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We present a new method to approximate the Neumann spec-
trum of a Laplacian on a fractal K in the plane as a renormal-
ized limit of the Neumann spectra of the standard Laplacian
on a sequence of domains that approximate K from the out-
side. The method allows a numerical approximation of eigenval-
ues and eigenfunctions for lower portions of the spectrum. We
present experimental evidence that the method works by look-
ing at examples in which the spectrum of the fractal Laplacian
is known (the unit interval and the Sierpiński gasket). We also
present a speculative description of the spectrum on the stan-
dard Sierpiński carpet, where existence of a self-similar Lapla-
cian is known, and also on nonsymmetric and random carpets
and the octagasket, where existence of a self-similar Laplacian
is not known. At present we have no explanation as to why
the method should work. Nevertheless, we are able to prove
some new results about the structure of the spectrum involving
“miniaturization” of eigenfunctions that we discovered by ex-
amining the experimental results obtained using our method.

1. INTRODUCTION

Laplacians arise in many different mathematical con-
texts, three in particular that will interest us: mani-
folds, graphs, and fractals. There are connections relat-
ing these different types of Laplacians. Manifold Lapla-
cians may be obtained as limits of graph Laplacians for
graphs arising from triangulations of the manifold [Colin
de Verdière 98, Dodziuk and Patodi 76]. Kigami’s ap-
proach to constructing Laplacians on certain fractals,
such as the Sierpiński gasket (SG), also involves taking
limits of graph Laplacians for graphs that approximate
the fractal [Kigami 01, Strichartz 99, Strichartz 06]. In
this paper we present another connection, whereby we
approximate the fractal from without by planar domains
and then attempt to capture spectral information about
the fractal Laplacian from spectral information about the
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standard Laplacian on the domains. Thus we add an ar-
row to the following diagram:

graphs

������������

�����������

manifolds �� fractals

We should point out that the probabilistic approach to
constructing Laplacians on fractals also involves approxi-
mating from without, but in that case it is the stochastic
process generated by the Laplacian that is approximated,
so it is not clear how to obtain spectral information.

We may describe our method succinctly as follows.
Suppose we have a self-similar fractal K in the plane,
determined by the identity

K =
⋃

FiK, (1–1)

where {Fi} is a finite set of contractive similarities (called
an iterated function system, IFS). Choose a bounded
open set Ω whose closure contains K, and form the se-
quence of domains

Ω0 = Ω, Ωm =
⋃

FiΩm−1 for m ≥ 1. (1–2)

Consider the standard Laplacian Δ on Ωm with Neu-
mann boundary conditions (recall that such conditions
make sense even for domains with rough boundary). Let
{λ(m)

n } denote the eigenvalues in increasing order (re-
peated in case of nontrivial multiplicity) with eigenfunc-
tions {u(m)

n } (L2 normalized). So

−Δu(m)
n = λ(m)

n u(m)
n . (1–3)

Of course λm
0 = 0 with um

0 constant. We then hope to
find a renormalization factor r such that

lim
m→∞ rmλ(m)

n = λn (1–4)

exists and
lim

m→∞u(m)
n

∣∣
K

= un (1–5)

exists. (We have to be careful in cases of nontrivial mul-
tiplicity, and we may have to adjust u

(m)
n by a minus sign

in general.) If this is the case, then we may simply define
a self-adjoint operator Δ on K by

−Δun = λnun. (1–6)

Of course we would also like to identify Δ with a pre-
viously defined Laplacian, if such is possible, or at least
show that Δ is a local operator satisfying some sort of
self-similarity.

This may seem like wishful thinking, but it is not im-
plausible. After all, many other types of structures on
fractals can be obtained as limits of structures on Ωm, so
why not a Laplacian? After reading this paper, we hope
the reader will agree that there is considerable evidence
that this method should work in many cases. We leave
to the future the challenge of describing exactly when it
works, and why.

We note one great advantage of our method: it not
only approximates the Laplacian, but it gives informa-
tion about the spectrum. Other methods of constructing
Laplacians on fractals do not yield spectral information
directly. Of course, not all spectral information is im-
mediately available. In particular, asymptotic informa-
tion must be lost, since we know from Weyl’s law that
λ

(m)
n = O(n) for each fixed m, but for fractals’ Laplacians

this is not the case. This means, in particular, that the
limit (1–4) is not uniform in n. To get information about
λn for large n requires taking a large value for m. In prac-
tice, our numerical calculations get stuck around m = 4.
So we see only an approximation to a segment at the
bottom of the spectrum. But this is already enough to
reveal aspects of the spectrum that are provable. Briefly,
if the fractal has a nontrivial finite group of symmetries,
then every Neumann eigenfunction can be miniaturized,
and so there is an eigenvalue renormalization factor R

such that if λ is an eigenvalue then so is Rλ. The argu-
ment for this works for the approximating domains and
also for a self-similar Laplacian on the fractal. (In fact,
the argument could be presented on the fractal alone,
so its validity is independent of the validity of the outer
approximation method, but in fact it was discovered by
examining the experimental data!)

So what is the evidence for the validity of the outer
approximation method? First we show that it works for
the case that K is the unit interval (embedded in the
x-axis in the plane). In this case we can take F0(x, y) =(

1
2x, 1

2y
)

and F1(x, y) =
(

1
2x + 1

2 , 1
2y

)
. If we take Ω to

be the unit square, then we can compute the spectra of
Ωm (rectangles) and verify everything by hand (r = 1
in this case). We do this in Section 2, where we also
look at different choices of Ω, producing sawtooth-shaped
domains, whose spectra are computed numerically.

In Section 3 we look at the case of SG, where the
spectrum is known exactly. Here we see numerically how
the spectra of the approximating domains approach the
known spectra. This computation shows that the accu-
racy falls off rapidly as n increases. We are also able
to compare the eigenfunctions of the approximating do-
mains with the known eigenfunctions on SG. In this case
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it is natural to take Ω to be a triangle containing SG
in its interior, since this yields connected domains Ωm.
We examine how the size of the overlap influences the
spectra. After the work reported in Section 3 was com-
pleted, a different approach to outer approximation on
SG was studied in [Blasiak et al. 08]. In particular,
different methods for choosing approximating domains
are used, and a whole family of different Laplacians is
studied.

In Section 4 we examine numerical data for some frac-
tals for which very little had been known about the spec-
trum of the Laplacian, and in some cases where even the
existence of a Laplacian is unknown. These examples
fall outside of the postcritically finite (PCF) category de-
fined in [Kigami 01]. The first example is the standard
Sierpiński carpet SC (cut out the middle square in tic-
tac-toe and iterate). Here it is known that a self-similar
Laplacian exists [Barlow 95], but the construction is in-
direct, and uniqueness is not known. (After this work
was completed, uniqueness was established in [Barlow
et al. 08].) But we also examine some nonsymmetric
variants of SC for which the existence of a Laplacian is
unknown. We also examine a symmetric fractal, the oc-
tagasket, where existence of a Laplacian is unknown. In
all cases the spectra of the approximating regions appear
to converge when appropriately renormalized. We can
identify features of the spectrum, such as multiple eigen-
values and eigenvalue renormalization factors R, and we
produce rough graphs of eigenfunctions on the fractal. In
particular, there is no discernible difference between the
behavior in the case of the standard SC and the other
examples.

In Section 5 we describe the miniaturization process
that produces the eigenvalue renormalization factor. For
this to work we need a dihedral group of symmetries of
the fractal. We deal only with the examples at hand, but
it is clear that it works quite generally (we also explain
how it works on the square). For the approximating re-
gions, this shows how R′λ(m)

n shows up in the spectrum
on Ωm+1 (the factor R′ is not the same as R).

In Section 6 we examine numerical data of randomly
constructed variants of SC, where the existence of Lapla-
cians is unknown. To make these carpets, we modify the
construction of SC. We fix the number of squares cut
out at each recursive step, but we randomly determine
which squares are removed. Then, we achieve connected
domains Ωm with a suitable change to the above algo-
rithm and properly chosen parameters. Here we again
see convergence of normalized eigenvalues. These ran-
dom carpets are related to the Mandelbrot percolation

process. See [Chayes et al. 88] and [Broman and Camia
08], for example.

How do we compute the spectrum of the Laplacian
on the approximating domain? We use a finite-element-
method solver, Matlab’s pdeeig function. To do this
we need only describe the geometry of the polygonal do-
main Ωm. Then we either choose a triangulation (ex-
clusive to Section 6) or let Matlab’s triangulation func-
tions decsg and initmesh produce a triangulation and
then use piecewise linear splines in the finite-element
method. Note that it would be preferable to use higher-
order splines, at least piecewise cubic, since these in-
crease accuracy dramatically for a fixed memory space
and running time. As a concession, all of our triangula-
tions may be further refined with the refinemesh func-
tion. The advantage of automating the triangulation is
that it saves a tremendous amount of work; in partic-
ular, it chooses nonregular triangulations that increase
accuracy. The disadvantage is that the program usually
does not pick a triangulation with the same symmetry as
the domain. This means that the eigenspaces that have
nontrivial multiplicity in the domain end up being split
into clusters of eigenspaces with eigenvalues close but not
quite equal. Since much of the structure of the spectrum
we are trying to observe has to do with multiplicities, this
forces us to make ad hoc judgments as to when we have
close but unequal eigenvalues versus multiple eigenvalues.

