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We shall investigate spacelike constant-mean-curvature surfaces
with singularities in Minkowski 3-space. Recently, Kokubu,
Rossman, Saji, Umehara, and Yamada gave useful criteria for
cuspidal edges and swallowtails. Applying their criteria, we de-
fine a new class of generalized constant-mean-curvature surface
and give some examples with cuspidal edges and swallowtails.

1. INTRODUCTION

It is well known that the only complete spacelike maximal
(mean-curvature-zero) surface in Minkowski 3-space L3 is
the plane. Estudillo and Romero introduced a notion of
generalized maximal surfaces in terms of a holomorphic
(Weierstrass-type) representation [Estudillo and Romero
92].

A generalized maximal surface without branch points
is called a maxface, which was introduced in [Umehara
and Yamada 06]; see Figure 1 for typical examples. Ume-
hara and Yamada showed that maxfaces have several
interesting global geometric properties. A generic clas-
sification of singularities on maxfaces is given in [Fuji-
mori et al. 08].

In contrast to the maximal case, there are many com-
plete spacelike nonzero constant-mean-curvature surfaces
(CMC surfaces, for short) in L

3 (see Figure 2). For
example, the hyperboloid and the Lorentz cylinder are
typical. Moreover, Akutagawa constructed many exam-
ples by constructing harmonic maps from the hyperbolic
plane to itself [Akutagawa 94]. Furthermore, H. Wang
constructed complete surfaces (without singularities) by
solving the sinh–Gordon equation [Wang 91] (see Fig-
ure 3). On the other hand, there are natural examples
of CMC surfaces with singularities, including surfaces of
revolution. Since singularities of such surfaces are con-
sidered wave-front singularities in 3-dimensional space,
it is expected that generic wave-front singularities, that
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FIGURE 1. Examples of a maxface with singularities.

is, cuspidal edges and swallowtails, appear in CMC sur-
faces in L3. However, the author does not know of any
concrete example of CMC surfaces with swallowtails.

Recently, useful criteria for cuspidal edges and swal-
lowtails as wave-front singularities in 3-dimensional space
were given in [Kokubu et al. 05].

In this paper, we generalize the notion of CMC sur-
faces and construct examples with cuspidal edges and
swallowtails using their criteria.

Akutagawa and Nishikawa gave a Weierstrass-type
representation formula for CMC surfaces in L

3 [Akuta-
gawa and Nishikawa 90] as an analogy of the Kenmotsu
formula for CMC surfaces in R3 [Kenmotsu 79]. The
Gauss map g of a nonsingular CMC surface is a harmonic
map into the upper or lower connected component of the
two-sheeted hyperboloid in L3. By stereographic projec-
tion from (1, 0, 0) of the hyperboloid to the plane, the
Gauss map g can be expressed as a harmonic map into
C ∪ {∞} \ {ζ ∈ C | |ζ| = 1}. Making use of this result,
we construct a class of CMC surfaces with singularities.

This paper is organized as follows. In Section 2, we
recall some basic facts on CMC surfaces in L

3. In Section
3, we define a class of CMC surfaces with certain types of
singularities, called extended CMC surfaces, by extending
harmonic maps to the maps into C∪{∞}, and we charac-
terize the singular set. In Section 4, applying the results
on singularities in [Kokubu et al. 05], we investigate sin-
gularities of a type of generalized CMC surface and give
criteria for a given singular point to be A-equivalent to a
cuspidal edge, a swallowtail, or a cuspidal cross cap. In
Section 5, we give concrete examples of extended CMC
surfaces with cuspidal edges and swallowtails.

