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In this paper we give exact values of the standard zeta function
for cuspidal Hecke eigenforms with respect to Sp2(Z).

1. INTRODUCTION

For a cuspidal Hecke eigenform f of weight k with respect
to Spn(Z), let L(f, s, St) be the standard zeta function
of f . Then for some positive integer, the value

L(f, m, St)
〈f, f〉π−n(n+1)/2+nk+(n+1)m

is an algebraic number if all the Fourier coefficients of f

are algebraic, where 〈f, f〉 is the (unnormalized) Peters-
son product (cf. [Böcherer 85, Mizumoto 91]). In [Kat-
surada 08], we gave an explicit formula for computing
this value in terms of Fourier coefficients of f and some
other elementary quantities. In this paper, we compute
this value exactly in the case n = 2. The main tool we
use is the pullback formula for the Siegel–Eisenstein se-
ries due to [Garrett 84, Böcherer 85]. This method has
been applied to the case of elliptic modular forms in [Kat-
surada 05]. To carry out the computation in the case of
Siegel modular forms of degree 2, we need the explicit
form of differential operators on the space of Siegel mod-
ular forms of degree 4 due to [Ibukiyama 99], and an
explicit formula for global Siegel series for a half-integral
matrix of degree 4. The generating function of the differ-
ential operators has been given in [Ibukiyama 99], and by
a direct but rather elaborate computation we can obtain
an explicit form of them. An explicit formula for local
Siegel series has been given in [Katsurada 99]. However,
it seems rather difficult to use the formula directly for a
practical computation. In this paper we present a trick
that enables us to reduce the computation of global Siegel
series of degree 4 to those of degree 2.

The contents of this paper are as follows. In Section 2,
we first review a result concerning Fourier coefficients
of Siegel–Eisenstein series following [Katsurada 08], and
explain the relation between the Siegel series and local
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densities. Next, we review a result concerning the pull-
back formula of Siegel–Eisenstein series due to Böcherer
to obtain an exact value of the standard zeta function
following [Katsurada 08]. In Section 3, we restrict our-
selves to the case of Siegel modular forms of degree 2.
First we present the trick for the computation of global
Siegel series referred to above. Next we give an explicit
formula for the differential operators acting on the space
of Siegel modular forms of degree 4 due to [Ibukiyama 99],
and give the main result of this paper, which enables us
to obtain exact standard zeta values (cf. Theorem 3.8).
In Section 4, we give numerical examples of such values
and give some comments on the conjecture proposed in
[Katsurada 08].

1.1 Notation

For a commutative ring R, we denote by Mmn(R) the
set of (m, n)-matrices with entries in R. In particular,
put Mn(R) = Mnn(R). For an (m, n)-matrix X and an
(m, m)-matrix A, we write A[X ] = tXAX , where tX

denotes the transpose of X . Let a be an element of R.

Then for an element X of Mmn(R) we often use the same
symbol X to denote the coset X mod aMmn(R).

Put GLm(R) = {A ∈ Mm(R) | detA ∈ R∗}, where
detA denotes the determinant of a square matrix A, and
R∗ denotes the unit group of R. Let Sn(R) denote the
set of symmetric matrices of degree n with entries in R.
Furthermore, for an integral domain R of characteristic
different from 2, let Hn(R) denote the set of half-integral
matrices of degree n over R, that is, Hn(R) is the set of
symmetric matrices of degree n whose (i, j)-component
belongs to R or 1

2R according as i = j or not.
For a subset S of Mn(R) we denote by S× the subset

of S consisting of nondegenerate matrices. In particular,
if S is a subset of Sn(R) with R the field of real num-
bers, we denote by S>0 (respectively S≥0) the subset
of S consisting of positive definite (respectively positive
semidefinite) matrices. Let R′ be a subring of R. Two
symmetric matrices A and A′ with entries in R are said
to be equivalent over R′ and we write A

∼
R′ A′ if there is

an element X of GLn(R′) such that A′ = A[X ]. We also
write A ∼ A′ if there is no fear of confusion. For square
matrices X and Y we write

X⊥Y =
(

X O
O Y

)
.

2. PULLBACK FORMULA FOR SIEGEL–EISENSTEIN
SERIES

In this section we begin by reviewing the Fourier
coefficients of Siegel–Eisenstein series following [Kat-
surada 08]. Furthermore, for later use, we consider the
relation between Siegel series and local densities.

Put

Jn =
(

On −1n

1n On

)
,

where 1n denotes the unit matrix of degree n. For a
subring K of R put

Γ(n) = Spn(Z) = {M ∈ GL2n(Z) | Jn[M ] = Jn}.
Let Hn be Siegel’s upper half-space. We denote by
�k(Γ(n)) (respectively �∞

k (Γ(n))) the space of holomor-
phic (respectively C∞) modular forms of weight k with
respect to Γ(n).

We denote by �k(Γ(n)) the submodule of �k(Γ(n))
consisting of cusp forms. For two C∞ modular forms
f and g of weight k with respect to Γ(n) we define the
Petersson scalar product 〈f, g〉 as in [Katsurada 08].

For a positive integer k ≥ (n + 1)/2 we define the
Siegel–Eisenstein series En,k(Z, s) of degree n as

En,k(Z, s) = ζ(1 − k − 2s)
[n/2]∏
i=1

ζ(1 − 2k − 4s + 2i)

×
∑

M∈Γ
(n)
∞ \Γ(n)

j(M, Z)−k(det(�(M(Z))))s,

with Z ∈ Hn, s ∈ C, where ζ(∗) is Riemann’s zeta func-
tion, and

Γ(n)
∞ =

{( ∗ ∗
On ∗

)
∈ Γ(n)

}
.

Then En,k(Z, s) is holomorphic at s = 0 as a function of
s, and En,k(Z, 0) is holomorphic as a function of Z unless
k = (n + 2)/2 ≡ 2 mod 4 or k = (n + 3)/2 ≡ 2 mod 4 (cf.
[Shimura 83].)

From now on we assume that En,k(Z, 0) is holomor-
phic as a function of Z and write En,k(Z) = En,k(Z, 0).
To see the Fourier expansion of En,k(Z, 0) for a prime
number p and a half-integral matrix B of degree n over
Zp, define the local Siegel series bp(B, s) as in [Kat-
surada 08].

