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We consider the problem of the numerical approximation of the
linear controllability of waves. All our experiments are done in a
bounded domain Ω of the plane, with Dirichlet boundary condi-
tions and internal control. We use a Galerkin approximation of
the optimal control operator of the continuous model, based on
the spectral theory of the Laplace operator in Ω. This allows us
to obtain surprisingly good illustrations of the main theoretical
results available on the controllability of waves and to formulate
some questions for future analysis of the optimal control theory
of waves.

1. INTRODUCTION

This paper is devoted to the experimental study of the
exact controllability of waves. All our experiments will be
done in a bounded domain Ω of the plane, with Dirich-
let boundary conditions and with internal control. We
use the most natural approach for the numerical compu-
tation: a Galerkin approximation of the optimal control
operator of the continuous model based on the spectral
theory of the Laplace operator in Ω. This will allow us
to obtain surprisingly good illustrations of the main the-
oretical results available on the controllability of waves,
and to formulate some questions for the future analysis
of the optimal control theory of waves.

The problem of controllability for linear evolution
equations and systems has a long history, for which we
refer to the review in [Russell 78] and to the book [Li-
ons 88]. Concerning controllability of linear waves, the
main theoretical result is the so-called geometric control
condition (GCC) from [Bardos et al. 92], which gives an
(almost) necessary and sufficient condition for exact con-
trollability. This is a “geometrical optics” condition on
the behavior of optical rays inside Ω. Here, optical rays
are just straight lines inside Ω, reflected at the boundary
according to the Snell–Descartes law of reflection. The
precise definition of optical rays near points of tangency
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with the boundary is given in [Melrose and Sjöstrand 78]
and [Melrose and Sjöstrand 82].

For internal control, GCC asserts that waves in a regu-
lar bounded domain Ω are exactly controllable by control
functions supported in the closure of an open subdomain
U and acting during a time T if (and only if, if one allows
arbitrarily small perturbations of the time control T and
of the control domain U) the following condition holds:

GCC: Every optical ray of length T in Ω enters
the subdomain U .

Even when GCC is satisfied, the numerical computa-
tion of the control is not an easy task. The original ap-
proach consists first in discretizing the continuous model,
and then in computing the control of the discrete system
to use it as a numerical approximation of the continuous
one. This method was developed by R. Glowinski et al.
(see [Glowinski et al. 90] and [Glowinski et al. 08]) and
used for numerical experiments in [Asch and Lebeau 98].

However, as observed in the first works of Glowinski,
interaction of waves with a numerical mesh produces spu-
rious high-frequency oscillations. In fact, the discrete
model is not uniformly exactly controllable as the mesh
size goes to zero, since the group velocity converges to
zero when the solution’s wavelength is comparable to the
mesh size. In other words, the processes of numerical dis-
cretization and observation or control do not commute.
A precise analysis of this lack of commutation and its im-
pact on the computation of the control has been carried
out in [Zuazua 02, Zuazua 05].

In this paper, we shall use another approach, namely,
we will discretize the optimal control of the continuous
model using a projection of the wave equation onto the
finite-dimensional space spanned by the eigenfunctions
ej of the Laplace operator in Ω with Dirichlet boundary
conditions −�ej = ω2

j ej , ej|∂Ω=0, with ωj ≤ ω. Here ω
will be a cutoff frequency at our disposal. We prove (see
Lemma 2.7 in Section 2.3) that when GCC is satisfied,
our numerical control converges when ω → ∞ to the
optimal control of the continuous model.

Moreover, when GCC is not satisfied, we will perform
experiments in which we will see an exponential blowup
in the cutoff frequency ω of the norm of the discretized
optimal control. These blowup rates will be compared to
theoretical results in Section 2.3.

The paper is organized as follows. Section 2 is de-
voted to the analysis of the optimal control operator for
waves in a bounded regular domain of R

d. In Section
2.1, we recall the definition of the optimal control oper-
ator Λ. In Section 2.2, we recall some known theoretical

results on Λ: existence, regularity properties, and the
fact that it preserves the frequency localization. We also
state our first conjecture, namely that the optimal con-
trol operator Λ is a microlocal operator. In Section 2.3,
we introduce the spectral Galerkin approximation M−1

T,ω

of Λ, where ω is a cutoff frequency. We prove the con-
vergence of M−1

T,ω toward Λ as ω → ∞, and we analyze
the rate of this convergence. We also state our second
conjecture on the blowup rate of M−1

T,ω when GCC is not
satisfied. Finally, in Section 2.4, we introduce the basis of
the energy space in which we compute the matrix of the
operator MT,ω.

Section 3 is devoted to the experimental validation
of our Galerkin approximation. In Section 3.1 we in-
troduce the three different domains of the plane for our
experiments: square, disk, and trapezoid. In the first
two cases, the geodesic flow is totally integrable, and the
exact eigenfunctions and eigenvalues of the Laplace oper-
ator with Dirichlet boundary condition are known. This
is not the case for the trapezoid.

In Section 3.2 we introduce the two different choices
of the control operator we use in our experiments. In
the first case (nonsmooth), we use χ(t, x) = 1[0,T ]1U .
In the second case (smooth), we use a suitable regular-
ization of the first case (see (3–1) and (3–2)). Perhaps
the main contribution of this paper is to give experimen-
tal evidence that the choice of a smooth enough control
operator is the right way to obtain accuracy in control
computing. In Section 3.3, in the two cases of the square
and the disk, we compare the exact eigenvalues with the
eigenvalues computed using the 5-point finite difference
approximation of the Laplace operator. In Section 3.4,
formula (3–3), we define the reconstruction error of our
method.

Finally, in Section 3.5, in the case of the square ge-
ometry, we compare the control function (we choose to
reconstruct a single eigenvalue) when the eigenvalues and
eigenvectors are computed either with finite differences
or with exact formulas, and we study the experimental
convergence of our numerical optimal control to the ex-
act optimal control of the continuous model as the cutoff
frequency goes to infinity.

The last section, Section 4, presents various numeri-
cal experiments that illustrate the theoretical results of
Section 2 and are in support of our two conjectures.

In Section 4.1, our experiments illuminate the fact that
the optimal control operator preserves the frequency lo-
calization, and that this property is far stronger when the
control function is smooth, as predicted by theoretical re-
sults. In Section 4.2, we use Dirac and box experiments
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to illustrate the fact that the optimal control operator
shows a behavior very close to that of a pseudodifferen-
tial operator: this is in support of our first conjecture. In
Section 4.3, we plot the reconstruction error as a function
of the cutoff frequency: this illuminates how the rate of
convergence of the Galerkin approximation depends on
the regularity of the control function. In Section 4.4,
we present various results on the energy of the control
function.

In Section 4.5, we compute the condition number of
the matrix MT,ω for a given control domain U as a func-
tion of the control time T and the cutoff frequency ω. In
particular, Figures 30 and 31 are in support of our second
conjecture on the blowup rate of M−1

T,ω when GCC is not
satisfied.

In Section 4.6, we perform experiments in the disk
when GCC is not satisfied for two different data: In the
first case, every optical ray of length T starting at a point
where the data are not small enters the control domain U ,
and we observe a rather good reconstruction error if the
cutoff frequency is not too high. In the second case, there
exists an optical ray starting at a point where the data
is not small and that never enters the control domain,
and we observe a very poor reconstruction at any cutoff
frequency.

This is a fascinating phenomenon that has not been
previously studied in theoretical works. It will be of ma-
jor practical interest to obtain quantitative results on the
best cutoff frequency, the one that optimizes the recon-
struction error (this optimal cutoff frequency is equal to
∞ when GCC is satisfied, the reconstruction error being
equal to 0 in that case), and to estimate the reconstruc-
tion error at the optimal cutoff frequency. Clearly, our
experiments indicate that a weak geometric control con-
dition associated with the data one wants to reconstruct
will enter into such a study.

2. ANALYSIS OF THE OPTIMAL CONTROL
OPERATOR

2.1 The Optimal Control Operator

Here we recall the basic facts we will need in our study of
the optimal control operator for linear waves. For more
details on the Hilbert uniqueness method (HUM), we re-
fer to [Lions 88].

