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In [Brunier and Bundschuh 03], the authors use Borcherds lifts
to obtain Hilbert modular forms. Another approach is to cal-
culate Hilbert modular forms using the Jacquet–Langlands cor-
respondence, which was implemented by Lassina Dembele in
Magma. In [Mayer 09] we use [Brunier and Bundschuh 03]
to determine the rings of Hilbert modular forms for �(

√
13)

and �(
√

17). In the present note we give the major cal-
culational details and present some results for K = �(

√
5),

K = �(
√

13), and K = �(
√

17). For calculations in the ring o

of integers of K we order o by the norm of its elements and get
for fixed norm, modulo multiplication by ±ε2�

0 , a finite set.
We use this decomposition to describe Weyl chambers and
their boundaries, to determine the Weyl vector of Borcherds
products, and hence to calculate Borcherds products. As a
further example we calculate Fourier expansions of Eisenstein
series.

1. INTRODUCTION

In [Brunier and Bundschuh 03] the authors outline a path
to calculate Hilbert Borcherds products for totally real
number fields K and calculate some Borcherds products
in the case K = �(

√
5). In [Mayer 09] we use this to de-

termine the rings of Hilbert modular forms for �(
√

13)
and �(

√
17). In this note we present the major calcula-

tional details and give examples in the cases of �(
√

5),
�(

√
13), and �(

√
17). We start with a treatment of cal-

culations in the ring o of integers of K. Especially, we
write o in Lemma 2.2 as ±ε2�

0

⋃
m∈� J (m) with, for each

m ∈ �, a finite set J = J (m) of elements of norm m

and the fundamental unit ε0 > 1.
The corresponding decomposition of o is then used to

describe Weyl chambers and their boundaries, to calcu-
late Eisenstein series, and to determine the Weyl vectors
of the Borcherds products. We give an algorithm to cal-
culate the Borcherds lift of nearly holomorphic modu-
lar forms in A+

k (p, χp). For the calculation of a basis of
A+

k (p, χp) we refer to [Brunier and Bundschuh 03] (in the
case of �(

√
5)) and to [Mayer 09] or [Mayer 07].
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2. INTEGERS IN�(
√

p)

Let p be a prime number and K = �(
√

p) the corre-
sponding quadratic number field with ring of integers
o. Denote the nontrivial field automorphism by · and
for λ ∈ K the norm by N(λ) = λλ and the trace by
S(λ) = λ + λ. In order to calculate Borcherds products,
we have to investigate some number-theoretic properties
of o. In particular, we give in Lemma 2.2, for fixed norm,
a finite set of representatives of o modulo multiplication
by ±ε2

0 and use this to investigate the sets S(m), which
bound the union of all Weyl chambers. This is important
in the calculation of Borcherds products and in addition,
proves that Weyl chambers are open sets.

Furthermore, Lemma 2.2 is quite useful in calculating
Fourier expansions, especially in the case of Eisenstein
series.

Lemma 2.1. (Fundamental unit.) We write ε0 := x0 +
y0
√

p for the fundamental unit of o with x0, y0 ∈ �. Then
x0 > 0 and y0 > 0.

Proof. We have N(ε0) = ε0ε0 = ±1 and ε0 = x0 + y0
√

p

> 1. So we obtain ε0 > 1 > |ε0| > 0 and conclude that
y0 = (ε0 − ε0)/(2

√
p) > 0 and x0 = (ε0 + ε0)/2 > 0,

independent of the sign of ε0.

This result is important in the proof of the following
lemma.

Lemma 2.2. (Numbers of fixed norm.) Let p be a prime
number, K = �(

√
p), and let o be the ring of integers in

K. For every m in � \ {0} there is a finite set J such
that

I :=
{

λ ∈ o√
p

: N(λ) = −m

p

}
=

{±λε2k
0 : k ∈ �, λ ∈ J }

.

More precisely, if we write λ̆1 + λ̆2
√

p/p := ε−2
0 λ for all

λ ∈ o /
√

p, we obtain that

J :=
{

λ = λ1 + λ2
√

p/p ∈ o√
p

:

N(λ) = −m

p
, λ1 > 0, λ2 > 0, λ̆1λ̆2 ≤ 0

}
is a set of representatives of I/∼ with respect to the equiv-
alence relation ∼ induced by multiplication by ε2

0 and −1.
For λ = λ1 + λ2

√
p/p in J we have, depending on

m = −p N(λ) and p, the results given in Table 1.

Proof. A detailed proof can be found in [Mayer 07,
Lemma 3.2.2]. Clearly, along with λ ∈ I, we also have
−λ ∈ I as well as ε2k

0 λ ∈ I for all k ∈ �.
For m ∈ � \ {0} and λ = λ1 + λ2

√
p

p ∈ I we obtain

ε±2
0 λ = λ1

(
x2

0 + py2
0

)± λ2 (2x0y0) (2–1)

+
√

p

(
±λ1(2x0y0) + λ2

x2
0 + py2

0

p

)
and N(λ) = −m/p < 0; hence pλ2

1 + m = λ2
2.

Given m > 0, we let λ2 ≥ 0 without loss of generality.
From pλ2

1 + m = λ2
2 it follows that λ2 >

√
p|λ1| ≥ 0.

Calculations prove that for ε2
0λ = λ̃ = λ̃1 + λ̃2

√
p

p , we
have λ̃2 > 0 and with (2–1), that λ̃1 > λ1ε

−2
0 .

Since ε−2
0 < 1 and for λ ∈ o the coefficients λ1 and

λ2 take values in a discrete set, there is k ∈ � such that
ε2k
0 λ = λ́1 + λ́2

√
p

p satisfies λ́1 > 0 and λ́2 > 0. For

λ́ε−2
0 = λ̆1 + λ̆2

√
p

p we get λ̆2 > 0 and λ̆1 < λ́1 from

(2–1), and the given restrictions in the lemma for λ̆2 ≤ 0
can be calculated.

The case m < 0 can be treated analogously. Without
loss of generality we then have λ1 ≥ 0 and achieve λ́2 > 0
by multiplication by some appropriate power of ε2

0. Then
we multiply by ε−2

0 to obtain λ̆ = ε−2
0 λ́ and read the

stated shape of J from the equation λ̆2 = 0.