2. PRELIMINARIES

Minkowski 3-space L
3 is the 3-dimensional affine space

R3 with the inner product

〈 , 〉 := −(dx0)2 + (dx1)2 + (dx2)2,

where (x0, x1, x2) is the standard coordinate system of
R3. A vector v �= 0 in L3 is called spacelike, timelike,
null if 〈v, v〉 > 0, 〈v, v〉 < 0, 〈v, v〉 = 0, respectively. An
immersion f : M2 −→ L

3 of a 2-manifold M2 into L
3 is

called spacelike if the induced metric

ds2 := f∗ 〈 , 〉 = 〈df, df〉

is positive definite on M2.
The unit normal vector ν of a spacelike immersion f is

a unit timelike vector perpendicular to the tangent plane.
Moreover, it can be regarded as a map

ν : M2 −→ H
2 = H

2
+ ∪ H

2
−, (2–1)

where

H
2
+ := {ν = (ν0, ν1, ν2) ∈ L

3 | 〈ν, ν〉 = −1, ν0 > 0},
H

2
− := {ν = (ν0, ν1, ν2) ∈ L

3 | 〈ν, ν〉 = −1, ν0 < 0}.

The map ν : M2 −→ H2 is called the Gauss map of f .
Let π : H2 −→ C ∪ {∞} be the stereographic projection
from the north pole (1, 0, 0) given by

π(ν0, ν1, ν2) =
ν1 +

√−1ν2

1 − ν0
.
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FIGURE 2. Examples of complete CMC surfaces.

FIGURE 3. A complete surface constructed by H. Wang.

We also call the composition g := π ◦ ν the Gauss map
of f . Since ν takes values in the set H2, |g| �= 1 holds
on M2.

Let (u, v) be a local coordinate system of M2. We
write the first fundamental form of f by

ds2 = 〈df, df〉 = E du2 + 2F du dv +Gdv2,

and the second fundamental form of f by

II = 〈df, dν〉 = Ldu2 + 2M dudv +N dv2.

Then the mean curvature H of f is given by

H =
EN − 2FM +GL

2(EG− F 2)
.

A spacelike immersion f : M2 −→ L3 is said to have con-
stant mean curvature if H is equal to a nonzero constant.
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In particular, if H = 0, the spacelike immersion is said
to be maximal. A map g : M2 −→ π(H2) defined on a
Riemann surface M2 is called harmonic if it satisfies the
following condition:

∂2g

∂z∂z̄
+

2ḡ
1 − |g|2

∂g

∂z

∂g

∂z̄
= 0, (2–2)

where z is a complex coordinate of M2.
It is well known that the Gauss map of a spacelike

constant-mean-curvature immersion is harmonic and the
Gauss map of a spacelike maximal immersion is meromor-
phic (see [Kobayashi 83]; see also [Kobayashi 84]). The
unit normal vector field ν of the constant-mean-curvature
surface in (2–1) is rewritten as

ν =
1

1 − |g|2 (−(1 + |g|2), 2 Re g, 2 Im g).

For CMC surfaces in L3, an analogue of the Weier-
strass representation formula is given in [Akutagawa and
Nishikawa 90].

Theorem 2.1. [Akutagawa and Nishikawa 90] Let M2 be
a Riemann surface and f : M2 −→ L3 a conformal im-
mersion with nonzero constant mean curvature H. Then
there exists a harmonic map g such that

f =
2
H

∫ z

z0

Re
(
(−2g, (1 + g2),

√−1(1 − g2))
ḡz

(1 − |g|2)2
)
dz,

(2–3)

where z0 ∈ M2 is a base point and gz means ∂g/∂z.
Conversely, assume that M2 is simply connected, and
take a nonholomorphic harmonic map g : M2 −→ π(H2).
Then the integration in (2–3) does not depend on the
choice of a path joining z0 and z, and f in (2–3) is a
spacelike immersion of constant mean curvature H with
Gauss map g. Furthermore, the induced metric of f is
given by

ds2 =
(

2
H(1 − |g|2) |gz̄|

)2

|dz|2,

and the Gaussian curvature K is given by

K = −H2

(∣∣∣gz

gz̄

∣∣∣2 − 1
)
.

3. CONSTANT-MEAN-CURVATURE SURFACES
WITH SINGULARITIES

In this section, we give the definition of a generalized
CMC surface as a constant-mean-curvature surface with
singularities. First, we review the definition of maxfaces
and generalized maximal surfaces.

A holomorphic map F = (F 0, F 1, F 2) : M2 −→ C3 of
a Riemann surface M2 into the complex Euclidean space
C3 is called null if

∑3
j=1 F

j
z · F j

z vanishes. We consider
the projection

πL : C
3 � (ζ1, ζ2, ζ3) �−→ Re

(−√−1ζ3, ζ1, ζ2
) ∈ L

3.