In the framework of the wave equation in a bounded
open subset Ω of R

d with boundary Dirichlet condition,
and for internal control, the problem of controllability is
stated in the following way: Let T be a positive time, U

a nonempty open subset of Ω, and χ(t, x) as follows:

χ(t, x) = ψ(t)χ0(x), (2–1)

where χ0 is a real L∞ function on Ω such that the support
of (χ0) equals U and χ0(x) is continuous and positive for
x ∈ U , ψ ∈ C∞([0, T ]), and ψ(t) > 0 on ]0, T [ . For
a given f = (u0, u1) ∈ H1

0 (Ω) × L2(Ω), the problem is
to find a source v(t, x) ∈ L2(0, T ;L2(Ω)) such that the
solution of the system

�u = χv in ]0,+∞[×Ω,

u|∂Ω = 0, t > 0, (2–2)

(u|t=0, ∂tu|t=0) = (0, 0),

reaches the state f = (u0, u1) at time T . We first rewrite
the wave operator in (2–2) as a first-order system. Let A
be the matrix

iA =
(

0 Id
� 0

)
.

Then A is an unbounded self-adjoint operator on H =
H1

0 (Ω) × L2(Ω), where the scalar product on H1
0 (Ω) is∫

Ω ∇u∇v dx and D(A) = {u = (u0, u1) ∈ H, A(u) ∈
H, u0|∂Ω = 0}.

Let λ =
√
−�D, where −�D is the canonical isomor-

phism from H1
0 (Ω) onto H−1(Ω); λ is an isomorphism

from H1
0 (Ω) onto L2(Ω). The operator B(t) given by

B(t) =
(

0 0
χ(t, ·)λ 0

)

is bounded on H , and one has

B∗(t) =
(

0 λ−1χ(t, ·)
0 0

)
. (2–3)

The system (2–2) is then equivalent to

(∂t − iA)f = B(t)g, f(0) = 0,

with f = (u, ∂tu), g = (λ−1v, 0). For any g(t) ∈
L1([0,∞[, H), the evolution equation

(∂t − iA)f = B(t)g, f(0) = 0,

admits a unique solution f = S(g) ∈ C0([0,+∞[, H)
given by the Duhamel formula

f(t) =
∫ t

0

ei(t−s)AB(s)g(s) ds.

Let T > 0 be given. Let RT be the reachable set at time
T . Then

RT = {f ∈ H | ∃g ∈ L2([0, T ], H) s.t. f = S(g)(T )}.
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Then RT is a linear subspace of H and is the set of states
of the system that one can reach in time T , starting from
rest, with the action of an L2 source g filtered by the con-
trol operator B. The control problem consists in giving
an accurate description of RT , and exact controllability
is equivalent to the equality RT = H . Let us recall some
basic facts.

Let H = L2([0, T ], H). Let F be the closed subspace of
H spanned by solutions of the adjoint evolution equation

F = {h ∈ H | (∂t − iA∗)h = 0, h(T ) = hT ∈ H}. (2–4)

Observe that in our context, A∗ = A, and the function
h in (2–4) is given by h(t) = e−i(T−t)AhT . Let B∗ be
the adjoint of the operator g 
→ S(g)(T ). Then B∗ is the
bounded operator from H into H defined by

B∗(hT )(t) = B∗(t)e−i(T−t)AhT .

For any g ∈ L2([0, T ], H), one has, with fT = S(g)(T )
and h(s) = e−i(T−s)AhT , the fundamental identity

(fT |hT )H =
∫ T

0

(B(s)g(s)|h(s))ds = (g|B∗(hT ))H.

(2–5)
From (2–5), one easily obtains that

RT is a dense subspace of H

⇐⇒ B∗ is an injective operator,

which shows that approximate controllability is equiva-
lent to a uniqueness result on the adjoint equation. More-
over, one gets from (2–5), using the Riesz and closed
graph theorems, that

RT = H ⇐⇒ ∃C s.t. ‖h‖ ≤ C‖B∗h‖ ∀h ∈ H. (2–6)

This is an observability inequality, and B∗ is called the
observability operator. We rewrite the observability in-
equality (2–6) in a more explicit form:

∃C s.t. ‖h‖2
H ≤ C

∫ T

0

‖B∗(s)e−i(T−s)Ah‖2
H ds ∀h ∈ H.

(2–7)
Assuming that (2–7) holds, then RT = H , Im(B∗) is

a closed subspace of H, and B∗ is an isomorphism of H
onto Im(B∗). For any f ∈ H , let Cf be the set of control
functions g driving 0 to f in time T :

Cf =
{
g ∈ L2([0, T ], H), f =

∫ T

0

ei(T−s)AB(s)g(s) ds
}
.

From (2–5), one gets

Cf = g0 + (ImB∗)⊥, g0 ∈ ImB∗ ∩ Cf ,

and g0 = B∗hT is the optimal control in the sense that

min{‖g‖L2([0,T ],H), g ∈ Cf} is achieved at g = g0.

Let Λ : H → H , Λ(f) = hT , be the control map,
so that the optimal control g0 is equal to g0(t) =
B∗(t)e−i(T−t)AΛ(f). Then Λ is exactly the inverse of
the map MT : H → H with

MT =
∫ T

0

m(T − t)dt =
∫ T

0

m(s)ds, (2–8)

m(s) = eisAB(T − s)B∗(T − s)e−isA∗
.

Observe that m(s) = m∗(s) is a bounded self-adjoint
nonnegative operator on H . Exact controllability is thus
equivalent to the existence of C > 0 such that

MT =
∫ T

0

ei(T−t)A

(
0 0
0 χ2(t, ·)

)
e−i(T−t)Adt ≥ C Id.

(2–9)
With Λ = M−1

T , the optimal control is then given by
g0(t) = B∗(t)e−i(T−t)AΛ(f) and is by (2–3) of the form
g0 = (λ−1χ∂tw, 0), where w(t) = e−i(T−t)AΛ(f) is the
solution of

�w = 0 in R × Ω,

w|∂Ω = 0, (2–10)

(w(t, ·), ∂tw(t, ·)) = Λ(f).

Thus, the optimal control function v in (2–2) is equal
to v = χ∂tw, where w is the solution of the dual problem
(2–10). The operator Λ = M−1

T , with MT given by (2–9),
is called the optimal control operator.

2.2 Theoretical Results

In this section we recall some theoretical results on the
analysis of the optimal control operator Λ. We will as-
sume here that Ω is a bounded open subset of R

d with
smooth boundary ∂Ω, and that any straight line in R

d

has only finite order of contacts with the boundary. In
that case, optical rays are uniquely defined. See an ex-
ample of such rays in Figure 1.

Let M = Ω × Rt. The phase space is

bT ∗M = T ∗M \ T ∗
∂M � T ∗M ∪ T ∗∂M.

The characteristic variety of the wave operator is the
closed subset Σ of bT ∗M of points (x, t, ξ, τ) such that
|τ | = |ξ| when x ∈ Ω and |τ | ≥ |ξ| when x ∈ ∂Ω. Let
bS∗Ω be the set of points

bS∗Ω = {(x0, ξ0), },
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FIGURE 1. Example of optical rays.

where

|ξ0| = 1 if x0 ∈ Ω, |ξ0| ≤ 1 if x0 ∈ ∂Ω.

For ρ0 = (x0, ξ0) ∈ bS
∗Ω and τ = ±1, we shall de-

note by s → (γρ0(s), t − sτ, τ), s ∈ R, the general-
ized bicharacteristic ray of the wave operator, issued
from (x0, ξ0, t, τ). For the construction of the Melrose–
Sjöstrand flow, we refer to [Melrose and Sjöstrand 78,
Melrose and Sjöstrand 82] and to [Hörmander 85, vol. 3,
Chapter XXIV].

Then s → γρ0(s) = (x(ρ0, s), ξ(ρ0, s)) is the optical
ray starting at x0 in the direction ξ0. When x0 ∈ ∂Ω
and |ξ0| < 1, then the right (respectively left) deriva-
tive of x(ρ0, s) at s = 0 is equal to the unit vector in
R

d that projects onto ξ0 ∈ T ∗∂Ω and that points inside
(respectively outside) Ω. In all other cases, x(ρ0, s) is
differentiable at s = 0 with derivative equal to ξ0.

We first recall the theorem of [Bardos et al. 92], which
gives the existence of the operator Λ:

Theorem 2.1. If the geometric control condition holds,
then MT is an isomorphism.

Next, we recall some new theoretical results obtained
in [Dehman and Lebeau 09]. For these results, the choice
of the control function χ(t, x) in (2–1) will be essential.

Definition 2.2. The control function χ(t, x) = ψ(t)χ0(x)
is smooth if χ0 ∈ C∞(Ω) and ψ(t) is flat at t = 0 and
t = T .

For s ∈ R, we denote by Hs(Ω,�) the domain of the
operator (−�Dirichlet)s/2. One has H0(Ω,�) = L2(Ω),
H1(Ω,�) = H1

0 (Ω), and if (ej)j≥1 is an L2 orthonormal
basis of eigenfunctions of −� with Dirichlet boundary

conditions, −�ej = ω2
j ej, 0 < ω1 ≤ ω2 ≤ · · · , one has

Hs(Ω,�) (2–11)

=
{
f ∈ D′(Ω), f =

∑
j

fjej ,
∑

j

ω2s
j |fj |2 <∞

}
.