Let m, n be nonnegative integers such that m ≥ n ≥ 1.
For A ∈ Hm(Zp) and B ∈ Sn(Qp) we define the local
density αp(A, B) and the primitive local density βp(A, B)
by

αp(A, B) = 2δmn lim
e→∞ p(−mn+n(n+1)/2)e#Ae(A, B)
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and

βp(A, B) = 2δmn lim
e→∞ p(−mn+n(n+1)/2)e#Be(A, B),

where δmn is Kronecker’s delta,

Ae(A, B) = {X ∈ Mmn(Zp)/peMmn(Zp) | A[X ] − B

∈ peHn(Zp)},
and

Be(A, B) = {X ∈ Ae(A, B) | rankZp/pZp
(X) = n}.

We define χp(a) for a ∈ Qp \ {0} as follows;

χp(a) =

⎧⎪⎨
⎪⎩

+1 if Qp(
√

a) = Qp,

−1 if Qp(
√

a)/Qp is quadratic unramified,

0 if Qp(
√

a)/Qp is quadratic ramified.

For a half-integral matrix B of even degree n we define
ξp(B) by

ξp(B) = χp((−1)n/2 detB).

Let B ∈ Hn(Z)>0 with n even. Then we can
write (−1)n/22n detB = �B �

2
B with �B a fundamen-

tal discriminant and �B ∈ Z>0. Furthermore, let
χB = ( �B

∗ ) be the Kronecker character corresponding to
Q(
√

(−1)n/2 detB)/Q. We note that we have χB(p) =
ξp(B) for any prime p. Let

Hk =

k︷ ︸︸ ︷
H⊥ · · ·⊥H with H =

(
0 1/2

1/2 0

)
.

For a nondegenerate half-integral matrix B of degree
n over Zp we define a polynomial γp(B, X) in X by

γp(B, X)

=

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

(1 − X)
∏n/2

i=1(1 − p2iX2)(1 − pn/2ξp(B)X)−1

if n is even,

(1 − X)
∏(n−1)/2

i=1 (1 − p2iX2)
if n is odd.

Then the following lemma is well known (e.g., [Ki-
taoka 84, Lemma 1]).

Lemma 2.1. For a nondegenerate half-integral matrix
B of degree n over Zp there exists a unique polynomial
Fp(B, X) in X over Z with constant term 1 such that

bp(B, s) = γp(B, p−s)Fp(B, p−s).

Furthermore, for any positive integer k ≥ n/2 and a half-
integral matrix A of degree 2k over Zp such that 2A is
unimodular, we have

αp(A, B) = Fp(B, ξp(A)p−k)γp(B, ξp(A)p−k),

and in particular,

αp(Hk, B) = Fp(B, p−k)γp(B, p−k).

Remark 2.2. For an element B ∈ Hn(Zp) of rank m ≥ 0,
there exists an element B̃ ∈ Hm(Zp) ∩ GLm(Qp) such
that B ∼ B̃⊥On−m. We note that bp(B̃, s) does not
depend on the choice of B̃ (cf. [Kitaoka 84]). Thus we
write this as b

(m)
p (B, s). Furthermore, Fp(B̃, X) does not

depend on the choice of B̃. Then we put F
(m)
p (B, X) =

Fp(B̃, X). For an element B ∈ Hn(Z)≥0 of rank m ≥ 0,
there exists an element B̃ ∈ Hm(Z)>0 such that B ∼
B̃⊥On−m. Then det B̃ does not depend on the choice of
B. Therefore, we put det(m) B = det B̃. Similarly, we
write χ

(m)
B = χB̃ if m is even.

Now for a positive semidefinite half-integral matrix B

of degree 2n and of rank m, we put

c2n,l(B) = 2[(m+1)/2]
∏
p

F (m)
p (B, pl−m−1)

×

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

∏n
i=m/2+1 ζ(1 + 2i − 2l)L(1 + m/2 − l, χ

(m)
B )

if m is even,∏n
i=(m+1)/2 ζ(1 + 2i − 2l)
if m is odd.

Here we make the convention F
(m)
p (B, pl−m−1) = 1 and

L(1 + m/2 − l, χ
(m)
B ) = ζ(1 − l) if m = 0. Then we have

the following result.

Theorem 2.3. Let l be a positive even integer. Assume
that l ≥ n + 3 or l ≥ n + 1 according as n ≡ 1 mod 4 or
not. Then we have

E2n,l(Z) =
∑

B∈H2n(Z)≥0

c2n,l(B)e(tr(BZ)),

where e(x) = exp(2π
√−1x) for a complex number x, and

tr denotes the trace of a matrix.

Now we review the pullback formula of Siegel–
Eisenstein series following [Katsurada 08, Sections 3, 4].
Let L′

n = LQ(GSpn(Q)+ ∩ M2n(Z), Γ(n)) denote the
Hecke ring over Z associated with the Hecke pair
(GSpn(Q)+ ∩ M2n(Z), Γ(n)). Furthermore, for a prime
number p put

GSpn(Qp)

= {M ∈ GL2n(Qp); Jn[M ] = κ(M)Jn, κ(M) ∈ Q×
p },
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and let Lnp = L(GSpn(Qp), GSpn(Qp) ∩ GL2n(Zp))
be the Hecke algebra associated with the pair
(GSpn(Qp), GSpn(Qp) ∩ GL2n(Zp)).

Now assume that f is a Hecke eigenform, namely, a
common eigenfunction of all Hecke operators. For each
prime number p, let α0(p), α1(p), . . . , αn(p) be the Satake
parameters of Lnp determined by f . We then define the
standard zeta function L(f, s, St) by

L(f, s, St)

=
∏
p

n∏
i=1

{(1 − p−s)(1 − αi(p)p−s)(1 − αi(p)−1p−s)}−1.

Now let
◦
Dν

n,l be the differential operator from
�∞

l (Γ(2n)) to �∞
l+ν(Γ(n)) ⊗ �∞

l+ν(Γ(n)) in [Böcherer and
Schmidt 00].