The projection of null holomorphic immersions into L3

by πL gives spacelike maximal surfaces with singulari-
ties, called maxfaces (see [Umehara and Yamada 06] for
details). The holomorphic null immersion F as above is
called the holomorphic lift of the maxface.

The following fact is a generalization of the Weier-
strass representation formula for a maximal surface
[Kobayashi 83].

Fact 3.1. [Umehara and Yamada 06] Let M2 be a simply
connected Riemann surface and (g, ω) a pair consisting
of a meromorphic function g and a holomorphic 1-form
ω on M2 such that

(1 + |g|2)2|ω|2 �= 0

on U . Then

f(z) := Re
∫ z

z0

(−2g, 1 + g2,
√−1(1 − g2)

)
ω (3–1)

gives a maxface in L3. Moreover, all maxfaces are locally
obtained in this manner.

The induced metric by f in (3–1) is given by

ds2 =
(
1 − |g|2)2 |ω|2.

In particular, z ∈M2 is a singular point of f if and only
if |g| = 1, and the restriction f : M2\{z | |g(z)| = 1} −→
L3 is a spacelike maximal immersion.

If F : M2 −→ C3 is null (not necessarily an immer-
sion) and

−|dF 0|2 + |dF 1|2 + |dF 2|2

does not identically vanish, then πL ◦ F is a generalized
maximal surface in the sense of [Estudillo and Romero
92]. The points where F is not immersed are isolated
branch points. In this sense, a maxface is a generalized
maximal surface without branch points.

We generalize the notion of CMC surfaces in a similar
way.

Definition 3.2. A smooth map g : M2 −→ C ∪ {∞} of
a Riemann surface M2 into the sphere S2 = C ∪ {∞} is
called a regular extended harmonic map to the hyperbolic
plane if
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(1) ω := ω̂ dz can be extended to a 1-form of class C1

across {p ∈M2 | |g(p)| = 1},
(2) gzz̄ + 2(1 − |g|2)ḡgz

¯̂ω = 0 holds,

where
ω̂ :=

ḡz

(1 − |g|2)2
and z is a complex coordinate of M2.

Remark 3.3. If |g| �= 1, a regular extended harmonic map
g is a harmonic map.

Remark 3.4. The conjugate map ḡ of a harmonic map
g is also harmonic. However, the conjugate map ḡ of
the regular extended harmonic map g is not always a
regular extended harmonic map, because of the condition
(1). Existence of a regular extended harmonic map whose
conjugate map is also a regular extended harmonic map
is an open problem. This problem is related to the study
of surfaces of negative constant Gaussian curvature with
singularities (see [Gálvez et al. 03]).

Remark 3.5. Let g : M2 −→ C ∪ {∞} be a regular ex-
tended harmonic map. Then the integral (2–3) is inde-
pendent of the choice of path.

Definition 3.6. Let g : M2 −→ C ∪ {∞} be a regular
extended harmonic map andH a nonzero constant. Then
the map f : M2 −→ L3 given explicitly by

f =
2
H

∫ z

z0

Re
(−2g, 1 + g2,

√−1(1 − g2)
)
ω (3–2)

is called a generalized constant-mean-curvature (CMC)
surface with mean curvature H . The map g is called the
Gauss map.

Remark 3.7. The induced metric of the generalized CMC
surface f is given by

ds2 =
(

2|gz̄|
H(1 − |g|2)

)2

|dz|2 =
(

2(1 − |g|2)|ω|
H

)2

.

Proposition 3.8. Let f : M2 −→ L
3 be a generalized CMC

surface with Gauss map g. Then a point

p ∈M2 \ {q ∈M2 | |g(q)| = ∞}
is a singular point (that is, rank df(p) < 2) if and only
if |g(p)| = 1 or ω̂ = 0. In particular, the point p is a
singular point with rank df(p) = 0 if and only if ω̂ = 0.

A point q ∈ {p ∈ M2 | |g(q)| = ∞} is a singular point if
and only if g2ω̂ = 0. Moreover, such a singular point p
satisfies rankdf(p) = 0 .