Why do we deal exclusively with Neumann spectra?
The main reason is that Neumann boundary conditions
on the approximating domains appear to lead to Neu-
mann boundary conditions for the Laplacian on the frac-
tal in the case of the interval and SG, while at the same
time Dirichlet boundary conditions on the approximat-
ing domains do not lead to Dirichlet boundary conditions
for the Laplacian on the fractal. For example, in the case
of the interval you would need to use a mix of Dirichlet
and Neumann boundary conditions on different portions
of the boundary. It is not at all clear what to do for other
fractals. Indeed, for SC it is not even clear what to choose
for the boundary. The advantage of Neumann boundary
conditions is that one can dispense with all notions of
boundary, and define eigenfunctions simply as stationary
points of the Rayleigh quotient with no boundary restric-
tions. All our programs, as well as further numerical data
are available online.1

Finally, we note that [Kuchment and Zeng 01] consid-
ers similar outer approximations in the context of quan-
tum graphs.

1At www.math.cornell.edu/∼thb9d and www.math.cornell.edu/
∼smh82.
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2. THE UNIT INTERVAL

For the unit interval I with the second derivative as
Laplacian, the Neumann eigenfunctions are cosnπx with
eigenvalues (πn)2. If we take Ω to be the unit square,
then Ωm is the rectangle [0, 1] × [0, 2−m], with Neu-
mann eigenfunctions cosnπx cos 2mkπy and eigenvalues
(πn)2 + (π2mk)2. If we restrict attention to a fixed bot-
tom segment of the spectrum, we will see eigenvalues with
k = 0 just for m large enough (specifically, eigenvalues
up to L, for L ≤ (π2m)2). So λ

(m)
n = λn exactly for large

enough m. Of course, the corresponding eigenfunctions
restricted to the interval give the exact eigenfunctions of
the Laplacian on the interval. Note that for each m there
are many other eigenfunctions on Ωm (those with k �= 0),
but they are “blown away” in the limit. A similar anal-
ysis holds if we start with Ω equal to any rectangle with
sides parallel to the axes. Note that we do not have to
renormalize the spectrum, or equivalently, we can take
r = 1 in (1–4).

We also note how other structures on I may be ap-
proximated from corresponding structures on Ωm. For
example, Lebesgue measure on I is the limit of Lebesgue
measure on Ωm suitably renormalized in the sense that

lim
m→∞ 2m

∫∫
Ωm

u(x, y) dx dy =
∫ 1

0

u(x, 0) dx (2–1)

if u(x, y) is continuous on Ω (the result is independent
of the continuous extension u(x, y) to Ω of u(x, 0) on
I). A similar result holds for energy, provided we use
the minimum energy extension. In other words, given
f ∈ H1(I), let u be the minimum energy function with
u(x, 0) = f(x). Then

lim
m→∞ 2m

∫∫
Ωm

|∇u(x, y)|2 dx dy =
∫ 1

0

|f ′(x)|2 dx.

(2–2)
In order to see this we expand f in a Fourier cosine series

f(x) =
∞∑

k=0

ak cosπnx, (2–3)

for which we have∫ 1

0

|f ′(x)|2 dx =
1
2

∞∑
k=1

(πk)2 |ak|2 . (2–4)

The minimum-energy extension to Ωm is easily seen to
be

u(x, y) = a0 +
∞∑

k=1

ak cosπkx
cosh 2πk(2−m − y)

coshπk2−m
(2–5)

with∫
Ωm

|∇u(x, y)|2 dx dy =
∞∑

k=1

|ak|2 πk

(
sinh 2πk2−m

4 cosh2 πk2−m

)
.

(2–6)
Then (2–2) follows from (2–4) and (2–6). Note that

we obtain the same result if we use the simpler extension
u(x, y) = f(x), although this extension does not mini-
mize energy. (The energy-minimizing extension must be
harmonic on the interior and satisfy Neumann boundary
conditions on the portion of the boundary of Ωm disjoint
from I, and this explains (2–5).) We also have a bilinear
version: Let

EI(f, g) =
∫ 1

0

f ′(x)g′(x) dx (2–7)

and
Em(u, v) =

∫
Ωm

(∇u · ∇v) dx dy. (2–8)

If um and vm denote the minimum-energy extensions of
f and g to Ωm, then

lim
m→∞ 2mEm(um, vm) = EI(f, g). (2–9)

We can use this to “define” a Laplacian on I via the weak
formulation

EI(f, g) = −
∫ 1

0

f ′′(x)g(x) dx (2–10)

if g vanishes at 0 and 1. By the usual Gauss–Green
formula,

Em(um, vm) =
∫

∂Ωm

(∂num)vm, (2–11)

and ∂num = 0 on all of ∂Ωm except I, where ∂num =
− ∂

∂y um, so

Em(um, vm) = −
∫ 1

0

(
∂um

∂y

)
g dx. (2–12)

Combining (2–9), (2–10), and (2–12) yields, at least for-
mally,

f ′′(x) = lim
m→∞ 2m ∂um

∂y
(x, 0). (2–13)

We can verify this by differentiating (2–5) directly (as-
suming that f is smooth enough) to obtain

∂um

∂y
(x, 0) = −

∞∑
k=1

(πk)2ak cosπkx

(
πk sinh 2πk2−m

coshπk2−m

)
(2–14)
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FIGURE 1. Sawtooth eigenfunctions, m = 2.
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FIGURE 2. Almost localized sawtooth eigenfunction, m = 2.

and taking the limit to obtain

lim
m→∞ 2m ∂um

∂y
(x, 0) = −

∞∑
k=1

(πk)2ak cosπkx, (2–15)

and this is the same value for f ′′(x) that we obtain by
differentiating (2–3) directly.

For a less-trivial example we need only take a geo-
metrically more interesting Ω. In particular, let Ω be a
triangle with vertices (−ε, 0), (1 + ε, 0), and

(
1
2 , h

)
for

some choice of positive parameters ε and h. Then Ωm

is a sawtooth region with 2m teeth, maximum height
2−mh, and overlaps of length 2−mε. It is infeasible to
compute the Neumann spectrum of the Ωm exactly, so
we use numerical methods. In Tables 1 and 3 we present
the eigenvalues for several choices of parameters and level
m = 2, 3, 4 (we also vary the number of refinements used
in the FEM approximation). Actually, the computations
are done for a similar image of Ωm so that the base is
exactly I, but this makes no difference in the limit. The
evidence suggests that we get c(ε, h) d2

dx2 in the limit for
some constant that depends on the parameters.

In Tables 2 and 4 we present the same data, but we
normalize by dividing λ

(m)
n by λ

(m)
1 . This enables us to

compare the normalized eigenvalues with the expected
values n2. Note that with level m = 5 we see about a 1%
deviation already at n = 6.

In Figure 1 we show some graphs of eigenfunctions
on Ωm that approximate eigenfunctions on I. In Fig-
ure 2 we show the graph of an eigenfunction on Ω2 that
does not approximate an eigenfunction on I. Indeed, this
eigenfunction appears to be almost localized to one of the
teeth. This phenomenon is discussed in [Heilman and

Strichartz 10]. Unfortunately, we do not know whether
we can define energy on I via (2–2) for a sawtooth re-
gion approximation. Indeed, we have no idea what the
minimum-energy extension looks like.

There is yet another outer approximation approach to
I, in which we regard it as the bottom line in SG. So we
take Ω = SG and Ωm+1 = F1Ωm

⋃
F2Ωm. Then Ωm is

a fractafold in the sense of [Strichartz 03] consisting of
2m cells of level m along the bottom of SG. The bottom
2m Neumann eigenfunctions of the fractal Laplacian on
Ωm are obtained by the method of spectral decimation
as follows. Fix a parameter j satisfying 0 ≤ j < 2m.
Let xk = k

2m for 0 ≤ k ≤ 2m denote the points along I

where the cells of Ωm intersect, and let yk for 1 ≤ k ≤ 2m

denote the top vertices of the cells (so cell number k has
vertices xk−1, xk, yk). Then uj restricted to these points
is defined by

uj(xk) =
1
2
(cosπjxk + cosπjxk+1),

uj(yk) = cosπjxk.
(2–16)

One can check that for a graph Laplacian Δm on the
graph {xk, yk} we have

−Δmuy =
(

2 − 2 cos
πj

2m

)
uj (2–17)

with the appropriate Neumann conditions at the bound-
ary points x0, x2m. Let

φ−(t) =
5 −√

25 − 4t

2
(2–18)

and
Φ(t) = lim

n→∞ 5nφ
(n)
− (t), (2–19)

where φ
(n)
− (t) denotes n-fold composition. In particular,

Φ is a smooth function with Φ(0) = 0 and Φ′(0) = 1.
Then the method of spectral decimation (see [Strichartz
06] for a detailed explanation) says that uj may be ex-
tended to eigenfunctions of the fractal Laplacian on Ωm

with eigenvalue

λ
(m)
j =

3
2

lim
n→∞ 5m+nφ

(n)
−

(
2 − 2 cos

πj

2m

)
(2–20)

=
3
2
5mΦ

(
2 − 2 cos

πj

2m

)
.

Now observe that 2 − 2 cos πj
2m ≈ ( πj

2m )2 for large m, so

lim
m→∞

(
4
5

)m

λ
(m)
j =

3
2
(πj)2. (2–21)

Of course, (πj)2 is the correct eigenvalue for the eigen-
function cosπjx on I, which is clearly the limit of uj as
u → ∞.
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Level 2 2 2 2 3 3 3 3 4 4 4 4
Ref. 1 2 3 4 1 2 3 4 1 2 3 4

n
1 4.905 4.823 4.790 4.777 4.868 4.789 4.756 4.743 4.828 4.749 4.717 4.703
2 17.980 17.662 17.535 17.483 19.097 18.782 18.655 18.602 19.218 18.903 18.776 18.724
3 33.418 32.790 32.53 32.436 41.513 40.808 40.525 40.408 42.900 42.191 41.906 41.787
4 246.809 243.909 243.176 242.991 69.950 68.724 68.232 68.029 75.398 74.140 73.635 73.425
5 246.809 243.910 243.176 242.991 100.984 99.165 98.436 98.134 116.012 114.066 113.283 112.958
6 248.850 246.991 246.524 246.407 129.818 127.424 126.463 126.064 163.836 161.053 159.935 159.471
7 250.833 248.743 248.218 248.087 150.737 147.863 146.713 146.238 217.674 213.915 212.408 211.783
8 253.564 251.508 250.992 250.863 959.592 952.139 950.177 949.677 276.002 271.161 269.220 268.417
9 337.235 332.179 330.654 330.157 959.592 952.139 950.177 949.677 336.966 330.967 328.563 327.569

10 389.324 382.371 380.228 379.513 970.250 963.501 961.797 961.369 398.337 391.162 388.285 387.094

TABLE 1. Sawtooth unnormalized eigenvalues, built with equilateral triangles. Equilateral triangles sawtooth region
(height determined by requirement that triangles be equilateral; overlaps set to (2−m)/10) (Ref. = Refinement).