Definition 2.3. We denote the complex upper half-plane
by �, and the Hilbert modular group by Γ and its sub-
group fixing ∞ = (∞,∞) by Γ∞:

T (m) := ∪a,b,λM(a,b,λ),

with

M(a, b, λ) = {(τ1, τ2) ∈ H
2; aτ1τ2 + λτ1 + λτ2 + b = 0},

where the summation is over

{
a, b, λ ∈ L′ = �2 × 1√

p
o : ab − N(λ) =

m

p

}
,

and

S(m) :=
⋃

λ∈o/
√

p
−N(λ)=m/p

M(λ),

where

M(λ) :=
{
(τ1, τ2) ∈ �×� : λ Im (τ1) + λ Im (τ2) = 0

}
and T (m) is called Hirzebruch–Zagier divisor of discrim-
inant m, where one assigns the multiplicity 1 to every
irreducible component of T (m).
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m > 0 m < 0

p λ1 ≤
√

mαp

1−pαp
λ2 ≤

√
m

1−pαp
λ1 ≤

√
−m

p(1−pαp)
λ2 ≤

√−mpαp

1−pαp

p = 5 λ1 ≤ 1
2

√
m λ2 ≤ 3

2

√
m λ1 ≤ 3

√
5

10

√−m λ2 ≤
√

5
2

√−m

p = 13 λ1 ≤ 3
2

√
m λ2 ≤ 11

2

√
m λ1 ≤ 11

2
√

13

√−m λ2 ≤ 3
√

13
2

√−m

p = 17 λ1 ≤ 8
√

m λ2 ≤ 33
√

m λ1 ≤ 33
√

17
17

√−m λ2 ≤ 8
√

17
√−m

TABLE 1. Estimates for λ1 + λ2
√

p/p in the set J of representatives of I/∼, where αp = (2x0y0)
2/(x2

0 + py2
0)

2 with the
fundamental unit ε0 = x0 + y0

√
p.

m 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

χ5(m) 1 −1 −1 1 1 −1 −1 1 1 −1 −1 1 1
χ13(m) 1 −1 1 1 −1 −1 −1 −1 1 1 −1 1 1 −1 1
χ17(m) 1 1 −1 1 −1 −1 −1 1 1 −1 −1 −1 1 −1 1 1

TABLE 2. χp(m) for m ≤ 16 and p = 5, 13, 17.

All divisors of Borcherds products are Hirzebruch–
Zagier divisors and conversely (cf. Remark 4.3). In [van
der Geer 88], the author describes for discriminant D

the shape of some special sets of quadratic equations.
A special case of this gives us the number of generating
equations of T (m) for given p and m.

Definition 2.4. (Nearly holomorphic modular forms.)
We denote by Ak(p, χp) the space of nearly holomor-
phic modular forms of weight k for the group Γ0(p) with
the Dirichlet character χp given by the Legendre sym-
bol (cf. Table 2). Here “nearly holomorphic” means that
the modular forms are holomorphic on � and meromor-
phic at the cusps. Then the plus space A+

k (p, χp) is
the subspace of Ak(p, χp) where for f ∈ A+

k (p, χp) with
f(z) =

∑
n∈� a(n)qn, q = e2πiz , we have a(n) = 0 for all

n ∈ � with χp(n) = −1.

Definition 2.5. (Weyl chamber.) For f =
∑

n∈� a(n)qn

∈ A+
0 (p, χp) we call W ⊂ �×� a Weyl chamber attached

to f if W is a connected component of

�×� \
⋃
n<0

a(n) �=0

S(−n).

Definition 2.6. ((W, λ) > 0.) For W ⊂ � × �, espe-
cially if W is a Weyl chamber, and λ ∈ o/

√
p we write

(W, λ) = (λ, W ) > 0 if λ Im (τ1) + λ Im (τ2) > 0 holds for
all (τ1, τ2) in W .

Lemma 2.7. (Shape of S(m).) For every prime number
p and every m > 0 the set S(m) is the intersection of �2

with an empty or an infinite union of hyperplanes of the

real vector space �2. We have

S(m)

=
⋃
λ∈I

{
(z1, z2) ∈ �×� : λ Im (z1) + λ Im (z2) = 0

}
,

where I is as in Lemma 2.2. In particular, S(m) is in-
variant under the stabilizer Γ∞ of infinity.

Proof. The set S(m) has the given shape by Definition
2.3. Let I be the set of λ in o/

√
p with −N(λ) = m/p

and let I be nonempty, e.g., let λ ∈ I be an element.
Clearly, the set

M(λ) =
{
(τ1, τ2) ∈ �×� : λ Im (τ1) + λ Im (τ2) = 0

}
is mapped onto itself by real transformations �2 →
�2, τ �→ τ + r, r ∈ �2. Let τ in M(λ) and k ∈ �.
Then defining τ (k) := ε2k

0 τ =
(
ε2k
0 τ1, ε0

2kτ2

)
, we have

ε−2k
0 λ Im

(
τ

(k)
1

)
+ ε0

−2kλ Im
(
τ

(k)
2

)
= 0,

so τ (k) is an element of M(ε−2k
0 λ).

The group Γ∞ is generated by real transformations
and multiplication by ε2k

0 (k ∈ �), so we have shown the
invariance under Γ∞. We rewrite M(λ) as

M(λ) =
{

(z1, z2) ∈ �×� : Im (z2) =
−λ

λ
Im (z1)

}
.

Since for all k ∈ � \ {0} we have ε−2k
0 /ε0

−2k �= 1, the
sets M(λ) and M(ε−2k

0 λ) do not coincide, so I is either
empty or has an infinite number of elements.

Remark 2.8. (Calculation of S(m).) Let m > 0. If
we use both Lemma 2.7 and Lemma 2.2, we obtain a
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weight μ diagonal

Fourier expansion

Fourier expansion on the diagonal

EH
2 2 1 EH

2 (τ, τ ) = E4(τ )

1 + 120g
(
h + 1

h

)
+ g2

(
720 + 600

(
h2 + 1

h2

)
+ 120

(
h4 + 1

h4

))
+ O

(
g3

)
1 + 240q + 2160q2 + 6720q3 + 17520q4 + 30240q5 + O

(
q6

)
EH

4 4 1 EH
4 (τ, τ ) = (E4(τ ))2 = E8(τ )

1 + 240g
(
h + 1

h

)
+ g2

(
30240 + 15600

(
h2 + 1

h2

)
+ 240

(
h4 + 1

h4

))
+ O

(
g3

)
1 + 480q + 61920q2 + 1050240q3 + 7926240q4 + 37500480q5 + O

(
q6

)
EH

6 6 1 EH
6 (τ, τ ) = 42

67
(E4(τ ))3 + 25

67
(E6(τ )2

1 + 2520
67

g
(
h + 1

h

)
+ g2

(
7877520

67
+ 2583000

67

(
h2 + 1

h2

)
+ 2520

67

(
h4 + 1

h4

))
+ O

(
g3

)
1 + 5040

67
q + 13048560

67
q2 + 1125069120

67
q3 + 26660859120

67
q4 + 310192878240

67
q6 + O

(
q5

)
TABLE 3. Eisenstein series in case p = 5 (g = exp(πi(τ1 + τ2)) and h = exp(πi(τ1 − τ2)/

√
p)).

program for the calculation of S(m). We take all positive
λ2 in 1

2� smaller than
√

m
1−pαp

. Then λ1 > 0 is uniquely

determined by the formula pλ2
1 + m = λ2

2. We have only
to check whether λ1 ∈ �/2. Then we have calculated
S(m) modulo multiplication by ε2

0.

Corollary 2.9. Weyl chambers are open sets.

Proof. Each Weyl chamber is given as a component of
�2 \ ⋃

n<0,a(n) �=0 S(−n), where the a(n) are the coeffi-
cients of the principal part of a nearly holomorphic mod-
ular form of weight 0 with character χp for the group
Γ0(p), so this is a finite union. By Lemma 2.7 together
with Lemma 2.2, the set S(m) is a locally finite union of
hyperplanes, where we consider S(m) ⊂ �2, so S(m) is
a closed subset of �2. Then each of component of the
complement, i.e., each Weyl chamber, is open (cf. Fig-
ure 1).

