a triangle or a
quadrilateral, with a boundary consisting of three or four

FIGURE 1. Several normal disks within a single tetra-
hedron.
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FIGURE 2. The seven different normal disk types within a tetrahedron.

arcs respectively that cross distinct faces of the tetrahe-
dron. Figure 1 illustrates several disjoint triangles and
quadrilaterals within a tetrahedron.

The triangles and quadrilaterals within a tetrahedron
can be grouped into seven normal disk types, according
to which edges of the tetrahedron they intersect. This in-
cludes four triangular disk types and three quadrilateral
disk types, all of which are illustrated in Figure 2.

Equivalence of normal surfaces is defined by normal
isotopy, which is an ambient isotopy that preserves each
simplex of the triangulation T . Throughout this paper,
any two surfaces that are related by normal isotopy are
regarded as the same surface.

Vertex links are normal surfaces that play an impor-
tant role in the discussion that follows. If V is a vertex of
the triangulation T , then the vertex link of V , denoted
by �(V ), is the normal surface at the frontier of a small
regular neighborhood of V . This surface is formed en-
tirely from triangular disks (one copy of each triangular
disk type surrounding V ). Here we follow the nomen-
clature of [Jaco and Rubinstein 03]; Tollefson refers to
vertex links as trivial surfaces.

A core strength of normal surface theory is its abil-
ity to reduce difficult problems in topology to simpler
problems in linear algebra. This is where the formula-
tions of Haken and Tollefson differ, and so we slow down
from here onward to give full details. The key difference
between the two formulations is that Haken works in a
7n-dimensional vector space with coordinates based on
triangle and quadrilateral disk types, whereas Tollefson
works in a 3n-dimensional space based on quadrilateral
disk types only.

Definition 2.1. (Vector representations.) Let T be
a compact 3-manifold triangulation formed from the n
tetrahedra Δ1, . . . ,Δn, and let S be an embedded nor-
mal surface in T . For each tetrahedron Δi, let ti,1, ti,2,
ti,3, and ti,4 denote the number of triangular disks of S
of each type in Δi, and let qi,1, qi,2, and qi,3 denote the
number of quadrilateral disks of S of each type in Δi.

Then the standard vector representation of S, denoted
by v(S), is the 7n-dimensional vector

v(S) = (t1,1, t1,2, t1,3, t1,4, q1,1, q1,2, q1,3 ;

t2,1, t2,2, t2,3, t2,4, q2,1, q2,2, q2,3 ; . . . , qn,3),

and the quadrilateral vector representation of S, denoted
by q(S), is the 3n-dimensional vector

q(S) = (q1,1, q1,2, q1,3 ; q2,1, q2,2, q2,3 ; . . . , qn,3) .

When we are working with v(S), we say we are
working in standard coordinates (or standard normal
coordinates if we wish to distinguish between normal
and almost normal surfaces). Likewise, when working
with q(S) we say we are working in quadrilateral co-
ordinates. The following uniqueness results are from
[Haken 61, Tollefson 98].

Lemma 2.2. Let T be a compact 3-manifold triangulation,
and let S and S′ be embedded normal surfaces in T .

• The standard vector representations v(S) and v(S′)
are equal if and only if the surfaces S and S′ are
normal isotopic (i.e., they are the “same” normal
surface).

• The quadrilateral vector representations q(S) and
q(S′) are equal if and only if either (i) S and S′

are normal isotopic, or (ii) S and S′ can be made
normal isotopic by adding or removing vertex-linking
components.

Since we are rarely interested in vertex-linking compo-
nents, Lemma 2.2 shows that the standard and quadri-
lateral vector representations each contain everything we
might want to know about an embedded normal surface.

Not every integer vector w ∈ R
7n or w ∈ R

3n is the
vector representation of a normal surface. The necessary
conditions on w include a set of matching equations as
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FIGURE 3. Building the standard matching equations.

well as a set of quadrilateral constraints, which we define
as follows.

Definition 2.3. (Standard matching equations.) Let T
be a compact 3-manifold triangulation formed from the
n tetrahedra Δ1, . . . ,Δn, and let w ∈ R

7n be any 7n-
dimensional vector whose coordinates we label

w = (t1,1, t1,2, t1,3, t1,4, q1,1, q1,2, q1,3 ; t2,1, t2,2, t2,3, t2,4,

q2,1, q2,2, q2,3 ; . . . , qn,3).

For each nonboundary face of T and each of the three
edges surrounding it, we obtain a standard matching
equation on w as follows.

Let F be some nonboundary face of T , and let e be one
of the three edges surrounding F . Suppose that Δi and
Δj are the two tetrahedra on either side of F . Then there
is precisely one triangular disk type and one quadrilateral
disk type in each of Δi and Δj that meets F in an arc
parallel to e, as illustrated in Figure 3. Suppose these
disk types correspond to coordinates ti,a, qi,b, tj,c, and
qj,d respectively. Then we obtain the matching equation

ti,a + qi,b = tj,c + qj,d.

Essentially, the standard matching equations ensure
that all of the normal disks on either side of a non-
boundary face F can be joined together. In Figure 3,
the four coordinates are (ti,a, qi,b, tj,c, qj,d) = (1, 2, 2, 1),
giving the equation 1+2 = 2+1, which is indeed satisfied.
If T is a closed triangulation (i.e., it has no boundary),
then there are precisely 6n standard matching equations
for T (three for each of the 2n faces of T ).

Definition 2.4. (Quadrilateral matching equations.) Let
T be a compact 3-manifold triangulation formed from
the n tetrahedra Δ1, . . . ,Δn, and let w ∈ R

3n be any
3n-dimensional vector, whose coordinates we label

w = (q1,1, q1,2, q1,3 ; q2,1, q2,2, q2,3 ; . . . , qn,3) .

For each nonboundary edge of T , we obtain a quadrilat-
eral matching equation on w as follows.

Let e be some nonboundary edge of T , and arbitrarily
label the two ends of e upper and lower. The tetrahedra
containing edge e are arranged in a cycle around e, as
illustrated in Figure 4. Choose some arbitrary direction
around this cycle, and suppose that the tetrahedra that
we encounter as we travel in this direction around the
cycle are labeled Δi1 , . . . ,Δit .

For each tetrahedron in this cycle, there are two
quadrilateral types meeting edge e: one that rises from
the lower end of e to the upper as we travel around the
cycle in the chosen direction, and one that falls from the
upper end of e to the lower. We call these the upward
quadrilaterals and downward quadrilaterals respectively;
these are again illustrated in Figure 4.

Suppose now that the coordinates corresponding
to the upward and downward quadrilateral types are
qi1,u1 , qi2,u2 , . . . , qit,ut and qi1,d1 , qi2,d2 , . . . , qit,dt respec-
tively. Then we obtain the matching equation

qi1,u1 + qi2,u2 + · · · + qit,ut = qi1,d1 + qi2,d2 + · · · + qit,dt .

(2–1)
In other words, the total number of upward quadrilater-
als surrounding e equals the total number of downward
quadrilaterals surrounding e.

Note that a single tetrahedron might appear multiple
times in the cycle around e, in which case a single co-
ordinate qi,j might appear more than once in the equa-
tion (2–1). For a closed triangulation T with v vertices,
a quick Euler characteristic calculation shows that we
have precisely n+v edges in our triangulation and there-
fore precisely n+ v quadrilateral matching equations.

Definition 2.5. (Quadrilateral constraints.) Let T be
a compact 3-manifold triangulation formed from the n
tetrahedra Δ1, . . . ,Δn, and consider any vector

w = (t1,1, t1,2, t1,3, t1,4, q1,1, q1,2, q1,3 ; . . . , qn,3) ∈ R
7n

or

w = (q1,1, q1,2, q1,3 ; . . . , qn,3) ∈ R
3n.

We say that w satisfies the quadrilateral constraints if
for every tetrahedron Δi, at most one of the quadrilateral
coordinates qi,1, qi,2, and qi,3 is nonzero.

We can now describe a full set of necessary and suf-
ficient conditions for a vector w ∈ R

7n or w ∈ R
3n to
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FIGURE 4. Building the quadrilateral matching equations.

be the vector representation of some embedded normal
surface. The following result is from [Haken 61, Tollef-
son 98].

Theorem 2.6. Let T be a compact 3-manifold trian-
gulation formed from n tetrahedra. An integer vector
(w ∈ R

7n or w ∈ R
3n) is the (standard or quadrilateral)

vector representation of an embedded normal surface in
T if and only if:

• the coordinates of w are all nonnegative;

• w satisfies the (standard or quadrilateral) matching
equations for T ;

• w satisfies the quadrilateral constraints for T .

Such a vector is referred to as an admissible vector.1

Essentially, the nonnegativity constraint ensures that
the coordinates of w can be used to count normal disks,
the matching equations ensure that these disks can be
joined together to form a surface, and the quadrilateral
constraint ensures that this surface is embedded (since
any two quadrilaterals of different types within the same
tetrahedron must intersect).

Many high-level algorithms in 3-manifold topology in-
volve the enumeration of vertex normal surfaces, which
form a basis from which we can reconstruct all embedded
normal surfaces within a triangulation T . The relevant
definitions are as follows.

Definition 2.7. (Projective solution space.) Let T be a
compact 3-manifold triangulation formed from n tetrahe-
dra. The set of all nonnegative vectors in R

7n that satisfy
the standard matching equations for T forms a rational

1It is sometimes useful to extend the concept of admissibility
to rational vectors or even real vectors in R

7n or R
3n, as seen for

instance in [Burton 09b]. However, we do not need such extensions
in this paper.

polyhedral cone in R
7n. The standard projective solution

space for T is the rational polytope formed by intersect-
ing this cone with the hyperplane {w ∈ R

7n |∑wi = 1}.
The quadrilateral projective solution space for T is de-

fined in a similar fashion by working in R
3n and using

the quadrilateral matching equations instead.

Definition 2.8. (Vertex normal surface.) Let T be a com-
pact 3-manifold triangulation, and let S be an embedded
normal surface in T . If the standard vector represen-
tation v(S) is a positive multiple of some vertex of the
standard projective solution space, then we call S a stan-
dard vertex normal surface. Likewise, if the quadrilateral
vector representation q(S) is a positive multiple of some
vertex of the quadrilateral projective solution space, then
we call S a quadrilateral vertex normal surface.

It should be noted that the definition of a vertex nor-
mal surface varies among authors. Definition 2.8 is con-
sistent with [Jaco and Rubinstein 03], as well as earlier
work of this author [Burton 09b]. Other authors impose
additional conditions, such as Tollefson, who requires S
to be connected and two-sided [Tollefson 98], or Jaco and
Oertel, who require the elements of v(S) to have no com-
mon factor and who use the alternative name fundamen-
tal edge surface [Jaco and Oertel 84].

Although vertex normal surfaces can be used as a basis
for reconstructing all embedded normal surfaces within
a triangulation, this is typically not feasible, since there
are infinitely many such surfaces. Instead we frequently
find that when searching for an embedded normal surface
with some desirable property, we can restrict our atten-
tion to only vertex normal surfaces. For instance, Jaco
and Oertel prove for closed irreducible 3-manifolds that
if a two-sided incompressible surface exists, then one can
be found as a standard vertex normal surface [Jaco and
Oertel 84]. Likewise, Jaco and Tollefson prove that if a
3-manifold contains an essential disk or sphere, then one
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can be found as a standard vertex normal surface [Jaco
and Tollefson 95].

Using results of this type, a typical high-level algo-
rithm based on normal surface theory includes the fol-
lowing steps:

(i) Enumerate the (finitely many) vertices of the pro-
jective solution space for a given triangulation
T , using techniques from linear programming (see
[Burton 10a] for details).

(ii) Eliminate those vertices that do not satisfy the
quadrilateral constraints, and then reconstruct the
vertex normal surfaces of T by taking multiples of
those vertices that remain. Although there are in-
finitely many such multiples, only finitely many will
yield connected normal surfaces, which is typically
what we are searching for.

(iii) Test each of these vertex normal surfaces for some
desirable property (such as incompressibility, or be-
ing an essential disk or sphere).

Here we can see the real benefit of working in quadri-
lateral coordinates—the enumeration of step (i) takes
place in a vector space of dimension 7n for standard
coordinates, but only 3n for quadrilateral coordinates.
Since both the running time and memory use can be-
come exponential in this dimension [Burton 10a], a re-
duction from 7n to 3n can yield dramatic improvements
in performance.