Level 2 2 2 2 3 3 3 3 4 4 4 4
Ref. 1 2 3 4 1 2 3 4 1 2 3 4

n
1 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
2 3.665 3.662 3.661 3.660 3.923 3.922 3.922 3.922 3.981 3.981 3.981 3.981
3 6.813 6.798 6.793 6.790 8.527 8.522 8.520 8.519 8.886 8.885 8.884 8.884
4 50.316 50.570 50.764 50.870 14.368 14.352 14.345 14.343 15.618 15.613 15.612 15.611
5 50.316 50.570 50.764 50.870 20.742 20.709 20.695 20.690 24.030 24.021 24.017 24.016
6 50.732 51.209 51.463 51.585 26.665 26.610 26.588 26.578 33.936 33.916 33.908 33.905
7 51.136 51.572 51.816 51.936 30.962 30.878 30.845 30.832 45.088 45.048 45.033 45.027
8 51.693 52.145 52.395 52.518 197.104 198.834 199.766 200.222 57.170 57.104 57.078 57.068
9 68.750 68.871 69.025 69.118 197.104 198.834 199.766 200.222 69.797 69.698 69.659 69.644

10 79.370 79.277 79.374 79.450 199.293 201.207 202.209 202.687 82.510 82.375 82.321 82.299

TABLE 2. Sawtooth normalized eigenvalues, built with equilateral triangles. Equilateral triangles sawtooth region (height
determined by requirement that triangles be equilateral; overlaps set to (2−m)/10) (Ref. = Refinement).

Level 2 2 2 2 3 3 3 3 4 4
Height 0.100 0.010 0.001 0.0005 0.100 0.010 0.001 0.0005 0.100 0.010

Ref. 2 2 2 2 2 2 2 2 2 2
n
1 6.256 7.155 7.550 8.017 5.093 6.996 7.229 7.326 3.836 6.782
2 23.467 26.916 29.096 31.996 20.023 27.616 28.606 29.123 15.210 27.041
3 45.256 52.154 56.017 60.827 43.675 60.656 63.040 64.508 33.701 60.510
4 294.835 327.674 331.873 333.511 73.960 103.746 108.178 111.071 58.625 106.725
5 319.781 356.983 368.346 377.480 107.475 152.707 159.642 163.925 89.037 164.994
6 388.559 435.688 465.781 504.639 139.164 200.594 210.056 214.981 123.691 234.348
7 478.443 535.783 582.431 651.190 162.497 237.152 248.566 253.227 161.172 313.478
8 696.381 851.228 1007.893 1106.376 1017.767 1277.229 1293.087 1295.630 199.921 400.647
9 766.306 930.457 1254.199 1439.666 1027.972 1304.205 1326.104 1331.648 238.235 493.580

10 890.920 1092.418 1677.158 1068.070 1393.716 1422.250 1432.226 274.559 589.334

Level 4 4 5 5 5 4 4 4 4 5
Height 0.001 0.0005 0.100 0.010 0.001 0.100 0.010 0.001 0.0005 0.001

Ref. 2 2 2 2 2 3 3 3 3 3
n
1 7.060 7.155 2.867 6.341 6.981 3.795 6.768 7.011 7.061 6.931
2 28.154 28.543 11.388 25.345 27.902 15.046 26.987 27.957 28.160 27.704
3 63.022 63.921 25.325 56.948 62.698 33.341 60.387 62.567 63.035 62.251
4 111.207 112.857 44.286 101.047 111.258 58.004 106.506 110.372 111.227 110.461
5 172.017 174.690 67.757 157.493 173.423 88.094 164.649 170.667 172.045 172.175
6 244.478 248.465 95.054 226.090 248.988 122.397 233.848 242.467 244.511 247.185
7 327.260 332.860 125.431 306.595 337.691 159.508 312.794 324.432 327.290 335.229
8 418.579 426.082 158.038 398.709 439.215 197.867 399.751 414.783 418.596 435.987
9 516.082 525.745 192.104 502.074 553.181 235.820 492.443 511.178 516.074 549.076

10 616.709 628.727 226.653 616.269 679.138 271.805 587.934 610.581 616.660 674.045

TABLE 3. Sawtooth unnormalized eigenvalues. Eigenvalue data for sawtooth regions with different parameters (Ref. =
Refinement).
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Level 2 2 2 2 3 3 3 3 4 4
Height 0.100 0.010 0.001 0.0005 0.100 0.010 0.001 0.0005 0.100 0.010

Refinement 2 2 2 2 2 2 2 2 2 2
n
1 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
2 3.751 3.762 3.854 3.991 3.931 3.947 3.957 3.975 3.965 3.987
3 7.234 7.289 7.419 7.587 8.575 8.670 8.721 8.805 8.786 8.922
4 47.131 45.799 43.955 41.602 14.521 14.829 14.965 15.160 15.283 15.737
5 51.119 49.895 48.786 47.086 21.102 21.827 22.084 22.375 23.211 24.328
6 62.113 60.896 61.690 62.948 27.323 28.671 29.059 29.343 32.245 34.554
7 76.481 74.886 77.140 81.228 31.905 33.897 34.386 34.564 42.015 46.222
8 111.320 118.976 133.491 138.007 199.828 182.557 178.882 176.844 52.117 59.075
9 122.498 130.049 166.113 179.581 201.832 186.413 183.449 181.760 62.105 72.778

10 142.418 152.687 222.132 209.704 199.207 196.750 195.488 71.574 86.896

Level 4 4 5 5 5 4 4 4 4 5
Height 0.001 0.0005 0.100 0.010 0.001 0.100 0.010 0.001 0.0005 0.001

Refinement 2 2 2 2 2 3 3 3 3 3
n
1 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
2 3.988 3.989 3.973 3.997 3.997 3.965 3.987 3.987 3.988 3.997
3 8.927 8.933 8.834 8.980 8.981 8.786 8.922 8.924 8.927 8.981
4 15.752 15.773 15.448 15.935 15.937 15.285 15.736 15.742 15.752 15.936
5 24.366 24.414 23.636 24.836 24.842 23.214 24.326 24.342 24.365 24.840
6 34.630 34.725 33.158 35.654 35.666 32.253 34.550 34.583 34.627 35.661
7 46.356 46.520 43.754 48.349 48.373 42.032 46.214 46.274 46.350 48.364
8 59.291 59.548 55.128 62.875 62.915 52.140 59.061 59.161 59.281 62.900
9 73.102 73.477 67.011 79.175 79.240 62.140 72.756 72.909 73.085 79.215

10 87.356 87.870 79.063 97.184 97.283 71.623 86.864 87.087 87.330 97.245

TABLE 4. Sawtooth normalized eigenvalues. Eigenvalue data for sawtooth regions with different parameters.

3. THE SIERPIŃSKI GASKET

Let {q0, q1, q2} denote the vertices of a unit-length equi-
lateral triangle in the plane, and let Fix = 1

2 (x + qi) for
i = 0, 1, 2. Then SG is the invariant set for this IFS. We
take Ω to be the equilateral triangle dilated by a factor
1 + ε. Then Ωm is a union of 3m triangles of size 2−m

that overlap in triangles of size (1 + ε)2−m.
In Tables 5 and 6 we present the same data as in Ta-

bles 1 through 4 for this example. The multiplicities and
normalized eigenvalues agree with the known values for
the Neumann spectrum of the standard Laplacian on SG
[Strichartz 03]. For example, the first six distinct nor-
malized eigenvalues on SG are 1, 5, 8.103, 10.305, 25,
31.784.

So the numerical accuracy improves as we decrease
ε, but the error remains significant. (Much better ac-
curacy is achieved in [Blasiak et al. 08].) Nevertheless,
the qualitative features of the spectrum, including high
multiplicities and large gaps, are already apparent. In
Figure 3 we show some graphs of eigenfunctions. Actual
graphs of Dirichlet eigenfunctions on SG may be found
in [Dalrymple et al. 99].

In this case we know the eigenfunction renormaliza-
tion factor R = 5, so we expect r = 1.25 in (1–4). The
data are not inconsistent with this expectation, but it is
impossible to deduce these values from the data alone.

We also look at the case ε = 0, where the 3m triangles
in Ωm intersect at single points. Thus the interior of Ωm

consists of 3m disjoint triangles, and if we interpreted
the Neumann Laplacian on Ωm in the usual way, the
spectrum would just be 3m copies of the spectrum of Ω.
This is nothing like the spectrum of SG, and also it is not
what we get when we use the FEM. The reason is that
the spline space chosen consists of continuous functions,
and this effectively couples the disjoint triangles at their
junction points.