Let E2n,l(Z) = E2n,l(Z, 0) be the Eisenstein series as
above. We then define E2n,l,k(z1, z2) as

E2n,l,k(z1, z2) = (−1)l/2+12−n(2π
√−1)(l−k)n(l − n)

× ◦
D k−l

n,l (E2n,l)(z1, z2),

where z1, z2 ∈ Hn. Let

f(z) =
∑

A∈Hn(Z)>0

a(A)e(tr(Az))

be a Hecke eigenform in �k(Γ(n)). For a positive integer
m ≤ k − n such that m ≡ n mod 2 put

Λ(f, m, St) = (−1)n(−m+1)/2+12−4kn+3n2+n+(n−1)m+2

× Γ(m + 1)
n∏

i=1

Γ(2k − n − i)

× L(f, m, St)
〈f, f〉π−n(n+1)/2+nk+(n+1)m

.

For two positive semidefinite half-integral matrices
A1, A2 of degree n, put

εl,k(A1, A2) =
∑

A2− 1
4 A−1

1 [R]≥0

c̃2n,l

((
A1 R/2

tR/2 A2

))

× Qk−l
n,l

((
A1 R/2

tR/2 A2

))
,

where c̃2n,l(A) = (−1)l/2+12−n(l − n)c2n,l(A) for A ∈
H2n(Z)≥0, and Qk−l

n,l is the polynomial defined in [Kat-
surada 08, Section 3]. Furthermore, for each positive
semidefinite half-integral matrix A1, put

Fl,k;A1(z2) =
∑

A2∈Hn(Z)≥0

εl,k(A1, A2)e(tr(A2z2)).

We note that we have

E2n,l,k(z1, z2)

=
∑

A1∈Hn(Z)≥0∑
A2∈Hn(Z)≥0

εl,k(A1, A2)e(tr(A1z1 + A2z2)).

Thus Fl,k;A1(z2) belongs to �k(Γ(n)), and

E2n,l,k(z1, z2) =
∑

A1∈Hn(Z)≥0

Fl,k;A1(z2)e(tr(A1z1))

(cf. [Katsurada 08, Section 3]). In particular, if l < k,

then Fl,k;A1(z2) belongs to �k(Γ(n)), and

E2n,l,k(z1, z2) =
∑

A1∈Hn(Z)>0

Fl,k;A1(z2)e(tr(A1z1)).

Take an orthogonal basis {fi}d1
i=1 of �k(Γ(n)) consisting

of Hecke eigenforms. Write

fi(z) =
∑

A∈Hn(Z)>0

ai(A)e(tr(Az)).

Now we have the following proposition.

Proposition 2.4. [Katsurada 08, Theorem 4.4] Let l, k,
and n be a positive integers. Assume that k and l + n

are even, and 3 ≤ l ≤ k − n − 2 or 1 ≤ l ≤ k − n − 2
according as n ≡ 1 mod 4 or not. Then for any positive
definite half-integral matrix A1 of degree n, we have

Fl+n,k;A1(z) =
d1∑

i=1

Λ(fi, l, St)ai(A1)fi(−z̄).

Remark 2.5. There are some typographical errors in [Kat-
surada 08, p. 105]:

• line 9: For (2π
√−1)l−k, read (2π

√−1)(l−k)n;

• line 12: For (−1)n(m+1)/2+1, read (−1)n(−m+1)/2+1;

• line 13: For Γ(m), read Γ(m + 1).

For a prime number p, let T (p) be the element
of L′

n defined by T (p) = Γ(n)(1n⊥p1n)Γ(n). For
each nonnegative integer i and A1 ∈ Hn(Z)>0, write
Fl+n,k;A1 |T (p)i(z) as

Fl+n,k;A1 |T (p)i(z) =
∑

A∈Hn(Z)>0

εl+n,k(i, A1, A)e(tr(Az)).



Katsurada: Exact Standard Zeta Values of Siegel Modular Forms 69

Furthermore, write

fj | T (p)(z) = λjfj(z).

Thus by Proposition 2.4 we have the following result.

Lemma 2.6. Under the above notation and assumption,
we have

εl+n,k(i, A1, A) =
d∑

j=1

λi
jΛ(fj, l, St)aj(A1)aj(A)

for any nonzero integer i and A ∈ Hn(Z)>0.

From now on, we assume that �k(Γ(n)) has the
multiplicity-one condition. Namely, we assume that a
Hecke eigenform in �k(Γ(n)) is uniquely determined, up
to a constant multiple, by its eigenvalues of Hecke op-
erators. First we normalize the standard zeta value
Λ(f, l, St) for a Hecke eigenform f in �k(Γ(n)) following
[Katsurada 08]. We define the following quantities: For a
Hecke eigenform f(z) =

∑
A af (A)e(tr(Az)) in �k(Γ(n)),

let �f be the �Q(f)-module generated by all af (A)’s.
Then, multiplying by a suitable constant c, we may as-
sume that all af (A)’s are elements of Q(f) with bounded
denominator. Then �f is a fractional ideal in Q(f), and
therefore so is Λ(f, l, St)�2

f if l satisfies the conditions in
Proposition 2.4. We note that this fractional ideal does
not depend on the choice of c. In particular, these values
are uniquely determined by the system of eigenvalues of
f . We also note that the value NQ(f)(Λ(f, l, St))N(�f )2

does not depend on the choice of c, where N(�f ) is the
norm of the ideal �f .

Theorem 2.7. In addition to the above assumption, let
f = f1, λ = λ1, a(A1) = a1(A1), a(A) = a1(A),
K = Q(f), and ei = εl+n,k(i, A1, A). Furthermore, let
Φ(X) = ΦT (p)(X) =

∑d
i=0 bd−iX

i be the characteris-
tic polynomial of T (p) in �k(Γ(n)). Put Λ∗(f, l, St) =
NQ(f)(Λ(f, l, St))N(�f )2 and assume that Φ′(λ) �= 0, and
a(A1)a(A) �= 0.

Then for any positive integer l satisfying the condi-
tions in Proposition 2.4, we have

Λ∗(f, l, St) = NK/Q

(∑d−1
i=0

∑d−1
j=i ed−1−jbj−iλ

i

Φ′(λ)

)

× N(�f )2

NK/Q(a(A1)a(A))
.

Proof: By Lemma 2.6, we have

ei =
d∑

j=1

λi
jΛ(fj , l, St)aj(A1)aj(A)

for each i = 0, . . . , d− 1. Then by [Goto 98, Lemma 2.2],
we have

Λ(f, l, St)a(A1)a(A) =

∑d−1
i=0

∑d−1
j=i ed−1−jbj−iλ

i

Φ′(λ)
.

The assertion follows immediately.