However, there is a trade-off for using quadrilateral co-
ordinates. Although every connected quadrilateral vertex
normal surface is also a standard vertex normal surface
[Burton 09b], the converse is not true in general. Instead,
there might be standard vertex normal surfaces (perhaps
including the incompressible surfaces, essential disks and
spheres, or whatever else we are searching for) that do not
show up as quadrilateral vertex normal surfaces. These
“lost surfaces” can undermine the correctness of our al-
gorithms, which we maintain in one of two ways:

• We can resolve the problem using theory. This re-
quires us to prove that if the surface we are searching
for exists, then it exists not only as a standard ver-
tex normal surface but also as a quadrilateral vertex
normal surface.

Such results can be more difficult to prove in quadri-
lateral coordinates than in standard coordinates,
partly because important functions such as Euler
characteristic are no longer linear. Nevertheless,
examples can be found—[Tollefson 98] proves such

a result for two-sided incompressible surfaces, and
[Jaco et al. 02] refers to similar results for essential
disks and spheres.

• We can resolve the problem using algorithms and
computation. There is a fast algorithm described in
[Burton 09b] that converts a full set of quadrilateral
vertex normal surfaces to a full set of standard vertex
normal surfaces, thereby recovering those surfaces
that were lost. This algorithm is found to have a
negligible running time, which means that we are
able to work with standard vertex normal surfaces
yet still enjoy the significantly greater performance
of quadrilateral coordinates.

The main part of this paper is concerned with the
development of quadrilateral–octagon coordinates for al-
most normal surfaces, where we face a similar trade-off.
In Section 5 we resolve this problem for the 3-sphere
recognition algorithm using the theoretical route, and in
Section 6 we show how the more general algorithmic so-
lution can be used.

3. ALMOST NORMAL SURFACES

Almost normal surfaces are an extension of normal sur-
faces whereby in addition to the usual normal disks, we
allow one tetrahedron of the triangulation to contain a
single unusual intersection piece. Introduced by Rubin-
stein for use with the 3-sphere algorithm and related
problems [Rubinstein 95, Rubinstein 97], almost normal
surfaces also enjoy other applications such as the deter-
mination of Heegaard genus [Lackenby 08], the recogni-
tion of small Seifert fibered spaces [Rubinstein 04], and
finding bridge surfaces in knot complements [Wilson 08].

We begin this section by defining almost normal sur-
faces, whereupon we restrict our attention to octagonal
almost normal surfaces. Octagonal almost normal sur-
faces are significantly easier to deal with, and Thompson
has proven that they are sufficient for use with the 3-
sphere recognition algorithm [Thompson 94].

In the remainder of this section, we define concepts
similar to those seen in Section 2, such as vector repre-
sentation, matching equations, and vertex almost normal
surfaces. These concepts and their corresponding results
are well-known extensions to traditional normal surface
theory; see [Lackenby 08] or [Rubinstein 97] for a brief
sketch. The details, however, are not explicitly laid down
in the current literature, and so we present these details
here.
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Normal octagon Normal tube

FIGURE 5. Examples of exceptional pieces in almost
normal surfaces.

Definition 3.1. (Almost normal surface.) Let T be
a compact 3-manifold triangulation, and let Δ be some
tetrahedron of T . A normal octagon in Δ is a properly
embedded disk in Δ whose boundary consists of eight
normal arcs running across the faces of Δ, as illustrated
in Figure 5. A normal tube in Δ is a properly embed-
ded annulus in Δ consisting of any two disjoint normal
disks joined by an unknotted tube, again illustrated in
Figure 5.

An almost normal surface in T is a properly embedded
surface whose intersection with the tetrahedra of T con-
sists of (i) zero or more normal disks, plus (ii) in precisely
one tetrahedron of T , either a single normal octagon or
a single normal tube (but not both).2 This single oc-
tagon or tube is referred to as the exceptional piece of
the almost normal surface.

Although Definition 3.1 requires that almost normal
surfaces be properly embedded, for brevity’s sake we do
not include the word “embedded” in their name. For the
remainder of this paper we concern ourselves only with
octagonal almost normal surfaces, which are defined as
follows.

Definition 3.2. (Octagonal almost normal surface.) An
octagonal almost normal surface is an almost normal sur-
face whose exceptional piece is a normal octagon (not a
tube). For contrast, we will often refer to the almost
normal surfaces of Definition 3.1 (where the exceptional
piece may be either an octagon or a tube) as general al-
most normal surfaces.

The possible normal octagons within a tetrahedron
can be grouped into three octagon types, according to how
many times they intersect each edge of the tetrahedron.
All three octagon types are illustrated in Figure 6.

2Jaco and Rubinstein add the additional constraint that the
tube does not join two copies of the same normal surface [Jaco and
Rubinstein 03].

As with “embedded,” we will sometimes drop the
word “octagonal” from definitions to avoid excessively
long names; see for instance the standard almost normal
matching equations and vertex almost normal surfaces
(Definitions 3.3 and 3.5), which refer exclusively to oc-
tagonal almost normal surfaces.

At this early stage we can already see one reason why
octagonal almost normal surfaces are substantially easier
to deal with than general almost normal surfaces—while
there are only three octagon types within a tetrahedron,
there are 25 distinct types of normal tube, giving 28 types
of exceptional piece in the general case. Not only is this
messier to implement on a computer, but it can lead to
significant increases in running time and memory usage.
We return to this issue at the end of this section.

Definition 3.3. (Standard vector representation.) Let T
be a compact 3-manifold triangulation formed from the n
tetrahedra Δ1, . . . ,Δn, and let S be an octagonal almost
normal surface in T . For each tetrahedron Δi, let ti,1,
ti,2, ti,3, and ti,4 denote the number of triangular disks
of each type, let qi,1, qi,2, and qi,3 denote the number of
quadrilateral disks of each type, and let ki,1, ki,2, and
ki,3 denote the number of octagonal disks of each type in
Δi contained in the surface S.

Then the standard vector representation of S, denoted
by v(S), is the 10n-dimensional vector

v(S) = (t1,1, t1,2, t1,3, t1,4, q1,1, q1,2, q1,3, k1,1, k1,2, k1,3 ;

t2,1, t2,2, t2,3, t2,4, q2,1, q2,2, q2,3, k2,1, k2,2, k2,3 ;

. . . , kn,3).

Lemma 3.4. Let T be a compact 3-manifold triangulation,
and let S and S′ be octagonal almost normal surfaces in
T . Then the standard vector representations v(S) and
v(S′) are equal if and only if the surfaces S and S′ are
normal isotopic (i.e., they are the “same” almost normal
surface).

This result is the almost normal counterpart to
Lemma 2.2. The proof is the same, and so we do not
present the details here. The key observation is that
given some number of triangles, quadrilaterals, and/or
octagons of various types in a single tetrahedron, if these
disks can be packed into the tetrahedron disjointly, then
this packing is unique up to normal isotopy.

This brings us to another reason why octagonal almost
normal surfaces are simpler to deal with than general
almost normal surfaces. In the general case, this packing
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FIGURE 6. The three different octagon types within a tetrahedron.

need not be unique. In particular, a tube that joins two
normal disks of the same type can be interchanged with
some other normal disk of the same type without creating
intersections (see Figure 7 for an illustration). Because
of this, the extension of Lemma 3.4 to general almost
normal surfaces fails to hold.

To determine precisely which vectors in R
10n repre-

sent octagonal almost normal surfaces, we develop a set
of matching equations and quadrilateral–octagon con-
straints in a similar fashion to Definitions 2.3 and 2.5.

Definition 3.5. (Standard almost normal matching equa-
tions.) Let T be a compact 3-manifold triangula-
tion formed from the n tetrahedra Δ1, . . . ,Δn, and let
w ∈ R

10n be any 10n-dimensional vector, whose coordi-
nates we label

w = (t1,1, t1,2, t1,3, t1,4, q1,1, q1,2, q1,3, k1,1, k1,2, k1,3 ;

. . . , kn,3).

For each nonboundary face of T and each of the three
edges surrounding it, we obtain a standard almost normal
matching equation on w as follows.

Let F be some nonboundary face of T , and let e be one
of the three edges surrounding F . Suppose that Δi and
Δj are the two tetrahedra on either side of F . Precisely
one triangular disk type, one quadrilateral disk type, and
two octagonal disk types in each of Δi and Δj meet F in
an arc parallel to e. Suppose these correspond to coor-
dinates ti,a, qi,b, ki,c, and ki,d for Δi and tj,e, qj,f , kj,g,

FIGURE 7. Packing a triangle and a tube into a tetra-
hedron in two distinct ways.

and kj,h for Δj . Then we obtain the matching equation

ti,a + qi,b + ki,c + ki,d = tj,e + qj,f + kj,g + kj,h. (3–1)

These matching equations are the obvious extension
to the original standard matching equations of Defini-
tion 2.3—we ensure that all of the disks on one side of a
nonboundary face can be joined to all of the disks on the
other side. As with normal surfaces, if T is a closed tri-
angulation, then there are precisely 6n standard almost
normal matching equations (three for each of the 2n faces
of T ).

Definition 3.6. (Quadrilateral–octagon constraints.)
Let T be a compact 3-manifold triangulation formed from
the n tetrahedra Δ1, . . . ,Δn, and consider any vector

w = (t1,1, t1,2, t1,3, t1,4, q1,1, q1,2, q1,3, k1,1, k1,2, k1,3 ;

. . . , kn,3) ∈ R
10n.

We say that w satisfies the quadrilateral–octagon con-
straints if:

(i) For every tetrahedron Δi, at most one of the six
quadrilateral and octagonal coordinates qi,1, qi,2,
qi,3, ki,1, ki,2, and ki,3 is nonzero;

(ii) in the entire triangulation T , at most one of the 3n
octagonal coordinates k1,1, . . . , kn,3 is nonzero.

Like the quadrilateral constraints of Definition 2.5,
condition (i) of the quadrilateral–octagon constraints en-
sures that the disks within a single tetrahedron can be
embedded without intersecting. Condition (ii) ensures
that we have at most one octagon type within a triangu-
lation. Although this condition is not strong enough to
ensure at most one octagonal disk, it does have the useful
property of invariance under scalar multiplication.

Note that a vector can still satisfy the quadrilateral–
octagon constraints even if all its octagonal coordinates
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are zero. This is necessary for the vertex enumeration
algorithms to function properly; we return to this issue
in Section 6.

We can now give a full set of necessary and sufficient
conditions for a vector in R

10n to represent an octagonal
almost normal surface.

Theorem 3.7. Let T be a compact 3-manifold trian-
gulation formed from n tetrahedra. An integer vector
w ∈ R

10n is the standard vector representation of an
octagonal almost normal surface in T if and only if:

• the coordinates of w are all nonnegative;

• w satisfies the standard almost normal matching
equations for T ;

• w satisfies the quadrilateral–octagon constraints
for T ;

• there is precisely one nonzero octagonal coordinate
in w, and this coordinate is set to one.

Once again, such a vector is called an admissible vector.

Again the proof is essentially the same as for the cor-
responding theorem in normal surface theory (Theorem
2.6), and so we do not reiterate the details here. The only
difference is that we now have a global condition in the
quadrilateral–octagon constraints (at most one nonzero
octagonal coordinate in the entire triangulation), as well
as an extra constraint for admissibility (precisely one
nonzero octagonal coordinate with value one). These are
to satisfy Definition 3.1, which requires an almost normal
surface to have precisely one exceptional piece.

It is occasionally useful to consider surfaces with any
number of octagonal disks, though still at most one oc-
tagonal disk type. In this case the vector representa-
tion, matching equations, and quadrilateral–octagon con-
straints all remain the same; the only change appears in
Theorem 3.7, where we remove the final condition (the
one that requires a unique nonzero octagonal coordinate
with a value of one).

We finish by defining a vertex almost normal surface
in a similar fashion to Definition 2.8. We are careful here
to specify our coordinate system—in Section 4 we define
a similar concept in quadrilateral–octagon coordinates,
and (as with normal surfaces) a vertex surface in one co-
ordinate system need not be a vertex surface in another.

Definition 3.8. (Standard vertex almost normal surface.)
Let T be a compact 3-manifold triangulation formed from

n tetrahedra. The standard almost normal projective so-
lution space for T is the rational polytope formed by (i)
taking the polyhedral cone of all nonnegative vectors in
R

10n that satisfy the standard almost normal matching
equations for T , and then (ii) intersecting this cone with
the hyperplane {w ∈ R

10n |∑wi = 1}.
Let S be an octagonal almost normal surface in T .

If the standard vector representation v(S) is a positive
multiple of some vertex of the standard almost normal
projective solution space, then we call S a standard vertex
almost normal surface.