Remark 2.10. Lemma 2.2 together with Lemma 2.7 shows
that S(j) is a countable (or empty) union of hyperplanes

Eλ =
{

τ ∈ �2 : Im (τ1) =
λ

λ
Im (τ2)

}
,

which is, modulo multiplication by ε2
0, a finite union

of hyperplanes. The sketch shows the case S(j) =⋃
m∈�

{
Eε2m

0 a

⋃
Eε2m

0 b

}
in a projection of S(j) and its

hyperplanes and the Weyl chambers onto the imagi-
nary parts. Each Weyl chamber is the product of its
projection on the imaginary part and �2, if we write
�2 = �+ ×�+ ×�2.

y1 = b′
b y2

y1 = ε′
0
2b′

ε2
0b

y2

y1 = ε′
0
2a′

ε2
0a

y2

y1

y2

W2

W1

y1 = a′
a y2

FIGURE 1. Imaginary parts of Weyl chambers.

Remark 2.11. If W is a Weyl chamber attached to f =∑
n∈� a(n)qn ∈ A+

0 (p, χp) and λ ∈ o /
√

p, then for every
a(−p N(λ)) �= 0, the condition (λ, W ) > 0 is equivalent
to the existence of a point (τ1, τ2) ∈ W with λ Im (τ1) +
λ Im (τ2) > 0.

Proof. This follows from Corollary 2.9, since all zeros of
λ Im (τ1) + λ Im (τ2) are contained in S(−p N(λ)).

3. CALCULATION OF EISENSTEIN SERIES

We denote the Hilbert modular group by Γ = SL(2, o)
and the subgroup fixing ∞ = (∞,∞) by Γ∞. For c, d ∈ o
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weight μ diagonal

Fourier expansion

Fourier expansion on the diagonal

EH
2 2 1 EH

2 (τ, τ ) = E4(τ )

1 + g
(
96

(
h + 1

h

)
+ 24

(
h3 + 1

h3

))
+ O

(
g2

)
1 + 240q + 2160q2 + 6720q3 + 17520q4 + 30240q5 + 60480q6 + 82560q7 + O

(
q8

)
4Ψ4

1 · EH
2 = Ψ2

4 + 4Ψ2
1Ψ3

EH
4 4 1 EH

4 (τ, τ ) = (E4(τ ))2

1 + g
(

6720
29

(
h + 1

h

)
+ 240

29

(
h3 + 1

h3

))
+ O

(
g2

)
1 + 480q + 61920q2 + 1050240q3 + 7926240q4 + 37500480q5 + 135480960q6 + O

(
q7

)
EH

6 6 1 EH
6 (τ, τ ) = 21378

33463
E3

4(τ ) + 12085
33463

E2
6(τ )

1 + g
(

1598688
33463

(
h + 1

h

)
+ 6552

33463
g
(
h3 + 1

h3

))
1 + 3210480

33463
q + 6500435760

33463
q2 + 562087955520

33463
q3 + 13314685915440

33463
q4 + 154928487036960

33463
q5 + O

(
q6

)
TABLE 4. Eisenstein series in case p = 13 (g = exp(πi(τ1 + τ2)) and h = exp(πi(τ1 − τ2)/

√
p)).

weight μ diagonal

Fourier expansion

Fourier expansion on the diagonal

EH
2 2 1 EH

2 (τ, τ ) = E4(τ )

1 + g
(
84

(
h + 1

h

)
+ 36

(
h3 + 1

h3

))
+ O

(
g2

)
1 + 240q + 2160q2 + 6720q3 + 17520q4 + 30240q5 + 66312q6 + 82560q7 + O

(
q8

)
3Ψ3

1 · EH
2 = 3Ψ1 · Ψ2

2 − Ψ9

EH
4 4 1 EH

4 (τ, τ ) = (E4(τ ))2 = E8(τ )

1 + g
(

8760
41

(
h + 1

h

)
+ 1080

41

(
h3 + 1

h3

))
+ O

(
g2

)
1 + 480q + 61920q2 + 1050240q3 + 7926240q4 + O

(
q5

)
EH

6 6 1 EH
6 (τ, τ ) = 3696

5791
E3

4(τ ) + 2095
5791

E2
6(τ )

1 + g
(

266364
5791

(
h + 1

h

)
+ 8316

5791

(
h3 + 1

h3

))
1 + 549360

5791
q + 1125094320

5791
q2 + 97271576640

5791
q3 + 2304206236080

5791
q4 + O

(
q5

)
5791
2095

(
EH

6 − 3696
5791

(
EH

2

)3
)

6 1 5791
2095

(
EH

6 − 3696
5791

(
EH

2

)3
)

(τ, τ ) = E2
6(τ )

1 − g
(

665028
2095

(
h + 1

h

)
+ 390852

2095

(
h3 + 1

h3

))
+ O

(
g2

)
1 − 1008q + 220752q2 + 16519104q3 + 399517776q4 + 4624512480q5 + O

(
q6

)
41

24·32

(
EH

4 − (
EH

2

)2
)

4 1 0

13g
(
h + 1

h
− h3 − 1

h3

)
+ g2

(−784 + 349
(
h2 + 1

h2

)
+ 14

(
h4 + 1

h4

)
+ O

(
h6 + 1

h6

))
TABLE 5. Eisenstein series in case p = 17 (g = exp(πi(τ1 + τ2)) and h = exp(πi(τ1 − τ2)/

√
p)).

p B(1) B(2) B(3) B(4) B(5) B(6) B(7) B(8) B(9) B(10) B(11) B(12) B(13)

5 −10 −30 −30 −20 −70 −20 −120
13 −2 −8 −6 −26 −8 −24 −14
17 −1 −3 −7 −15 −7 −14

TABLE 6. Fourier coefficients of E+
2 = 1 +

∑
n∈�B(n)qn.
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p Ψ1 Ψ2 Ψ3 Ψ4 Ψ5 Ψ6 Ψ7 Ψ8 Ψ9 Ψ10 Ψ11 Ψ12 Ψ13

5 5 15 15 10 35 10 60
13 1 4 3 13 4 12 7
17 1/2 3/2 7/2 15/2 7/2 7

p Ψ14 Ψ15 Ψ16 Ψ17 Ψ18 Ψ19 Ψ20 Ψ21 Ψ22 Ψ23 Ψ24 Ψ25 Ψ26

5 30 20 55 100 45 60 50 65 60
13 6 11 18 10 24 21 6
17 4 31/2 9/2 21/2 10 6 21/2 21

p Ψ27 Ψ28 Ψ29 Ψ30 Ψ31 Ψ32 Ψ33 Ψ34 Ψ35 Ψ36 Ψ37 Ψ38 Ψ39

5 150 30 160 80 60 105 120
13 40 30 16 24 39 18 28
17 12 63/2 10 27/2 12 49/2 30

TABLE 7. The weights of Borcherds products and of some of their holomorphic quotients.

p 5 13 17

T1 ΓM(0, 0, 1
5

√
5) ΓM(0, 0, 1

13

√
13) ΓM(0, 0, 1

17

√
17)

T2 0 0 ΓM(0, 0, 1
2

+ 5
34

√
17)

T3 0 ΓM(0, 0, −1
2

+ 5
26

√
13) 0

T4 T1 + ΓM(0,−1, 2
5

√
5) T1 + ΓM(0,−1, 2

13

√
13) T1 + ΓM(0, 0, −3

2
+ 13

34

√
17)