Proof: We assume that f is written as in (3–2). Let
z = u+

√−1v be a complex coordinate of M2 around p.
Without loss of generality, we may assume H = 2. Then

fz =
1
2
(−2g, 1 + g2,

√−1(1 − g2)
)
ω̂,

fz̄ =
1
2
(−2ḡ, 1 + ḡ2,−√−1(1 − ḡ2)

) ¯̂ω.

Thus, we have

fu = (fz + fz̄)

= (−2 Re(gω̂),Re((1 + g2)ω̂),− Im((1 − g2)ω̂)),

fv =
√−1(fz − fz̄)

= (2 Im(gω̂),− Im((1 + g2)ω̂),−Re((1 − g2)ω̂)),

fu × fv = −2
√−1fz × fz̄

= (|g|2 − 1)|ω̂|2(1 + |g|2, 2 Re g, 2 Im g),

where × is the Euclidean vector product in R
3. These

imply that rank df(p) < 2 if and only if |g(p)| = 1 or
ω̂(p) = 0 on p ∈M2 \ {q ∈M2 | |g(q)| = ∞}. Moreover,
rank df(p) = 0 if and only if ω̂ = 0. On the other hand,
on {p ∈ M2 | |g(p)| = ∞}, we have that rankdf(p) < 2
if and only if g2ω̂ = 0, and in fact, rankdf(p) = 0.

Definition 3.9. We assume that ω = ω̂ dz never vanishes
on {p ∈ M2 | |g(p)| < ∞} and that g2ω = g2ω̂ dz does
not vanish on {p ∈ M2 | |g(p)| = ∞}. A regular ex-
tended harmonic map with such a property is called an
extended harmonic map, and a generalized CMC surface
with an extended harmonic map is called an extended
CMC surface. Moreover, this extended harmonic map is
also called the Gauss map of the extended CMC surface.

Corollary 3.10. Let f : M2 −→ L3 be an extended CMC
surface with Gauss map g. Then a point p ∈ U is a
singular point if and only if |g(p)| = 1.

4. TYPES OF SINGULARITIES OF EXTENDED
CMC SURFACES

In the previous section, we defined generalized CMC sur-
faces as constant-mean-curvature surfaces with singular-
ities. So it is quite natural to investigate which types of
singularities appear on generalized CMC surfaces. In this
section, we recall wave fronts in R3 and give simple crite-
ria for a given singular point on the extended CMC sur-
face to be each of the typical examples of singular points:
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cuspidal edges, swallowtails, and cuspidal cross caps us-
ing criteria in [Kokubu et al. 05, Fujimori et al. 08].

Let U be a domain in R2 and f : U −→ R3 a C∞-map
from U into Euclidean 3-space R

3. The map f is called
a frontal if there exists a unit vector field n in R3 along
f such that n is perpendicular to f∗(TU). We call n a
unit normal vector field of a frontal f . We identify the
unit cotangent bundle of R3 with

R
3 × S2 = {(x,n) | x ∈ R

3,n ∈ S2}.

Then

ξ := n1dx
1 + n2dx

2 + n3dx
3,

x = (x1, x2, x3), n = (n1, n2, n3),

gives the canonical contact form and

L := (fL,n) : U −→ R
3 × S2

is called a Legendrian if the pullback of the contact form
ξ vanishes, that is, if (fL)u and (fL)v are both perpen-
dicular to n, where (u, v) is a local coordinate system
of U .

In this terminology, a frontal is a projection of a Leg-
endrian map L. If L is a Legendrian immersion, the
projection fL of L into R3 is called a (wave) front. Now
let L = (f,n) : U −→ R3 × S2 be a Legendrian immer-
sion. Then a point p ∈ U where f is not an immersion is
called a singular point of the front f .

By definition, there exists a smooth function λ on U

such that

fu × fv = λn, (4–1)

where × is the Euclidean vector product on R3. A sin-
gular point p ∈ U is called nondegenerate if dλ does not
vanish at p.