As with normal surfaces, we can use the enumeration
of vertex almost normal surfaces as a basis for high-
level topological algorithms. The streamlined 3-sphere
recognition of Jaco, Rubinstein, and Thompson does just
this—given a “sufficiently nice” 3-manifold triangulation
T , we (i) enumerate all standard vertex almost normal
surfaces within T , and then (ii) search among these ver-
tex surfaces for an almost normal 2-sphere [Jaco and Ru-
binstein 03]. We return to this algorithm in detail in
Section 5.

This suggests yet another reason to prefer octagonal
almost normal surfaces over general almost normal sur-
faces. Whereas octagonal almost normal surfaces have
10n-dimensional vector representations, in the general
case we would need 35n dimensions (allowing for 25 types
of tube in addition to the ten octagons, quadrilaterals,
and triangles in each tetrahedron). Since both the run-
ning time and memory use for vertex enumeration can
grow exponentially in the dimension of the underlying
vector space [Burton 10a], increasing this dimension from
10n to 35n could well have a crippling effect on perfor-
mance.3

4. QUADRILATERAL–OCTAGON COORDINATES

At this stage we are ready to develop quadrilateral–octa-
gon coordinates, which form the main focus of this pa-
per. Quadrilateral–octagon coordinates act as an almost
normal analogy to Tollefson’s quadrilateral coordinates,
in that we “forget” all information regarding triangular
disks. As with quadrilateral coordinates, we happily find
that—except for vertex-linking components—all of the
forgotten information can be successfully recovered.

3We can avoid a 35n-dimensional vertex enumeration by ex-
ploiting the fact that every tube corresponds to a pair of normal
disks. However, the enumeration algorithm becomes significantly
more complex as a result.
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The main results of this section are (i) to show that
vectors in quadrilateral–octagon coordinates uniquely
identify surfaces up to vertex-linking components
(Lemma 4.2), and (ii) to develop a set of necessary and
sufficient conditions for a vector in quadrilateral–octagon
coordinates to represent an octagonal almost normal sur-
face (Theorem 4.5). Although these mirror Tollefson’s
original results in quadrilateral coordinates, the proofs
follow a different course—in this sense the author hopes
that this paper and [Tollefson 98] make complementary
reading.

Definition 4.1. (Quadrilateral–octagon vector represen-
tation.) Let T be a compact 3-manifold triangulation
formed from the n tetrahedra Δ1, . . . ,Δn, and let S be
an octagonal almost normal surface in T . For each tetra-
hedron Δi, let qi,1, qi,2, and qi,3 denote the number of
quadrilateral disks of each type, and let ki,1, ki,2, and
ki,3 denote the number of octagonal disks of each type in
Δi contained in the surface S.

Then the quadrilateral–octagon vector representation
of S, denoted by k(S), is the 6n-dimensional vector

k(S) = (q1,1, q1,2, q1,3, k1,1, k1,2, k1,3 ; q2,1, q2,2, q2,3,

k2,1, k2,2, k2,3 ; . . . , kn,3).

Our first result in quadrilateral–octagon coordinates
is a uniqueness lemma, analogous to Lemma 2.2 for nor-
mal surfaces and Lemma 3.4 for standard almost normal
coordinates.

Lemma 4.2. Let T be a compact 3-manifold triangulation,
and let S and S′ be octagonal almost normal surfaces in
T . Then the quadrilateral–octagon vector representations
k(S) and k(S′) are equal if and only if either (i) the
surfaces S and S′ are normal isotopic or (ii) S and S′ can
be made normal isotopic by adding or removing vertex-
linking components.

Proof. The “if” direction is straightforward. If S and
S′ are normal isotopic or can be made so by adding
or removing vertex-linking components, it follows from
Lemma 3.4 that their standard vector representations
v(S) and v(S′) differ only in their triangular coordi-
nates (since vertex links consist entirely of triangular
disks). Therefore the quadrilateral and octagonal coordi-
nates are identical in both v(S) and v(S′), and we have
k(S) = k(S′).

For the “only if” direction, suppose that k(S) = k(S′).
Let d = v(S) − v(S′) in standard almost normal coordi-

Δi

Δj

ti↪a

tj↪e

FIGURE 8. Adjacent triangles surrounding a common
vertex.

nates; it follows then that

d = ( t1,1, t1,2, t1,3, t1,4, 0, 0, 0, 0, 0, 0 ; t2,1, t2,2, t2,3, t2,4,

0, 0, 0, 0, 0, 0 ; . . . ) ∈ R
10n

for some set of triangular coordinates {ti,j}. In other
words, all of the quadrilateral and octagonal coordinates
of d are zero.

We know from Theorem 2.6 that v(S) and v(S′) both
satisfy the standard almost normal matching equations,
and because these equations are linear it follows that
d satisfies them also. However, with the quadrilateral
and octagonal coordinates of d equal to zero, we find
that each matching equation (3–1) reduces to the form
ti,a = tj,e, where ti,a and tj,e represent triangular disk
types surrounding a common vertex of the triangulation
in adjacent tetrahedra (illustrated in Figure 8).

By following these matching equations around each
vertex of the triangulation T , we find that for each ver-
tex V of T , the coordinates {ti,j} for all triangular disk
types surrounding V are equal. That is, d = v(S)−v(S′)
is a linear combination of standard almost normal vec-
tor representations of vertex links. It follows then from
Theorem 3.7 that the surfaces S and S′ can be made nor-
mal isotopic only by adding or removing vertex-linking
components.4

Following the pattern established in previous sections,
we now turn our attention to building a set of neces-
sary and sufficient conditions for a 6n-dimensional vec-
tor to represent an almost normal surface in quadrilat-
eral–octagon coordinates. These conditions include a set
of matching equations modeled on the original quadri-
lateral matching equations of Tollefson (Definition 4.3)
and a recasting of the quadrilateral–octagon constraints

4It is important to realize that we can in fact add vertex-linking
components to an arbitrary surface without causing intersections.
This is possible because we can “shrink” a vertex link arbitrarily
close to the vertex that it surrounds, allowing us to avoid any other
normal or almost normal disks.
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FIGURE 9. Building the quadrilateral–octagon matching equations.

in 6n dimensions (Definition 4.4). The full set of neces-
sary and sufficient conditions is laid down and proven in
Theorem 4.5.

Definition 4.3. (Quadrilateral–octagon matching equa-
tions.) Let T be a compact 3-manifold triangula-
tion formed from the n tetrahedra Δ1, . . . ,Δn, and let
w ∈ R

6n be any 6n-dimensional vector whose coordi-
nates we label

w = ( q1,1, q1,2, q1,3, k1,1, k1,2, k1,3 ; . . . , kn,3 ) .

For each nonboundary edge of T , we obtain a quadrilat-
eral–octagon matching equation on w as follows.

Let e be some nonboundary edge of T . As with Tollef-
son’s original quadrilateral matching equations, we arbi-
trarily label the two ends of e upper and lower. The
tetrahedra containing edge e are arranged in a cycle
around e, as illustrated in the left-hand diagram of Fig-
ure 9. Choose some arbitrary direction around this cy-
cle, and suppose that the tetrahedra that we encounter
as we travel in this direction around the cycle are labeled
Δi1 , . . . ,Δit .

Consider any tetrahedron Δij in this cycle. Within
this tetrahedron, there are two quadrilateral types and
two octagon types that meet edge e precisely once. For
one quadrilateral and one octagon type, the intersection
with e acts as a “hinge” about which two adjacent edges
of the disk rise from the lower end of e to the upper end
of e as we travel around the cycle in the chosen direction.
We call these disk types the upward quadrilateral and the

upward octagon in Δij , and we call the remaining two
disk types the downward quadrilateral and the downward
octagon in Δij . All four disk types are illustrated in the
right-hand portion of Figure 9.

Suppose now that the coordinates corresponding
to the upward quadrilateral and octagon types are
qi1,u1 , qi2,u2 , . . . , qit,ut and ki1,u′

1
, ki2,u′

2
, . . . , kit,u′

t
respec-

tively, and that the coordinates corresponding to
the downward quadrilateral and octagon types are
qi1,d1, qi2,d2 , . . . , qit,dt and ki1,d′

1
, ki2,d′

2
, . . . , kit,d′

t
, respec-

tively.5 Then we obtain the matching equation

qi1,u1 + · · · + qit,ut + ki1,u′
1
+ · · · + kit,u′

t

= qi1,d1 + · · · + qit,dt + ki1,d′
1
+ · · · + kit,d′

t
. (4–1)

In other words, the total number of upward quadrilaterals
and octagons surrounding e equals the total number of
downward quadrilaterals and octagons surrounding e.

Note that each tetrahedron surrounding e contains a
third quadrilateral type and a third octagon type, neither
of which appears in equation (4–1). The third quadrilat-
eral type is missing because it does not intersect with
the edge e at all. The third octagon type is missing be-
cause although it intersects e twice, these intersections
behave in a similar fashion to two triangular disks (one

5If we number the quadrilateral and octagon types within each
tetrahedron in a natural way, we find that u′

j = dj and d′j = uj

for each j. That is, our numbering scheme associates each upward
quadrilateral type with a downward octagon type and vice versa.
We return to this matter in Section 8.
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at each end of e). Details can be found in the proof of
Theorem 4.5.

As with Tollefson’s original quadrilateral matching
equations, if our triangulation T is closed and has pre-
cisely v vertices, then we obtain a total of n+ v quadri-
lateral–octagon matching equations (one for each of the
n+ v edges of T ).

Definition 4.4. (Quadrilateral–octagon constraints.)
Let T be a compact 3-manifold triangulation formed from
the n tetrahedra Δ1, . . . ,Δn, and consider any vector

w = ( q1,1, q1,2, q1,3, k1,1, k1,2, k1,3 ; . . . , kn,3 ) ∈ R
6n.

We say that w satisfies the quadrilateral–octagon con-
straints if:

(i) for every tetrahedron Δi, at most one of the six
quadrilateral and octagonal coordinates qi,1, qi,2,
qi,3, ki,1, ki,2, and ki,3 is nonzero;

(ii) in the entire triangulation T , at most one of the 3n
octagonal coordinates k1,1, . . . , kn,3 is nonzero.

Note that Definition 4.4 is essentially a direct copy
of the quadrilateral–octagon constraints for standard al-
most normal coordinates (Definition 3.6), merely recast
in 6n dimensions instead of 10n.

We can now describe the full set of necessary and suf-
ficient conditions for a vector to represent an almost nor-
mal surface in quadrilateral–octagon coordinates. The
resulting theorem incorporates aspects of both Theo-
rem 2.6 (which uses Tollefson’s original quadrilateral
matching equations) and Theorem 3.7 (which introduces
the quadrilateral–octagon constraints).

Theorem 4.5. Let T be a compact 3-manifold trian-
gulation formed from n tetrahedra. An integer vector
w ∈ R

6n is the quadrilateral–octagon vector represen-
tation of an octagonal almost normal surface in T if and
only if:

• the coordinates of w are all nonnegative;

• w satisfies the quadrilateral–octagon matching equa-
tions for T ;

• w satisfies the quadrilateral–octagon constraints
for T ;

• there is precisely one nonzero octagonal coordinate
in w, and this coordinate is set to one.

e

e

Δi1

Δi2

Δi3

Upper end

Lower end

FIGURE 10. Triangles and octagons for the coordi-
nates tij ,aj and kij ,bj .

Yet again, such a vector is called an admissible vector.

Proof. We begin by showing that the four conditions
listed in Theorem 4.5 are necessary. Let S be some
octagonal almost normal surface in T . It is clear from
Theorem 3.7 that the quadrilateral–octagon vector rep-
resentation k(S) is a nonnegative vector that satisfies the
quadrilateral–octagon constraints and that there is pre-
cisely one nonzero octagonal coordinate in k(S) whose
value is set to one. All that remains then is to show that
k(S) satisfies the quadrilateral–octagon matching equa-
tions, which is a simple matter of combining the standard
almost normal matching equations appropriately. The
details are as follows.

Suppose that S has standard vector representation

v(S) = ( t1,1, t1,2, t1,3, t1,4, q1,1, q1,2, q1,3, k1,1, k1,2, k1,3 ;

. . . , kn,3 ).

Let e be any nonboundary edge of T , and arbitrar-
ily label the two ends of e upper and lower. Follow-
ing Definition 4.3, let the tetrahedra containing e be
labeled Δi1 , . . . ,Δit as we cycle in some arbitrary di-
rection around e, let coordinates qi1,u1 , qi2,u2 , . . . , qit,ut

and ki1,u′
1
, ki2,u′

2
, . . . , kit,u′

t
correspond to the upward

quadrilateral and octagon types, and let coordinates
qi1,d1 , qi2,d2 , . . . , qit,dt and ki1,d′

1
, ki2,d′

2
, . . . , kit,d′

t
corre-

spond to the downward quadrilateral and octagon types.
We continue labeling coordinates as follows. Suppose

that ti1,a1 , ti1,a2 , . . . , ti1,at correspond to the triangular
disk types surrounding the upper end of e, as illustrated
in the left-hand portion of Figure 10. Furthermore, sup-
pose that ki1,b1 , ki2,b2 , . . . , kit,bt correspond to the octag-
onal disk types in each tetrahedron that are neither up-
ward nor downward octagons, as illustrated in the right-
hand portion of Figure 10.