T5 ΓM(0, 0, 1
2

+ 1
2

√
5) 0 0

T6 ΓM(1,−1, −1
2

+ 7
10

√
5) 0 0

T7 0 0 0

T8 0 0 T2 + ΓM(0, 0, −1
2

+ 7
34

√
17)

T9 T1 + ΓM(0, 1, 3
5

√
5) T1 + ΓM(0, 0, −1

2
+ 7

26

√
13) T1 + ΓM(0, 1, 3

17

√
17)

T10 ΓM(1, 1, 1
2

+ 1
2

√
5) ΓM(−1,−1, 1

2
+ 1

26

√
13) 0

T11 ΓM(0, 0, −1
2

+ 7
10

√
5) 0 0

T12 0 T3 + ΓM(0,−1,−1 + 5
13

√
13) 0

T13 0 ΓM(0, 0, 3
2

+ 1
2

√
13) ΓM(0, 0,−2 + 9

17

√
17)

T14 ΓM(1,−1, 1
2

+ 9
10

√
5) ΓM(1,−1, −1

2
+ 11

26

√
13) 0

T15 ΓM(1,−1, 1 + 1
√

5) 0 ΓM(1,−1, 1 + 7
17

√
17)

T16 T4 + ΓM(0,−1, 4
5

√
5) T4 + ΓM(0,−1, 4

13

√
13) T4 + ΓM(0, 0, −1

2
+ 9

34

√
17)

T17 0 ΓM(0, 0, −1
2

+ 9
26

√
13) ΓM(0, 0, 4 +

√
17)

T18 0 0 T2 + ΓM(0, 1, −3
2

+ 15
34

√
17)

T19 ΓM(0, 0, 1
2

+ 9
10

√
5) 0 ΓM(0, 0,−1 + 6

17

√
17)

T20 T5 + ΓM(0,−1, 1 + 1
√

5) 0 0

T21 ΓM(1, 1, 4
5

√
5) 0 ΓM(1,−1, −1

2
+ 13

34

√
17)

T22 0 ΓM(1, 1, 1
2

+ 7
26

√
13) 0

T23 0 ΓM(0, 0,−1 + 6
13

√
13) 0

T24 T6 + ΓM(1,−1, −1
2

+ 11
10

√
5) 0 0

TABLE 8. Divisors of the Borcherds products (Γ = SL(2, o)).

and τ ∈ �2 we extend the notion of the norm to

N(cτ + d) = (cτ1 + d)(cτ2 + d).

The matrix M =
(

a b
c d

) ∈ Γ operates on �2 by

Mτ :=
(

aτ1 + b

cτ1 + d
,
aτ2 + b

cτ2 + d

)
.

Definition 3.1. A Hilbert modular form f of (parallel)
weight k ∈ � with multiplier system μ : Γ → � \ {0}
for the quadratic number field K is a holomorphic map
f : �2 → � with the property that

f |μk M := μ(M)−1 N(cτ + d)−rf(Mτ) = f.

Note that the Goetzky–Koecher principle grants that f

is regular at the cusps.
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For every k ∈ � the Eisenstein series of weight 2k is
the Hilbert modular form

EH
2k : �2 −→ �,

τ �−→
∑

M∈Γ∞\Γ
1|2kM =

∑
M∈Γ∞\Γ

N(cτ + d)−2k,

where M =
(

a b
c d

)
. The Eisenstein series EH

2k converges
absolutely for k ≥ 1 and represents a Hilbert modular
form of weight 2k with trivial multiplier system, which
has the value 1 at the cusp ∞.

Siegel describes a way of calculating the Fourier coef-
ficients of Hilbert Eisenstein series [Siegel 69]. He consid-
ers a more general definition for Hilbert Eisenstein series
(he calls them Hecke Eisenstein series) than we do. We
obtain

ζ(2k)EH
2k(τ) = F2k(o, τ)

= ζ(2k) +
(

(2πi)2k

(2k − 1)!

)2 √
p
1−4k

×
∑

ν∈d−1

ν�0

σ2k−1(ν)e2πiS(ντ),

where

ζ(2k) =
∑

ideals (μ)

N(μ−2k) =
∑

ideals (μ)

N(μ)−2k

and

σ2k−1(ν) =
∑

(t)|(√pν)
t∈√

p o

N((t)2k−1) =
∑

(t)|(√pν)
t∈√

p o

N(t)2k−1.

The norm N(μ) of a prime ideal (μ) is given by the norm
of a generating element μ ∈ o.

Note that we have written

ζ(2k)EH
2k(τ) = ζ(2k) +

∑
ν

aνe2πiS(ντ)

with some known aν , since we can calculate the finite
sum σ2k−1(ν) if we can calculate a set of representatives
of o / o∗ ordered by the corresponding absolute value of
the norm. We also need a way to order d−1 = 1√

p o. Both
can be achieved by Lemma 2.2.

In order to calculate ζ(2k), Siegel advises that one
restrict the Fourier expansion of EH

2k to the diagonal
Diag =

{
τ ∈ �2 : τ1 = τ2

}
, which yields an elliptic mod-

ular form of weight 4k. A basis of all elliptic modular
forms of weight 4k is known, and EH

2k(τ) tends to 1 as
the imaginary part of τ goes to infinity. Hence we can
determine ζ(2k) by linear algebra.

Remark 3.2. Some of the (truncated) Fourier expansions
of Eisenstein series can be found in Tables 3, 4, and 5.

4. THE THEOREM OF BORCHERDS, BRUINIER,
AND BUNDSCHUH

Hilbert Borcherds products are Hilbert modular forms
that vanish on some Hirzebruch–Zagier divisors T (m),
have absolutely convergent product expansion on
Weyl chambers, and are lifts of modular forms in
A+

0 (p, χp). We give the theorem of Borcherds, which
is [Borcherds 98, Theorem 13.3], about Borcherds prod-
ucts in the version of Bruinier and Bundschuh; compare
[Brunier and Bundschuh 03, Theorem 9] and [Brunier
and Bundschuh 03, Theorem 3.1].

Theorem 4.1. (Borcherds, Bruinier, Bundschuh.)
Let f =

∑
n∈� a(n)qn ∈ A+

0 (p, χp) and assume that
s(n)a(n) ∈ � for all n < 0, where s(n) = 2 if p | n

and s(n) = 1 otherwise. Then there is a meromorphic
function Ψ on �×� with the following properties:

(i) Ψ is a meromorphic modular form for Γ with some
multiplier system of finite order. The weight of Ψ
is equal to the constant coefficient a(0) of f .

(ii) The divisor of Ψ is determined by the principal part
of f . It equals ∑

n<0

s(n)a(n)T (−n).

(iii) Let W ⊂ � ×� be a Weyl chamber attached to f

and put N = min {n; a(n) �= 0}. The function Ψ
has the Borcherds product expansion

Ψ(τ1, τ2) = e(ρW τ1 + ρW τ2)

×
∏

ν∈o/
√

p
(ν,W )>0

(1 − e(ντ1 + ντ2))
s(pνν)a(pνν)

,

where e(τ) = e2πiτ . Here ρW and ρW are alge-
braic numbers in K that can be computed explicitly.
The product converges normally for all τ ∈ W with
Im (τ1) Im (τ2) > |N |/p outside the set of poles.