It is well known that cuspidal edges and swallowtails
are generic singularities of fronts (see [Arnol’d et al. 85,
p. 336]), where a cuspidal edge and a swallowtail are
respectively a singular point that is A-equivalent at the
origin to the C∞-map germs

fC(u, v) := (u2, u3, v),

fS(u, v) := (3u4 + u2v, 4u3 + 2uv, v)

(see Figure 4).
Here, two C∞-map germs f : (U, p) −→ R3 and

g : (V, q) −→ R3 are A-equivalent at the points p ∈ U

and q ∈ V if there are a diffeomorphism germ ϕ of R2

with ϕ(p) = q and a local diffeomorphism Φ of R3 with
Φ(f(p)) = g(q) such that g = Φ ◦ f ◦ ϕ−1. A cuspidal
cross cap is a singular point that is A-equivalent to the
C∞-map germ

fccc(u, v) := (u2, v2, uv3)

at the origin (see Figure 4, right). A cuspidal cross cap
is the generic singularity of frontals, but it is not a front.

Now we identify Minkowski 3-space L3 with the 3-
dimensional affine space R3. We give the following theo-
rem as analogous to [Umehara and Yamada 06, Theorem
3.1] and [Fujimori et al. 08, Theorem 2.3].

Theorem 4.1. Let f : M2 −→ L3 be an extended CMC
surface with Gauss map g, and set ω̂ = ĝz/(1 − |g|2)2,
where gz = ∂g/∂z. Then:

(1) A point p ∈ U is a singular point if and only if
|g| = 1.

(2) f is a front at a singular point p if and only if

Re
(
gz

g2ω̂

)
�= 0

holds at p.

(3) f is A-equivalent to a cuspidal edge at p if and only
if

Re
(
gz

g2ω̂

)
�= 0 and Im

(
gz

g2ω̂

)
�= 0

hold at p.

(4) f is A-equivalent to a swallowtail at p if and only if

gz

g2ω̂
∈ R \ {0}

and

Re
{
g

gz

(
gz

g2ω̂

)
z

}
�= Re

{(
g

gz

)(
gz

g2ω̂

)
z̄

}

hold at p.

(5) f is A-equivalent to a cuspidal cross cap at p if and
only if

gz

g2ω̂
∈ √−1R \ {0}

and

Im
{
g

gz

(
gz

g2ω̂

)
z

}
�= Im

{(
g

gz

)(
gz

g2ω̂

)
z̄

}

hold at p.
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FIGURE 4. Examples of singularities.

We assume that p is a nondegenerate singular point.
Then there exists a regular curve in a neighborhood of
the point p,

γ = γ(t) : (−ε, ε) −→ U

(called the singular curve), such that γ(0) = p and the
image of γ coincides with the set of singular points of f
around p.

On the other hand, a nonzero vector η ∈ TU such
that df(η) = 0 is called the null direction. For each point
γ(t), the null direction η(t) is determined uniquely up to
scalar multiplication. We review the following criteria.

Fact 4.2. [Kokubu et al. 05] Let f : U −→ R
3 be a front

and p = γ(0) ∈ U a nondegenerate singular point of f .

(1) The germ of the image of the front at p is A-
equivalent to a cuspidal edge if and only if η(0) is
not proportional to γ′(0), where ′ = d/dt.

(2) The germ of the image of the front at p is A-
equivalent to a swallowtail if and only if η(0) is pro-
portional to γ′(0) and

d

dt
det(γ′(t), η(0))|t=0 �= 0.

Fact 4.3. [Fujimori et al. 08] Let f : U −→ R3 be a
frontal with unit normal vector field n, and p = γ(0) ∈ U

a nondegenerate singular point of f . We set ψ(t) :=
det(f∗γ′, dn(η),n). Then the germ of the image of f at
p is A-equivalent to a cuspidal cross cap if and only if
η(0) is transversal to γ′(0), ψ(0) = 0, and ψ′(0) �= 0.