The following result of [Dehman and Lebeau 09] says
that under the hypothesis that the control function
χ(t, x) is smooth, the optimal control operator Λ pre-
serves the regularity described in the following theorem.

Theorem 2.3. Assume that the geometric control condi-
tion holds, and that the control function χ(t, x) is smooth.
Then the optimal control operator Λ is an isomorphism
of Hs+1(Ω,Δ) ⊕Hs(Ω,Δ) for all s ≥ 0.

Observe that Theorem 2.1 is a particular case of The-
orem 2.3 with s = 0. In our experimental study, we will
see in Section 4.3 that the regularity of the control func-
tion χ(t, x) is not only a nice hypothesis for obtaining
theoretical results. It is also very efficient for achiev-
ing accuracy in the numerical computation of the control
function. In other words, the usual choice of the con-
trol function χ(t, x) = 1[0,T ]1U is a very poor one for
computing a control.

The next result states that the optimal control opera-
tor Λ preserves the frequency localization. To state this
result, we briefly introduce the material needed for the
Littlewood–Paley decomposition. Let φ ∈ C∞([0,∞[),
with φ(x) = 1 for |x| ≤ 1/2 and φ(x) = 0 for |x| ≥ 1.
Set ψ(x) = φ(x)− φ(2x). Then ψ ∈ C∞

0 (R∗), ψ vanishes
outside [1/4, 1], and one has

φ(s) +
∞∑

k=1

ψ(2−ks) = 1, ∀s ∈ [0,∞[ .

Set ψ0(s) = φ(s) and ψk(s) = ψ(2−ks) for k ≥ 1. We
then define the spectral localization operators ψk(D), k ∈
N, in the following way: for u =

∑
j ajej , we define

ψk(D)u =
∑

j

ψk(ωj)ajej .

One has
∑

k ψk(D) = Id and ψi(D)ψj(D) = 0 for |i−j| ≥
2. In addition, we introduce

Sk(D) =
k∑

j=0

ψj(D) = ψ0(2−kD), k ≥ 0.

Obviously, the operators ψk(D) and Sk(D) act as
bounded operators on H = H1

0 × L2. The spectral lo-
calization result of [Dehman and Lebeau 09] reads as
follows.
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Theorem 2.4. Assume that the geometric control condi-
tion holds, and that the control function χ(t, x) is smooth.
Then there exists C > 0 such that for every k ∈ N, the
following inequalities hold:

‖ψk(D)Λ − Λψk(D)‖H ≤ C2−k,

‖Sk(D)Λ − ΛSk(D)‖H ≤ C2−k

Theorem 2.4 states that the optimal control operator
Λ, up to lower-order terms, acts individually on each fre-
quency block of the solution. For instance, if en is the
nth eigenvector of the orthonormal basis of L2(Ω) and
if one drives the data (0, 0) to (en, 0) in (2–2) using the
optimal control, then both the solution u and control v
in (2–2) will essentially live at frequency ωn for n large.
We shall do experiments on this fact in Section 4.1, and
we will clearly see the impact of the regularity of the
control function χ(t, x) on the accuracy of the frequency
localization of the numerical control.

Since by the above results the optimal control operator
Λ preserves the regularity and the frequency localization,
it is very natural to expect that Λ is in fact a microlocal
operator, and in particular preserves the wave-front set.
For an introduction to microlocal analysis and pseudodif-
ferential calculus, we refer to [Taylor 81, Hörmander 85].
In [Dehman and Lebeau 09], it is proved that the optimal
control operator Λ for waves on a compact Riemannian
manifold without boundary is in fact an elliptic 2 × 2
matrix of pseudodifferential operators.

This is quite an easy result, since if χ(t, x) is smooth,
Egorov’s theorem implies that the operator MT given by
(2–9) is a 2 × 2 matrix of pseudodifferential operators.
Moreover, the geometric control condition implies eas-
ily that MT is elliptic. Since MT is self-adjoint, the fact
that MT is an isomorphism follows from Ker(MT ) = {0},
which is equivalent to the injectivity of B∗. This is proved
in [Bardos et al. 92] as a consequence of the uniqueness
theorem of Calderón for the elliptic second-order opera-
tor �. Then it follows that its inverse Λ = M−1

T is an
elliptic pseudodifferential operator.

In our context, for waves in a bounded regular open
subset Ω of R

d with boundary Dirichlet condition, the sit-
uation is far more complicated, since there is no Egorov
theorem in the geometric setting of a manifold with
boundary. In fact, the Melrose–Sjöstrand theorem [Mel-
rose and Sjöstrand 78, Melrose and Sjöstrand 82] on
propagation of singularities at the boundary (see also
[Hörmander 85, vol. 3, Chapter XXIV] for a proof) im-
plies that the operator MT given by (2–9) is a microlocal

FIGURE 2. Example of optical ray with only transver-
sal reflection points.

operator, but this is insufficient to imply that its inverse
Λ is microlocal.

However, let ρ0 = (x0, ξ0) ∈ T ∗Ω, |ξ0| = 1 be a point
in the cotangent space such that the two optical rays
defined by the Melrose–Sjöstrand flow (see [Melrose and
Sjöstrand 78, Melrose and Sjöstrand 82]) s ∈ [0, T ] →
γ±ρ0(s) = (x(±ρ0, s), ξ(±ρ0, s)), with ±ρ0 = (x0,±ξ0),
starting at x0 in the directions ±ξ0 have only transversal
intersections with the boundary. Then it is not hard to
show using (2–9) and the parametrix of the wave oper-
ator, inside Ω and near transversal reflection points at
the boundary ∂Ω, as presented in Figure 2, that MT is
microlocally at ρ0 an elliptic 2×2 matrix of elliptic pseu-
dodifferential operators.

More precisely, let J be the isomorphism from H1
0 ⊕L2

on L2 ⊕ L2 given by

J =
1
2

(
λ −i
λ i

)
.

One has 2‖Ju‖2
L2⊕L2 = ‖u‖2

H1
0⊕L2 , and if u(t, x) is the so-

lution of the wave operator �u = 0 with Dirichlet bound-
ary conditions on ∂Ω, and Cauchy data at time t0 equal
to (u0, u1), then one has

λu(t, ·) = λ cos((t− t0)λ)u0 + sin((t− t0)λ)u1

= ei(t−t0)λ
(λu0 − iu1

2

)
+ e−i(t−t0)λ

(λu0 + iu1

2

)
,

so the effect of the isomorphism J is to split the solution
u(t, x) into a sum of two waves with positive and negative
temporal frequencies. Moreover, one has

JeitAJ−1 =
(
eitλ 0
0 e−itλ

)
.
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Then JMTJ
−1 acts as a nonnegative self-adjoint opera-

tor on L2 ⊕ L2, and is equal to

JMTJ
−1 =

1
2

(
Q+ −T
−T ∗ Q−

)
,

Q± =
∫ T

0

e±isλχ2(T − s, .)e∓isλds, (2–12)

T =
∫ T

0

eisλχ2(T − s, .)eisλds.

From (2–12), using the parametrix of the wave opera-
tor inside Ω and near transversal reflection points at the
boundary ∂Ω, and integration by parts to show that T
is a smoothing operator, it is not difficult to obtain that
JMTJ

−1 is microlocally at ρ0 ∈ T ∗Ω a pseudodifferential
operator of order zero with principal symbol

σ0(JMTJ
−1)(ρ0) =

1
2

(
q+(x0, ξ0) 0

0 q−(x0, ξ0)

)
,

q±(x0, ξ0) =
∫ T

0

χ2(T − s, x(±ρ0, s))ds. (2–13)

Obviously, this condition guarantees that
σ0(JMTJ

−1)(ρ0) is elliptic, and therefore JΛJ−1

will be at ρ0 a pseudodifferential operator of order zero
with principal symbol

σ0(JΛJ−1)(ρ0) = 2
(
q−1
+ (x0, ξ0) 0

0 q−1
− (x0, ξ0)

)
.

(2–14)
Therefore, the only difficulty in order to prove that Λ

is a microlocal operator is to obtain a precise analysis
of the structure of the operator MT near rays that are
tangent to the boundary. Since the set of ρ ∈b S∗Ω for
which the optical ray γρ(s) has only transversal points of
intersection with the boundary is dense in T ∗Ω\T ∗

∂Ω (see
[Hörmander 85]), it is not surprising that our numerical
experiments in Section 4.2 (where we compute the op-
timal control associated with a Dirac mass δx0 , x0 ∈ Ω)
confirms the following conjecture:

Conjecture 2.5. Assume that the geometric control con-
dition holds, that the control function χ(t, x) is smooth,
and that the optical rays have no infinite order of contact
with the boundary. Then Λ is a microlocal operator.