Using the above theorem, we can in principle obtain
standard zeta values of a Hecke eigenform in �k(Γ(n)).
However, to make the computation explicit, we need to
compute the Fourier coefficients of the Siegel–Eisenstein
series of degree 2n and the differential operators explic-
itly. We will do this in the case n = 2 in the next sections.

3. EXACT STANDARD ZETA VALUES FOR n = 2

In this section we obtain a useful formula for comput-
ing exact standard zeta values in the case of degree 2.
The following lemma can easily be proved (e.g., [Kat-
surada 99, Proposition 2.2]).

Lemma 3.1. Let n = n1 + n2 with n1 even. Let A11 ∈
Hn1(Zp) ∩ 1

2 GLn1(Zp) and A22 ∈ Hn2(Zp) ∩ GLn2(Qp).
Then for any l ≥ n we have

αp(Hl, A11⊥A22) = βp(Hl, A11)αp(Hl−n1⊥(−A11), A22).

Proposition 3.2. Let n1 be an even integer. Let A11 ∈
Hn1(Zp)∩ 1

2 GLn1(Zp) and A22 ∈ Hn2(Zp). Let m be the
rank of A22. Then we have

F (n1+m)
p (A11⊥A22, X) = F (m)

p (A22, ξp(A11)pn1/2X).

Proof: We may assume that A22 is nondegenerate. By
Lemma 2.1, for any l ≥ n1 + n2 we have

αp(Hl, A11⊥A22) = γp(A11⊥A22, p
−l)Fp(A11⊥A22, p

−l).

By Lemma 3.1, we have

αp(Hl, A11⊥A22) = βp(Hl, A11)αp(Hl−n1⊥(−A11), A22).

Again by Lemma 2.1, we have

αp(Hl−n1⊥(−A11), A22) = γp(A22, ξp(A11)pn1/2−l)

× Fp(A22, ξp(A11)pn1/2−l).
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Furthermore, we have

βp(Hl, A11)

= (1 − p−l)
n1/2∏
i=1

(1 − p2i−2l)(1 − pn1/2−lξp(A11))−1

(e.g., [Kitaoka 93]), and by definition we have

γp(A11⊥A22, p
−l)

= βp(Hl, A11)γp(A22, ξp(A11)pn1/2−l).

Thus the assertion holds.

Corollary 3.3. Let

A =
(

A11 A12/2
tA12/2 A22

)
∈ Hn1+n2(Zp) ∩ GLn1+n2(Qp)

with

A11 ∈ Hn1(Zp), A22 ∈ Hn2(Zp), A12 ∈ Mn1,n2(Zp).

Let m be the rank of A. Assume that 2A11 ∈ GLn1(Zp).
Then we have

F (m)
p (A, X)

= F (m−n1)
p

(
A22 − 1

4
A−1

11 [A12], ξp(A11)pn1/2X

)
.

Corollary 3.4. Let n1 and n2 be positive even integers.
Let

A =
(

A11 A12/2
tA12/2 A22

)
∈ Hn1+n2(Z)>0

with

A11 ∈ Hn1(Z)>0, A22 ∈ Hn2(Z)>0, A12 ∈ Mn1,n2(Z).

Let p0 be a prime number. Let m be the rank of A. As-
sume that 2A11 ∈ GLn1(Zp) for any prime number p �= p0

and 2A22 ∈ GLn2(Zp0 ). Then we have∏
p

F (m)
p (A, X)

= F (m−n2)
p0

(
A11 − 1

4
A−1

22 [tA12], χA22(p0)p
n2/2
0 X

)
×
∏

p�=p0

F (m−n1)
p (A22 − 1

4
A−1

11 [A12], χA11(p)pn1/2X).

Now to make the computation in Section 4 smooth,
we give an explicit form of F

(1)
p (A, X) and F

(2)
p (A, X) in

the case deg A = 2 (e.g., [Katsurada 05]).

Proposition 3.5. Let

A =
(

a11 a12/2
a12/2 a22

)
∈ H2(Z)≥0.

Put e = eA = gcd(a11, a12, a22).

(1) Assume rank A = 1. Then we have

F (1)
p (A, X) =

ordp(eA)∑
i=0

(pX)i.

(2) Assume A > 0. Then we have

F (2)
p (A, X)

=
ordp(eA)∑

i=0

(p2X)i

ordp(�A)−i∑
j=0

(p3X2)j − χA(p)pX

ordp(eA)∑
i=0

(p2X)i

ordp(�A)−i−1∑
j=0

(p3X2)j .

Now we give an explicit form of a differential operator
in the case of degree 2 due to Ibukiyama. Let y1, y2, y3

be variables, and for a positive even integer l put

Gl(y1, y2, y3; t)

=
1

R(y1, y2, y3; t)(2l−5)/2(Δ0(y1, y2; t)2 − 4y3t2)1/2
,

where
Δ0(y1, y2; t) = 1 − y1t + y2t

2

and

R(y1, y2, y3; t)

= (Δ0(y1, y2; t) + (Δ0(y1, y2; t)2 − 4y3t
2)1/2)/2.

Write

Gl(y1, y2, y3; t) =
∞∑

m=0

Gl,m(y1, y2, y3)tm,

and define a polynomial map

Ql,m(
(

W1 W2
tW2 W4

)
)

from S4(C) to C by

Ql,m

((
W1 W2
tW2 W4

))

= Gl,m

(
detW2, detW1 detW4, det

(
W1 W2
tW2 W4

))
,
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where W1, W4 ∈ S2(C) and W2 ∈ M2(C). Furthermore,
define a polynomial map Pl,m(X1, X2) from M2(C) ×
M2(C) to C by

Pl,m(X1, X2) = Ql,m

((
X1

tX1 X1
tX2

X2
tX1 X2

tX2

))
.

Then by [Ibukiyama 99] we have the following proposi-
tion.

Proposition 3.6. Pl,m(X1, X2) satisfies [Katsurada 08,
Section 3, Conditions D-1 to D-3].

Furthermore, by a direct but rather elaborate calcula-
tion we have the following result.

Proposition 3.7. We have

Gl,m(y1, y2, y3)

=
[m/2]∑
n=0

(
2n + l − 5/2

n

)
yn
3

×
[(m−2n)/2]∑

ν=0

(−y2)ν

(
l + m − ν − 5/2

m − 2n − ν

)

×
(

m − 2n − ν
ν

)
(2y1)m−2n−2ν ,

where (
s
m

)
=
∏m

i=1(s − i + 1)
m!