Proof of Theorem 4.1: Though the proofs are parallel to
those in [Umehara and Yamada 06, Theorem 3.1], [Ume-
hara and Yamada 06, Lemma 3.3], and [Fujimori et al. 08,

Theorem 2.3], we give proofs here for the reader’s con-
venience. We have already proved (1) in Corollary
3.10. We identify L

3 with Euclidean 3-space R3. Let
f : M2 −→ L3 be an extended CMC surface with Gauss
map g. Without loss of generality, we may assumeH = 2.
Then

n =
1√

(1 + |g|2)2 + 4|g|2 (1 + |g|2, 2 Re g, 2 Img)

is the unit normal vector field of f with respect to the Eu-
clidean metric of R3. From now on, we assume |g(p)| = 1
and ω(p) �= 0. In the sense of [Umehara and Yamada 06],

η =
√−1
gω̂

gives the null direction at p. On the other hand, we have

dn(p) =
√−1
2
√

2

(
dg

g
− dḡ

ḡ

)
(0, Im g,−Re g).

If dg(p) = 0, then (f,n) is not an immersion at p, because
dn = 0. So we may assume dg(p) �= 0.

Since gz̄(p) = 0 by (1) in Definition 3.2, the null di-
rection of dn at p is proportional to

μ =
(
gz

g

)
.

Thus we have (2).
Next, the function λ in (4–1) is calculated as

λ = (|g|2 − 1)|ω̂|2
√

(1 + |g|2)2 + 4|g|2.

By assumption, it is sufficient to consider the case |g| = 1
and ω(p) �= 0. Then we can obtain that if Re(gz/(g2ω̂)) �=
0 at p, then p is nondegenerate.
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Assume that Re(gz/(g2ω̂)) �= 0 holds at a singular
point p. Then f is a front and p is a nondegenerate
singular point. Since the singular set of f is characterized
by gḡ = 1, the singular curve γ(t) with γ(0) = p satisfies
g(γ(t))g(γ(t)) = 1. Differentiating this, we get

Re
(
gz

g
γ′
)

= 0,

because gz̄(p) = 0.
This implies that γ′ is perpendicular to gz/g, that is,

proportional to
√−1gz/g. Hence we can parameterize γ

as

γ′(t) =
√−1

(
gz

g

)
(γ(t)). (4–2)

Thus we have (3).
Next, we assume that Im(gz/(g2ω̂)) = 0 holds at the

singular point p. In this case,

d

dt

∣∣∣
t=0

det(γ′, η)

= Im
((

gz

g2ω̂

)
z

dγ

dt
+
(
gz

g2ω̂

)
z̄

dγ̄

dt

)

= −Re
(
gz

g2ω̂

)
z

(
gz

g

)
+ Re

(
gz

g2ω̂

)
z̄

(
gz

g

)

= −
∣∣∣gz

g

∣∣∣2 Re
[
g

gz

(
gz

g2ω̂

)
z

]

+
∣∣∣gz

g

∣∣∣2 Re

[(
g

gz

)(
gz

g2ω̂

)
z̄

]
.

Thus we have (4).
On the other hand, if we assume that f is a frontal

(not a front), then one can compute ψ as in Fact 4.3 as

ψ = det(f∗γ′, dn(η),n) = Re
(
gz

g2ω̂

)
· ψ0,

where ψ0 is a smooth function on a neighborhood of p
such that ψ0(p) �= 0. Then the second and third condi-
tions of Fact 4.3 are written as

Re
(
gz

g2ω̂

)
= 0

and

Im
[
g

gz

(
gz

g2ω̂

)
z

]
�= Im

[(
g

gz

)(
gz

g2ω̂

)
z̄

]
.

Here we have used the relation

d

dt
=

√−1

[(
gz

g

)
∂

∂z
− gz

g

∂

∂z̄

]
,

which comes from (4–2). Using the relation (gz/g) =
(g/gz) · (a real-valued function), we obtain (5).

5. EXAMPLES

We shall introduce two examples.

Example 5.1. (A surface of revolution about a timelike
axis.) A surface of revolution about a timelike line, say
the x0-axis, is a surface given by

f(s, t) =
(
x0(s), x1(s) cos t, x1(s) sin t

)
,

where (x0(s), x1(s)) is a profile curve in the x0x1-plane.
In [Ishihara and Hara 88], the authors give the profile
curves of CMC surfaces. If we change the coordinate to
an isothermal coordinate for T3 in [Ishihara and Hara
88, Theorem 1], then this surface is congruent to the
surface obtained from the following Gauss map: Let
M2 = (−π, π) × R and let z = u +

√−1v ∈ M2 be a
complex coordinate. Then the map g : M2 −→ C ∪ {∞}
given by

g(z) =
cosu

1 + sinu
e
√−1v

is an extended harmonic map. Therefore, the map g

gives an example of an extended CMC surface. The set
of singularities is {z | Re z = 0} and its image is a point
in L3 at which the image is tangent to the light cone
(see Figure 5). Such a singularity is called a conelike
singularity.