Of course, part of the difficulty is to define correctly
what a microlocal operator is in our context. In the above
conjecture, microlocal implies in particular that the op-
timal control operator Λ preserves the wave-front set. A
far less precise piece of information is that Λ is a microlo-
cal operator at the level of microlocal defect measures,

for which we refer to [Gérard 91]. But this is an easy
byproduct of the result of [Burq and Lebeau 01].

2.3 The Spectral Galerkin Method

In this section we describe our numerical approximation
of the optimal control operator Λ, and we give some the-
oretical results on the numerical approximation MT,ω of
the operatorMT given by (2–9), even in the case in which
the geometric control condition is not satisfied.

For any cutoff frequency ω, we denote by Πω the or-
thogonal projection, in the Hilbert space L2(Ω), onto
the finite-dimensional linear subspace L2

ω spanned by the
eigenvectors ej for ωj ≤ ω. By the Weyl formula, if cd
denotes the volume of the unit ball in R

d, one has

N(ω) = dim(L2
ω) � (2π)−d Vol(Ω)cdωd (ω → +∞).

Obviously, Πω acts on H = H1
0 × L2 and commutes

with eitA, λ, and J . We define the Galerkin approxima-
tion MT,ω of the operator MT as the following operator
on L2

ω × L2
ω:

MT,ω = ΠωMT Πω

=
∫ T

0

ei(T−t)AΠω

(
0 0
0 χ2(t, ·)

)
Πωe

−i(T−t)Adt.

Obviously, the matrix MT,ω is symmetric and nonnega-
tive for the Hilbert structure induced by H on L2

ω ×L2
ω,

and by (2–8) one has with nω(t) = B∗(t)Πωe
−i(T−t)A,

MT,ω =
∫ T

0

n∗
ω(t)nω(t) dt. (2–15)

By (2–12) one has also

JMT,ωJ
−1 =

1
2

(
Q+,ω −Tω

−T ∗
ω Q−,ω

)
, (2–16)

Q±,ω =
∫ T

0

e±isλΠωχ
2(T − s, .)Πωe

∓isλds,

Tω =
∫ T

0

eisλΠωχ
2(T − s, .)Πωe

isλds.

Let us first recall two easy results. For convenience,
we recall here the proof of these results. The first states
that the matrix MT,ω is always invertible.

Lemma 2.6. For any (nonzero) control function χ(t, x),
the matrix MT,ω is invertible.

Proof: Let u = (u0, u1) ∈ L2
ω × L2

ω be such that
MT,ω(u) = 0. By (2–15) one has

0 = (MT,ω(u)|u)H =
∫ T

0

‖nω(t)(u)‖2
Hdt.
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This implies nω(t)(u) = 0 for almost all t ∈ ]0, T [ . If
u(t, x) is the solution of the wave equation with Cauchy
data (u0, u1) at time T , we thus get by (2–3) and (2–1)
that ψ(t)χ0(x)∂tu(t, x) = 0 for t ∈ [0, T ], and since
ψ(t) > 0 on ]0, T [ and χ0(x) > 0 on U , we obtain
∂tu(t, x) = 0 on ]0, T [×U . One has u0 =

∑
ωj≤ω ajej(x),

u1 =
∑

ωj≤ω bjej(x), and

∂tu(t, x) =
∑

ωj≤ω

ωjaj sin((T − t)ωj)ej(x)

+
∑

ωj≤ω

bj cos((T − t)ωj)ej(x).

Thus we obtain
∑

ωj≤ω ωjajej(x) =
∑

ωj≤ω bjej(x) =
0 for x ∈ U , which implies, since the eigenfunctions ej

are analytic in Ω, that aj = bj = 0 for all j.

For any ω0 ≤ ω, we define Π⊥
ω = 1 − Πω , and we set

‖Π⊥
ω ΛΠω0‖H = rΛ(ω, ω0), (2–17)

‖Π⊥
ωMT Πω0‖H = rM (ω, ω0).

Since the ranges of the operators ΛΠω0 and MT Πω0 are
finite-dimensional vector spaces, one has for any ω0,

lim
ω→∞ rΛ(ω, ω0) = 0, (2–18)

lim
ω→∞ rM (ω, ω0) = 0.

The second result states that when GCC holds, the in-
verse matrix M−1

T,ω converges in the proper sense to the
optimal control operator Λ as the cutoff frequency ω goes
to infinity.

Lemma 2.7. Assume that the geometric condition holds.
Then there exists c > 0 such that we have the following:
For any given f ∈ H, let g = Λ(f), fω = Πωf , and
gω = M−1

T,ω(fω). Then one has

‖g−gω‖H ≤ c‖f−fω‖H +‖Λ(fω)−M−1
T,ω(fω)‖H (2–19)

with
lim

ω→∞ ‖Λ(fω) −M−1
T,ω(fω)‖H = 0. (2–20)

Proof: Since GCC holds, there exists C > 0 such that by
(2–9), one has (MTu|u)H ≥ C‖u‖2

H for all u ∈ H , and
hence (MT,ωu|u)H ≥ C‖u‖2

H for all u ∈ L2
ω × L2

ω. Thus,
with c = C−1, one has ‖Λ‖H ≤ c and ‖M−1

T,ω‖H ≤ c for
all ω. Since g − gω = Λ(f − fω) + Λ(fω) −M−1

T,ωfω, we
have (2–19). Let us prove that (2–20) holds as well.

With Λω = ΠωΛΠω, one has

Λ(fω)−M−1
T,ω(fω) = Π⊥

ω Λ(fω)+(Λω −M−1
T,ω)fω. (2–21)

Set for ω0 ≤ ω, fω0,ω = (Πω − Πω0)f . Then one has

‖Π⊥
ω Λ(fω)‖H = ‖Π⊥

ω ΛΠω0(f) + Π⊥
ω Λ(fω0,ω)‖H

≤ rΛ(ω, ω0)‖f‖H + c‖fω0,ω‖H . (2–22)

On the other hand, one has

(Λω −M−1
T,ω)fω = M−1

T,ω(ΠωMT Π2
ωΛ − Πω)fω

= M−1
T,ω(ΠωMT Πω − ΠωMT )Λfω

= −M−1
T,ωΠωMT Π⊥

ω ΛΠωf. (2–23)

From (2–23) we get

‖(Λω −M−1
T,ω)fω‖H (2–24)

≤ c‖MT‖(‖Λ‖‖fω0,ω‖H + rΛ(ω, ω0)‖f‖H).

Thus, for all ω0 ≤ ω, we get from (2–22), (2–24), and
(2–21) that

‖Λ(fω) −M−1
T,ω(fω)‖H (2–25)

≤ (1 + c‖MT ‖)
(
rΛ(ω, ω0)‖f‖H + c‖fω0,ω‖H

)
,

and (2–20) follows from (2–18), (2–25), and ‖fω0,ω‖H ≤
‖Π⊥

ω0
f‖H → 0 as ω0 → ∞.

We shall now discuss two important points linked to
the previous lemmas. The first is about the growth of
the function

ω → ‖M−1
T,ω‖H

as ω → ∞. This function is bounded when the geo-
metric control condition is satisfied. Let us recall some
known results in the general case. For simplicity, we as-
sume that ∂Ω is an analytic hypersurface of R

d. We
know from [Lebeau 92] that for T > Tu, where Tu =
2 supx∈Ω distΩ(x, U) is the uniqueness time, there exists
A > 0 such that

lim sup
ω→∞

log ‖M−1
T,ω‖H

ω
≤ A.

On the other hand, when there exists ρ0 ∈ T ∗Ω such that
the optical ray s ∈ [0, T ] → γρ0(s) has only transversal
points of intersection with the boundary and is such that
x(ρ0, s) /∈ U for all s ∈ [0, T ], then GCC is not satisfied.
Moreover, it is proven in [Lebeau 92], using an explicit
construction of a wave concentrated near this optical ray,
that there exists B > 0 such that

lim inf
ω→∞

log ‖M−1
T,ω‖H

ω
≥ B.

Our experiments lead us to believe that the follow-
ing conjecture may be true for a “generic” choice of the
control function χ(t, x):
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FIGURE 3. View of the logarithm of the coefficients of the matrix JMT J−1, for the square geometry, with smooth control
(left) and nonsmooth control (right). Note that the color scaling is the same. This illustrates decay estimates (2–26) and
(2–27).