Effectively this means that we are not looking at the
entire Sobolev space H1(Ωm), but only the subspace
H1

0 (Ωm) defined to be the closure of continuous functions
in H1(Ωm) in the Sobolev norm. In fact, functions in
H1

0 (Ωm) do not have to be continuous (or even bounded),
since H1 does not embed in continuous functions on R

2.
They do have to satisfy some integral continuity condi-
tion (see [Strichartz 67] for analogous results for H1/2

on a half-line). The conclusion is that the Neumann
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Sierpiński gasket eigenvalue data
Level 2 2 2 2 2 3 3 3 3 4 5
Ref. 0 1 2 3 4 0 1 2 3 0 0

n
1 5.0727 4.8920 4.8223 4.7946 4.7832 4.1689 4.0255 3.9697 3.9473 3.3372 2.6327
2 5.0729 4.8924 4.8226 4.7948 4.7833 4.1690 4.0255 3.9697 3.9473 3.3376 2.6333
3 20.6394 19.9346 19.6622 19.5531 19.5080 18.2283 17.6218 17.3890 17.2965 15.0372 12.2130
4 20.6560 19.9498 19.6783 19.5698 19.5251 18.2452 17.6387 17.4059 17.3134 15.0492 12.2253
5 20.6657 19.9529 19.6796 19.5704 19.5254 18.2457 17.6389 17.4060 17.3135 15.0518 12.2256
6 35.4198 34.0098 33.4700 33.2558 33.1678 32.1806 31.0512 30.6141 30.4394 26.2223 20.8931
7 35.4331 34.0165 33.4733 33.2574 33.1685 32.1839 31.0522 30.6144 30.4394 26.2245 20.8956
8 43.3830 41.5793 40.8896 40.6160 40.5037 41.3292 39.8556 39.2856 39.0578 33.7524 26.8513
9 271.4544 266.9576 265.7778 265.4780 265.4017 83.0086 80.1965 79.1253 78.7016 71.6959 58.5692

10 271.5749 266.9740 265.7838 265.4848 265.4100 83.0336 80.2024 79.1260 78.7019 71.6980 58.5772

TABLE 5. SG unnormalized eigenvalues. (Ref. = Refinement).

Sierpiński gasket eigenvalue data
Level 2 2 2 2 2 3 3 3 3 4 5
Ref. 0 1 2 3 4 0 1 2 3 0 0

n
1 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
2 1.0000 1.0001 1.0001 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0001 1.0002
3 4.0687 4.0750 4.0773 4.0781 4.0784 4.3724 4.3775 4.3805 4.3819 4.5059 4.6390
4 4.0720 4.0781 4.0807 4.0816 4.0820 4.3764 4.3817 4.3847 4.3862 4.5095 4.6437
5 4.0739 4.0787 4.0809 4.0818 4.0820 4.3766 4.3818 4.3847 4.3862 4.5103 4.6437
6 6.9824 6.9522 6.9407 6.9361 6.9342 7.7191 7.7136 7.7120 7.7115 7.8575 7.9360
7 6.9850 6.9535 6.9414 6.9364 6.9343 7.7199 7.7139 7.7121 7.7115 7.8582 7.9370
8 8.5522 8.4995 8.4793 8.4712 8.4678 9.9136 9.9008 9.8964 9.8949 10.1139 10.1992
9 53.5124 54.5705 55.1142 55.3701 55.4858 19.9112 19.9221 19.9324 19.9381 21.4837 22.2469

10 53.5361 54.5739 55.1155 55.3715 55.4876 19.9172 19.9236 19.9326 19.9382 21.4843 22.2499

Spectral decimation eigenvalues
Level Actual Actual
Ref. normalized unnormalized

n
1 1.0000 27.1144
2 1.0000 27.1144
3 5.0000 135.5721
4 5.0000 135.5721
5 5.0000 135.5721
6 8.1039 219.7332
7 8.1039 219.7332
8 10.3056 279.4291
9 25.0000 677.8606

10 25.0000 677.8606

TABLE 6. SG normalized eigenvalues. (Ref. = Refinement).

Level 1 1 1 2 2 2 3 3 4 4
Ref. 2 3 4 2 3 4 3 4 3 4

n
1 3.650 3.113 2.713 3.689 3.103 2.677 2.773 2.364 2.687 2.224
2 3.721 3.164 2.752 3.689 3.103 2.677 2.773 2.364 2.687 2.224
3 70.334 70.221 70.193 17.179 14.285 12.220 13.684 11.644 13.409 11.091
4 70.356 70.227 70.195 17.179 14.285 12.220 13.684 11.644 13.409 11.091
5 70.362 70.228 70.195 17.179 14.285 12.220 13.684 11.644 13.409 11.091
6 82.579 80.476 79.025 25.961 21.402 18.196 21.944 18.643 21.699 17.941
7 82.850 80.663 79.163 25.961 21.402 18.196 21.944 18.643 21.699 17.941
8 96.289 91.743 88.598 31.117 25.509 21.604 27.689 23.498 27.564 22.783
9 212.039 210.923 210.645 282.881 281.270 280.869 63.390 53.398 66.354 54.735

10 235.397 230.816 227.972 282.881 281.270 280.869 63.390 53.398 66.354 54.735

TABLE 7. Sierpiński gasket, no overlap, unnormalized. (Ref. = Refinement).
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FIGURE 3. Sierpiński gasket (SG) eigenfunctions, level 3.

Level 1 1 1 2 2 2 3 3 4 4
Refinement 2 3 4 2 3 4 3 4 3 4

n
1 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
2 1.019 1.016 1.014 1.000 1.000 1.000 1.000 1.000 1.000 1.000
3 19.268 22.557 25.875 4.657 4.604 4.564 4.935 4.925 4.990 4.987
4 19.274 22.559 25.876 4.657 4.604 4.564 4.935 4.925 4.990 4.987
5 19.275 22.559 25.876 4.657 4.604 4.564 4.935 4.925 4.990 4.987
6 22.622 25.851 29.131 7.037 6.897 6.796 7.914 7.886 8.075 8.067
7 22.697 25.911 29.182 7.037 6.897 6.796 7.914 7.886 8.075 8.067
8 26.378 29.470 32.660 8.435 8.221 8.069 9.986 9.939 10.257 10.244
9 58.087 67.754 77.650 76.680 90.646 104.909 22.861 22.586 24.692 24.612

10 64.486 74.144 84.038 76.680 90.646 104.909 22.861 22.586 24.692 24.612

TABLE 8. Sierpiński gasket, no overlap, normalized.
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eigenvalues (and eigenfunctions) that the FEM approx-
imates are the stationary values (and associated func-
tions) for the Rayleigh quotient

R(u) =

∫
Ωm

|∇u|2 dx∫
Ωm

|u|2 dx
(3–1)

for some u ∈ H1
0 (Ωm). Of course, some of these

eigenfunctions restrict to Neumann eigenfunctions on
each triangle in Ωm and are continuous functions at
the junction points, but it is easy to see that there
are not enough of these (in fact, the smallest such
eigenvalue must be of order of magnitude 4m). We
claim that all of the other eigenfunctions have poles at
some junction points. Indeed, consider the restriction of
an eigenfunction to a triangle. Because it is a Neumann
eigenfunction, it must have vanishing normal derivatives
along the side of the triangle. Choose a vertex of the
triangle and reflect the eigenfunction evenly six times
around.

This yields an eigenfunction in a deleted neighbor-
hood of the vertex. The removable singularities theo-
rem yields the following dichotomy: either the function
is unbounded or it satisfies the eigenvalue equation at
the vertex. If it satisfies the eigenvalue equation at all
three vertices of the triangle, then the restriction to the
triangle is a Neumann eigenvalue, contrary to our as-
sumption. It is not difficult to see that the singularities
must be logarithmic poles.

With this in mind, we look at the eigenvalue data in
Tables 7 and 8. In contrast to our preceding computa-
tions, we do not see an apparent convergence of eigen-
values on a fixed Ωm when we increase the refinement
of the triangulation. In particular, the numerical values
in Table 8 are even better than the data in Table 6. In
other words, the poor approximations by the FEM to the
actual eigenvalues on Ωm yield very good approximations
to the relative eigenvalues on SG. We can even extract
rather decent estimates for r = 1.25 from the data in Ta-
ble 7 if we pair off corresponding refinements at different
levels. For example, if we compute λ

(3)
n /λ

(4)
n using three

refinements on level 3 and four refinements on level 4,
then the first six distinct eigenvalues yield ratios 1.246,
1.233, 1.223, 1.158, 1.128, 1.112.

Of course, the eigenfunctions on Ωm cannot approx-
imate the eigenfunctions on SG, since the latter are
bounded. Since we are already getting more information
than we deserve, we might speculate that the eigenfunc-
tion approximation might be accurate in the complement
of a small neighborhood of the junction points.

4. NON-PCF FRACTALS

Our first example is the octagasket, generated by eight
contractive homotheties with contraction ratio 1−√

2/2
and fixed points {qi} the vertices of a regular octagon.
Then the consecutive images FiK and Fi+1K intersect
along a Cantor set. As yet, there has been no construc-
tion of a self-similar Laplacian on this fractal, although
it is reasonable to expect that the probabilistic methods
in [Barlow 95] will work, given the high symmetry in this
example.

It is natural to approximate from without by taking Ω
to be the interior of the octagon with vertices {qi}. Then
Ωm consists of the interior of the union of 8m octagons
that meet along edges.

In Table 9 we give the eigenvalues on Ωm for m =
0, 1, 2, 3 along with level-to-level ratios, suggesting a
renormalization factor of about r = 1.2. In Table 10
we normalize the eigenvalues by dividing by λ

(m)
1 . This

suggests an eigenvalue renormalization factor of about
R = 14.9476 (the table indicates when a new eigenvalue
appears that is approximately Rλn for an earlier value of
n). In the next section we will explain why this happens.
The tables show eigenvalues of multiplicities 1 and 2, but
no higher multiplicities. The D8 symmetry forces multi-
plicity 2, since there are three irreducible representations
of dimension 2.