Calling on Theorem 3.7 again, we know that v(S)
satisfies the standard almost normal matching equations
(Definition 3.5). Among those matching equations that
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FIGURE 11. Writing the coordinates ti,j on the triangulated vertex links.

involve the adjacent pairs of tetrahedra

(Δi1 ,Δi2), (Δi2 ,Δi3), . . . , (Δit ,Δi1),

we find the t equations

ti1,a1 + qi1,u1 + ki1,u′
1
+ ki1,b1

= ti2,a2 + qi2,d2 + ki2,d′
2
+ ki2,b2 ,

ti2,a2 + qi2,u2 + ki2,u′
2
+ ki2,b2

= ti3,a3 + qi3,d3 + ki3,d′
3
+ ki3,b3 ,

· · ·
tit,at + qit,ut + kit,u′

t
+ kit,bt

= ti1,a1 + qi1,d1 + ki1,d′
1
+ ki1,b1 .

(4–2)

Summing these together and canceling the common
terms {tij ,aj} and {kij ,bj}, we obtain

qi1,u1 + · · · + qit,ut + ki1,u′
1
+ · · · + kit,u′

t

= qi1,d1 + · · · + qit,dt + ki1,d′
1
+ · · · + kit,d′

t
.

That is, the quadrilateral–octagon vector representation
k(S) satisfies the quadrilateral–octagon matching equa-
tions.

We now turn to the more interesting task of proving
that our list of conditions is sufficient for an integer vec-
tor w ∈ R

6n to represent an octagonal almost normal
surface. Let

w = ( q1,1, q1,2, q1,3, k1,1, k1,2, k1,3 ; . . . , kn,3 ) ∈ R
6n

be an arbitrary integer vector that satisfies the four con-
ditions listed in the statement of this theorem. Our aim
is to extend w to an integer vector

w′ = ( t1,1, t1,2, t1,3, t1,4, q1,1, q1,2, q1,3, k1,1, k1,2, k1,3 ;

. . . , kn,3 ) ∈ R
10n

that satisfies the conditions of Theorem 3.7. If we can do
this, it will follow from Theorem 3.7 that w′ is the stan-
dard almost normal vector representation of some octag-
onal almost normal surface in T , whereupon w must be

the quadrilateral–octagon vector representation of this
same surface.

Given our conditions on w ∈ R
6n, it is clear that

any nonnegative extension w′ ∈ R
10n will satisfy the

quadrilateral–octagon constraints, and will have precisely
one nonzero octagonal coordinate whose value is set to
one. All we must do then is show that we can find a
set of nonnegative triangular coordinates {ti,j} that sat-
isfy the standard almost normal matching equations of
Definition 3.5.

Our broad strategy is to use the vertex links of T as
a “canvas” on which we write the triangular coordinates
ti,j , and to reformulate the matching equations as local
constraints on this canvas. In doing this, we show that
the standard almost normal matching equations describe
a cochain α ∈ C1(D), where D is the dual polygonal
decomposition of the vertex links, and that a solution
{ti,j} exists if and only if α is a coboundary. Using the
quadrilateral–octagon matching equations, we then find
that α is a cocycle, whereupon the result follows from
the trivial homology of the vertex links. The details are
as follows.

Because T is a compact triangulation, each of its ver-
tex links is a triangulated sphere or disk, as illustrated in
the left-hand diagram of Figure 11. Each triangular disk
type appears once and only once among the vertex links,
and so we can write each integer ti,j on the correspond-
ing vertex link triangle as illustrated in the right-hand
diagram of Figure 11. This is the sense in which we use
the vertex links as a “canvas.”

We can now reformulate the standard almost normal
matching equations as constraints on this canvas. Recall
that each standard matching equation involves a face F
of T and arcs parallel to some edge e of this face, as
illustrated in the left-hand diagram of Figure 12. We can
associate every such equation with a single nonboundary
edge g of a triangulated vertex link, where this edge g
also appears as an arc of the face F parallel to e, as
illustrated in the right-hand diagram of Figure 12. In this
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FIGURE 12. Associating a standard matching equation with an edge of a vertex link.
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FIGURE 13. Representing a standard matching equation by a labeled arrow.
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FIGURE 14. Solving the standard matching equations.

way, the standard almost normal matching equations and
the nonboundary edges of the triangulated vertex links
are in one-to-one correspondence.

Now consider some standard matching equation ti,a +
qi,b + ki,c + ki,d = tj,e + qj,f + kj,g + kj,h (as seen in
Definition 3.5), and let g be the corresponding edge of
the triangulated vertex links. The coordinates ti,a and
tj,e correspond to the triangles on either side of g, and
so we can write this equation in the form

ti,a − tj,e = K,

whereK depends only on the quadrilateral and octagonal
coordinates of w. In other words, K is a fixed quantity
(dependent on the chosen edge g) that we can evaluate
by looking at our original vector w ∈ R

6n. We express
this equation on our canvas by drawing an arrow from
the triangle containing tj,e to the triangle containing ti,a,

and by labeling this arrow with the constant K. This
procedure is illustrated in Figure 13.

Our situation is now as follows. On our canvas—the
triangulated vertex links of T —we have a labeled arrow
crossing each nonboundary edge, and our task is to fill
each triangle with an integer such that the difference
across each edge matches the label on the correspond-
ing arrow. An example of such a solution for a triangu-
lated disk is illustrated in Figure 14. It is clear at this
point that we do not need to worry about our nonnega-
tivity condition, since we can always add a constant to
every triangle without changing the differences across the
edges.

We can rephrase this using the language of cohomol-
ogy. Let D be the dual polygonal decomposition of the
set of all vertex links, so that each triangle of a ver-
tex link becomes a vertex of D and each labeled arrow
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FIGURE 15. The triangles surrounding some vertex U of
the vertex link �(V ).

becomes a directed edge of D. Then together the arrows
describe a cochain α ∈ C1(D) that maps each dual edge
to the corresponding label. A solution {ti,j} corresponds
to a cochain β ∈ C0(D) that maps each dual vertex to
the integer in the corresponding triangle, and the “dif-
ference condition” that such a solution must satisfy is
simply α = δβ. That is, a solution {ti,j} exists if and
only if α is a coboundary.

We now turn to the quadrilateral–octagon matching
equations, which we assume hold for our original vector
w ∈ R

6n. These equations do not involve the triangu-
lar coordinates at all. Instead they tell us about the
relations between different quadrilateral and octagonal
coordinates of w, which means they give us information
about the labels on our arrows.

Consider some vertex V of the triangulation T , let
U be some nonboundary vertex of the triangulated link
�(V ), and let e be the edge of T that runs through U

and V as illustrated in Figure 15. Let K1, . . . ,Kt be the
labels on the arrows surrounding U , as seen in the right-
hand diagram of this figure (where we make all arrows
point in the same direction around U by reversing ar-
rows and negating labels as necessary). Recall that by
construction, each label Ki is a linear combination of two
quadrilateral and four octagonal coordinates of w.

Now consider the quadrilateral–octagon matching
equation constructed from edge e. By declaring V to
be at the upper end of e, we can invert the procedure
used earlier in equation (4–2) to express our matching
equation as

K1 + · · · +Kt = 0.

In other words, the quadrilateral–octagon matching
equations tell us that around every nonboundary vertex
of a triangulated vertex link, the sum of labels on arrows
is zero. We see this for instance in Figure 14: by walk-
ing clockwise around each internal vertex and negating
labels when arrows point backward, the left internal ver-

tex gives 1+0−(−3)−4+3+(−1)−2 = 0, and the right
internal vertex gives 2 + (−1) − 0 − (−2) + (−3) = 0.

Returning to our cohomology formulation, this simply
tells us that δα = 0, where α ∈ C1(D) is the cochain de-
scribed earlier. That is, α is a cocycle. However, because
each vertex link is a sphere or a disk, the cohomology
group H1(D) is trivial. Therefore α is also a cobound-
ary, as required.

The final step of this proof shows why we must ex-
clude the ideal triangulations of [Thurston 78] from our
consideration. In an ideal triangulation, vertices form
higher-genus cusps, whereupon the vertex links become
higher-genus surfaces with nontrivial homology. There-
fore, although the quadrilateral–octagon matching equa-
tions still show that α ∈ C1(D) is a cocycle in the proof
above, we can no longer conclude from this that α is a
coboundary and that the solution {ti,j} exists.

To finish this section, we define a vertex surface in our
new coordinate system using the same pattern that we
have employed several times already.

Definition 4.6. (Quadrilateral–octagon vertex almost
normal surface.) Let T be a compact 3-manifold trian-
gulation. The quadrilateral–octagon projective solution
space for T is the rational polytope formed by (i) taking
the polyhedral cone of all nonnegative vectors in R

6n that
satisfy the quadrilateral–octagon matching equations for
T , and then (ii) intersecting this cone with the hyper-
plane {w ∈ R

6n |∑wi = 1}.
Let S be an octagonal almost normal surface in T .

If the quadrilateral–octagon vector representation k(S)
is a positive multiple of some vertex of the quadrilat-
eral–octagon projective solution space, then we call S a
quadrilateral–octagon vertex almost normal surface.

It should be noted that while it can be shown that
a connected quadrilateral–octagon vertex almost normal
surface is also a standard vertex almost normal surface,6

the converse is not necessarily true. We address this
problem for the 3-sphere recognition algorithm in the fol-
lowing section by proving that the surface we seek does
indeed appear as a vertex surface in quadrilateral–octa-
gon coordinates. More generally, we describe in Section 6
how the conversion algorithm of [Burton 09b] can recon-
struct the set of all standard vertex almost normal sur-
faces, given the set of all quadrilateral–octagon vertex
almost normal surfaces as input.

6The proof is identical to the corresponding result for normal
surfaces; see [Burton 09b] for details.
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5. 3-SPHERE RECOGNITION

The algorithm to recognize the 3-sphere has seen signif-
icant evolution since it was first introduced by Rubin-
stein in 1992. Rubinstein’s original algorithm involved
finding a maximal disjoint collection of embedded nor-
mal 2-spheres within a triangulation T , slicing T open
along these 2-spheres, and then searching for almost nor-
mal 2-spheres within the complementary regions [Rubin-
stein 97]. Thompson gave an alternative proof of this al-
gorithm using Gabai’s concept of thin position, and also
showed that it was necessary to consider only octagonal
almost normal surfaces [Thompson 94].

The algorithm at this stage remained extremely slow7

and fiendishly difficult to implement. The main prob-
lems were (i) the need to locate and deal with many
normal and almost normal surfaces simultaneously and
(ii) the need to locate almost normal surfaces in com-
plementary regions of T containing not only tetrahedra
but also sliced and truncated pieces of tetrahedra. Fortu-
nately, this algorithm was simplified enormously by Jaco
and Rubinstein using the concept of 0-efficient triangula-
tions [Jaco and Rubinstein 03], to the point where a com-
puter implementation became practicable. The first real
implementation of 3-sphere recognition was in the soft-
ware package Regina in 2004 [Burton 04], over a decade
after the algorithm was first introduced.

We begin this section with a brief discussion of the
theory behind the final algorithm of [Jaco and Rubin-
stein 03], followed by the algorithm itself (Algorithm
5.4). A key step of this algorithm (and indeed its bottle-
neck) is an enumeration of standard vertex almost nor-
mal surfaces. The main result of this section is Theo-
rem 5.6, in which we show that we can restrict our at-
tention to quadrilateral–octagon vertex normal surfaces
instead.

As noted in the introduction, the enumeration of nor-
mal and almost normal surfaces can grow to become ex-
ponentially slow in the dimension of the underlying vec-
tor space [Burton 10a]. Using Theorem 5.6 we are able
to reduce this dimension from 10n to 6n, which in the-
ory should cut down the running time substantially. In
Section 7 we test this experimentally, and indeed we find
that the speed of 3-sphere recognition improves by orders
of magnitude for the cases that we examine.

We turn our attention now to the most recent form of
the 3-sphere recognition algorithm, as given in [Jaco and
Rubinstein 03]. The advantages of this algorithm over

7In theory, of course, since at that stage a computer implemen-
tation did not exist.

its predecessors are due to the use of 0-efficient triangu-
lations, which are defined as follows.