Conjecture 2.8. There exists C(T, U) such that

lim
ω→∞

log ‖M−1
T,ω‖H

ω
= C(T, U).

In our experiments, we have studied (see Section 4.5)
the behavior of C(T, U) as a function of T when the ge-
ometric control condition is satisfied for the control do-
main U for T ≥ T0. These experiments confirm Con-
jecture 2.8 when T < T0. We have not seen any clear
change in the behavior of the constant C(T, U) when T

is smaller than the uniqueness time Tu.
The second point we shall discuss is the rate of conver-

gence of our Galerkin approximation. By Lemma 2.7 and
formulas (2–24) and (2–25), this speed of convergence is
governed by the function rΛ(ω, ω0) defined in (2–17). The
following lemma tells us that when the control function
is smooth, the convergence in (2–18) is very fast.

Lemma 2.9. Assume that GCC holds and that the control
function χ(t, x) is smooth. Then there exists a function
g with rapid decay such that

rΛ(ω, ω0) ≤ g

(
ω

ω0

)
.

Proof: By Theorem 2.3, the operator λsΛλ−s is bounded
on H for all s ≥ 0. Thus we obtain, for all s ≥ 0,

‖Π⊥
ω ΛΠω0‖H = ‖Π⊥

ωλ
−sλsΛλ−sλsΠω0‖H ≤ Cs

(ω0

ω

)s

,

where we have used ‖λsΠω0‖H ≤ ωs
0 and ‖Π⊥

ωλ
−s‖H ≤

ω−s. The proof of Lemma 2.9 is complete.

Let us recall that JMT,ωJ
−1 and that the operators

Q±,ω and Tω are defined by (2–16). For any bounded
operator M on L2, the matrix coefficients of M in the
basis of the eigenvectors en are

Mi,j = (Mei | ej).

From (2–1) and (2–16) one has, for ωi ≤ ω, ωj ≤ ω,

Q±,ω,i,j

=
∫ T

0

(
e±isλΠωψ

2(T − s)χ2
0(x)Πωe

∓isλ(ei)|ej

)
ds

=
∫ T

0

ψ2(T − s)e±is(ωj−ωi) ds
(
χ2

0ei|ej

)
.

Since ψ(t) ∈ C∞
0 has support in [0, T ], we get that for

any k ∈ N, there exists a constant Ck, independent of
the cutoff frequency ω, such that

sup
i,j

|(ωi − ωj)kQ±,ω,i,j| ≤ Ck. (2–26)
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FIGURE 4. View of the logarithm of the coefficients
of the matrix JMT J−1, for the square geometry, with
smooth control (zoom). This illustrates decay esti-
mate (2–26).

Moreover, by the results of [Dehman and Lebeau 09], we
know that the operator T defined in (2–12) is smoothing,
and therefore we get

sup
i,j

|(ωi + ωj)k|Tω,i,j ≤ Ck. (2–27)

Figure 3 (left) shows the logarithm of the coefficients
of JMT,ωJ

−1 and illustrates the decay estimates (2–26)
and (2–27). A zoom into the figure is shown in Fig-
ure 4, so that we can observe more precisely (2–26). In
particular, we can observe that the distribution of the co-
efficients along the diagonal of the matrix is not regular.
Figure 5 presents the same zoom for JM−1

T,ωJ
−1. This

gives an illustration of the matrix structure of a microlo-
cal operator. Figure 3 (right) represents the logarithm
of the coefficients of JMT,ωJ

−1 without smoothing. And
finally, Figure 6 gives a view of the convergence of our
Galerkin approximation by presenting the matrix entries
of J(Λω −M−1

T,ω)J−1, illustrating Lemma 2.7, its proof,
and Lemma 2.9.

2.4 Computation of the Discrete Control Operator

For any real ω, let N(ω) = sup{n, ωn ≤ ω}. Then the
dimension of the vector space L2

ω is equal to N(ω). We
define

φj =

{
ej

ωj
for 1 ≤ j ≤ N(ω),

ej−N(ω) for N(ω) + 1 ≤ j ≤ 2N(ω).
(2–28)

Then (φj)1≤j≤2N(ω) is an orthonormal basis of the
Hilbert space Hω = Πω(H1

0 (Ω) ⊕ L2(Ω)).

log abs ( J inv(M) inv(J) )
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FIGURE 5. View of the logarithm of the coefficients of the
matrix JM−1

T J−1, for the square geometry, with smooth
control (zoom).
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FIGURE 6. View of the logarithm of the coeffi-
cients of the matrix J

[
((MT )−1)ω − ((MT )ω)−1

]
J−1 =

J
[
Λω − ((MT )ω)−1

]
J−1, for the square geometry, with

smooth control. The MT matrix is computed with 2000
eigenvalues, the cutoff frequency ω being associated with
the 500th eigenvalue.

In this section we compute explicitly
(
MTφl | φk

)
H

for all 1 ≤ k, l ≤ 2N(ω). We recall

eisA

[
ei

0

]
=

[
cos(sωi)ei(x)
−ωi sin(sωi)ei(x)

]
,

eisA

[
0
ei

]
=

[
sin(sωi)ei(x)/ωi

cos(sωi)ei(x)

]
.
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We now compute the coefficients of the MT matrix,
namely MT n,m =

(
MTφn | φm

)
H

:

MT n,m =
(
MTφn | φm

)
H

=
∫ T

0

(
eisABB∗e−isAφn | φm

)
H
dt

=
∫ T

0

((
0 0
0 χ2

)
e−isAφn | e−isAφm

)
H
dt.

We now have to distinguish four cases, depending onm,n
being smaller or larger than N(ω). For the case (m,n) ≤
N(ω) we have

MT n,m

=
∫ T

0

((
0 0
0 χ2

)
e−isAφn|e−isAφm

)
H
ds

=
∫ T

0

((
0 0
0 χ2

) [
cos(sωn)fn(x)

ωn sin(sωn)fn(x)

]
|
[

cos(sωm)fm(x)
ωm sin(sωm)fm(x)

])
H
ds

=
∫ T

0

([
0

ωnχ2 sin(sωn)fn(x)

]
|
[

l cos(sωn)fm(x)
ωm sin(sωm)fm(x)

])
H
ds

=
∫ T

0

(
(ψ(t)χ0(x))2ωn sin(sωn)fn(x)

| ωm sin(sωm)fm(x)
)

L2(Ω)
ds

=
∫ T

0

ψ2 sin(sωn) sin(sωm) ds
∫

Ω

χ2
0en(x)em(x) dx

= an,mGn,m

where

an,m =
∫ T

0

ψ2 sin(sωm) sin(sωn) ds (2–29)

and
Gn,m =

∫
Ω

χ2
0(x) em(x) en(x) dx. (2–30)

Similarly, for the case n > N(ω), m ≤ N(ω), we have

MT n,m

=
∫ T

0

((
ll0 0
0 χ2

)
e−isAφn|e−isAφm

)
H
ds

=
∫ T

0

((
ll0 0
0 χ2

) [
l sin(sωn)fn(x)/ωn

cos(sωn)fn(x)

]
|
[

l cos(sωm)fm(x)
ωm sin(sωm)fm(x)

] )
H
ds

=
∫ T

0

([
l0

χ2 cos(sωn)fn(x)

]
|
[

l cos(sωn)fm(x)
ωm sin(sωm)fm(x)

])
H
ds

=
∫ T

0

(χ2 cos(sωn)fn(x)|ωm sin(sωm)fm(x))L2(Ω) ds

=
∫ T

0

ψ2 cos(sωn) sin(sωm) ds
∫

Ω

χ2
0en(x)em(x) dx

= bn,mGn,m,

where

bn,m =
∫ T

0

ψ2 cos(sωn) sin(sωm) ds. (2–31)

For n ≤ N(ω) and m > N(ω) we get

MT n,m = cn,mGn,m,

where

cn,m = bm,n =
∫ T

0

ψ2 cos(sωm) sin(sωn) ds, (2–32)

And for m,n > N(ω), we have

MT n,m = dn,mGn,m,

where

dn,m =
∫ T

0

ψ2 cos(sωm) cos(sωn) ds. (2–33)

The above integrals have to be implemented carefully
when |ωn − ωm| is small, even when ψ(t) = 1.