.

We note that Gl,m(y1, y2, y3) ∈ 2−mZ[y1, y2, y3]. Let

Gl,m

= Gl,m

(
1
4

det
(

∂

∂zij

)
1≤i≤2
3≤j≤4

,

det

(
∂̃

∂zij

)
1≤i,j≤2

det

(
∂̃

∂zij

)
3≤i,j≤4

,

det

(
∂̃

∂zij

)
1≤i,j≤4

)
,

and for f ∈ C∞(H4) we define G̃l,m(f) by

G̃l,m(f) = Gl,m(f)Z12=0,

where we write

Z =
(

Z1 Z12
tZ12 Z2

)
with Z1, Z2 ∈ H2, Z12 ∈ M2(C).

By [Ibukiyama 99], G̃l,m is a constant multiple of
◦
D m

2,l.
Namely, we have

G̃l,m = dl,m

◦
D m

2,l

with some dl,m. To obtain an exact value of dl,m, put
w = z13z24 − z14z23. Then for any integer s we have

1
4

det
(

∂

∂zij

)
1≤i≤2,3≤j≤4

(ws) = C2(s/2)ws−1

and

det

(
∂̃

∂zij

)
1≤i,j≤4

(ws) = C2(s/2)C2((s − 1)/2)ws−2,

and

det

(
∂̃

∂zij

)
1≤i,j≤2

det

(
∂̃

∂zij

)
3≤i,j≤4

(ws) = 0,

where C2(s) = s(s + 1/2).
Thus for a positive even integer m we have

G̃l,m(wm)

=
m∏

μ=1

C2(μ/2)
m/2∑
n=0

(
2n + l − 5/2

n

)

×
(

l + m − 5/2
m − 2n

)
2m−2n

=
m∏

μ=1

C2(μ/2)
(

2l + 2m − 5
m

)
.

Here we have used the formula
m/2∑
n=0

(
s − m + 2n

n

)(
s

m − 2n

)
2m−2n =

(
2s
m

)

for s ∈ C. On the other hand, we have

◦
D m

2,l(w
m) =

m∏
μ=1

C2(μ/2)C2(l − 2 + m − μ/2)

(cf. [Katsurada 08, Section 3]), and therefore we have

dl,m =

(
2l + 2m − 5

m

)
∏m

μ=1 C2(l − 2 + m − μ/2)
.

Now for a positive even integer l ≤ k − 2 put

Λ̃(f, l, St) =

(
2k − 5

k − l − 2

)
24k−2l−9

Γ(l + 1)Γ(k + l − 2)

× Γ(k + l − 1)
L(f, l, St)

〈f, f〉 (2π)2k+3l−3
.
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Now let l be an even integer such that 4 ≤ l ≤ k−2, and
put

Ẽ4,l,k(z1, z2)

= (−1)l/2+12−2(2π
√−1)2(l−k)(l − 2)G̃l,k−l(E4,l)(z1, z2),

where z1, z2 ∈ H2. Then we note that E4,l(Z, 0) be-
longs to �l(Γ(4)), and Ẽ4,l,k(z1, z2) belongs to �k(Γ(2))⊗
�k(Γ(2)).

We note that

Λ̃(f, l − 2, St) = dl,k−lΛ(f, l − 2, St)

and
Ẽ4,l,k(z1, z2) = dl,k−lE4,l,k(z1, z2).

Now for positive definite half-integral matrices A1 and
A2 of degree 2, let εl,k(A1, A2) be as in Section 2, and
put ε̃l,k(A1, A2) = dl,kεl,k−l(A1, A2). Furthermore, for
each positive definite half-integral matrix A1 put

F̃l,k;A1(z2) =
∑

A2∈H2(Z)>0

ε̃l,k(A1, A2)e(tr(A2z2)).

Then we have F̃l,k;A1(z2) = dl,k−lFl,k;A1(z2), and there-
fore we have

Ẽ4,l,k(z1, z2) =
∑

A1∈H2(Z)>0

F̃l,k;A1(z2)e(tr(A1z1)).

Let p0 be a prime number. Assume that 2A1 ∈ GL2(Zp)
for any prime number p �= p0 and 2A2 ∈ GL2(Zp0 ). Then
we have

ε̃l,k(A1, A2)

=
∑

R∈M2(Z)

c̃4,l

((
A1 R/2

tR/2 A2

))

× Gl,k−l

(
1
4

detR, detA1 detA2, det
(

A1 R/2
tR/2 A2

))
,

where

c̃4,l(A)

= (−1)l/2+1(l − 2)F (m−2)
p0

×
(

A1 − 1
4
A−1

2 [tR], χA2(p0)pl−m
0

)

×
∏

p�=p0

F (m−2)
p

(
A2 − 1

4
A−1

1 [R], χA1(p)pl−m

)

×

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

L
(
3 − l, χ

(m−2)
A

)
if m = 4,

ζ(5 − 2l)
if m = 3,

for

A =
(

A1 R/2
tR/2 A2

)
with rank(A) = m. We note that ε̃l,k(A1, A2) is a rational
number and any prime divisor of its denominator is not
greater than (2l − 1)!.

Fix an A1 ∈ H2(Z)>0 and a prime number p. We
define εl,k(i, A1, A) as follows:

εl,k(0, A1, A) = ε̃l,k(A1, A),

εl,k(i, A1, A) = εl,k(i − 1, A1, pA)

+ p2k−3εl,k(i − 1, A1, A/p)

+ pk−2
∑
D

εl,k(i − 1, A1, A[D]/p),

where

Up =
(

1 0
0 p

)
and the sum is over D ∈ GL2(Z)Up GL2(Z)/ GL2(Z). Let
{fj}d

j=1 be an orthogonal basis of �k(Γ(2)) consisting of
Hecke eigenforms, and let λj be the eigenvalue of T (p)
for fj. Then by the Hecke theory of Siegel modular forms
(e.g., [Andrianov 87]) we have

Fl,k;A1 |T (p)i(z2) =
∑

A2∈H2(Z)>0

εl,k(i, A1, A2)e(tr(A2z2))

for any nonnegative integer i and A1 ∈ H2(Z)>0. Thus
by Theorem 2.7 we have the following result.