(iv) There is a positive integer c such that Ψc has inte-
gral rational Fourier coefficients with greatest com-
mon divisor 1.

Definition 4.2. If W is a Weyl chamber and n an integer,
we define the set

R(n) := {λ ∈ o/
√

p : λ > 0, N(λ) = n/p}
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n p = 5 p = 13 p = 17

1
{

1
5

√
5
} {

1
13

√
13

} {
1
17

√
17

}
2 {} {} {− 1

2
+ 5

34

√
17, 1

2
+ 5

34

√
17

}
3 {} {− 1

2
+ 5

26

√
13, 1

2
+ 5

26

√
13

} {}
4

{
2
5

√
5
} {

2
13

√
13

} {− 3
2

+ 13
34

√
17, 3

2
+ 13

34

√
17, 2

17

√
17

}
5

{
1
2

√
5 − 1

2

} {} {}

8 {} {}
{

1
2

+ 7
34

√
17, 1 + 5

17

√
17,

−1 + 5
17

√
17, − 1

2
+ 7

34

√
17

}

9
{

3
5

√
5
} {

1
2

+ 7
26

√
13, 3

13

√
13,

− 1
2

+ 7
26

√
13

} {
3
17

√
17

}
10 {} {} {}

11

{
1
2

+ 7
10

√
5,

− 1
2

+ 7
10

√
5

}
{} {}

12 {} {
1 + 5

13

√
13, −1 + 5

13

√
13

} {}
13 {} {− 3

2
+ 1

2

√
13

} {−2 + 9
17

√
17, 2 + 9

17

√
17

}
16

{
4
5

√
5
} {

4
13

√
13

}
⎧⎪⎪⎨
⎪⎪⎩

4
17

√
17, 3 + 13

17

√
17,

1
2

+ 9
34

√
17, − 1

2
+ 9

34

√
17,

−3 + 13
17

√
17

⎫⎪⎪⎬
⎪⎪⎭

17 {} {
1
2

+ 9
26

√
13, − 1

2
+ 9

26

√
13

} {√
17 − 4

}
18 {} {} {

3
2

+ 15
34

√
17, − 3

2
+ 15

34

√
17

}
19

{
1
2

+ 9
10

√
5,

− 1
2

+ 9
10

√
5

}
{} {−1 + 6

17

√
17, 1 + 6

17

√
17

}
20

{−1 +
√

5
} {} {}

23 {} {
1 + 6

13

√
13, −1 + 6

13

√
13

} {}
24 {} {} {}
25

{√
5
} {

5
13

√
13

} {
5
17

√
17

}
TABLE 9. R(W,−n): For p ∈ {5, 13, 17} and n ∈ {6, 7, 14, 15, 21, 22} the set R(W,−n) is empty.

and write R(W, n) for the finite set

R(W, n) =
{
λ ∈ R(n) : λ Im (τ1) + λ Im (τ2) < 0, (4–1)

ε2
0λ Im (τ1) + ε0

2λ Im (τ2) > 0, ∀ τ ∈ W
}
.

From [Brunier and Bundschuh 03] we take the follow-
ing remark to Theorem 4.1.

Remark 4.3. Additionally, we have

1. For all τ ∈ W and y1 = Im (τ1) and y2 = Im (τ2) the
Weyl vector (ρW , ρW ) is given by

ρW y1 + ρW y2 (4–2)

=
1

ε0 + ε0

∑
n<0

s(n)a(n)
∑

λ∈R(W,n)

(
ε0λy1 + ε0λy2

)
.

2. Every modular form for Γ whose divisor is a linear
combination of Hirzebruch–Zagier divisors T (m) is
given as a Borcherds product as in Theorem 4.1.

For concrete calculations we reformulate this as the
following lemma.

Lemma 4.4. (ρW and ρW .) Let f =
∑

n∈� a(n)qn ∈
A+

0 (p, χp). If W is a Weyl chamber attached to f , we
have

ρW =
1

ε0 + ε0

∑
n<0

s(n)a(n)
∑

λ∈R(W,n)

λε0

and

ρW =
1

ε0 + ε0

∑
n<0

s(n)a(n)
∑

λ∈R(W,n)

λε0.
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Proof. Since Weyl chambers are open in �2 by Corol-
lary 2.9, equation (4–2) holds for τ +(δ1, δ2) if δ1 ≥ 0 and
δ2 ≥ 0 are sufficiently small. We subtract both equations
and get

ρW δ1 + ρW δ2

=
1

ε0 + ε0

∑
n<0

s(n)a(n)
∑

λ∈R(W,n)

(
ε0λδ1 + ε0λδ2

)
.

Differentiation by δ1 and δ2 gives the stated result.

Lemma 4.5. (Choice of Weyl chamber.) Let m = −n be
a natural number and let τ ∈ �2 be a point. Then W (τ)
defines the Weyl chamber attached to τ̃ := τ +(iδ, iδ) for
sufficiently small δ ∈ K, δ ≥ 0, in the following sense: If
τ is contained in a Weyl chamber, then we define W (τ)
to be this Weyl chamber (δ = 0). Otherwise, if Im (τ1) �=
Im (τ2), then there are a Weyl chamber, which we denote
by W (τ), and some δ0 > 0 such that for δ = (iδ1, iδ1) we
have τ + δ ∈ W (τ) for all 0 < δ1 < δ0, δ1 ∈ �.

In the case that τ is not contained in a Weyl chamber
and Im (τ1) = Im (τ2), there are a unique Weyl chamber,
which we denote by W (τ), and some δ0 > 0 such that
τ + (−iδ2

√
p, iδ2

√
p) is contained in W (τ) for all 0 <

δ2 < δ0 with δ2 ∈ �.
Our standard choice for τ will be τ = (−iε0 + iε0) and

τ̃ := (−iε0 + iδ, iε0 + iδ).

Proof. If τ ∈ � is not contained in a Weyl chamber,
then τ ∈ S(m). By Lemma 2.7 we know that S(m)
is a finite union of hyperplanes M(λ) modulo multi-
plication by ε2

0. The projection of these hyperplanes
onto the imaginary parts are straight lines through 0
intersected with �2. Hence for τ ∈ S(m), the point
(Im (τ1) , Im (τ2)) lies on the straight line through 0 with
direction (Im (τ1) , Im (τ2)), and the choice of W (τ) de-
scribed in the lemma is unique and well defined.

With respect to Lemma 2.11 it suffices to choose one
point in W in order to calculate Borcherds products on
W (without knowing about the concrete shape of W ).
Now we can easily calculate R(W, n).

Lemma 4.6. (Calculation of R(W, n).) Let m = −n be
a natural number and τ ∈ W for some Weyl chamber
W . Then R(W, n) can be calculated by the following al-
gorithm: For every element λ in a set of representatives
of R(−m) modulo multiplication by ε2

0 (such as J ⋃−J
in Lemma 2.2) do

(i) Multiply λ by ε2
0 (and denote the result again by λ)

until λy1 + λy2 > 0 for the imaginary part y of τ .

(ii) Multiply λ by ε−2
0 until λy1 + λy2 < 0.