There are a number of close coincidences (for exam-
ple 910.5058 and 910.8645, each with multiplicity 2),
but not close enough to be regarded as the same,
in our judgement. There is some evidence of large
gaps in the spectrum, for example (66.45202, 122.0411),
(162.1709, 223.2267), and (253.6123, 336.1848). How-
ever, there is not enough data to guess whether
there are infinitely many gaps (λj+1/λj ≥ 1 + ε for
fixed ε). In Figure 4 we display the graphs of some
eigenfunctions, and in Figure 6 we show the Weyl
ratios.

The Weyl ratio is defined to be W (x) = N(x)/xα,
where N(x) = #{λj ≤ x} is the eigenvalue-counting
function, and xα is its approximate growth rate. We
determine α experimentally as the slope of the line of
best fit to a log-log plot of N(x).

The Weyl ratio gives a nice “snapshot” of the spec-
trum. A question of interest is whether it tends to a
limit for large x or exhibits periodic behavior. Our ex-
perimental data do not give an indication of what answer
to expect.

The next example we consider is the standard SC
generated by eight contractions of ratio 1

3 (omitting the
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FIGURE 4. Octagasket eigenfunctions, level 3.
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Level 1 1 2 2 2 2 3 3 3 3 4
Ref. 0 1 1 2 3 4 1 2 3 4 1

n
1 12.87 12.81 6.28 6.14 6.08 6.06 5.07 4.86 4.78 4.74 3.95
2 12.87 12.81 6.30 6.15 6.09 6.06 5.07 4.86 4.78 4.74 3.95
3 35.55 35.14 23.98 23.37 23.14 23.04 19.15 18.37 18.04 17.90 14.93
4 35.56 35.15 24.00 23.38 23.14 23.04 19.15 18.37 18.04 17.90 14.93
5 57.06 55.93 47.97 46.60 46.08 45.88 38.75 37.15 36.47 36.20 30.19
6 67.47 66.00 48.24 46.70 46.12 45.90 38.75 37.15 36.47 36.20 30.19
7 67.49 66.00 62.46 60.28 59.47 59.17 53.10 50.89 49.96 49.58 41.32
8 99.03 95.78 151.54 149.80 149.30 149.17 75.96 72.75 71.40 70.86 59.09
9 112.63 108.51 151.61 149.81 149.31 149.17 75.96 72.75 71.40 70.86 59.09

10 112.78 108.55 154.94 152.84 152.22 152.04 78.99 75.65 74.25 73.68 61.42

j 1 2 3
n
1 2.11 1.28 1.20
2 2.11 1.28 1.20
3 1.53 1.29 1.20
4 1.53 1.29 1.20
5 1.22 1.27 1.20
6 1.44 1.27 1.20
7 1.12 1.19 1.20
8 0.64 2.11 1.20
9 0.73 2.11 1.20

10 0.71 2.06 1.20

TABLE 9. Octagasket unnormalized eigenvalues (above) and ratios λ
(j)
n /λ

(j+1)
n (below), highest refinements used.

Level 1 1 2 2 2 2 3 3 3 3 4
Ref. 0 1 1 2 3 4 1 2 3 4 1

n
1 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
2 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
3 2.76 2.74 3.82 3.81 3.80 3.80 3.78 3.78 3.78 3.78 3.78
4 2.76 2.74 3.82 3.81 3.80 3.80 3.78 3.78 3.78 3.78 3.78
5 4.43 4.37 7.64 7.59 7.57 7.57 7.64 7.64 7.64 7.64 7.64
6 5.24 5.15 7.68 7.60 7.58 7.57 7.64 7.64 7.64 7.64 7.64
7 5.25 5.15 9.95 9.82 9.77 9.76 10.48 10.46 10.46 10.46 10.45
8 7.70 7.48 24.13 24.39 24.54 24.61 14.99 14.96 14.95 14.95 14.95
9 8.75 8.47 24.14 24.39 24.54 24.61 14.99 14.96 14.95 14.95 14.95

24 26.15 23.78 68.29 67.39 67.30 67.36 57.38 56.96 56.84 56.81 56.47
25 28.02 25.18 68.68 67.47 67.32 67.37 57.38 56.96 56.84 56.81 56.47
40 51.26 43.52 119.34 114.57 113.44 113.23 116.01 113.96 113.36 113.17 114.27
41 51.72 43.63 120.99 115.04 113.54 113.26 116.01 113.96 113.36 113.17 114.27

TABLE 10. Octagasket normalized eigenvalues. Eigenvalues in boldface on level 4 are approximately R (where R =14.95)
times the eigenvalues in boldface on level 3. (Ref. = Refinement).

middle tic-tac-toe square). Here the existence of a self-
similar Laplacian is known, and as stated above, unique-
ness is established in [Barlow et al. 08]. Here it is nat-
ural to choose Ω to be the interior of the square that
contains just SC, so Ωm contains 8m squares of side
length 3−m intersecting along edges. In Tables 11 and 12
we report unnormalized and normalized eigenvalue data,
as before. In Table 13 we describe the D4 representa-
tion type associated with the eigenspace. There is one
2-dimensional representation (denoted by 2) and four 1-
dimensional representations (1 + +, 1 + −, 1 − +, and
1−−) described in more detail in the next section. Again

we see eigenvalue multiplicities of only 1 or 2. There is
an apparent eigenvalue renormalization factor of about
R = 10.0081, which is consistent with computations in
[Barlow et al. 90]. In the next section we will give an ex-
planation of this behavior. Spectral gaps are consistent
with the data. Figure 5 shows some eigenfunctions, and
Figure 7 shows the Weyl ratios.

The last two examples we consider are alternative car-
pets. We subdivide the unit square into 16 subsquares of
side length 1

4 , and retain all but the four inner squares
(12
16 carpet) or all but three of the inner squares (13

16 car-
pet). The 12

16 carpet has D4 symmetry, and it is known
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FIGURE 5. Sierpiński carpet (SC) eigenfunctions, level 4.
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Level 1 1 1 1 1 2 2 2 2 3 3 3 3
Ref. 0 1 2 3 4 0 1 2 3 0 1 2 3

n
1 6.9095 6.8043 6.7653 6.7505 6.7449 6.4313 6.2251 6.1354 6.10 5.87 5.6310 5.5325 5.4936
2 6.9151 6.8070 6.7664 6.7510 6.7451 6.4323 6.2254 6.1355 6.10 5.87 5.6310 5.5325 5.4936
3 18.9925 18.8600 18.8243 18.8150 18.8127 17.0488 16.5574 16.3441 16.26 15.57 14.9425 14.6841 14.5823
4 34.3954 33.3153 32.9506 32.8218 32.7746 32.1097 30.7611 30.2096 30.00 28.99 27.7633 27.2621 27.0651
5 47.0332 45.9328 45.6120 45.5142 45.4829 42.8446 41.1639 40.4941 40.24 38.71 37.0938 36.4341 36.1754
6 47.1243 45.9546 45.6175 45.5157 45.4834 42.8729 41.1729 40.4965 40.24 38.71 37.0938 36.4341 36.1754
7 52.1193 51.1387 50.8862 50.8221 50.8059 44.8902 43.1147 42.3923 42.12 40.48 38.7875 38.0972 37.8262
8 92.8584 89.8444 89.0822 88.8905 88.8425 66.1417 62.7984 61.4619 60.97 58.99 56.4159 55.3699 54.9598
9 93.0125 89.8865 89.0933 88.8933 88.8432 66.2982 62.8473 61.4753 60.97 58.99 56.4159 55.3699 54.9598

10 99.0749 95.5391 94.6410 94.4145 94.3576 71.9960 68.3327 66.9090 66.39 64.16 61.3551 60.2173 59.7724

TABLE 11. SC unnormalized eigenvalues. (Ref. = Refinement).

Level 1 1 1 1 1 2 2 2 2 3 3 3 3
Ref. 0 1 2 3 4 0 1 2 3 0 1 2 3

n
1 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
2 1.0008 1.0004 1.0002 1.0001 1.0000 1.0002 1.0001 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
3 2.7488 2.7718 2.7825 2.7872 2.7892 2.6509 2.6598 2.6639 2.6657 2.6530 2.6536 2.6541 2.6544
4 4.9780 4.8962 4.8706 4.8621 4.8592 4.9927 4.9414 4.9238 4.9181 4.9383 4.9305 4.9276 4.9267
5 6.8070 6.7505 6.7421 6.7423 6.7433 6.6619 6.6126 6.6001 6.5973 6.5950 6.5875 6.5855 6.5850
6 6.8202 6.7537 6.7429 6.7425 6.7434 6.6663 6.6140 6.6005 6.5974 6.5950 6.5875 6.5855 6.5850
7 7.5431 7.5156 7.5217 7.5286 7.5325 6.9800 6.9259 6.9095 6.9052 6.8963 6.8882 6.8861 6.8855
8 13.4392 13.2040 13.1676 13.1679 13.1719 10.2844 10.0879 10.0176 9.9946 10.0497 10.0189 10.0081 10.0043
9 13.4615 13.2102 13.1692 13.1684 13.1720 10.3087 10.0958 10.0198 9.9951 10.0497 10.0189 10.0081 10.0043

10 14.3389 14.0409 13.9892 13.9862 13.9895 11.1947 10.9769 10.9055 10.8833 10.9307 10.8960 10.8843 10.8804

TABLE 12. SC normalized eigenvalues. (Ref. = Refinement).

FIGURE 6. Octagasket Weyl ratios, level 4, one refine-
ment, α = 0.71938.

that a self-similar Laplacian exists. The 13
16 carpet has no

symmetry, and the methods used to construct a Lapla-
cian on SC do not work on this example. So the situation
is even worse than for the octagasket.

In Tables 14 and 15 we present unnormalized and nor-
malized eigenvalues for the 12

16 carpet, and in Tables 16
and 17 the same data for the 13

16 carpet. (Again we use
the interior of the square for Ω.) In Figure 8 we show the

FIGURE 7. SC Weyl ratios, level 3, three refinements,
α = 0.87392.