Theorem 3.8. In addition to the above assumption, let
f = f1, λ = λ1, a(A1) = a1(A1), a(A) = a1(A),
K = Q(f), and for a positive even integer l ≤
k − 4 put ei = εl+2,k(i, A1, A). Furthermore, let
Φ(X) = ΦT (p)(X) =

∑d
i=0 bd−iX

i be the characteris-
tic polynomial of T (p) in �k(Γ(2)). Put Λ̃∗(f, l, St) =
NK/Q(Λ̃(f, l, St))N(�f )2. Assume that Φ′(λ) �= 0 and
a(A1)a(A) �= 0. Then we have

Λ̃∗(f, l, St) = NK/Q

(∑d−1
i=0

∑d−1
j=i ed−1−jbj−iλ

i

Φ′(λ)

)

× N(�f )2

NK/Q(a(A1)a(A))
.

4. NUMERICAL EXAMPLES AND COMMENTS

We compute the special values of the standard zeta func-
tions using Mathematica. Let φ10,1(τ, z) and φ12,1(τ, z)
be the Jacobi cusp forms in Jcusp

10,1 and Jcusp
12,1 in [Eich-

ler and Zagier 85, p. 40], respectively. Here τ ∈ H1
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l NK/Q(Λ̃(f̂i, l, St)N (�f̂i
)2

2 35 · 55 · 7 · 11 · 132 · 172 · 232 · 29 · 31/246 · D
4 37 · 53 · 72 · 11 · 13 · 172 · 23 · 29 · 31 · 173 · 443/239 · D
6 36 · 53 · 112 · 133 · 172 · 29 · 31 · 227 · 1381069/231 · D
8 39 · 55 · 7 · 11 · 132 · 172 · 23 · 29 · 31 · 21347 · 58169/222 · D
10 38 · 56 · 72 · 133 · 172 · 19 · 23 · 31 · 863 · 3673 · 3426433/217 · D
12 36 · 53 · 72 · 11 · 172 · 23 · 29 · 37 · 293 · 6912 · 33721 · 96875477/24 · D
14 27 · 38 · 54 · 73 · 11 · 132 · 17 · 232 · 292 · 31 · 467196139 · 541368271/D

16 225 · 314 · 54 · 7 · 11 · 13 · 17 · 23 · 292 · 312 · 67 · 1699 · 36172 · 296551/D

TABLE 1. Standard zeta values of the S-K lift of weight 20.

and z ∈ C. Furthermore, let E1,k(τ) be the Eisenstein
series of weight k with respect to Γ(1) defined in Sec-
tion 2, and put Ek(τ) = ζ(1 − k)−1E1,k(τ). Then it
is well known that Ea

4 (τ)E6(τ)bφj,1(τ, z), for a, b ≥ 0,
j = 10, 12, 4a + 6b + j = k, form a basis of Jcusp

k,1 . Let

A0 =
(

1 1/2
1/2 1

)
, A1 =

(
1 0
0 1

)
,

and

A2 =
(

2 1/2
1/2 2

)
.

Furthermore, we denote by �k(Γ(2))∗ the Maass subspace
of �k(Γ(2)).

We have dim�20(Γ(2)) = 3 and dim�38(Γ(1)) = 2.
Let f1, f2 be the basis of �38(Γ(1)) consisting of prim-
itive forms. For i = 1, 2 let λi = 48(−2025 +

√
D)

and 48(−2025 − √
D) with D = 63737521. Then λi are

the eigenvalues of T (2) with respect to fi. They satisfy
the equation X2 + 194400X2 − 137403408384 = 0, and
Q(fi) = Q(λi) = K with K = Q(

√
D) (cf. [Hida and

Maeda 97]). Put θi = λi/96. Then θi satisfies the equa-
tion g(X) := X2 + 2025X − 14909224 = 0.

The discriminant of g(X) is D. Thus the discrimi-
nant of Q(

√
D) is D, and the ring of integers in Q(

√
D)

is Z(θ1). Let h1(τ, z) = E4(τ)E6(τ)φ10,1(τ, z) and
h2(τ, z) = E4(τ)2φ12,1(τ, z). These form a basis of Jcusp

20,1 .
Put gi = Vhi for i = 1, 2. Then these form a basis of
�20(Γ(2))∗, whose A0th Fourier coefficient is 1. Further-
more, for i = 1, 2 put f̂i = −230g1 + (−4862 − θi)g2.

Then f̂i is the Saito–Kurokawa lift of fi, whose A0th
Fourier coefficient is af̂i

(A0) = −5092 − θi. We note

that we have f̂i = χ
(i)
20 /2 for i = 1, 2, where χ

(1)
20 and

χ
(2)
20 are the eigenforms in [Kurokawa 78]. Then we have

af̂i
(A1) = −10(4816 + θi).
Furthermore, we have λf̂i

(T (2)) = λi + 3 · 218. Then

NK/Q(af̂i
(A0)) = 22 · 34 · 5 · 19 · 23

and
NK/Q(af̂i

(A1)) = −25 · 3 · 52 · 23 · 2659.

By a simple computation we have N(�f̂i
) = 25 ·32 ·5 ·23.

Let Υ20 be the cuspidal Hecke eigenform in [Sko-
ruppa 92]. It is the unique (up to a constant) Hecke
eigenform in �20(Γ(2)) that is not a Saito–Kurokawa lift.
We note that Υ20 = χ

(3)
20 /2, where χ

(3)
20 is the Hecke

eigenform in [Kurokawa 78]. Then f̂1, f̂2, and Υ20 form
an orthogonal basis of �20(Γ(2)). We have �Υ20 = 1,
aΥ20(A0) = 1, and aΥ20(A1) = 22. Furthermore, we
have λΥ20(T (2)) = −28 · 32 · 5 · 73. Thus by Theorem 3.8,
we have the information contained in Tables 1 and 2.