The resulting M(λ) is an element of R(W, n) and this
procedure gives all of its elements when applied to all λ

in R(−m)/ε2
0.

Proof. We have ε0 > 1 and N(ε0) = ±1, so 0 < ε2
0 =

ε−2
0 < 1. Let τ ∈ �2 and λ ∈ o /

√
p with λ > 0. Write

y1 = Im (τ1) and y2 = Im (τ2). Then λ = N(λ)/λ =
−m

p λ < 0 and we get

ε2k
0 λy1︸︷︷︸

>0

+ε2k
0 λy2

k→∞−→ +∞,

ε−2k
0 λy1 + ε−2k

0 λy2︸︷︷︸
<0

k→∞−→ −∞,

and
ε2
0︸︷︷︸

>1

λy1︸︷︷︸
>0

+ ε2
0︸︷︷︸

<1

λy2︸︷︷︸
<0

> λy1 + λy2.

So the algorithm described in the lemma gives some λ̃ =
ε2k
0 λ with λ̃ ∈ R(W,−n), k ∈ �, and clearly it suffices

to apply this algorithm to a set of representatives of I
modulo multiplication by ε2

0.

Remark 4.7. (Interpretation of R(W, n).) From (4–1),
we get that if W is a Weyl chamber attached to fn, then
the boundary of W in �2 is a subset of⋃

λ∈R(W,n)

(
M(λ)

⋃
M(ε2

0λ)
)

.

In particular, the boundary is the union of two M(μ).

5. CALCULATION OF BORCHERDS PRODUCTS

We investigate the remaining tasks for the concrete cal-
culation of Borcherds products as described in Theorem
4.1. A basis of A+

0 (p, χp) is calculated via Eisenstein se-
ries in some space Mk(p, 1), and rational functions in η

and η(p) in the cases p ∈ {5, 13, 17} (cf. [Brunier and
Bundschuh 03] in case p = 5, [Mayer 09] in case p = 13,
and p = 17, and [Mayer 07] in the cases p = 5, p = 13,
and p = 17).

We will determine the multiplier system of a Borcherds
product from the Weyl vector, as was suggested by Bru-
inier, and give a method to calculate the Fourier expan-
sion of a Borcherds product up to arbitrary finite degree.
For calculations in Ak(p, χp) note the following remark:

Remark 5.1. (Precision invariant under multiplication
and division.) If f is a meromorphic modular form
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with f = qk
∑M

n=0 a(n)qn + O(qk+M+1) and a(0) �= 0,
then we say that f is given with precision M + 1. Then
the product and the quotient of two modular forms given
with precision N is given with precision N again. The
same holds for the inverse of a modular form. So, in
order to determine the first N coefficients of a product
or quotient of Fourier expansions, the first N coefficients
have to be determined for each of the factors.

Remark 5.2. We can show by calculation of Fourier
exponents that the Eisenstein series E+

2 considered in
[Brunier and Bundschuh 03] is a theta nullwert in case
p ∈ {5, 13, 17}. In particular, we set

M5 :=

⎛
⎜⎜⎝

2 1
1 2 1

1 4 5
5 10

⎞
⎟⎟⎠ , M13 :=

⎛
⎜⎜⎝

2 1
1 4 3

3 10 13
13 26

⎞
⎟⎟⎠ ,

and

M17 :=

⎛
⎜⎜⎝

2 1
1 4 1

1 10 17
17 34

⎞
⎟⎟⎠ .

The inverse matrices M−1
p are each contained in

(�/p)4×4, so the functions

z �→
∑
g∈�4

eπigtMpgz

are modular forms for Γ0(p). Then we can compare
Fourier coefficients and obtain

E+
2 (z) =

∑
g∈�4

eπigtMpgz for all p ∈ {5, 13, 17} .

With [Brunier and Bundschuh 03, Theorems 6 and 9]
we can use E+

2 to calculate the weights of the Borcherds
products (cf. Tables 6 and 7 as well as Tables 8 and 9).

Next, we investigate the weights and multiplier sys-
tems possible for Hilbert modular forms following the
work of [Gundlach 88]. We investigate the multiplier
system of Borcherds products in dependence of the Weyl
vector. In the cases p ∈ {5, 13, 17}, this suffices to deter-
mine the multiplier system of Borcherds products.

Definition 5.3. For all w ∈ o we define

Tw =
((

1 w
0 1

)
,

(
1 w
0 1

))
and write

J =
((

0 1
−1 0

)
,

(
0 1
−1 0

))

and T := T1.

Remark 5.4. (Symmetric multiplier systems.) Let μ be
a multiplier system. We define μ(M) = μ(M) for all
matrices M ∈ SL(2, o), where M is the matrix derived
from M by componentwise conjugation. Then μ is again
a multiplier system and is given by μ(J) = μ(J), μ(T ) =
μ(T ), and μ(Tw) = μ(T ·T−1

w ) = μ(T )
μ(Tw) . In case μ = μ, we

call μ symmetric. In [Mayer 09] we prove the following
theorem.

Theorem 5.5. (Multiplier systems of Borcherds products.)
If Ψ is a Borcherds product with multiplier system μ,
then the values μ(Tλ) of all translations Tλ, λ ∈ o, can
be determined by μ(Tλ) = e((S(ρW λ)). Especially in the
case �(

√
13) and �(

√
17), the multiplier system can be

read from the Weyl vector.

Remark 5.6. For �(
√

5), only the trivial multiplier sys-
tem exists.

Proof. Let Ψ be a Borcherds product with multiplier sys-
tem μ. Then Ψ has the Fourier expansion

Ψ(τ1, τ2) = e(ρW τ1 + ρW τ2)

×
∏

ν∈o/
√

p
(ν,W )>0

(1 − e(ντ1 + ντ2))
s(pνν)a(pνν) ,

and the product is invariant with respect to the operation
of T and Tw, since e(ντ1 + ντ2) itself is invariant.

So we have μ(T ) = e(S(ρW )) and μ(Tw) =
e(S(ρW w)). By [Mayer 09, Corollary 23 and 24], in case
p = 13 and p = 17 the multiplier system μ is uniquely de-
termined by μ(T ) and μ(Tw). Hence in the cases p = 13
and p = 17, the multiplier system can be read from the
Weyl vector.