3. NUMERICAL SETUP AND VALIDATION

3.1 Geometries and Control Domains

The code we implemented allows us to choose the two-
dimensional domain Ω, as well as the control domain U .
In the sequel, we will present some results with three dif-
ferent geometries: square, disk, and trapezoid. For each
geometry, we have chosen a reference shape of control
domain. It consists of the neighborhood of two adjacent
sides of the boundary (in the square), of a radius (in
the disk), or of the base side (in the trapezoid). Then
we adjust the width of the control domain, and also its
smoothness (see next subsection). Figures 7, 8, and 9
present these domains, and their respective control do-
mains, either nonsmooth (left panels) or smooth (right
panels).

3.2 Time and Space Smoothing

We will investigate the influence of the regularity of the
function χ(t, x) = ψ(t)χ0(x). Different options have been
set.

3.2.1 Space Smoothing. The integral (2–30) defining
Gn,m features χ0. In the literature we find χ0 = 1U , so
that

Gn,m =
∫

U

en(x) em(x) dx.
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control domain smooth control domain

FIGURE 7. Domain and example of a control domain for the square, with smoothing in space (right panel) or without
(left panel).

control domain smooth control domain

FIGURE 8. Domain and example of a control domain for the disk, with smoothing in space (right panel) or without (left
panel).

In [Dehman and Lebeau 09] the authors show that a
smooth χ2

0 leads to a more regular control (see also The-
orem 2.4 and Lemma 2.9). Thus for each control domain
U we implemented both smooth and nonsmooth (con-
stant) cases. The different implementations of χ0 are as
follows:

• constant case: χ0(x, y) = 1U ,

• “smooth” case: χ0(x, y) has the same support of U ,
the width a of the domain {x ∈ Ω, 0 < χ0(x) < 1}

is adjustable, and on this domain χ is a polynomial
of degree 2. For example, in the square we have

χ0(x, y)

= 1U

[
1 −

(
1x≥a +

x2

a2
· 1x<a

)
(3–1)

×
(
1y≤1−a +

(1 − y)2

a2
· 1y>1−a

)]
.

3.2.2 Time Smoothing. Similarly, the time integrals
(2–29), (2–31), (2–32), (2–33) defining a, b, c, and d fea-
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control domain smooth control domain

FIGURE 9. Domain and example of a control domain for the trapezoid, with smoothing in space (right panel) or without
(left panel).
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FIGURE 10. Verification of the eigenvalue compu-
tation in the square: exact and finite-differences-
computed eigenvalues (left panel), and their absolute
difference (right panel).

ture ψ(t), which is commonly chosen as 1[0,T ]. As pre-
viously, better results are expected with a smooth ψ(t).
In the code, the above-mentioned integrals are computed
explicitly, with the different implementations of ψ as fol-
lows:

• constant case ψ = 1[0,T ],

• “smooth case”

ψ(t) =
4t(T − t)

T 2
1[0,T ]. (3–2)

3.3 Validation of the Eigenvalue Computation

The code we implemented has a wide range of geometries
for Ω. Since it is a spectral Galerkin method, it requires
the accurate computation of eigenvalues and eigenvec-
tors. We used the Matlab function eigs. Figure 10
presents a comparison between the first 200 exact eigen-
values in the square and those computed by Matlab with
500× 500 grid points. Figure 11 presents the same com-
parison in the disk, for 250 eigenvalues, the “exact” ones
being computed as zeros of a Bessel function.
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FIGURE 11. Verification of the eigenvalue computa-
tion in the disk: eigenvalues computed either as ze-
ros of Bessel functions or with finite differences (left
panel), and their absolute difference (right panel).
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FIGURE 12. Validation experiments in the square: Relative errors between the spectral coefficients of the original function
u and the reconstructed function y, computed with exact eigenvalues (left panels) or finite differences eigenvalues (right
panels), for u0 and y0 (top panels) or u1 and y1 (bottom panels). The errors are plotted as a function of the frequency
of the eigenvalues. The computation are performed with 100 eigenvalues, corresponding to a frequency of about 38, the
reconstruction with 2000, corresponding to a frequency of about 160. For the readability of the figure, we plot only the
major counterparts of the error, i.e. we stop the plot after frequency 63 (300th eigenvalue).

FIGURE 13. Representation on the grid in 3D (left panel) and contour plot (right panel) of the fiftieth eigenvector in the
square.
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3.4 Reconstruction Error

In the sequel, we will denote the input data by u =
(u0, u1) and its image by the control map w = (w0, w1) =
Λ(u0, u1), which will often be called the control. We re-
call from Section 2.1 that for given data u = (u0, u1) to
be reconstructed at time T , the optimal control v(t) is
given by

v(t) = χ∂te
−i(T−t)Aw = χ∂te

−i(T−t)AΛ(u).

Then solving the wave equations (2–2) forward, with null
initial conditions and χv as a forcing source, we reach
y = (y0, y1) in time T . If the experiment were perfect,
we would have (y0, y1) = (u0, u1). The reconstruction
error is then by definition

E =

√√√√‖u0 − y0‖2
H1(Ω) + ‖u1 − y1‖2

L2(Ω)

‖u0‖2
H1(Ω) + ‖u1‖2

L2(Ω)

. (3–3)

3.5 Validation for the Square Geometry

3.5.1 Finite Differences versus Exact Eigenvalues. We
compare various outputs for our spectral method when
the eigenvalues and eigenvectors are computed either
with finite differences or with exact formulas. In our
first experiment, we have N ×N = 500×500 grid points,
and we use Ne = 100 eigenvalues to compute the G and
MT matrices. The data (u0, u1) are as follows:

u0 = e50, u1 = 0, (3–4)

where en denotes the nth exact eigenvector. A represen-
tation of the 50th eigenvector e50 of the square can be
found in Figure 13. The control time T is equal to 3, the
control domain U has width 0.2, and we do not use any
smoothing. For reconstruction we use 2000 eigenvalues
and eigenvectors.

Table 1 shows the condition number of the MT matri-
ces and reconstruction errors, which are very similar for
both experiments.

Figure 12 shows the relative reconstruction errors SPn

and FDn between the data u and the reconstructed y for

Eigenvalue Condition Reconstruction
Computation Number Error
Finite differences 7.4 1.8 %
Exact 7.5 1.6 %

TABLE 1. Validation experiments in the square:
Condition numbers and validation errors for a 100-
eigenvalue experiment in the square (without smooth-
ing), where the eigenvalues are exact or computed us-
ing finite differences.

both experiments:

SPn =
|U0,n − Y sp

0,n|
‖U0 + U1‖

, FDn =
|U0,n − Y fd

0,n|
‖U0 + U1‖

,

and similarly for u1 and y1, where U0,n is the nth spec-
tral coefficient of the data u0, Y

sp
0,n is the nth spectral

coefficient (in the basis (φj) defined by (2–28)) of the
reconstructed y0 when the control w is obtained using
exact eigenvalues, and Y fd

0,n is the nth spectral coefficient
of y0 when the control w is obtained using finite differ-
ence eigenvalues. The norm ‖U0 + U1‖ in our basis (φj)
is given by ‖U0 + U1‖2 =

∑Ne

n=1 U
2
0,n + U2

1,n. For exact
eigenvalues, we can see that the errors are negligible for
the first hundred spectral coefficients, and quite small on
the next ones. We have similar results for finite difference
eigenvalues, except that we have an error at the fiftieth
coefficient.

This error does not occur when the reconstruction is
done with the same basis of finite difference eigenvectors,
and it can probably be explained as follows: to compute
the reconstructed y from the finite difference control w,
we first compute an approximation of w as a function of
(x, y) (i.e., on the grid) from its spectral coefficients (on
the basis of finite difference eigenvectors); then we com-
pute the coefficients of this function on the exact basis
(thanks to a very simple integration formula).

We thus introduce two sources of error—projection on
the grid and projection on the exact basis—that do not
have anything to do with our spectral Galerkin method.
Therefore we will not discuss the matter in further detail
here.

3.5.2 Impact of the Number of Eigenvalues. In this
subsection, we still use the same data (3–4), but the num-
ber of eigenvalues and eigenvectors Ne used to compute
the MT matrices varies. Table 2 shows MT condition
numbers and reconstruction errors for various Ne with
exact or finite-difference-computed eigenvalues. The re-
construction is still performed with 2000 exact eigenval-
ues. We can see that the finite difference eigenvalues lead
to almost as good results as exact eigenvalues. We also
observe in both cases the decrease of the reconstruction
error with an increasing number of eigenvalues, as pre-
dicted in Lemma 2.9. A five-percent error is obtained
with 70 eigenvalues (the input data being the fiftieth
eigenvalue), and using 100 eigenvalues leads to an error
of less than two percent.
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Condition Number Reconstruction Error
Ne Exact Finite Differences Exact Finite differences

52 6.5 6.4 29.2% 29.0%

55 6.6 6.6 17.7% 17.6%

60 6.6 6.6 17.3% 17.2%

70 7.1 7.0 4.9% 5.0%

80 7.3 7.2 3.2% 3.3%

100 7.5 7.4 1.6% 1.8%

200 8.3 8.3 0.5% 1.0%

300 8.8 0.3%

500 9.5 0.2%

TABLE 2. Validation experiments in the square: Condition numbers and validation errors for various numbers Ne of
eigenvalues used to compute the control function, where the eigenvalues are exact or computed using finite differences.
The input data is the fiftieth eigenvalue, and the reconstruction is performed with 2000 eigenvalues.