We have dim �22(Γ(2)) = 4 and dim �42(Γ(1)) = 3.
Let f1, f2, f3 be the basis of �42(Γ(1)) consisting of prim-
itive forms. For i = 1, 2, 3 let λi be the eigenvalues of the
T (2) with respect to fi. Then they satisfy the equation

X3 + 344688X2 − 6374982426624X

− 520435526440845312 = 0,

and Q(fi) = Q(λi) (cf. [Hida and Maeda 97]). Put θi =
λi/48 for i = 1, 2, 3. Then θi is also an algebraic integer,
and it satisfies the following equation:

g(X) := X3 + 7181X2 − 2766919456X − 4705905729536

= 0.

l Λ̃(Υ20, l, St)

2 33 · 5 · 7 · 11 · 23 · 29 · 31/228

4 32 · 52 · 13 · 23 · 29 · 31 · 113/225

6 34 · 5 · 7 · 29 · 31 · 7549/217

8 33 · 5 · 72 · 11 · 29 · 31 · 37 · 4861/216

10 3 · 5 · 7 · 31 · 283 · 617 · 4098371/213

12 34 · 52 · 72 · 11 · 29 · 31 · 337 · 91909/26

14 24 · 34 · 72 · 13 · 29 · 12893 · 2166127
16 211 · 36 · 53 · 13 · 23 · 29 · 347162819

TABLE 2. Standard zeta values of Υ20.



74 Experimental Mathematics, Vol. 19 (2010), No. 1

The discriminant of g(X) is −210 ·34 ·52 ·72 ·1465869841 ·
578879197969.

Let

h1(τ, z) = E4(τ)3φ10,1(τ, z),

h2(τ, z) = E6(τ)2φ10,1(τ, z),

h3(τ, z) = E4(τ)E6(τ)φ12,1(τ, z).

Then these form a basis of Jcusp
22,1 . Put gi = Vhi for i =

1, 2, 3. Then these form a basis of �22(Γ(2))∗ whose A0th
Fourier coefficient is 1. Furthermore, for i = 1, 2, 3 put

f̂i = 1155(435776 + 31θi)g1 − 220(4760624 + 79θi)g2

+ (286270336− 60563θi + θ2
i )g3.

Then f̂i is the Saito–Kurokawa lift of fi whose A0th
Fourier coefficient af̂i

(A0) is −257745664− 42138θi+ θ2
i .

Then we have af̂i
(A1) = 10(395073536 − 64248θi + θ2

i )
and af̂i

(A2) = −352(−3767171584− 182733θi + θ2
i ). Let

θ = θ1, f̂ = f̂1, λ = λ1, and K = Q(f1). Put R1 =
1155(435776+31θ), R2 = −220(4760624+79θ), and R3 =
286270336−60563θ+θ2. For elements u1, u2, . . . , ur of K

we temporarily denote by 〈u1, u2, . . . , ur〉 the Z-module
generated by u1, u2, . . . , ur. Then

[
〈
1, θ, θ2

〉
: 〈R1, R2, R3〉] = 26 · 33 · 53 · 72 · 113 · 13 · 157

and

[〈R1, R2, R3〉 :
〈
af̂ (A0), af̂ (A1), af̂ (A2)

〉
] = 2834.

By observing the Fourier coefficients of h1(τ, z),
h2(τ, z), and h3(τ, z), we see that

det

⎛
⎝ ag1(A) ag1(B) ag1(C)

ag2(A) ag2(B) ag2(C)
ag3(A) ag3(B) ag3(C)

⎞
⎠

is divided by 2834 for any A, B, C ∈ H2(Z)>0. Thus
[〈R1, R2, R3〉 : �f̂ ] is divided by 2834.

Thus we have
〈
af̂ (A0), af̂ (A1), af̂ (A2)

〉
= �f̂ and

[〈R1, R2, R3〉 : �f̂ ] = 28 · 34.

Now using the “round 2 method,” we can find an element
η = (5984 + 5805θ + θ2)/10080 in �K such that 1, θ, η

form an integral basis of a p-maximal order of �K for
p = 2, 3, 5, 7 (cf. [Cohen 93]). We have

[〈1, θ, η〉 :
〈
1, θ, θ2

〉
] = 25 · 32 · 5 · 7,

and therefore the discriminant DK of K is not divis-
ible by 2 · 3 · 5 · 7. Thus, we have DK = −D with

D = 1465869841 ·578879197969 and �K = 〈1, θ, η〉. This
has also been examined with Magma by M. Kida. The
author thanks him for his kind help. Thus we have

N(�f̂ ) = 219 · 39 · 54 · 73 · 113 · 13 · 157.

Furthermore, we have

λf̂ (T (2)) = λ + 3 · 220,

NK/Q(af̂ (A0)) = −214 · 313 · 54 · 74 · 113 · 13 · 157 · 1213

and

NK/Q(af̂ (A1)) = −224 ·38 ·55 ·73 ·113 ·13 ·157 ·1447 ·2437.

Let Υ22 be the cuspidal Hecke eigenform in [Sko-
ruppa 92]. It is the unique (up to a constant) Hecke
eigenform in �22(Γ(2)) that is not a Saito–Kurokawa lift.
Then f̂1, f̂2, f̂3, and Υ22 form an orthogonal basis of
�22(Γ(2)) and Q(f̂i) = Q(fi). We note that

NKi/Q(Λ̃(f̂i, l, St))N(�f̂i
)2 = NK/Q(Λ̃(f̂ , l, St))N(�f̂ )2

for any i.
We have �Υ22 = 1, aΥ22(A0) = 1, and aΥ22(A1) =

−22 · 3. Furthermore, we have λΥ22(T (2)) = −28 · 3 · 5 ·
577. Thus by Theorem 3.8, we have the information in
Tables 3 and 4.

Finally, we offer some comments. First, observing
Tables 1 and 4, we note that prime factors of the lth
Bernoulli number and the norm of the algebraic part of
L(fi, l + k− 2)L(fi, l + k− 1) appear in the numerator of
NK/Q(Λ̃(f̂i, l, St)N(�f̂i

)2. For example, the prime factor
43867 of NK/Q(Λ̃(f̂i, 18, St)N(�f̂i

)2 in Table 3 is a prime
factor of the numerator of the 18th Bernoulli number,
and the prime factors 13553776667 and 365257 of it ap-
pear in the norm of the algebraic parts of L(fi, 38) and
L(fi, 39), respectively (cf. [Stein 04]). This is not so sur-
prising, because we have

L(f̂i, l, St) = ζ(l)L(fi, l + k − 2)L(fi, l + k − 1)

for fi ∈ �2k−2(Γ(1)).
Next we comment on our conjecture in [Katsurada 08].