Definition 5.7. If f is a Hilbert modular form with
Fourier expansion

f(τ) =
∑

a,b∈Z
a≥0

|b|≤√
pa

c(a, b)gahb,

where g = e((τ1 + τ2)/2) and h = e((τ1 − τ2)/2
√

p), and
there is N ∈ � such that c(a, b) is known for all a ≤ N ,
|b| ≤ √

pa, then f and∑
a,b∈Z

0≤a≤N
|b|≤√

pa

c(a, b)gahb
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Ψk weight Fourier expansion divisor

μ other Fourier expansion on the diagonal (if not 0) diagonal

Ψ1 5 g(h − 1
h
) − 10g2(h2 − 1

h2 ) − g2(h4 − 1
h4 ) + O(g3) T1

1 Ψ1 = −Ψ1

Ψ4
Ψ1

10 g
(
h + 1

h

)
+ g2

(
454 + 228

(
h2 + 1

h2

)
+

(
h4 + 1

h4

))
T4 − T1

1
(

Ψ4
Ψ1

)
= Ψ4

Ψ1
2g + 912g2 + 101304g3 − 632704g4 + O(g5) 2E2

4 · Δ
Ψ4 15 g2(h2 − 1

h2 ) + 216g3(h + h3 − 1
h
− 1

h3 ) + O(g4) T4

1 Ψ4 = −Ψ4

Ψ5 15 g2 − 275g3(h + 1
h
) − g3(h5 + 1

h5 ) + O(g4) T5

1 Ψ5 = Ψ5 g2 − 552g3 + 8640g4 + 116000g5 + O(g6) E6 · Δ2

Ψ6 10 1 − 264g(h + 1
h
) + O(g2) T6

1 Ψ6 = Ψ6 1 − 528g − 201168g2 + 61114944g3 + O(g4) E2
4E2

6

Ψ9 35 g3(h3 − 1
h3 ) + 3555g4(h2 + h4 − 1

h2 − 1
h4 ) + O(g5) T9

1 Ψ9 = −Ψ9

Ψ10 10 1 − 3400g(h + 1
h
) + O(g2) T10

1 Ψ10 = Ψ10 1 − 6800g − 3061200g2 − 256574400g3 + O(g4) 52

33 E2
4E2

6 − 2·72

33 E5
4

Ψ11 60 −g6 + 3256g7(h + 1
h
) + g7(h7 + 1

h7 ) + O(g8) T11

1 Ψ11 = Ψ11 −g6 + 6514g7 + O(g8)

Ψ14 30 1 + 25704g(h + 1
h
) + O(g2) T14

1 Ψ14 = Ψ14 1 + 51408g + 146187664g2 + O(g3)

Ψ15 20 1 − 22425f(h + 1
h
) + O(g2) T15

1 Ψ15 = Ψ15 1 − 44850g − 428741775g2 + O(g3)

TABLE 10. Borcherds products in case p = 5 for the Weyl chamber W (−iε0, iε0) ((g = exp(πi(τ1 + τ2)) and h =
exp(πi(τ1 − τ2)/

√
p))).

are said to be given with precision gN . Here Z is a ra-
tional ideal in � depending on the multiplier system of
f . In case of the trivial multiplier system, it is �.

Hence we have the following results.

Lemma 5.8. If f(1) and f(2) are Hilbert modular forms
given with precision gN , then their product f(1)f(2) is
given with precision gN .

Lemma 5.9. (Calculation of Borcherds products with
given precision.) Let p ≡ 1 (mod 4) be a prime,
and for m ∈ � with χp(m) ≥ 0, denote by fm the
unique basis element of A+

0 (p, χp) with Fourier expansion
s(−m)−1q−m +

∑
k≥0 a(k)qk. Let W be a Weyl cham-

ber attached to fm and τ ∈ W with y1 = Im (τ1) and
y2 = Im (τ2). Define a(−m) = s(−m)−1 and a(−k) = 0
for all k ∈ �0 \ {m}. Then for every N ∈ � the
Borcherds product Ψm, given by

Ψm(τ1, τ2) = e(ρW τ1 + ρW τ2)

×
∏

ν∈o/
√

p
(ν,W )>0

(1 − e(ντ1 + ντ2))
s(pνν)a(pνν)

for all τ ∈ W can be calculated with precision gN by the
following algorithm:

1: Calculate R(W, n) with Lemma 4.6.

2: Calculate ρW with Lemma 4.4.

3: Calculate the leading coefficient a(h,−k)g−k of∏
ν

(1 − e(ντ1 + ντ2))
s(pνν)a(pνν)

,

where the product is over

ν = ν1 + ν2
√

p ∈ o/
√

p, ν2
2 ≤ ν2

1/p + m/p2,

−
√

(y1 − y2)2m/(4py1y2) < ν1 < 0.

4: If S(ρW ) is negative, then rewrite k := k − S(ρW ).

5: Expand

R = gS(ρW )h(ρW −ρW )
√

p
∏
ν

(
1 − g2ν1h2pν2

)s(pνν)a(pνν)
,

where the product over ν is as in step 3, and we expand
each factor

(
1 − g2ν1h2pν2

)s(pνν)a(pνν) with precision
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Ψk weight divisor ρW μ other diagonal

Fourier expansion

Fourier expansion on the diagonal (if not 0)

Ψ1 1 T1
1
6

+
√

13
26

μ1,2 Ψ1 = −Ψ1 Ψ1(τ, τ ) ≡ 0

g1/3
(
h − 1

h

) − g4/3
(
2
(
h2 − 1

h2

)
+

(
h4 − 1

h4

))
+ O

(
g7/3

)
Ψ3 4 T3

5
6

+ 5
√

13
26

μ2,1 Ψ(τ, τ ) = (η(τ ))16

−g2/3 + g5/3
(−2

(
h + 1

h

)
+ 9

(
h3 + 1

h3

)
+

(
h5 + 1

h5

))
+ g8/3

(
16 + O(h2 + 1

h2 )
)

+ O
(
g11/3

)
−q2/3 + 16q5/3 − 104q8/3 + O(q11/3)

Ψ4 3 T4
1
3

+
√

13
13

μ2,1 Ψ4 = −Ψ4 Ψ4(τ, τ ) ≡ 0

g2/3
(
h2 − 1

h2

)
+ g5/3

(−24
(
h − 1

h

) − 16
(
h3 − 1

h3

)
+ 8

(
h5 − 1

h5

))
+ O

(
g8/3

)
Ψ4
2Ψ1

2 T4 − T1
1
6

+
√

13
26

μ1,2 symmetric Ψ4
2Ψ1

(τ, τ ) = η8(τ )

1
2
g1/3

(
h + 1

h

)
+ g4/3

(−26 − 4
(
h2 + 1

h2

)
+ 9

(
h4 + 1

h4

))
+ O

(
g7/3

)
−q1/3

(−1 + 8q − 20q2 + 70q4
)

+ O
(
q16/3

)
Ψ10 4 T10 0 1 Ψ10 = Ψ10 Ψ10(τ, τ ) = (E4(τ ))2

1 + g
(
200

(
h + 1

h

)
+ 40

(
h3 + 1

h3

))
+ O

(
g2

)
1 + 480q + 61920q2 + 1050240q3 + 7926240q4 + O

(
q5

)
Ψ13 7 T13

1
3

μ2,1 symmetric Ψ13(τ, τ ) = η16(τ ) · E6(τ )

g2/3 + g5/3
(−221

(
h + 1

h

) − 39
(
h3 + 1

h3

))
q2/3 − 520q5/3 − 8464q8/3 + O

(
q11/3

)
Ψ14 6 T14 0 1 Ψ14 = Ψ14 Ψ14(τ, τ ) = E2

6(τ )

1 − 504g
(
h + 1

h

)
+ O

(
g2

)
1 − 1008q + 220752q2 + 16519104q3 + 399517776q4 + O

(
q5

)
The restriction of Ψ14 to the diagonal has trivial character.