Definition 5.1. (0-Efficiency.) Let T be a closed compact
3-manifold triangulation. We say that T is 0-efficient
if the only embedded normal 2-spheres in T are vertex
links.

It turns out that 0-efficient triangulations are rela-
tively common, in that they exist for all closed orientable
irreducible 3-manifolds except for RP 3 [Jaco and Ru-
binstein 03, Theorem 5.5]. Moreover, Jaco and Rubin-
stein provide a procedure for explicitly constructing a
0-efficient triangulation of such a manifold. More gener-
ally, Jaco and Rubinstein prove the following:

Theorem 5.2. Let T be a closed compact 3-manifold tri-
angulation representing some (unknown) orientable 3-
manifold M . Then there is a procedure to express M
as a connected sum M = M1# · · ·#Mt, where each Mi

is either given by a 0-efficient triangulation Ti or is one
of the special spaces S2 × S1, RP 3, and the lens space
L(3, 1).

The details of this procedure can be found in [Jaco and
Rubinstein 03, Theorems 5.9 and 5.10] and surrounding
comments. The key idea is to repeatedly locate embed-
ded normal 2-spheres and crush them until no such 2-
spheres can be found. Note that we might still be unable
to identify the constituent manifolds {Mi}, but with the
0-efficient triangulations {Ti} we may be better placed
to learn more about them. We do not expand further
on this decomposition procedure of Jaco and Rubinstein.
Although it plays a key role in the 3-sphere recognition
algorithm, our focus for this paper is on a different part
of the algorithm.

The core result behind Jaco and Rubinstein’s version
of the 3-sphere recognition algorithm is the following the-
orem, which builds on earlier work of Rubinstein and
Thompson [Rubinstein 97, Thompson 94] by exploiting
properties of 0-efficiency. The various components of this
theorem can be found in [Jaco and Rubinstein 03, Propo-
sition 5.12] and surrounding comments.

Theorem 5.3. Let T be a closed compact 3-manifold tri-
angulation that is orientable and 0-efficient. Then the
following statements are equivalent:
• T is a triangulation of the 3-sphere;

• T has more than one vertex, or T contains an oc-
tagonal almost normal 2-sphere;
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• T has more than one vertex, or T contains an oc-
tagonal almost normal 2-sphere that is a standard
vertex almost normal surface.

Based on this result, the full 3-sphere recognition al-
gorithm of Jaco and Rubinstein runs as follows.

Algorithm 5.4. (3-Sphere recognition.) Let T be a
closed compact 3-manifold triangulation, and let M be
the 3-manifold that T represents. The following algo-
rithm decides whether M is the 3-sphere S3:

1. Test whether M is orientable and has trivial first
homology. If not, then terminate with the result
M �= S3.

2. Using the procedure of Theorem 5.2, express the un-
derlying 3-manifold M as a connected sum decom-
position M1#M2# · · ·#Mt, where each Mi is given
by a 0-efficient triangulation Ti. If this list is empty
(i.e., t = 0), then terminate with the result M = S3.

3. Of the 0-efficient triangulations T1, . . . , Tt, ignore
those with more than one vertex. For each one-
vertex triangulation Ti:

(i) Enumerate the standard vertex almost normal
surfaces of Ti.

(ii) Search through the resulting list of surfaces for
an almost normal 2-sphere. If one cannot be
found, then terminate with the result M �= S3.

4. If we have not yet terminated, then every 0-efficient
triangulation Ti has either more than one vertex or
an almost normal 2-sphere. In this case we conclude
that M = S3.

Remark 5.5. There are some points worth noting about
this algorithm:

• In step 2, we do not account for the special spaces
S2 × S1, L(3, 1), and RP 3 that can arise in the de-
composition procedure of Theorem 5.2. This is be-
cause the homology test in step 1 prevents any of
these special spaces from appearing.

• The enumeration of surfaces in step 3 involves a
modified double description method, which is de-
scribed fully in [Burton 10a]. We return to the enu-
meration algorithm in Section 6, where we discuss it
from the perspective of quadrilateral–octagon coor-
dinates.

We come now to the main result of this section, which
is a quadrilateral–octagon analogue for the earlier The-
orem 5.3. What we essentially show is that for the
enumeration of vertex almost normal surfaces in step 3
of the algorithm above, we can work in quadrilateral–
octagon coordinates instead of standard coordinates (in
other words, 6n dimensions instead of 10n). This is im-
portant from a practical perspective, since experience in-
dicates that this enumeration step is typically the bot-
tleneck for the entire 3-sphere recognition algorithm.8

Theorem 5.6. Let T be a closed compact 3-manifold tri-
angulation that is orientable and 0-efficient. Then the
following statements are equivalent:

• T is a triangulation of the 3-sphere;

• T has more than one vertex, or T contains an oc-
tagonal almost normal 2-sphere that is a quadrilat-
eral–octagon vertex almost normal surface.

Proof. We assume that T is a one-vertex triangulation,
since otherwise the result follows immediately from The-
orem 5.3. Given this, it is clear from Theorem 5.3 that
T triangulates the 3-sphere if and only if T contains an
octagonal almost normal 2-sphere. All we need to show is
that if T contains an octagonal almost normal 2-sphere,
then it contains one as a quadrilateral–octagon vertex
almost normal surface.

Our proof is based on an idea of Casson, used also by
Jaco and Rubinstein, to prove the corresponding claim
in standard coordinates. We work within a face of the
projective solution space and show that the maximum of
χ′(u) − O(u) occurs at a vertex, where χ′(·) represents
the Euler characteristic and O(·) is the sum of octagonal
coordinates. One complication that we face in quadri-
lateral–octagon coordinates is that in contrast to the sit-
uation in standard coordinates, the Euler characteristic
is not a linear functional. Nevertheless, we are able to
work around this difficulty by falling back on convexity
instead. The details are as follows.

Suppose that T contains some octagonal almost
normal 2-sphere S. Let PQO ⊆ R

6n denote the
quadrilateral–octagon projective solution space (Defini-
tion 4.6), and let F be the minimal-dimensional face of
PQO containing the vector representation k(S). This face
F is the face in which we plan to work.

8If the manifold M is a connected sum of several high-
complexity homology 3-spheres, then the decomposition procedure
of Jaco and Rubinstein becomes a greater problem for performance.
However, it is reasonable to suggest that such cases are rare in “or-
dinary” applications.
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We begin by showing that every point u ∈ F satisfies
the quadrilateral–octagon constraints. In contrast, sup-
pose that some u ∈ F does not satisfy these constraints.
Then for some coordinate position i ∈ {1, . . . , 6n}, we
must have ui > 0 where k(S)i = 0. Let H be the hy-
perplane H = {w ∈ R

6n | wi = 0}; it is clear that H
is a supporting hyperplane for PQO , and so H ∩ F is a
subface of F containing k(S) but not u, contradicting
the minimality of F .

In order to define the Euler characteristic function
χ′ : F → R, we must understand the relationship be-
tween standard and quadrilateral–octagon vector rep-
resentations. With this in mind, we define the pro-
jection map π : R

10n → R
6n and the extension map

ε : F → R
10n as follows:9

(i) For a vector v ∈ R
10n, the projection π(v) is the

vector v with all triangular coordinates removed.
That is, if

v = ( t1,1, t1,2, t1,3, t1,4, q1,1, q1,2, q1,3,

k1,1, k1,2, k1,3 ; . . . , kn,3 ) ∈ R
10n,

then

π(v) = ( q1,1, q1,2, q1,3, k1,1, k1,2, k1,3 ;

. . . , kn,3 ) ∈ R
6n.

(ii) For a vector u ∈ F ⊂ R
6n, the extension ε(u) is

defined as follows. Because F ⊆ PQO , we know
that u satisfies the quadrilateral–octagon match-
ing equations. By the same argument used in the
proof of Theorem 4.5, we can therefore solve the
standard almost normal matching equations to ob-
tain values for the missing triangular coordinates,
giving us an extension x ∈ R

10n that satisfies the
standard almost normal matching equations and for
which π(x) = u.

By the same argument used in the proof of
Lemma 4.2, this extension is unique up to multi-
ples of vertex links. We therefore define ε(u) to be
the “minimal” extension, in the sense that we sub-
tract the largest possible multiple of each vertex
link without allowing any coordinates to become
negative. In other words, every coordinate of ε(u)
is nonnegative, and for every vertex link �(V ), the
coordinate for some triangular disk type in �(V ) is
zero.

9These maps are the almost normal analogues of quadrilateral
projection and canonical extension, which are defined in [Bur-
ton 09b] for the context of embedded normal surfaces.

It is important to note that, based on the way in
which we solve the standard almost normal match-
ing equations, if u is an integer vector then ε(u) is
an integer vector also.

It is clear that π : R
10n → R

6n is a linear map. For
ε : F → R

10n the situation is a little more complex. By
the linearity of the matching equations, it is clear that

ε(λu) = λε(u) (5–1)

for any λ ≥ 0. On the other hand, for arbitrary u,w ∈ F ,
we know only that ε(u + w) and ε(u) + ε(w) are related
by adding or subtracting multiples of vertex links. Since
both ε(u) and ε(w) are nonnegative vectors, ε(u + w)
can only subtract vertex links from their sum, yielding
the nonlinear relation

ε(u + w) = ε(u) + ε(w) −
∑

λiv(�(Vi)), (5–2)

where each �(Vi) is a vertex-linking surface and each λi

is nonnegative.
We can now define our Euler characteristic function

as follows. It is well known that the Euler characteris-
tic is a linear functional in standard coordinates: for an
almost normal surface S the Euler characteristic χ(S)
is a linear function of the coordinates {ti,j}, {qi,j}, and
{ki,j},10 and we simply extend this to a linear functional
χ : R

10n → R. On our face F ⊆ PQO we then define the
Euler characteristic function χ′ : F → R by

χ′(u) = χ(ε(u)).

Although χ′ is not linear on F , we can observe that
each vertex link �(Vi) is a 2-sphere, and so χ(�(Vi)) > 0.
Therefore, equations (5–1) and (5–2) give

χ′(λu) = λχ′(u) for all u ∈ F and λ ≥ 0; (5–3)

χ′(u + w) ≤ χ′(u) + χ′(w) for all u,w ∈ F .

That is, χ′ is a convex function on F .
We are now able to exploit an analogue of the func-

tional that Casson uses in standard coordinates. Define
the function g : F → R by g(u) = χ′(u) − O(u), where
O(u) is the sum of all octagonal coordinates in u. Since
χ′ is convex and O is clearly linear, it follows that g is
convex also. Therefore the maximum of g is achieved at
a vertex of the face F . Let this vertex be m ∈ F .

10The number of faces in S is simply
∑

ti,j +
∑

qi,j +
∑

ki,j .
The number of vertices in S is

∑
w(ei), where w(ei) is the number

of times S intersects the edge ei of T , and where w(ei) can be writ-
ten as a linear function of the disks in some arbitrary tetrahedron
containing ei. Edges of S are dealt with in a similar way.
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Our original almost normal 2-sphere S has
g(k(S)) = 1, since S has Euler characteristic two,
precisely one octagonal disk, and no vertex-linking
components. Given that k(S) ∈ F , it follows that
g(m) > 0 also. Using the fact that PQO is a rational
polytope, we can define m′ ∈ Z

6n to be the smallest
positive multiple of m with all integer coordinates.

Given that F ⊆ PQO and that every vector in F

satisfies the quadrilateral–octagon constraints, it follows
that the extension ε(m′) satisfies all the conditions of ad-
missibility in R

10n except perhaps the requirement that
the unique octagonal coordinate be set to one; instead
we might have multiple octagonal disks, or we might
have none at all. We can therefore reconstruct an em-
bedded surface S′ with standard vector representation
v(S′) = ε(m′), where S′ is one of the following:

• an octagonal almost normal surface;

• a surface like an octagonal almost normal surface
but with more than one octagonal disk;

• an embedded normal surface with no octagonal disks
at all.

We can show that the surface S′ is connected as fol-
lows. Suppose that S′ consists of distinct components
S′

1, . . . , S
′
t, where t > 1. Then in quadrilateral–octa-

gon coordinates we have m′ = k(S′) =
∑

k(S′
i), and

since m′ is the smallest integer multiple of a vertex of
PQO , it follows that all but one of the integer vectors
k(S′

1), . . . ,k(S′
t) must be zero. Therefore all but one of

the components S′
i are vertex links, which is impossi-

ble because the standard vector representation v(S′) was
constructed using the extension map ε.

From equation (5–3) we have χ′(m′) − O(m′) > 0,
and because S′ is connected it follows that 2 ≥ χ(S′) >
O(m′) ≥ 0. We must therefore be in one of the following
situations:

(i) χ(S′) = 2 and O(m′) = 0.