Weyl ratios for the 12
16 carpet, and in Figure 9 we show

those for the 13
16 carpet. The evidence for convergence is

strong in both cases. But the nature of the spectrum is
quite different. In the symmetric 12

16 carpet, we see mul-
tiplicities of 1 or 2, and an eigenvalue renormalization
factor of about R = 20.123. For the 13

16 carpet we do
not see any multiplicities above 1, and there is no appar-
ent eigenvalue renormalization factor. The evidence for
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Number Eigenvalue Type Number Eigenvalue Type

1 5.4936 2 48 458.2523 1+ -
2 5.4936 2 49 467.2072 1- +
3 14.5823 1 + − 50 467.5056 2
4 27.0651 1 − + 51 467.5056 2
5 36.1754 2 52 528.0563 1- +
6 36.1754 2 53 533.2348 1+ +
7 37.8262 1 + + 54 535.0612 2
8 54.9598 2 55 535.0612 2
9 54.9598 2 56 549.3760 2
10 59.7724 1 + − 57 549.3760 2

TABLE 13. D4 representation type. Sierpiński carpet, level 3, three refinements.

Level 1 1 1 2 2 2 3
Refinement 0 1 2 0 1 2 0

n
1 5.184 5.108 5.079 4.246 4.119 4.065 3.38
2 5.194 5.113 5.081 4.246 4.119 4.065 3.38
3 16.788 16.699 16.673 13.176 12.805 12.649 10.47
4 25.029 24.128 23.805 20.638 19.903 19.593 16.37
5 43.231 42.181 41.846 33.584 32.459 31.992 26.58
6 43.301 42.210 41.858 33.584 32.459 31.992 26.58
7 58.008 56.942 56.648 42.636 41.255 40.689 33.70
8 93.773 89.292 87.948 70.623 68.005 66.881 55.56
9 101.704 98.004 96.965 70.623 68.005 66.961 55.56

10 102.074 98.095 96.985 70.890 68.023 66.961 55.62

TABLE 14. 12/16 symmetric carpet unnormalized eigenvalues.

Level 1 1 1 2 2 2 3
Refinement 0 1 2 0 1 2 0

n
1 1.000 1.000 1.000 1.000 1.000 1.000 1.000
2 1.002 1.001 1.000 1.000 1.000 1.000 1.000
3 3.239 3.269 3.283 3.103 3.109 3.112 3.097
4 4.829 4.724 4.687 4.861 4.831 4.820 4.841
5 8.340 8.258 8.239 7.910 7.879 7.870 7.859
6 8.354 8.263 8.242 7.910 7.879 7.870 7.859
7 11.191 11.147 11.154 10.042 10.015 10.009 9.967
8 18.091 17.481 17.317 16.633 16.508 16.453 16.431
9 19.621 19.186 19.092 16.633 16.508 16.472 16.431

10 19.692 19.204 19.096 16.696 16.513 16.472 16.449

TABLE 15. 12/16 symmetric carpet normalized eigenvalues.

spectral gaps is also weaker for the 13
16 carpet, but this is

not conclusive.

5. MINIATURIZATION

In order to make the ideas clear, we begin by explain-
ing the method of miniaturization on the unit interval
I. Here we have a two-element group of symmetries con-
sisting of the identity and the reflection ρ(x) = 1 − x

about the midpoint. Every Neumann eigenfunction is
of the form cosπkx. When k is even, the function is
even under ρ, namely u ◦ ρ = u, while if k is odd, then
the function is odd, namely u ◦ ρ = −u. In this way

all eigenspaces are sorted corresponding to the two ir-
reducible representations of the symmetry group. For
every even eigenfunction u (except the constant), we can
miniaturize it by defining u+ to be

u+(x) =

{
u ◦ F−1

0 on F0I,

u ◦ F−1
1 on F1I.

(5–1)

Note that u ◦ F−1
0 (1

2 ) = u ◦ F−1
1 (1

2 ) because u is even,
and the derivative vanishes at 1

2 because u is a Neumann
eigenfunction, which shows that u+ is also a Neumann
eigenfunction, and indeed u+(x) = cos 2πkx. On the
other hand, if u is an odd eigenfunction, then define u−
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Level 1 1 1 2 2 2 3
Refinement 0 1 2 0 1 2 0

n
1 8.141 8.025 7.981 7.777 7.590 7.512 7.261
2 8.328 8.201 8.151 7.920 7.724 7.643 7.375
3 18.904 18.728 18.674 18.046 17.656 17.498 16.889
4 36.040 35.189 34.898 33.783 32.859 32.488 31.352
5 41.026 40.392 40.209 38.618 37.681 37.307 36.009
6 47.908 46.956 46.686 45.136 44.028 43.592 42.108
7 51.147 50.262 50.022 47.827 46.543 46.037 44.385
8 78.834 76.085 75.308 72.746 70.651 69.849 67.394
9 83.837 79.862 78.600 77.387 74.736 73.703 71.197

10 98.313 95.303 94.500 91.043 88.502 87.534 84.498

TABLE 16. 13/16 alternative carpet unnormalized eigenvalues.

Level 1 1 1 2 2 2 3
Refinement 0 1 2 0 1 2 0

n
1 1.000 1.000 1.000 1.000 1.000 1.000 1.000
2 1.023 1.022 1.021 1.018 1.018 1.017 1.016
3 2.322 2.334 2.340 2.320 2.326 2.329 2.326
4 4.427 4.385 4.373 4.344 4.329 4.325 4.318
5 5.040 5.033 5.038 4.966 4.965 4.966 4.960
6 5.885 5.851 5.850 5.804 5.801 5.803 5.799
7 6.283 6.263 6.268 6.150 6.132 6.128 6.113
8 9.684 9.481 9.436 9.354 9.309 9.298 9.282
9 10.299 9.952 9.849 9.951 9.847 9.811 9.806

10 12.077 11.876 11.841 11.706 11.661 11.652 11.638

TABLE 17. 13/16 alternative carpet normalized eigenvalues.

FIGURE 8. 12/16 carpet Weyl ratios, level 3, zero
refinements, α = 0.71738.

by

u+(x) =

{
u ◦ F−1

0 on F0I,

−u ◦ F−1
1 on F1I.

(5–2)

Again u ◦ F−1
0 (1

2 ) = −u ◦ F−1
1 (1

2 ) because u is odd, so
u− is also a Neumann eigenfunction, and again u−(x) =
cos 2πkx. We call u+ or u− the miniaturization of u.
Note that the representation type of the miniaturization

FIGURE 9. 13/16 carpet Weyl ratios, level 3, zero
refinements, α = 0.87537.

is always even. The eigenvalue of u+ or u− is always four
times the eigenvalue of u. Thus R = 4 is an eigenvalue
renormalization factor. (Of course I has other eigenvalue
renormalization factors, namely any square integer, but
such luxuries do not generalize to other fractals).

Now consider a self-similar fractal with a finite
group of symmetries G, and suppose the Laplacian is
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G-invariant. Then each eigenspace splits according to
the irreducible representations of G. We seek to find a
set of recipes, analogous to (5–1) and (5–2), to minia-
turize eigenfunctions according to the corresponding ir-
reducible representations of G. In fact, our goal is to
obtain recipes that make sense on the fractal and also
on the outer approximating domains. In the latter case,
the miniaturization of an eigenfunction on Ωm will be an
eigenfunction on Ωm+1.

It is by no means clear that this goal is always attain-
able. We will show explicitly that it is possible for SC,
the 12

16 carpet, and the octagasket. In the first two exam-
ples the symmetry group is D4 (the dihedral symmetry
group of the square), and in the last example it is D8.
In contrast to the interval, the representation type of the
miniaturized eigenfunctions is the same as the original
one.

The referee has pointed out that it is also possible to
explain miniaturization on carpets using local reflection
maps introduced in [Barlow and Bass 89] and [Barlow
and Bass 99] (see also [Barlow et al. 08, Definition 2.12]).

We mention in passing that a version of miniaturiza-
tion is valid for SG, but the recipes are more complicated.
In particular, the multiplicities increase. This is part of
the story of spectral decimation (see [Strichartz 06] for
a description). On the other hand, it is not clear how
to extend the recipes for the approximating domains Ωm

with a positive ε overlap, although they are presumably
valid in the zero-overlap case.

The symmetry group D4 has five irreducible repre-
sentations. Let ρH and ρV denote the reflections about
the horizontal and vertical axes in D4, and let ρ′D and
ρ′′D denote the two diagonal reflections. The four one-
dimensional representations 1 + +, 1 + −, 1 − +, and
1 − − are characterized by parity with respect to these
reflections. (Strictly speaking, we describe functions that
transform according to the representations, rather than
the abstract representations, since we are interested in
eigenfunctions that transform according to representa-
tions.) Functions transforming according to 1 + + are
even with respect to all reflections, and those transform-
ing according to 1−− are odd with respect to all reflec-
tions. The 1 + − functions are odd with respect to ρH

and ρV and even with respect to ρ′D and ρ′′D, while for
1 − + the reverse holds.

Now suppose u is a Neumann eigenfunction on Ωm of
1 + + or 1 − + type. Define the miniaturization

u+ = {u ◦ F−1
i on FiΩm} on Ωm+1 (5–3)

for either the SC or 12
16 carpet. On the other hand, for

an eigenfunction of 1 + − or 1 −− type define

u− = {±u ◦ F−1
i on FiΩm} on Ωm+1, (5–4)

where we alternate the choice of ± on neighboring cells
(see Figure 10). Because of the even or odd parity of u

with respect to the reflections ρH and ρV, the miniatur-
ized functions are continuous along the boundaries of the
cells of order one. Since u satisfies Neumann boundary
conditions, it follows that u+ or u− satisfies matching
conditions along these boundaries; hence they are Neu-
mann eigenfunctions on um+1, and the eigenvalue is mul-
tiplied by λ−2, where λ denotes the contraction ratio of
the Fi mappings (so λ = 1

3 for SC and λ = 1
4 for the

12
16 carpet). Note that on the 12

16 carpet, the miniatur-
ized eigenfunction has the same representation type as
u, while on SC, u+ preserves representation type while
u− maps 1 + − to 1 + + and 1 −− to 1 − +.