4. NUMERICAL EXPERIMENTS

4.1 Frequency Localization

In this subsection, the geometry (square) as well as the
number of eigenvalues used (200 for HUM, 2000 for ver-
ification) are fixed. Note also that in this subsection we
use only exact eigenvalues for HUM and verification.

The data are also fixed to a given eigenmode, that is,

u0 = e50, u1 = 0,

where en is the nth eigenvector of −Δ on the square.
The first output of interest is the spreading of w spec-

tral coefficients, compared to u. Figure 14 shows the
spectral coefficients of the input (u0, u1) and the control
(w0, w1) with and without smoothing. As predicted by
Theorem 2.4 and Lemma 2.9, we can see that the main
coefficient of (w0, w1) is the fiftieth of w0, and also that
the smoothing noticeably improves the localization of w.

Similarly we can look at the spectral coefficients of
the reconstruction error. Figure 15 presents the recon-
struction error (see Section 3.4 for a definition) with or
without smoothing. We notice that the errors occur
mostly above the cutoff frequency (used for the compu-
tation of MT,ω, and thus for the control computation).
Another important remark should be made here: the
smoothing has a spectacular impact on the frequency lo-
calization of the error, as well as on the absolute value of
the error (maximum of 2× 10−3 without smoothing and
8× 10−7 with smoothing), as announced in Theorem 2.4
and Lemma 2.9.

Remark 4.1. For other domains, such as the disk and
trapezoid, as well as other one-mode input data, we ob-
tain similar results. The results also remain the same if

we permute u0 and u1, i.e., if we choose u0 = 0 and u1
equal to one fixed mode.

4.2 Space Localization

4.2.1 Dirac Experiments. In this section we investi-
gate localization in space. To do so, we use “Dirac” func-
tions δ(x,y)=(x0,y0) as data, or more precisely truncations
of Dirac functions to a given cutoff frequency:

u0 =
Ni∑
i=1

en(x0, y0) en, u1 = 0,

where Ni is the index corresponding to the chosen cutoff
frequency, with Ni = 100 or 120 in the sequel. Figure 16
shows the data u0 and the control w0 in the square with
exact eigenvalues, without smoothing, the results being
similar with smoothing. We can see that the support
of w0 is very similar to that of u0. Figure 17 presents
the reconstruction error associated with this experiment.
We can see as before that the smoothing produces highly
reduced errors.

Similarly, we performed experiments with numerical
approximation of a Dirac function as input data in the
disk and in a trapezoid. Figures 18 and 19 present the
space localization of u0 and w0 without smoothing (we
get similar results with smoothing). As previously, the
control w0 is supported by roughly the same area as the
input u0. In the disk we can see a small disturbance,
located in the symmetric area of the support of u0 with
respect to the control domain U . However, this error does
not increase with Ni, as we can see in Figure 20 (case
Ni = 200), so it remains compatible with Conjecture 2.5.

Figure 21 shows the reconstruction errors for these ex-
periments, with or without smoothing. As before, we no-
tice the large improvement produced by the smoothing.
We get similar errors in the trapezoid.
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FIGURE 14. One-mode experiment in the square: localization of the Fourier frequencies of (u0, u1) (dashed line) and
(w0, w1) (solid line) for a given time T and a given domain U without smoothing (top) and with time and space smoothing
(bottom). The x-coordinate represents the eigenvalues. The input data u0 is equal to the fiftieth eigenvector, equal to
an eigenvalue of about 26.8, and u1 = 0.

4.2.2 Box Experiments in the Square. In this subsec-
tion we consider the case u0 = 1box, where

box = [0.6, 0.8]× [0.2, 0.4]

is a box in the square. The control domain U has width
0.1: U = {x < 0.1 and y > 0.9}. These experiments
were performed in the square with 1000 exact eigenvalues
for the MT matrix computation, the input data u0 being
defined using 800 eigenvalues. Figures 22 and 23 show
the space localization of the data u0 and the control w0

without and with smoothing. As before, we can observe

that the space localization is preserved, and that with
smoothing the support of w0 is more sharply defined.

Figures 24 and 25 show the reconstruction errors for
two different data, the first being the same as in Fig-
ure 22, and the second being similar but rotated by
π/4. We show here only the case with smoothing, the
errors being larger but similarly shaped without. We can
observe that the low and high values of the errors are lo-
cated on a lattice whose axes are parallel to the box sides.
This is compatible with the structure of the wave-front
set associated with both input data.
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FIGURE 15. One-mode experiment in the square: localization of the Fourier coefficients of (u0 − y0, u1 − y1), where u is
the data and y is the reconstructed function obtained from the control function w, for a given time T and a given domain
U without smoothing (top panels) and with time and space smoothing (bottom panels).
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FIGURE 16. Space localization of the data u0 (top panels) and the control w0 (bottom panels), for a Dirac experiment
in the square, with exact eigenvalues. These plots correspond to an experiment without smoothing, but it is similar with
smoothing. Left panels represent a 3D view, and right panels show contour plots.

FIGURE 17. Difference between the data u0 and the reconstructed function y0 without smoothing (top panels) and with
smoothing (bottom panels) for a Dirac experiment in the square, with exact eigenvalues. Left panels represent 3D view,
and right panels show contour plots.
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FIGURE 18. Space localization of the data u0 (top panels) and the control w0 (bottom panels) for a Dirac experiment in
the disk. These plots correspond to an experiment without smoothing, but the results are similar with smoothing. Left
panels represent a 3D view, and right panels show contour plots. In this experiment, the input data are defined with
Ni = 100 eigenvectors.

FIGURE 19. Space localization of the data u0 (top panels) and the control w0 (bottom panels) for a Dirac experiment in
the trapezoid. These plots correspond to an experiment without smoothing, but the results are similar with smoothing.
Left panels represent a 3D view, and right panels show contour plots. In this experiment, the input data are defined with
Ni = 120 eigenvectors.
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FIGURE 20. Space localization of the data u0 (top panels) and the control w0 (bottom panels) for a Dirac experiment in
the disk. These plots correspond to an experiment with smoothing, and the results are similar without smoothing. Left
panels represent a 3D view, and right panels show contour plots. In this experiment, the input data are defined with
Ni = 200 eigenvectors.

FIGURE 21. Difference between the data u0 and the reconstructed function y0 for a Dirac experiment in the disk without
smoothing (top panels) and with time and space smoothing (bottom panels). Left panels represent a 3D view, and right
panels show contour plots. In this experiment, the input data are defined with Ni = 100 eigenvectors.
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FIGURE 22. Space localization of the control function w0 (bottom panels) with respect to the data u0 (top panels), in
the square, without smoothing: 3D plots on the left, and contour plots on the right.

FIGURE 23. Space localization of the control function w0 (bottom panels) with respect to the data u0 (top panels), in
the square, with smoothing. Left panels represent a 3D view, and right panels show contour plots.
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FIGURE 24. Difference between the data u0 and the reconstructed function y0 (top panels) and u1 and y1 (bottom panels)
with smoothing in the square. The data is the identity function of a square whose edges are parallel to the x and y axes.
Left panels represent a 3D view, and right panels show contour plots.

FIGURE 25. Difference between the data u0 and the reconstructed function y0 (top panels) and u1 and y1 (bottom panels)
with smoothing in the square. The data is the identity function of a square whose edges are parallel to the diagonals of
the square. Left panels represent a 3D view, and right panels show contour plots.
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FIGURE 26. Reconstruction errors for the finite differ-
ences and exact methods, as a function of the cutoff
frequency (i.e., the largest eigenvalue used for the con-
trol computation), with and without time and space
smoothing.