In this case S′ is an embedded normal 2-sphere.
Since our triangulation T is 0-efficient, it follows
that S′ is a vertex link and therefore k(S′) = 0,
contradicting the fact that k(S′) is a positive mul-
tiple of the vertex m ∈ PQO .

(ii) χ(S′) = 1 and O(m′) = 0.

In this case S′ is an embedded normal projective
plane. Since T is orientable, S′ must be a one-
sided surface that doubles to an embedded normal
sphere, giving the same contradiction as above.

(iii) χ(S′) = 2 and O(m′) = 1.

In this case S′ has precisely one octagonal disk, and
is therefore an octagonal almost normal 2-sphere.

The only case that does not yield a contradiction
is (iii). Since k(S′) is a positive multiple of the vertex
m ∈ PQO , it follows that S′ is the quadrilateral–octagon
vertex almost normal 2-sphere that we seek.

6. ENUMERATION ALGORITHMS

In this section we examine the practical issue of enumer-
ating vertex almost normal surfaces. We do not go into
the full details of the enumeration algorithms, since they
are intricate enough to form the subjects of papers them-
selves [Burton 09b, Burton 10a]. However, we do explain
in broad terms why the algorithms used for enumerat-
ing normal surfaces can also be used to enumerate almost
normal surfaces in both standard and quadrilateral–
octagon coordinates, with no unexpected changes.

The layout of this section is as follows. We begin in
Section 6.1 with the direct enumeration algorithm, which
is based on a filtered double description method. In Sec-
tion 6.2 we discuss the conversion algorithm from quad-
rilateral–octagon to standard coordinates, which allows
us to enumerate vertex surfaces in standard coordinates
substantially faster than through a direct enumeration.
We conclude in Section 6.3 with some further notes on
the implementation and use of these algorithms.

The following are the key observations that we make
for quadrilateral–octagon coordinates:

(i) Enumerating vertex surfaces in quadrilateral–octa-
gon coordinates is a simple matter of applying the
direct enumeration algorithm of [Burton 10a] “out
of the box,” though we cannot enforce the “one and
only one octagon” constraint until the algorithm
has finished.

(ii) Likewise, we can use the conversion algorithm of
[Burton 09b] out of the box to convert the vertices of
the quadrilateral–octagon projective solution space
into the vertices of the standard projective solution
space, though again we must be careful with our
use of the “one and only one octagon” constraint.

(iii) As a consequence of (ii), we can use quadrilat-
eral–octagon coordinates to substantially improve
the speed of high-level topological algorithms, even
without specific results such as Theorem 5.6 that
allow us to focus only on quadrilateral–octagon co-
ordinates.
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6.1 Direct Enumeration

At its core, the enumeration of vertex normal surfaces
uses a combination of the double description method of
[Motzkin et al. 53] and the filtering method of Letscher.
The details can be found in [Burton 10a], but essentially
the algorithm runs as follows.

Suppose we are working in the vector space R
d with g

matching equations (so for a closed one-vertex triangula-
tion we have d = 7n and g = 6n in standard coordinates,
or d = 3n and g = n+1 in quadrilateral coordinates). We
inductively create a series of polytopes P0, . . . , Pg ⊆ R

d

described by their vertex sets V0, . . . , Vg according to the
following procedure:

• The polytope P0 is the intersection of the nonneg-
ative orthant in R

d with the projective hyperplane
{x ∈ R

d | ∑ xi = 1}, and the corresponding vertex
set V0 consists of all unit vectors in R

d.

• The polytope Pi is created by intersecting Pi−1

with a hyperplane corresponding to the ith match-
ing equation. The vertex set Vi consists of vertices
v ∈ Vi−1 that lie inside this hyperplane, as well as
combinations of pairs of vertices u,v ∈ Vi−1 that lie
on opposite sides of this hyperplane.

The final polytope Pg is the projective solution space,
and by rescaling the vertex set Vg into integer coordi-
nates we can reconstruct the corresponding vertex nor-
mal surfaces.

Although this procedure accounts for nonnegativity
and the matching equations, we have not made use of
the quadrilateral constraints. This is where the filter-
ing method of Letscher comes into play. The key idea is
to enforce the quadrilateral constraints at every stage of
the double description method. Specifically, we strip all
vertices from each set Vi that do not satisfy the quadri-
lateral constraints. Although this means that each set Vi

does not give a complete representation of the polytope
Pi, by filtering out “bad” vertices at every stage of the
algorithm we can tame the exponential explosion in the
size of the vertex sets Vi, improving the performance of
the algorithm in practice by a substantial amount.

It is useful to understand why this enumeration algo-
rithm works, so that we can see whether it can also be
used with almost normal surfaces. In essence, the key
reasons are as follows:

• The double description method of Motzkin et al.
works because the projective solution space is a
convex polytope, defined as the intersection of the

nonnegative orthant with the projective hyperplane∑
xi = 1 and an additional hyperplane for each

matching equation.

• The filtering method of Letscher works because the
quadrilateral constraints satisfy the following key
properties:

Property A: The quadrilateral con-
straints are satisfied on a union of faces
of the nonnegative orthant, and therefore
on a union of faces of the projective solu-
tion space.

Property B: Let u and v be nonnegative
vectors in R

d. If either u or v does not sat-
isfy the quadrilateral constraints, then the
combination αu+βv can never satisfy the
quadrilateral constraints for any α, β > 0.

Note that property B is an immediate consequence
of property A, and that property A holds because
each constraint is of the form “at most one of the
coordinates {xi | i ∈ C} may be nonzero,” where
C ⊆ {1, . . . , d} is some set of coordinate positions.

We now turn our attention to the enumeration of ver-
tex almost normal surfaces, in both standard almost nor-
mal coordinates and quadrilateral–octagon coordinates.

Once again, the projective solution space is the inter-
section of the nonnegative orthant with the projective hy-
perplane

∑
xi = 1 and an additional hyperplane for each

matching equation. As a result, the double description
method of Motzkin et al. works seamlessly with almost
normal surfaces.

Like the original quadrilateral constraints, the
quadrilateral–octagonal constraints for almost normal
surfaces are each of the form “at most one of the co-
ordinates {xi | i ∈ C} may be nonzero,” where C ⊆
{1, . . . , d} is some set of coordinate positions. As a re-
sult, both of the above properties A and B hold, and we
can seamlessly use the filtering method of Letscher to en-
force the quadrilateral–octagon constraints at each stage
of the double description method.

However, Theorems 3.7 and 4.5 show that octagonal
almost normal surfaces come with an additional con-
straint:

Constraint (
): For v to be the vector rep-
resentation of an octagonal almost normal sur-
face, there must be some nonzero octagonal co-
ordinate in v, and this coordinate must be set
to one.
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It is clear that we cannot enforce (
) on the projec-
tive solution space, since there the coordinates of each
vector are rationals (not integers) that sum to one.
From the viewpoint of the projective solution space,
this constraint is not so much a property of a vector
v, but rather a property of the smallest multiple of v
with integer coordinates. It follows that the final con-
straint (
) cannot be inserted verbatim into the filtering
process.

We might instead consider enforcing a weaker version
of (
), whereby every vector v ∈ Vi must have some
nonzero octagonal coordinate (therefore eliminating vec-
tors that yield no octagons at all). However, this variant
is also unsuitable for filtering, since it satisfies neither of
the properties A and B. In essence, the reason we must
keep track of normal surfaces (with no octagons) is so
that we can combine them with old almost normal sur-
faces to create new almost normal surfaces.

The conclusion then is that we must forget the final
condition (
) while the algorithm is running, and en-
force it only once we have our final set of vertices Vg.
Note that this is not a severe penalty—the quadrilateral–
octagon constraints already ensure that we have at most
one octagon type in each vector, and so our only ineffi-
ciency is that we must carry around vectors that yield too
many octagons of a single type, or that yield no octagons
at all.

As a final note, the paper [Burton 10a] offers a num-
ber of additional optimizations to the core filtered double
description method. As with the core algorithm, these
optimizations can also be used seamlessly with octag-
onal almost normal surfaces, as long as we remember
to delay the constraint (
) until after the algorithm has
finished.

6.2 The Conversion Algorithm

The paper [Burton 09b] describes a conversion algorithm
from quadrilateral to standard coordinates for normal
surfaces. The purpose of this algorithm is not just to
convert vectors between coordinate systems (which is
fairly straightforward), but to convert entire solution
sets. That is, the algorithm begins with the set of all
vertices of the quadrilateral projective solution space that
satisfy the quadrilateral constraints, and converts this to
the (typically much larger) set of all vertices of the stan-
dard projective solution space that satisfy the quadri-
lateral constraints. We are therefore able to recover the
standard vertex normal surfaces that are “lost” in quadri-
lateral coordinates.

As a result, this algorithm allows us to enumerate all
standard vertex normal surfaces using the following two-
step procedure:

1. Use direct enumeration (as described in Section 6.1)
to enumerate all vertices of the quadrilateral pro-
jective solution space that satisfy the quadrilateral
constraints.

2. Use the conversion algorithm (as described below) to
recover all vertices of the standard projective solu-
tion space that satisfy the quadrilateral constraints,
and thereby the set of all standard vertex normal
surfaces.

Experimentation shows the conversion algorithm to have
negligible running time, and as a result this two-
step procedure is found to be orders of magnitude
faster than a direct enumeration in standard coordinates
[Burton 09b].

The overall outcome is that we can harness the speed
of quadrilateral coordinates without the need to prove
additional theorems in quadrilateral coordinates (such as
we do here for quadrilateral–octagon coordinates in The-
orem 5.6).

Broadly speaking, the conversion algorithm operates
as follows. Suppose the triangulation T is formed from n

tetrahedra, and contains the m vertices V1, . . . , Vm. We
inductively construct lists of vectors L0, . . . , Lm ⊂ R

7n

according to the following procedure:

• The list L0 contains the input for the algorithm,
which consists of all vertices of the quadrilateral
projective solution space that satisfy the quadri-
lateral constraints. Each vector is extended from
R

3n to R
7n by solving the standard matching

equations.

• Each subsequent list Li generates all nonnegative
vectors in R

7n that satisfy the quadrilateral con-
straints and that can be formed by (i) combining vec-
tors from the previous list Li−1 and then (ii) adding
or subtracting a multiple of the vertex-linking vec-
tor v(�(Vi)). This list Li is constructed from Li−1

using an algorithm similar to the filtered double de-
scription method of Section 6.1, though there are
additional complications.

The final list Lm becomes the set of all vertices of
the standard projective solution space that satisfy the
quadrilateral constraints.



Burton: Quadrilateral–Octagon Coordinates for Almost Normal Surfaces 307

The key reason why the conversion algorithm works
(in addition to those reasons discussed earlier in Sec-
tion 6.1) is the following relationship between standard
and quadrilateral coordinates:

Property C: The projection from standard
to quadrilateral coordinates (whereby we sim-
ply remove the triangular coordinates {ti,j})
is a linear map from the standard projective
solution space to the quadrilateral projective so-
lution space. Moreover, the kernel of this map
is generated by the standard vector representa-
tions of the vertex links.

We can now see why the conversion algorithm works
seamlessly for almost normal surfaces. If we replace stan-
dard and quadrilateral normal coordinates with
standard and quadrilateral–octagon almost normal
coordinates, the critical property C still holds. We
can thereby follow through the algorithm and its proof
as presented in [Burton 09b], and we find that the
algorithm works as expected.

Specifically, what this algorithm achieves for almost
normal surfaces is to begin with the set of all vertices of
the quadrilateral–octagon projective solution space that
satisfy the quadrilateral–octagon constraints, and to con-
vert this to the (again typically much larger) set of all ver-
tices of the standard almost normal projective solution
space that satisfy the quadrilateral–octagon constraints.

As with direct enumeration, there is a catch involving
the constraint (
), which we recall insists that each vec-
tor contain a nonzero octagonal coordinate whose value
is set to one. For the same reasons as discussed in Sec-
tion 6.1, we cannot enforce the constraint (
) at each
stage of the conversion algorithm. More importantly, we
cannot enforce (
) on the set of input vectors—the input
must be the set of all vertices of the quadrilateral–octa-
gon solution space that satisfy the quadrilateral–octagon
constraints, whether these vertices yield many octagonal
disks or whether they yield none. Once again, we must
delay the enforcement of (
) until the entire algorithm
has finished running and we are ready to present our fi-
nal results.

As a final note, we observe that the conversion algo-
rithm allows us to enumerate all standard vertex almost
normal surfaces using the following two-step procedure:

1. Use direct enumeration to enumerate all vertices of
the quadrilateral–octagon projective solution space
that satisfy the quadrilateral–octagon constraints,
taking care not to enforce the extra constraint (
).