There is also a two-dimensional representation of D4,
which we denote by 2. The representation space is
spanned by functions u and v satisfying

v = ρHu = −ρVu

and
ρ′′Du = −ρ′Du = u, ρ′Dv = −ρ′′Dv = v.

The miniaturized functions u2 and v2 are shown in Fig-
ure 11. Once again we see that u2 and v2 are Neumann
eigenfunctions on Ωm+1 with eigenvalue multiplied by
λ−2, and the pair transform according to the representa-
tion 2.

What does this tell us about the Neumann spec-
trum on the corresponding fractal? If we believe (1–4),
then there will be an eigenvalue renormalization factor
R = rλ−2. For every eigenvalue λn, there will be an
eigenvalue equal to Rλn with equal multiplicity, and the
corresponding eigenfunctions will be miniaturizations as
illustrated.

But in fact, we can run the same miniaturization ar-
gument directly on the fractal. Indeed, in both cases
we know that there exists a Laplacian Δ on the fractal
satisfying a self-similar identity

Δ(u ◦ Fi) = R−1(Δu) ◦ Fi (5–5)

for a certain constant R. Then the miniaturization
recipes given above create eigenfunctions with eigenvalue
multiplied by R. This is true independently of the valid-
ity of the outer approximation method. Incidentally, the
miniaturization recipes given above extend easily to any
D4-symmetric-carpet-type fractal.
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FIGURE 10. One-dimensional miniaturized carpet eigenfunctions.
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FIGURE 11. One-dimensional miniaturized carpet eigenfunctions.

In our last example, the octagasket, the symmetry
group is D8. Here we have four one-dimensional rep-
resentations. Since D4 ⊂ D8, we may sort the reflections
in D8 into those that are in D4 and those that are not.
The representation 1 + + is described by functions even
with respect to all reflections, and 1 − − by all func-
tions odd with respect to all reflections. Similarly, 1 +−
functions are odd with respect to D4 reflections and even
with respect to all other reflections, while for 1−+ func-
tions the situation is reversed. The miniaturizations u+

(for 1 + + or 1 + − eigenfunctions) and u− (for 1 − +
or 1 − − eigenfunctions) are again given by (5–3) and
(5–4), where the ± signs alternate along the eight small
octagons. We note that the representation type is pre-
served under miniaturization.

In this case there are three two-dimensional represen-
tations, denoted by 21, 22, 23. In terms of complex-valued
functions on the circle, 21 is spanned by e±2πiθ/8, 22 is
spanned by e±2πi2θ/8, and 23 is spanned by e±2π3iθ/8. If
x, y, z denote any consecutive points on an eight-element

orbit of D8, then 21 functions satisfy

u(y) =
√

2
2

(u(x) + u(z)), (5–6)

22 functions satisfy

u(x) + u(z) = 0, (5–7)

and 23 functions satisfy

u(y) = −
√

2
2

(u(x) + u(z)). (5–8)

The 21 and 23 representations have the property that
restricted to D4 they become the 2 representation. So if
u, v are the basis described above, the miniaturizations
u2, v2 are given in Figure 12. On the other hand, the
restriction of 22 to D4 splits into a direct sum of a 1 +−
and a 1−+ representation. So we can choose a basis u, v

such that

ρHu = ρVu = u = −ρ′Du = −ρ′′Du,

−ρHv = −ρVv = v = ρ′Dv = ρ′′Dv,
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FIGURE 12. The miniaturizations (a) u2 and (b) v2 for a 21 or 23 eigenspace.
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FIGURE 13. The miniaturizations (a) u′
2 and (b) v′

2 for a 22 eigenspace.

and the miniaturization u′
2, v

′
2 is given in Figure 13.

Again the representation type is preserved under minia-
turization.

Some types of miniaturization on the pentagasket are
described in [Adams et al. 03].

6. RANDOM CARPETS

For j ∈ Z, j > 1, we partition the unit square into a
grid of j × j smaller, equal-size squares of width 1/j.
We then randomly remove k of these smaller squares,
where k is a small positive integer, and the result is
our level-1 domain Ω1. To produce Ω2, we partition
each square of width 1/j into a grid of j × j equal-size
squares of width 1/j2, and we then randomly remove
m squares of width 1/j2 from each square of width 1/j.
Iterating this process yields a sequence of nested com-
pact domains {Ωm}∞m=1, where Ωm is a union of squares
of side length j−m. Matlab’s rand(’state’) function,
a modified version of Marsaglia’s subtract-with-borrow
algorithm, makes our random choices. The number gen-
erator’s state is set according to the exact date and time
of the computation, so that the generator’s own state is
essentially randomly determined. Also, to shorten FEM
computation time we triangulate Ωm with the four sides
and two diagonals of each square of side length j−m.

The problem we find with our FEM eigenvalue prob-
lem on these domains is connectivity. How can we
guarantee that each Ωm has only one path component?

Also, if two squares are disjoint except at a common ver-
tex, with no other squares in a neighborhood of that
vertex, how can we avoid the problem we saw in Sec-
tion 3? Recall that in this case, the spline space of our
finite-element solver couples these squares at the common
vertex. For simplicity we resolve both questions by choos-
ing small k and altering the above algorithm so that this
coupling problem is avoided, as follows. When we pass
from Ωm to Ωm+1, we partition a square of side length
j−m into squares of side length j−m−1 and delete k of the
smaller squares randomly. We then check whether this
deletion process has produced the above coupling prob-
lem. If it has, then we go back and try again; otherwise,
we move on to the next mth-level square, and so on. For k

small enough, the algorithm terminates. Figure 14 shows
a typical result of the above algorithm. Notice that we
have only one path component.

Now we study our spectral information with the
eigenvalue-counting function N : [0,∞) → Z, where
N(x) is the number of nonnegative eigenvalues less than
or equal to x. Then we examine the Weyl ratio

W (x) =
N(x)
xα

, (6–1)

where xα is an approximate asymptotic bound for N(x),
i.e., we choose α ∈ R such that N(x) ∼ xα in accordance
with the experimental data. So, finding α corresponds to
finding the slope of a linear approximation of N(x) on a
log-log plot. In fact, since we are dealing with domains
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FIGURE 14. Level-4 domain Ω4 for j = 4, k = 3.

in the plane, the Weyl asymptotic law implies that α =
1 is the correct value as x → ∞. The point is that
we truncate our computations well before we reach the
region where this asymptotic behavior is approximated,
so we observe values of α considerably smaller than 1.

In our first example, we let j = 4 and k = 2 and
run our algorithm up to level 4 to get {Ωi}4

i=1, where Ω4

is the upper left carpet in Figure 15. From this initial
carpet, we can restart our algorithm three separate times,
beginning at Ωi once for each i = 1, 2, 3. We then end
the algorithm again at level 4 and we call the resulting
(level-4) carpet that was started at Ωi the bifurcation of
Ω4 at level i + 1. The carpets are shown in Figure 15
and the eigenvalue data in Tables 18 and 19. Next, we
let j = 4 and k = 3 and do the same bifurcation study.
The carpets are shown in Figure 17 and the eigenvalue
data in Tables 20 and 21.

Finally, we fix j = 4 and vary k on different levels so
that at level 1 we set k = 2, at level 2 we set k = 3, etc.
A similar procedure for gaskets rather than carpets is
discussed in [Drenning and Strichartz 08]. Our sequence
of k values for the carpet in Figure 19 is k = {2, 3, 2, 3, 2}.
The eigenvalue data appear in Tables 22 and 23. The
level-to-level eigenvalue ratios in Table 22 appear roughly
to alternate between the same ratios in Tables 20 and 18.
This is the strongest evidence that the geometry of the
domain at different scales is reflected in the spectrum
of the Laplacian. Such a correlation is more striking in
[Drenning and Strichartz 08], but the fractals there have
a more coherent structure.

The Weyl ratios of our first example (where j = 4
and k = 2) appear in Figure 16. We now look closely at
the agreement of the graph of the original carpet to each
individual bifurcation. We see that the original agrees
with the bifurcation at level 4 up to about x = 300,
the original agrees with that at level 3 up to around
x = 65, and it agrees with the level-2 bifurcation up
to about x = 25. In our second example (where j = 4
and k = 4) we find the Weyl ratios in Figure 18. We
do the same comparison. The original agrees with the
level-4 bifurcation to around x = 150, it agrees with
the level-3 bifurcation up to approximately x = 30, and
it agrees with the level-2 bifurcation to approximately
x = 10. In other words, the added detail at finer res-
olutions has only a minimal effect on some initial seg-
ment of the spectrum. This is consistent with results in
[Drenning and Strichartz 08]. Our final example’s Weyl
ratios (where j = 4 and k = {2, 3, 2, 3, 2}) are found in
Figure 20.