Ψ26 6 T26 0 1 Ψ26 = Ψ26 Ψ26(τ, τ ) = 125
27

(E6(τ ))2 − 98
27

(E4(τ ))3

1 − g
(
3432

(
h + 1

h

)
+ 208

(
h3 + 1

h3

))
+ O

(
g2

)
1 − 7280q + 371280q2 + 14938560q3 + 408750160q4 + O

(
q5

)
TABLE 11. Borcherds products in case p = 13 for the Weyl chamber W (−iε0, iε0) (g = exp(πi(τ1 + τ2)) and h =
exp(πi(τ1 − τ2)/

√
p)).

gk+N and neglect higher-order terms. For negative
exponents use the geometric series

(1 − x)−1 =
∞∑

n=0

xn for |x| < 1.

Then Ψm is given by R with precision gN .

Proof. Let μ = μ1 + μ2
√

p ∈ o /
√

p. Then e(S(ντ)) =
g2ν1h2pν2 and the factor

(
1 − g2ν1h2pν2

)
has a negative

power of g if and only if ν1 < 0. In this case we get from

(W, ν) > 0 the following:

ν1(y1 + y2) + ν2(y1 − y2)
√

p > 0

⇐⇒ ν2(y1 − y2)
√

p > −ν1︸︷︷︸
>0

(y1 + y2)︸ ︷︷ ︸
>0

⇐⇒ |ν2||y1 − y2|√p > −ν1(y1 + y2)

⇐⇒ |ν2| > |ν1| y1 + y2

|y1 − y2|√p
.
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Ψk weight divisor ρW μ other diagonal

Fourier expansion

Fourier expansion on the diagonal (if not 0)

Ψ1
1
2

T1
1
8

+
√

17
34

μ3,4 Ψ1 = −Ψ1 0

g1/4
(
h − h−1

) − g5/4
((

h2 − 1
h2

)
+

(
h4 − 1

h4

))
+ g9/4

(
h9 − 1

h9

)
+ O

(
g13/4

)
Ψ2

3
2

T2
5
8

+ 5
√

17
34

μ3,3 = μ5
3,4 Ψ2 = Ψ2 Ψ2(τ, τ ) = − (η(τ ))6

−g1/4 + g5/4
(− (

h + 1
h

)
+ 3

(
h3 + 1

h3

)
+

(
h5 + 1

h5

))
+ O

(
g9/4

)
−q1/4 + 6q5/4 − 9q9/4 − 10q13/4 + 30q17/4 + O

(
q21/4

)
Ψ4

7
2

T4
15
8

+ 15
√

17
34

μ3,5 = μ7
3,4 Ψ4 = −Ψ4 0

−g3/4
(
h2 − 1

h2

)
+ g7/4

(
13

(
h + 1

h

)
+ 11

(
h3 − 1

h3

) − 2
(
h5 − 1

h5

))
+ O

(
g11/4

)
Ψ4
Ψ1

3 T4 − T1
7
4

+ 7
√

17
17

μ2,3 = μ6
3,4

Ψ4
Ψ1

= Ψ4
Ψ1

Ψ4
Ψ1

= 2 (η(τ ))12

Ψ8
15
2

T8
17
8

+
√

17
2

μ3,4 Ψ8 = Ψ8 Ψ8(τ, τ ) = (η(τ ))30 = Δ(τ ) · (η(τ ))6

g5/4 + g9/4
(
10

(
h + 1

h

) − 24
(
h3 + 1

h3

) − (
h7 + 1

h7

))
+ O

(
g13/4

)
Ψ9

7
2

T9
3
8

+ 3
√

17
34

μ3,6 = μ3
3,4 Ψ9 = −Ψ9 0

g3/4
(
h3 − h−3

)
+ g7/4

(−36
(
h2 − 1

h2

) − 36
(
h4 − 1

h4

)
+ 27

(
h6 − 1

h6

))
+ O

(
g7/4

)
Ψ9
Ψ1

3 T9 − T1
1
4

+
√

17
17

μ2,2 = μ2
3,4

Ψ9
Ψ1

= Ψ9
Ψ1

Ψ9
Ψ1

(τ, τ ) = 3 · (η(τ ))12

g1/2
(
h2 + 1 + 1

h2

)
g3/2

(−40
(
h + 1

h

) − 6
(
h3 + 1

h3

)
+ 28

(
h5 + 1

h5

))
+ O

(
g5/2

)
Ψ13 7 T13

9
4

+ 9
√

17
17

μ2,2 = μ2
3,4 Ψ13 = Ψ13 Ψ13(τ, τ ) = −E4(τ )2 · (η(τ ))12

Ψ15 4 T15 0 1 Ψ15 = Ψ15 Ψ15(τ, τ ) = E2
4(τ ) = E8(τ )

1 + 240g
(
h + 1

h

)
+ O

(
g2

)
1 + 480q + 61920q2 + 1050240q3 + 7926240q4 + O

(
q5

)
Ψ17

9
2

T17
1
8

μ3,3 = μ5
3,4 Ψ17 = Ψ17 Ψ17(τ, τ ) = (η(τ ))6 · E6(τ )

g1/4 − g5/4
(
204

(
h + 1

h

)
+ 51

(
h3 + 1

h3

))
+ O

(
g9/4

)
q1/4 − 510q5/4 − 13599q9/4 − 27710q13/4 + 50370q17/4 + 360194q21/4 − 19479432q25/4

Ψ21 6 T21 0 1 Ψ21 = Ψ21 Ψ21 = E2
6(τ )

1 − 630g(h + h−1) + 126g(h3 + h−3) + O
(
g2

)
1 − 1008q + 220752q2 + 16519104q3 + 399517776q4 + O

(
q5

)
TABLE 12. Borcherds products in case p = 17 for the Weyl chamber W (−iε0, iε0) (g = exp(πi(τ1 + τ2)) and h =
exp(πi(τ1 − τ2)/

√
p)).

Moreover, for N(ν) < −m/p we have a(p N(ν)) = 0,
so we can skip

(1 − e(ν1τ1 + ν2τ2))s(p N(ν))a(p N(ν)) = 1

in the product expansion of Ψm whenever N(ν) < −m/p.
So negative exponents may derive only from the factor
e(ρW τ1 + ρW τ2) and ν ∈ o /

√
p with (W, ν) > 0 and

N(ν) = ν2
1 − pν2

2 ≥ −m/p ⇐⇒ ν2
2 ≤ ν2

1

p
+

m

p2
.

The combination of both conditions gives

|ν1|2 (y1 + y2)2

|y1 − y2|2p < ν2
2 ≤ ν2

1

p
+

m

p2

=⇒ |ν1|2
p

(
(y1 + y2)2

|y1 − y2|2 − 1
)

<
m

p2

=⇒ |ν1|2 (y1 + y2)2 − (y1 − y2)2

(y1 − y2)2
<

m

p

=⇒ |ν1|2 <
m

p

(y1 − y2)2

4y1y2
.
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Since s(−m)a(−m) = 1, every factor (1−q2ν1h2pν2) with
negative q-exponent occurs once, so by Lemma 5.8, we
need every factor in the product expansion of Ψm with
precision gN+k. It remains to show that the geomet-
ric series can be applied for negative exponents. Since
ν Im (τ1) + ν Im (τ2) > 0, by (W, ν) > 0 and

|e(ντ1 + ντ2)| = e−2πν Im(τ1)+ν Im(τ2) < 1,

the geometric series converges.

Remark 5.10. Some results of these calculations can
be found in Tables 10, 11, and 12. The full data and
the corresponding Maple worksheets can be found at
http://www.matha.rwth-aachen.de.
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