2. Use the conversion algorithm to recover all vertices
of the standard almost normal projective solution
space that satisfy the quadrilateral–octagon con-
straints, and thereby the set of all standard vertex
almost normal surfaces.

As is the case with normal surfaces, experimentation
shows that this two-step procedure runs orders of mag-
nitude faster than a direct enumeration in standard co-
ordinates.

6.3 Further Notes

We finish with some additional notes on the implemen-
tation and use of the enumeration and conversion algo-
rithms.

Our first observation is the following. Although we
work in 10n and 6n dimensions for standard almost nor-
mal and quadrilateral–octagon coordinates respectively,
these large dimensions seem wasteful. The quadrilateral–
octagon constraints guarantee at most one nonzero octag-
onal coordinate for each vector, so a different possibility
might be to “select” a desired octagonal disk type and
then work in 7n+ 1 or 3n+ 1 dimensions instead.

Casson has suggested such a technique [Jaco et al. 02],
where we iterate through all 3n possible octagonal disk
types, and for each such disk type we augment a tra-
ditional coordinate system for normal surfaces with a
single coordinate for this octagon. As a result we ob-
tain 3n distinct projective solution spaces, each with the
significantly smaller dimension 7n+ 1 or 3n+ 1.

Although this reduction in dimensions is appeal-
ing, in practice both procedures essentially perform the
same computations—by working in a full set of stan-
dard almost normal or quadrilateral–octagon coordi-
nates, we are simply performing the 3n smaller enu-
merations of Casson “simultaneously.” This is because
the quadrilateral–octagon constraints enforce at most one
nonzero octagonal coordinate, and so the set of vertices
at each stage of the enumeration algorithm is essentially
the union of all 3n vertex sets in Casson’s scheme, with
no additional “junk” vertices that must later be thrown
away.

More importantly, however, any enumeration of ver-
tex almost normal surfaces includes an implicit enumer-
ation of vertex normal surfaces, since the quadrilateral–
octagon constraints allow surfaces with no octagons at
all. To this end, a single “simultaneous” enumeration
in 10n or 6n dimensions should be more efficient, for if
we run 3n independent enumerations in 3n different pro-
jective solution spaces, then we effectively perform this
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implicit (and potentially slow [Burton 09b]) normal sur-
face enumeration 3n distinct times.

Our second observation involves the constraint (
)
from Section 6.1—recall that this is the final condition of
Theorems 3.7 and 4.5, where we insist that there be some
nonzero octagonal coordinate, and that this coordinate
be set to one. We have already observed that (
) cannot
be enforced during either the enumeration or conversion
algorithm, and that we must instead apply it as a filter
after the algorithms have finished.

It is worth noting that there are situations in which
we do not want to enforce (
) at all, even after the algo-
rithms have run. We have already seen one example in
Section 6.2, where the conversion algorithm requires that
we do not enforce (
) on the vertices in quadrilateral–
octagon coordinates. Another example arises in applica-
tions in which we use the vertex almost normal surfaces
as a basis to generate all almost normal surfaces (possi-
bly with some limitations such as genus to keep the list
finite).11

In this case we cannot enforce (
) either, since it is
possible to obtain new admissible vectors through com-
binations of old vectors that break (
). For instance, we
could combine an almost normal surface with a plain nor-
mal surface (having no octagonal disks) to obtain a new
almost normal surface, or we could combine a surface
with two octagons with a plain normal surface to obtain
the double of a new almost normal surface, whereupon
we simply divide by two.

7. MEASURING PERFORMANCE

In this section we measure the practical benefits of using
quadrilateral–octagon coordinates. We do this by ex-
perimentally comparing running times for the 3-sphere
recognition algorithm, using different coordinate systems
for the critical step in which we enumerate vertex almost
normal surfaces.

For our experiments we use the 15 smallest-volume
homology 3-spheres from the closed hyperbolic census of
[Hodgson and Weeks 94]. The reason for choosing ho-
mology 3-spheres is that we want to focus on almost
normal surface enumeration—manifolds with nontrivial
homology are eliminated in the first step of the 3-sphere
recognition algorithm, and experience suggests that most
real 3-spheres simplify to trivially small pieces during the

11Such applications do appear in the literature; see [Lackenby 08]
and [Rubinstein 04] for examples.

Hyperbolic Volume Dehn Filling Tetrahedra

1.39850888 m004(1, 2) 10
1.91221025 m011(2, 3) 11
2.22671790 m015(−3, 2) 11
2.25976713 m038(1, 2) 11
2.51622138 m081(3, 2) 12
2.62940540 m032(5, 2) 12
2.71245881 m120(−3, 2) 12
2.86563023 m137(−5, 1) 13
2.98683705 m137(5, 1) 13
3.08052001 m154(−2, 3) 12
3.08386105 m137(−6, 1) 14
3.16236729 m137(6, 1) 14
3.40043687 m222(−3, 2) 13
3.44586464 m199(−5, 1) 14
3.54091542 m260(−3, 2) 13

TABLE 1. The 15 homology 3-spheres used for experi-
mentation.

decomposition procedure in the second step of the algo-
rithm.12

We use 0-efficient triangulations of these homology 3-
spheres, with sizes ranging from 10 to 14 tetrahedra. Ta-
ble 1 lists the volume of each manifold, the size of each
triangulation, and the Dehn filling given by Hodgson and
Weeks to reconstruct each manifold. Each Dehn filling is
applied to a cusped manifold from the hyperbolic census
of [Hildebrand and Weeks 89].

For each of our 15 triangulations, we compare the run-
ning times for the following two procedures:

• 3-sphere recognition as given in Algorithm 5.4, using
standard almost normal coordinates for the vertex
enumeration in step 3 of the algorithm.

• The same algorithm, but using quadrilateral–octa-
gon coordinates for the vertex enumeration in step
3, as authorized by Theorem 5.6.

All experiments were performed on a single 2.3GHz
AMD Opteron processor using the software package
Regina [Burton 04, Burton 09a].

The running times are plotted in Figure 16 using log
scales, and the results are extremely pleasing. Even in
the worst case, quadrilateral–octagon coordinates still
improve the running time by a factor of 30. At the other
extreme, for several triangulations we find that quadri-
lateral–octagon coordinates improve the running time by
factors of thousands, with an increase of just under 5000
times the speed for the best example.

12It is, however, possible to construct arbitrarily large 0-efficient
triangulations of the 3-sphere [Jaco and Rubinstein 03].
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FIGURE 16. Performance comparisons for 3-sphere
recognition.

8. JOINT COORDINATES

We finish this paper with an exploratory discussion of
joint coordinates for octagonal almost normal surfaces.
While quadrilateral–octagon coordinates reduce the di-
mension of the underlying vector space from 10n to 6n,
joint coordinates reduce this even further from 6n to 3n.
The key idea is to use negative coordinates for octagons
and positive coordinates for quadrilaterals, noting from
the quadrilateral–octagon constraints that the two can-
not occur together within the same tetrahedron.

Joint coordinates have a number of appealing proper-
ties. Not only is their dimension small, but they carry the
same information as quadrilateral–octagon coordinates
(in contrast to the step from standard to quadrilateral–
octagon coordinates, where we lose information about
vertex links). Moreover, joint coordinates adhere to al-
most the same constraints in R

3n as Tollefson’s quadrilat-
eral coordinates for normal surfaces. In particular, they
satisfy the original quadrilateral matching equations and
quadrilateral constraints from Section 2.

There is a cost, however, which is the loss of convexity.
For joint coordinates, we must allow one coordinate (but
no more) to become negative. As a result, we no longer
work in the nonnegative orthant of R

3n, but rather the
nonnegative orthant and the 3n “almost nonnegative”
orthants that border it. This has severe consequences for
the enumeration algorithms described in Section 6, which
rely on convexity as a core requirement.

Nevertheless, it is pleasing to be able to express octag-
onal almost normal surfaces using essentially the same
coordinate system as normal surfaces, and to do so in a
way that portrays them as a natural extension of Tollef-
son’s original framework (where our extension involves
simply stepping “just outside” the nonnegative orthant).

The layout of this section is as follows. We begin by
describing the way in which we number quadrilateral and
octagon types within each tetrahedron, which must be
done carefully for joint coordinates to work. Following
this, we define joint coordinates and develop the corre-
sponding uniqueness and admissibility results. We then
present an example using a one-tetrahedron triangula-
tion, in which we show graphically how the vector repre-
sentations of normal and almost normal surfaces appear
in the corresponding solution space in R

3. To finish, we
discuss how the loss of convexity affects both the projec-
tive solution space and the enumeration algorithms.

Definition 8.1. (Quadrilateral and octagon numbering.)
Let Δ be any tetrahedron in some compact 3-manifold
triangulation. Within Δ, we number the quadrilateral
and octagon types 1, 2, and 3 so that for each i ∈ {1, 2, 3},
the two edges of Δ that quadrilaterals of type i never
meet are the same two edges of Δ that octagons of type i

meet twice. This correspondence between quadrilaterals
and octagons is illustrated in Figure 17.

This numbering scheme is very natural, in that the
correspondence between quadrilaterals and octagons re-
flects the natural symmetries of these disks within a
tetrahedron. One can also think of an octagon of type i

as being obtained from a quadrilateral of type i by pulling
each edge of the quadrilateral around and over the nearby
vertex of the tetrahedron.

With our numbering scheme in place, we are now
ready to define joint coordinates. Since we plan to
present joint coordinates as a natural extension of Tollef-
son’s quadrilateral coordinates, we define them for both
normal and almost normal surfaces as follows.

Definition 8.2. (Joint vector representation.) Let T be
a compact 3-manifold triangulation formed from the n

tetrahedra Δ1, . . . , Δn, and let S be an embedded nor-
mal or octagonal almost normal surface in T . For each
tetrahedron Δi, let qi,1, qi,2, and qi,3 denote the number
of quadrilateral disks of each type, and let ki,1, ki,2, and
ki,3 denote the number of octagonal disks of each type in
Δi contained in the surface S.

Then the joint vector representation of S, denoted by
j(S), is the 3n-dimensional vector

j(S) = (q1,1 − k1,1, q1,2 − k1,2, q1,3 − k1,3 ;

q2,1 − k2,1, q2,2 − k2,2, q2,3 − k2,3 ;

. . . , qn,3 − kn,3 ).
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FIGURE 17. The correspondence between quadrilaterals and octagons.

Our first task is to show that joint coordinates in
3n dimensions retain all of the information carried by
quadrilateral–octagon coordinates in 6n dimensions.

Lemma 8.3. Let T be a compact 3-manifold triangula-
tion, and let S and S′ be embedded normal or octagonal
almost normal surfaces in T . Then the joint vector rep-
resentations j(S) and j(S′) are equal if and only if the
quadrilateral–octagon vector representations k(S) and
k(S′) are equal.

Here we define the quadrilateral–octagon vector repre-
sentation for an embedded normal surface in the obvious
way, by setting all octagonal coordinates to zero.

Proof. It is clear that if k(S) = k(S′), then j(S) = j(S′).
Suppose conversely that j(S) = j(S′), and consider the
(i, t)th coordinate ji,t = qi,t − ki,t.

For both S and S′ we know that qi,t ≥ 0 and ki,t ≥
0. Moreover, since S and S′ satisfy the quadrilateral–
octagon constraints, we know that they can each have
qi,t > 0 or ki,t > 0 but not both. It follows that for both
S and S′ we have one of the following situations:

• ji,t = 0, in which case qi,t = ki,t = 0;

• ji,t = K > 0, in which case qi,t = K and ki,t = 0;

• ji,t = −K < 0, in which case qi,t = 0 and ki,t = K.

That is, we can reconstruct the individual constituents
qi,t and ki,t from the joint coordinate ji,t, whereupon we
obtain k(S) = k(S′).

As an immediate consequence of Lemmas 8.3 and 4.2,
we obtain the following uniqueness result for joint vector
representations:

Corollary 8.4. Let T be a compact 3-manifold triangula-
tion, and let S and S′ be embedded normal or octagonal
almost normal surfaces in T . Then the joint vector rep-
resentations j(S) and j(S′) are equal if and only if either
(i) the surfaces S and S′ are normal isotopic, or (ii) S
and S′ can be made normal isotopic by adding or remov-
ing vertex-linking components.

We proceed now to give a complete classification of
joint vector representations of embedded normal and oc-
tagonal almost normal surfaces. As indicated earlier, one
of the appealing features of joint coordinates is that this
classification corresponds precisely to Tollefson’s theorem
for embedded normal surfaces (Theorem 2.6), except for
the fact that we must allow one coordinate to become
negative.