Let f be a Hecke eigenform in �k(Γ(n)) and let M be a
subspace of �k(Γ(n)) stable under the Hecke operators
T ∈ L′

n. Assume that M is contained in (Cf)⊥, where
(Cf)⊥ is the orthogonal complement of Cf in �k(Γ(n))
with respect to the Petersson product. A prime ideal �
of �Q(f) is called a congruence prime of f with respect
to M if there exists a Hecke eigenform g ∈ M such that

λf (T ) ≡ λg(T ) mod �̃
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l NKi/Q(Λ̃(f̂i, l, St))N (�f̂i
)2

2 39 · 54 · 7 · 113 · 135 · 172 · 193 · 232 · 292 · 312 · 37/278 · D
4 312 · 52 · 74 · 112 · 133 · 172 · 192 · 292 · 312 · 37 · 151 · 1601 · 6551

×7951/269 · 1423 · D
6 312 · 59 · 113 · 133 · 172 · 192 · 23 · 292 · 312 · 37 · 137 · 809

×38029874887/257 · 7 · 1423 · D
8 39 · 5 · 75 · 11 · 134 · 172 · 192 · 232 · 29 · 312 · 37 · 84521 · 8947751

×699588169271/241 · 1423 · D
10 310 · 59 · 73 · 114 · 134 · 172 · 193 · 23 · 29 · 31 · 372

×1423469629 · 27864526583393/228 · 1423 · D
12 312 · 5 · 112 · 13 · 17 · 192 · 232 · 292 · 31 · 37 · 6913 · 953

×243911 · 4251563 · 6617174324030971171/210 · 7 · 1423 · D
14 26 · 312 · 55 · 78 · 113 · 134 · 172 · 192 · 23 · 292 · 312 · 37

×150197 · 318467 · 1465187 · 13894099 · 63630191/1423 · D
16 226 · 319 · 55 · 72 · 113 · 133 · 19 · 23 · 292 · 312 · 37 · 36173

×1465869841 · 2775014078857939 · 22683897890722493/1423 · D
18 259 · 325 · 515 · 11 · 132 · 172 · 192 · 23 · 292 · 312 · 372

×107 · 438673 · 365257 · 13553776667/1423 · D

TABLE 3. Standard zeta values of the S-K lift of weight 22.

l Λ̃(Υ22; l, St)

2 33 · 5 · 11 · 23 · 29 · 31 · 37/232

4 34 · 5 · 11 · 13 · 29 · 31 · 37 · 103 · 157/227 · 1423
6 36 · 11 · 29 · 31 · 372 · 485363/224 · 1423
8 32 · 29 · 31 · 37 · 149 · 3361493719/218 · 1423
10 33 · 5 · 11 · 37 · 89 · 1039 · 2741 · 3616027/215 · 1423
12 34 · 112 · 31 · 37 · 421 · 254725279909/28 · 1423
14 33 · 72 · 11 · 13 · 31 · 37 · 733 · 2131 · 82625047/2 · 1423
16 25 · 37 · 5 · 11 · 13 · 19 · 31 · 37 · 30293340159041/1423

18 216 · 38 · 52 · 7 · 13 · 17 · 31 · 37 · 101 · 439 · 1049 · 49991/1423

TABLE 4. Standard zeta values of Υ22.

for any T ∈ L′
n, where �̃ is some prime ideal of �Q(f)Q(g)

lying above �. If M = (Cf)⊥, we call � simply a congru-
ence prime of f

Now to explain our conjecture. For a normalized
Hecke eigenform f in �2k−2(Γ(1)) and a Dirichlet charac-
ter χ, let L(f, s, χ) be the Hecke L-function of f twisted
by χ defined by as follows:

L(f, s, χ) =
∞∑

m=1

af (m)χ(m)m−s.

In particular, if χ is the principal character, we write
L(f, s, χ) as L(f, s). Put Ω(+)

f = (2π
√−1)−1L(f, 1) and

Ω(−)
f = (2π

√−1)−2L(f, 2). For j = ±, 1 ≤ l ≤ 2k − 3

and a Dirichlet character χ such that χ(−1) = j(−1)l−1,
put

L(f, l, χ) =
(2π

√−1)−lΓ(l)L(f, l, χ)
Ω(j)

.

In particular, put L(f, l) = L(f, l, χ) if χ is the princi-
pal character. Then, in [Katsurada 08], we proposed the
following conjecture:

Conjecture 4.1. Let � be a prime ideal of Q(f) not di-
viding (2k − 1)!. Then � is a congruence prime of f̂ with
respect to (�k(Γ(2))∗)⊥ if and only if � divides the nu-
merator of L(f, k).
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We note that the “if” part of the above conjecture is
a special case of Harder’s conjecture [Harder 03].

Now look at Table 3. in this case, the prime number
1423 appears in the denominator of

NKi/Q(Λ̃(f̂i, l, St))N(�f̂i
)2

for l = 4, . . . , 18. We have

1423 = �i�
′
i

in �Q(fi), where

�i = 〈λi + 967, 1423〉

and
�′

i =
〈
λ2

i + 778λi + 660, 1423
〉
.

We have deg �i = 1 and deg �′
i = 2. Thus by [Kat-

surada 08, Theorem 5.2], �i is a congruence prime of f̂i,
and by a more careful analysis, we see that it is a con-
gruence prime of f̂i with respect to CΥ22. In fact, we
have

λf̂i
(T (2)) ≡ λΥ22(T (2)) mod �i.

Conversely, by a direct calculation, we see that there is
no other congruence prime greater than 43 of f̂i with
respect to CΥ22. On the other hand, according to the
numerical table in [Stein 04], we have

|NQ(f)/Q(L(f, 22))|

=
113 · 17 · 1423

223 · 318 · 510 · 13 · 29 · 31 · 372 · 137 · 7481
.

This implies that the conjecture in [Katsurada 08, Sec-
tion 6] is true in this case.

We note that the “if” part has been proved in
[Brown 07] and [Katsurada 08] independently under cer-
tain conditions.
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“p-adic Measures Attached to Siegel Modular Forms.” Ann.
Inst. Fourier 50 (2000), 1375–1443.

[Brown 07] J. Brown. “Saito–Kurokawa Lifts and Applica-
tions to the Bloch–Kato Conjecture.” Compositio Math.
143 (2007), 290–322.

[Cohen 93] H. Cohen. A Course in Computational Algebraic
Number Theory. New York: Springer, 1993.

[Eichler and Zagier 85] M. Eichler and D. Zagier. The Theory
of Jacobi Forms. Boston: Birkhäuser, 1985.
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