4.3 Reconstruction Error

In this section we investigate Lemma 2.9. This lemma
states that the reconstruction error should decrease faster
than any polynomial if the function χ(t, x) is smooth.
So we would like to compare the decrease for both our
choices of χ, and we expect to get a a slow decrease for
the classical choice of the function χ (i.e., not smooth),
and a faster decrease with the smooth function (see Sec-
tion 3.2 for details about smooth/not smooth). To in-
vestigate this, we perform a “one-mode” experiment (see

0.5 0 0.5 1 1.5 2
7

6

5

4

3

2

1

0

Cutoff frequency (log10 scale)

R
ec

on
st

ru
ct

io
n 

er
ro

r 
in

 %
 (

lo
g1

0 
sc

al
e)

FINITE DIFF: Reconstruction error as a function of the cutoff frequency
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FIGURE 27. Reconstruction errors for the finite dif-
ference method, in the square and in the trapezoid,
as a function of the cutoff frequency (i.e., the largest
eigenvalue used for the control computation), with or
without time and space smoothing.

Section 4.1) using the fiftieth mode as input data. We
then compute the control with an increasing cutoff fre-
quency, up to 160 (finite differences case) or 500 (exact
case), and we compute the reconstruction error, thanks
to a larger cutoff frequency (200 in the finite differences
case and 2000 in the exact case).

Figure 26 represents the reconstruction error (with ex-
act or finite differences eigenvalues) as a function of the
cutoff frequency (i.e., the largest eigenvalue used for the
control function computation). Figure 27 presents the
same results (with finite difference eigenvalues only) for
two different geometries: the square and the trapezoid
(general domain). The log scale allows us to see that the
error actually decreases as the inverse of the cutoff fre-
quency without smoothing, and as the inverse of the fifth
power of the cutoff frequency with smoothing.

4.4 Energy of the Control Function

In this subsection we investigate the impact of smooth-
ing, the width of the control domain U and the control
time T on various outputs such as the condition number
of MT , the reconstruction error ‖u− y‖, and the norm of
the control function ‖w‖.

To this end, we performed several one-mode experi-
ments (see Section 4.1, mode 500) in the square, with
exact eigenvalues, 1000 eigenvalues used for computation
of MT , 2000 eigenvalues used for reconstruction and ver-
ification. We chose various times, 2.5 and 8, plus their
“smoothed” counterparts, according to the empirical for-
mula Tsmooth = 15

8 T . This increase of Tsmooth is justified
on the theoretical level by formulas (2–14) and (2–13),
which show that the efficiency of the control is related
to a mean value of χ(t, x) on the trajectories. Sim-
ilarly, we chose various widths of U : 1/10 and 3/10,
plus their “smoothed” counterparts, which are double.
Table 3 presents the numerical results for these experi-
ments. This table requires several remarks. First, the
condition number of MT , the reconstruction error, and
the norm of the control w decrease with increasing time
and U . Second, if we compare each nonsmooth experi-
ment with its “smoothed” counterpart (the comparison
is of course approximate, since the “smoothed” time and
width formulas are only reasonable approximations), the
condition number seems similar, as well as the norm of
the control function w, whereas the reconstruction error
is far smaller with smoothing than without.

Figures 28 and 29 emphasize the impact of the control
time. They present the reconstruction error, the norm
of the control, and the condition number of MT as a
function of the control time (varying between 2.5 and
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Smooth Width of U Time Condition Number Rec. Error ‖w‖
no 1/10 2.5 48.8303 0.00518843 504.287
yes 2/10 2.5 204.048 0.00140275 1837.12
yes 2/10 4.7 21.7869 4.65892E-07 364.013

no 1/10 8 21.1003 0.00162583 120.744
yes 2/10 8 16.5497 8.51442E-08 189.361
yes 2/10 15 12.017 8.39923E-09 100.616

no 3/10 2.5 4.20741 0.0014823 147.009
yes 6/10 2.5 9.05136 1.94519E-06 336.704
yes 6/10 4.7 3.09927 2.99855E-08 125.481

no 3/10 8 3.20921 0.000488423 39.9988
yes 6/10 8 2.74172 6.0204E-09 69.8206
yes 6/10 15 2.4113 8.55119E-10 37.1463

TABLE 3. Impact of the control time, the width of U and the smoothing, on the condition number of MT , on the
reconstruction error, and on the norm of the control function. These results come from one-mode experiments in the
square, with exact eigenvalues.
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FIGURE 28. Experiments in the square, with exact eigenvalues: impact of the smoothing on the reconstruction error
(left) and on the norm of the control function (right), as a function of the control time.
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FIGURE 29. Experiments in the square, with exact eigenvalues: impact of smoothing on the condition number of the MT
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FIGURE 30. Condition number of the MT,ω matrix as
a function of the cutoff frequency ω for various control
times.

16), with or without smoothing. Conclusions are similar
to those given in the table.

4.5 Condition Number

In this section, we investigate Conjecture 2.8. To do so,
we compute the condition number ofMT,ω, since we have

cond(MT,ω) = ‖MT,ω‖ · ‖M−1
T,ω‖ � ‖MT ‖ · ‖M−1

T,ω‖.

Figure 30 shows the condition number of the MT matrix
as a function of the control time or of the last eigenvalue
used for the control function computation. According to
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FIGURE 31. Ratio of the log of the condition number
of the MT,ω matrix and the cutoff frequency ω as a
function of the control time for various numbers of
eigenvalues.

Conjecture 2.8, we obtain lines of the type

log (cond(MT,ω)) = ω · C(T, U).

Figure 31 shows for various numbers of eigenvalues the
following curves:

T 
→ log (cond(MT,ω))
ω

.

Similarly, we can draw conclusions compatible with Con-
jecture 2.8, since these curves seem to converge as the
number of eigenvalues grows to infinity.

4.6 Noncontrolling Domains

In this section we investigate two special experiments
with noncontrolling domains, i.e., such that the geomet-
ric control condition is not satisfied regardless of the con-
trol time.

First we consider the domain presented in Figure 32.
For this domain the condition number of the MT matrix
is large, and consequently, we should be experiencing dif-
ficulties to reconstruct the data u. We perform one-mode
experiments with two different eigenvectors, one localized
in the center of the disk (eigenvalue 60), the other local-
ized around the boundary (eigenvalue 53), as can be seen
in Figure 33.

The various outputs are presented in Table 4, and we
can see that the inversion is fairly accurate for the 53rd
eigenmode, while it is logically poor for the 60th eigen-
mode. Moreover, the energy needed for the control pro-
cess, i.e., the norm of the control w, is small for the 53rd
eigenvector, while it is large for the 60th. We can also
notice that the smoothing has the noticeable effect of de-
creasing the reconstruction error, the norm of the control
function w being similar.

In the second experiment we change the point of view:
instead of considering one given domain and two differ-
ent data, we consider one given data and two different
noncontrolling domains. The data is again u53 (see Fig-
ure 33), which is localized at the boundary of the disk.
The first domain is the previous one (see Figure 32), and
the second domain is presented in Figure 34; it is local-
ized at the center of the disk.

In either case, the condition number of the MT ma-
trix is large, and the data should prove difficult to recon-
struct. Table 5 presents the outputs we obtained for the
two domains. As previously, we observe that the control
process works fairly well for the appropriate control do-
main, with a small error as well as a small energy for the
control. Conversely, when the control domain does not
“see” the input data, the results are poorer: the energy



Lebeau and Nodet: Experimental Study of the HUM Control Operator for Linear Waves 119

FIGURE 32. Noncontrolling domain U without (left) and with (right) smoothing. This domain consists of the neighbor-
hood of a radius that is truncated around the disk boundary.

FIGURE 33. Special modes chosen for experiment with noncontrolling domains, corresponding to the 53rd and 60th
eigenvalues.

FIGURE 34. Noncontrolling domain U without (left) and with (right) smoothing. This domain consists of the neighbor-
hood of a radius that is truncated around the disk center.
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Condition 53rd Eigenmode 60th Eigenmode
Smooth? Number Rec. Error ‖w‖ Rec. Error ‖w‖

no 4960 0.63% 15 26% 4583

yes 6042 6.5 × 10−4% 24 0.11% 8872

TABLE 4. Influence of the shape of the data on the reconstruction error and the norm of the control, with a noncontrolling
domain U . On the left, the 53rd eigenmode is localized around the boundary of the circle, as is the control domain. On
the right, the 60th eigenmode is localized around the center of the circle.

First Domain Second Domain
Smooth? Cond. Number Rec. Error ‖w‖ Cond. Number Rec. Error ‖w‖

no 4960 0.63% 15 3.6 × 106 68% 1.9 × 104

yes 6042 6.5 × 10−4% 24 3.3 × 105 9.4 × 10−3% 6.5 × 105

TABLE 5. Reconstruction error and the norm of the control with data u53 localized at the boundary of the disk and two
different noncontrolling domains U , the first one localized around the boundary, the second one around the center.

needed is large with or without smoothing, and the er-
ror is also large without smoothing. It is, however, small
with smoothing.
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