For further comparison of the Weyl ratios, we show
those from another trial with j = 4 and k = 2, and those
from another trial with j = 4 and k = 3. The carpets
for the new j = 4, k = 2 trial appear in Figure 21 with
Weyl ratios in Figure 22, while the carpets for the new
j = 4, k = 3 trial appear in Figure 23 with Weyl ratios in
Figure 24. It is clear that different random choices in the
construction make a big difference in the spectrum. We
leave to the future the problem of formulating precise
conjectures concerning the spectra of different random
carpets.
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Original carpet Bif. level 4 Bif. level 3 Bif. level 2 Orig. ratios λ
j+1
n /λ

j
n

Level 1 2 3 4 4 3 4 2 3 4
Refinement 2 1 0 0 0 0 0 1 0 0

n
1 5.580 4.524 3.961 3.331 3.349 3.885 3.248 5.011 4.393 3.689 0.811 0.875 0.841
2 7.666 6.734 5.914 5.008 5.009 5.963 4.990 6.384 5.528 4.639 0.878 0.878 0.847
3 18.031 15.575 13.671 11.556 11.543 13.514 11.311 15.597 13.664 11.478 0.864 0.878 0.845
4 31.079 24.699 21.630 18.234 18.269 21.733 18.259 27.549 24.099 20.091 0.795 0.876 0.843
5 40.933 35.373 31.097 26.152 25.983 31.230 26.123 35.484 31.262 26.392 0.864 0.879 0.841
6 46.442 37.463 32.776 27.549 27.640 32.326 27.255 38.315 33.722 28.249 0.807 0.875 0.841
7 49.757 41.840 36.519 30.975 30.850 36.427 30.614 45.424 39.840 33.521 0.841 0.873 0.848
8 72.354 62.389 54.211 45.450 45.767 54.977 45.924 56.607 49.171 41.245 0.862 0.869 0.838
9 88.309 74.938 65.259 54.360 54.880 65.444 54.860 70.649 61.489 51.576 0.849 0.871 0.833

10 96.790 77.384 65.694 55.376 55.582 66.288 54.919 74.244 63.358 53.123 0.799 0.849 0.843

TABLE 18. Carpet bifurcation unnormalized eigenvalues for j = 4, k = 2.

Original carpet Bif. level 4 Bif. level 3 Bif. level 2
Level 1 2 3 4 4 3 4 2 3 4

Refinement 2 1 0 0 0 0 0 1 0 0
n
1 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
2 1.374 1.489 1.493 1.503 1.496 1.535 1.536 1.274 1.258 1.257
3 3.231 3.443 3.452 3.469 3.447 3.479 3.482 3.113 3.110 3.111
4 5.570 5.460 5.461 5.473 5.455 5.595 5.621 5.498 5.485 5.445
5 7.336 7.819 7.852 7.850 7.758 8.039 8.042 7.082 7.116 7.153
6 8.323 8.281 8.276 8.270 8.253 8.322 8.391 7.647 7.676 7.657
7 8.917 9.249 9.221 9.298 9.211 9.377 9.425 9.066 9.068 9.086
8 12.967 13.791 13.688 13.643 13.665 14.152 14.138 11.297 11.192 11.179
9 15.826 16.565 16.477 16.318 16.387 16.847 16.889 14.100 13.996 13.979

10 17.346 17.106 16.587 16.623 16.596 17.064 16.907 14.817 14.421 14.399

TABLE 19. Carpet bifurcation normalized eigenvalues for j = 4, k = 2.

Original carpet Bif. level 4 Bif. level 3 Bif. level 2 Orig. ratios λ
j+1
n /λj

n

Level 1 2 3 4 4 3 4 2 3 4
Refinement 2 1 0 0 0 0 0 1 0 0

n
1 7.092 4.504 3.375 2.426 2.445 3.493 2.631 6.127 4.897 3.695 0.635 0.749 0.719
2 11.728 8.197 6.565 4.765 4.809 6.560 4.906 9.482 7.315 5.436 0.699 0.801 0.726
3 24.546 15.759 12.132 9.007 8.969 12.351 9.397 21.222 16.397 12.210 0.642 0.770 0.742
4 30.185 18.800 15.634 11.511 11.431 15.081 11.247 23.081 17.654 13.228 0.623 0.832 0.736
5 42.518 27.342 22.736 16.597 17.156 21.355 15.651 35.771 28.705 21.604 0.643 0.832 0.730
6 58.544 39.332 31.633 23.474 23.415 29.450 21.692 42.024 34.860 25.822 0.672 0.804 0.742
7 61.533 48.008 39.592 29.343 28.460 37.253 26.997 51.343 38.677 28.823 0.780 0.825 0.741
8 77.637 55.316 44.954 33.046 33.484 43.576 33.038 62.867 47.085 35.453 0.712 0.813 0.735
9 83.257 65.486 50.292 37.106 37.063 50.448 38.068 69.055 53.226 39.577 0.787 0.768 0.738

10 104.768 73.075 55.186 39.936 40.286 56.936 42.856 82.013 62.297 45.968 0.697 0.755 0.724

TABLE 20. Carpet bifurcation unnormalized eigenvalues for j = 4, k = 3.

Original carpet Bif. level 4 Bif. level 3 Bif. level 2
Level 1 2 3 4 4 3 4 2 3 4

Refinement 2 1 0 0 0 0 0 1 0 0
n
1 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
2 1.654 1.820 1.945 1.964 1.967 1.878 1.865 1.548 1.494 1.471
3 3.461 3.499 3.595 3.712 3.668 3.536 3.572 3.464 3.349 3.305
4 4.256 4.174 4.633 4.744 4.675 4.317 4.275 3.767 3.605 3.580
5 5.995 6.071 6.737 6.840 7.016 6.113 5.950 5.839 5.862 5.847
6 8.255 8.732 9.374 9.674 9.576 8.431 8.246 6.859 7.119 6.989
7 8.676 10.659 11.732 12.093 11.640 10.665 10.263 8.380 7.899 7.801
8 10.947 12.281 13.321 13.619 13.694 12.475 12.559 10.262 9.616 9.595
9 11.740 14.539 14.903 15.292 15.158 14.442 14.471 11.272 10.870 10.712

10 14.773 16.224 16.353 16.459 16.476 16.300 16.291 13.387 12.723 12.441

TABLE 21. Carpet bifurcation normalized eigenvalues for j = 4, k = 3.
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Eigenvalue data Ratios λj+1
n /λj

n

Level 1 2 3 4 5 j = 1 j = 2 j = 3 j = 4
Refinement 2 1 0 0 0

n
1 7.812 5.846 5.041 3.855 3.160 0.748 0.862 0.765 0.820
2 11.846 8.843 7.739 5.918 4.865 0.746 0.875 0.765 0.822
3 16.892 11.188 9.621 7.327 6.019 0.662 0.860 0.762 0.821
4 31.783 21.564 18.685 14.339 11.813 0.678 0.867 0.767 0.824
5 38.849 27.674 24.037 18.351 15.056 0.712 0.869 0.763 0.820
6 44.579 33.739 28.815 21.870 17.953 0.757 0.854 0.759 0.821
7 66.179 53.267 45.651 34.817 28.614 0.805 0.857 0.763 0.822
8 79.132 57.301 50.164 38.328 31.538 0.724 0.875 0.764 0.823
9 91.235 64.613 55.715 42.305 34.727 0.708 0.862 0.759 0.821

10 93.671 71.615 60.579 45.932 37.773 0.765 0.846 0.758 0.822

TABLE 22. Carpet mixed unnormalized eigenvalues and ratios, {2, 3, 2, 3, 2}.

Level 1 2 3 4 5
Refinement 2 1 0 0 0

n
1 1.000 1.000 1.000 1.000 1.000
2 1.516 1.513 1.535 1.535 1.540
3 2.162 1.914 1.908 1.901 1.905
4 4.068 3.689 3.707 3.720 3.739
5 4.973 4.734 4.768 4.761 4.765
6 5.706 5.771 5.716 5.673 5.681
7 8.471 9.112 9.056 9.032 9.055
8 10.129 9.802 9.951 9.943 9.981
9 11.679 11.052 11.052 10.975 10.990

10 11.991 12.250 12.017 11.916 11.954

TABLE 23. Carpet mixed normalized eigenvalues {2, 3, 2, 3, 2}.

Original Carpet Bifurcation at Level 4

Bifurcation at Level 3 Bifurcation at Level 2

FIGURE 15. Carpet bifurcations Ω4 for j = 4, k = 2.
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Original Carpet, α = .84032 Bifurcation at Level 4, α = .83853

Bifurcation at Level 3, α = 0.85007 Bifurcation at Level 2, α = 0.83383

FIGURE 16. Weyl ratios for j = 4, k = 2.
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Original Carpet Bifurcation at Level 4

Bifurcation at Level 3 Bifurcation at Level 2

FIGURE 17. Carpet bifurcations Ω4 for j = 4, k = 3.
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Original Carpet, α = .80788 Bifurcation at Level 4, α = .80253

Bifurcation at Level 3, α = .82004 Bifurcation at Level 2, α = .81408

FIGURE 18. Weyl ratios for j = 4, k = 3.
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FIGURE 19. Level-4 domain Ω4 for j = 4, D : 2, 3, 2, 3, 2.

FIGURE 20. Weyl ratios for j = 4, k = {2, 3, 2, 3, 2}, level 5 carpet, α = 0.8071.
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Original Carpet Bifurcation at Level 4

Bifurcation at Level 3 Bifurcation at Level 2

FIGURE 21. Carpet bifurcations Ω4 for j = 4, k = 2.
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Original Carpet, α = .84747 Bifurcation at Level 4, α = .84753

Bifurcation at Level 3, α = .83368 Bifurcation at Level 2, α = .83019

FIGURE 22. Weyl ratios for j = 4, k = 2.
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Original Carpet Bifurcation at Level 4

Bifurcation at Level 3 Bifurcation at Level 2

FIGURE 23. Carpet bifurcations Ω4 for j = 4, k = 3.
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Original Carpet, α = .81013 Bifurcation at Level 4, α = .80544

Bifurcation at Level 3, α = .82086 Bifurcation at Level 2, α = .81975

FIGURE 24. Weyl ratios for j = 4, k = 3.
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