Theorem 8.5. Let T be a compact 3-manifold trian-
gulation formed from n tetrahedra. An integer vector
w ∈ R

3n is the joint vector representation of an em-
bedded normal or octagonal almost normal surface in T
if and only if:

• at most one coordinate of w is negative;

• w satisfies the quadrilateral matching equations for
T (Definition 2.4);
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• w satisfies the quadrilateral constraints for T (Def-
inition 2.5);

• if there is a negative coordinate in w, then this co-
ordinate is set to −1.

Moreover, such a vector represents an embedded normal
surface in T if and only if all of its coordinates are non-
negative.

It is worth pointing out that we interpret the quadri-
lateral matching equations and the quadrilateral con-
straints literally for any 3n-dimensional vector. We do
not try to “reconstruct” quadrilateral coordinates from
w, but instead we read Definitions 2.4 and 2.5 precisely
as given. In particular, the vector

w = ( j1,1, j1,2, j1,3 ; . . . , jn,3 ) ∈ R
3n

is deemed to satisfy the quadrilateral constraints if at
most one of ji,1, ji,2, and ji,3 is nonzero for any given i.
Likewise, w satisfies the quadrilateral matching equa-
tions if for each nonboundary edge e of T we have

ji1,u1 + ji2,u2 + · · · + jit,ut = ji1,d1 + ji2,d2 + · · · + jit,dt ,

where each uk is the number of an upward quadrilateral
type meeting e in the ikth tetrahedron of T , and each dk

is the number of a downward quadrilateral type meeting
e in the ikth tetrahedron of T .

Proof of Theorem 8.5. Normal surfaces (as opposed to
almost normal surfaces) are easily dealt with. Suppose
that S is some embedded normal surface in T . Then
we have j(S) = q(S), and it is clear from Theorem 2.6
that j(S) satisfies the four conditions given in this the-
orem, and that every coordinate of j(S) is nonnegative.
Conversely, suppose that some integer vector w ∈ R

3n

satisfies these four conditions, and that all of its coordi-
nates are nonnegative. Then w satisfies the conditions of
Theorem 2.6, whereupon it follows that w is the quadri-
lateral vector representation—and therefore also the joint
vector representation—of some embedded normal surface
in T .

We turn our attention now to the more interesting case
of octagonal almost normal surfaces. The key observa-
tion is the following. Consider the quadrilateral–octagon
matching equation derived from some nonboundary edge
e of the triangulation, as described in Definition 4.3, and
let Δ be some tetrahedron containing e. If we use the
numbering scheme of Definition 8.1, then the ith quadri-
lateral type in Δ is an upward quadrilateral if and only

if the ith octagon type in Δ is a downward octagon, and
vice versa. This is easily verified by examining Figure 9.

Using this observation, we can reduce each
quadrilateral–octagon matching equation (4–1) to

(qi1,u1 − ki1,u1) + · · · + (qi1,ut − ki1,ut) (8–1)

= (qi1,d1 − ki1,d1) + · · · + (qi1,dt − ki1,dt),

where the coordinates qi1,u1 , qi2,u2 , . . . , qit,ut and
qi1,d1 , qi2,d2 , . . . , qit,dt correspond to the upward and
downward quadrilaterals respectively about the edge e.
Translated into joint coordinates, this reduces further to

ji1,u1 + · · · + ji1,ut = ji1,d1 + · · · + ji1,dt , (8–2)

which is identical to the corresponding quadrilateral
matching equation in R

3n.
We can now finish the proof of Theorem 8.5. Suppose

that S is some octagonal almost normal surface in T .
Then the following observations follow immediately from
Theorem 4.5:

• Precisely one octagonal coordinate in k(S) is
nonzero, and the corresponding quadrilateral coor-
dinate in k(S) must be zero as a result. Therefore
precisely one coordinate of j(S) is negative.

• The quadrilateral–octagon vector representation
k(S) satisfies each quadrilateral–octagon matching
equation as described by (8–1). Therefore the joint
vector representation j(S) satisfies each quadrilateral
matching equation, as described by (8–2).

• For each tetrahedron of T , at most one of the six cor-
responding quadrilateral and octagonal coordinates
in k(S) is nonzero, and so at most one of the three
corresponding joint coordinates in j(S) is nonzero.
Therefore j(S) satisfies the quadrilateral constraints.

• The unique nonzero octagonal coordinate in k(S)
has value +1, and so the unique negative coordinate
in j(S) has value −1.

Therefore the joint vector representation j(S) satisfies all
four conditions listed in the statement of this theorem.

Conversely, suppose that some integer vector

w = ( j1,1, j1,2, j1,3 ; . . . , jn,3 ) ∈ R
3n

satisfies all four conditions listed in this theorem state-
ment and that one of its coordinates is negative (recall
that the nonnegative case was dealt with at the beginning
of this proof). We define the 6n-dimensional vector

w′ = ( q1,1, q1,2, q1,3, k1,1, k1,2, k1,3 ; . . . , kn,3 ) ∈ R
6n
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FIGURE 18. The one-tetrahedron triangulation S .

by setting

qi,t =

{
ji,t if ji,t ≥ 0;
0 if ji,t < 0,

and

ki,t =

{
0 if ji,t ≥ 0;
−ji,t if ji,t < 0.

Using the four conditions of this theorem statement and
following the previous argument in reverse, it is simple to
show that w′ satisfies the conditions of Theorem 4.5. It
follows then that w′ is the quadrilateral–octagon vector
representation of some octagonal almost normal surface
in T , and so w is the joint vector representation of this
same surface.

Because joint coordinates are 3n-dimensional, we
are able to visualize them explicitly in R

3 for a one-
tetrahedron triangulation. We do just this in the follow-
ing example to illustrate the various conditions of Theo-
rem 8.5.

Example 8.6. Let S be the following compact 3-manifold
triangulation (which we will shortly prove represents the
3-sphere). We begin with the single tetrahedron ABCD
and identify faces ABC ↔ BCD (with a twist) and
ABD ↔ ACD (folded directly over the common edge
AD), as illustrated in Figure 18. The resulting triangu-
lation has one tetrahedron, one vertex (since A, B, C,
and D are all identified), and two edges (where AB , BC ,
CD , BD , and AC are all identified, and AD is left in a
class of its own).

Let Δ represent the sole tetrahedron of S, and num-
ber the three quadrilateral types in Δ so that types 1,
2, and 3 separate the edge pairs (AB ,CD), (AC ,BD),
and (AD ,BC ) respectively. We find then that both joint
matching equations for S (one for each edge) reduce to
the form j1,1 = j1,2.

We plot the resulting solution space in R
3 in Figure 19.

In the top-left diagram, we shade the region in which

w = (j1,1, j1,2, j1,3) ∈ R
3 has at most one negative coor-

dinate (for clarity, we restrict our shading to the interior
of a sphere around the origin). In the top-right diagram,
we shade the intersection of this region with the hyper-
plane j1,1 = j1,2, which gives us the closed half-plane
H = {(x, x, z) | x ≥ 0}. If we wish to enforce the quadri-
lateral constraints, then we must restrict our attention to
the three coordinate axes (where at most one coordinate
is nonzero); the final intersection of H with these three
axes is plotted in the bottom-left diagram. The resulting
solution space is simply the entire j1,3-axis, taken in both
directions.

From Theorem 8.5 it follows that if we ignore vertex-
linking components, then the normal and octagonal nor-
mal surfaces in S correspond precisely to the integer
points

{(0, 0, k) | k ∈ Z, k ≥ −1}.
With some further investigation we can classify these sur-
faces as follows:

• (0, 0, 0) represents the empty surface;

• (0, 0, k) for k ≥ 1 represents k copies of the embed-
ded normal torus surrounding the edge AD , which
is referred to in [Jaco and Rubinstein 03] as a thin
edge link ;

• (0, 0,−1) is an octagonal almost normal 2-sphere.

These surfaces are individually plotted in the bottom-
right diagram of Figure 19.

To finish, we note that (i) there are no normal 2-
spheres (aside from the vertex link that we have ignored),
and so S is a 0-efficient triangulation, and that (ii) S con-
tains an octagonal almost normal 2-sphere. Using Theo-
rem 5.3 and noting that S is orientable, it follows that S
is in fact a triangulation of the 3-sphere.

At this point, it is natural to ask what becomes of the
projective solution space in joint coordinates. Recall that
in other coordinate systems, the nonnegative orthant and
the matching equations intersect to give a convex poly-
hedral cone, and that the projective solution space is a
cross-section of this cone, taken by intersecting the cone
with the hyperplane

∑
xi = 1.

The difficulty we face with joint coordinates is that we
no longer have a convex polyhedral cone to work with.
Instead we begin with the union of 3n+1 orthants in R

3n

(where at most one coordinate is nonnegative), which is
not even a convex set. Upon intersecting this with the
joint matching equations, we obtain a set P with the
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FIGURE 19. Building the solution space for the triangulation S .

following properties. P is a cone in the sense that x ∈ P
implies that λx ∈ P for any λ ≥ 0, but like the union of
orthants before it, P might not be convex (although in
Example 8.6 it happens to be). More importantly, P can
contain diametrically opposite points (such as (0, 0,±1)
in our example), and so in general we cannot form a
cross-section by slicing through P with a hyperplane.

We could perhaps take a cross-section using the unit
sphere, but this would lift us out of the world of poly-
topes, making it difficult to design algorithms. Perhaps
the simplest solution is to take a cross-section using the
“polyhedral unit sphere”

∑ |xi| = 1, as illustrated in Fig-
ure 20. Continuing with Example 8.6, the left-hand dia-
gram of Figure 20 shows the intersection of our four orig-
inal orthants with the “sphere” |j1,1|+ |j1,2|+ |j1,3| = 1,
and the right-hand diagram shows the subsequent inter-
section with the matching equation j1,1 = j1,2.

Although we are now able to define the projective so-
lution space in a sensible way, we do not obtain a single
convex polytope as a result. Instead we obtain 3n + 1
distinct convex polytopes—one for each of the original
orthants—joined together along their boundaries. To

enumerate the vertices of this structure would therefore
require 3n+1 distinct passes through the vertex enumer-
ation algorithm,13 bringing us back to the scheme of Cas-
son that we discussed in Section 6.3. It is worth noting
again that the polytope of this structure that sits within
the nonnegative orthant is precisely Tollefson’s quadri-
lateral projective solution space for normal surfaces.

It follows then that joint coordinates do not appear
practical for use in enumeration algorithms. Neverthe-
less, they have appealing geometric properties that may
render them useful for other purposes:

• They live in a remarkably small number of
dimensions.

• They express the space of admissible vectors for oc-
tagonal almost normal surfaces as a natural geomet-
ric extension of Tollefson’s space for normal surfaces,
obtained simply by expanding our scope from the

13In fact, only 3n passes are required. We can ignore the non-
negative orthant, since it can be shown that every vertex of the
nonnegative orthant is also a vertex of one of the 3n adjacent “al-
most nonnegative” orthants.
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FIGURE 20. Constructing the “projective solution space” in joint coordinates.

nonnegative orthant to include the neighboring “al-
most nonnegative” orthants.

As an immediate application, these properties make
joint coordinates a useful tool for visualizing the almost
normal solution space. More generally, they could per-
haps open the way for new theoretical insights into the
structure of the solution space.

To illustrate the latter point, we can draw analogies
with Casson’s edge weight coordinates for normal sur-
faces, which are developed and exploited in [Burton 03].
Like joint coordinates, edge weight coordinates use very
few dimensions and are geometrically appealing, but a
loss of convexity makes them impractical for use in algo-
rithms. Nevertheless, their tight geometric structure has
led to new theoretical and combinatorial insights, and we
hope that joint coordinates can offer the same.
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dreidimensionalen Mannigfaltigkeiten.” Jahresbericht der
Deutschen Math. Verein. 38 (1929), 248–260.

[Lackenby 08] Marc Lackenby. “An Algorithm to Deter-
mine the Heegaard Genus of Simple 3-Manifolds with
Nonempty Boundary.” Algebr. Geom. Topol. 8:2 (2008),
911–934.

[Motzkin et al. 53] T. S. Motzkin, H. Raiffa, G. L. Thomp-
son, and R. M. Thrall. “The Double Description Method.”

In Contributions to the Theory of Games, Vol. II, edited
by H. W. Kuhn and A. W. Tucker, Annals of Mathematics
Studies 28, pp. 51–73. Princeton: Princeton University
Press, 1953.

[Rubinstein 95] J. Hyam Rubinstein. “An Algorithm to Rec-
ognize the 3-Sphere.” In Proceedings of the International
Congress of Mathematicians (Zürich, 1994), Vol. 1, pp.
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