Example 5.2. (A surface of revolution about a spacelike
axis.) A surface of revolution about a spacelike axis, say
the x1-axis, is a surface given by

f(s, t) = (x0(s) cosh t, x1(s), x0(s) sinh t),

where (x0(s), x1(s)) is a profile curve in the x0x1-plane.
If we change the coordinate of S3 in [Ishihara and Hara
88, Theorem 1], then this surface is congruent to the sur-
face obtained from the following Gauss map: LetM2 = C

and z = u+
√−1v ∈M2 be a complex coordinate. Then

the map given by

g(z) =
coshu sinh v +

√−1eu

sinhu+ coshu cosh v

is an extended harmonic map. Therefore, the map g gives
an example of an extended CMC surface.

The set of singularities is {z | Re z = 0}, and its image
is a conelike singularity (see Figure 6).

Remark 5.3. All incomplete CMC surfaces of revolution
in L

3 have only conelike singularities. Moreover, all sur-
faces of revolution are fronts.
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Surface of revolution about a timelike axis Half cut

FIGURE 5. A surface of revolution about a timelike axis.

FIGURE 6. Surface of revolution about a spacelike axis.

Next, we introduce two examples with cuspidal edges
and swallowtails.

Example 5.4. (A helicoidal surface about a spacelike
axis.) A helicoidal surface about a spacelike axis is
the surface given by

f(s, t) = (x0(s) cosh t, x1(s) + ct, x0(s) sinh t),

where (x0(s), x1(s)) is a profile curve in the x0x1-plane.
In [Beneki et al. 02], the authors give a method to con-
struct helicoidal surfaces about spacelike and timelike
axes with prescribed Gaussian and mean curvature. Ap-
plying their result to constant-mean-curvature surfaces,
we obtain the profile curves of surfaces of constant mean
curvature 1 as follows:

(x0(s), x1(s)) =

(
s,

∫ |s2 + c1|
√
c2 − s2

|s|√s2 + (s2 + c1)2
ds

)
,

where c and c1 are constants.
To consider such a surface as an extended CMC sur-

face, it is necessary to find an isothermal coordinate of
this surface. When c1 = 0, this surface is congruent to

the surface obtained from the following Gauss map: we
set

ξ =

√
c2 + 1 +

√
c2 + 1

2
u−

√
c2 + 1 −√

c2 + 1
2

v,

η = −
√
c2 + 1 −√

c2 + 1
2

u+

√
c2 + 1 +

√
c2 + 1

2
v,

where z = u+
√−1v is a complex coordinate. Then the

domain of the Gauss map is M2 = {(u, v) | −K1 < ξ <

K1}, where K1 is the complete elliptic integral of the first
kind with modulus k1 =

√
c2/(c2 + 1), that is,

K1 = K (k1) =
∫ π/2

0

dϕ√
1 − k2

1 sinϕ

(see Figure 7, left).

Then the Gauss map g : M2 −→ C ∪ {∞} is given by

g(z)

=
ĉ cn ξ dn ξ −√−1(ĉ dn ξ sinh η + c sn ξ cn ξ sinh η)

sn ξ + ĉ dn ξ cosh η + c sn ξ cn ξ sinh η
,
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Domain of a helicoidal surface A helicoidal surface with cuspidal edge

FIGURE 7. Helicoidal surface.

where sn, cn, and dn are Jacobi’s elliptic functions with
modulus k1, and to save space we have introduced the
abbreviation ĉ :=

√
c2 + 1. We get that this map is an

extended harmonic map. Therefore, the map g gives an
example of an extended CMC surface. The set of sin-
gularities is {(u, v) | ξ(u, v) = 0} (see Figure 7, left).
Applying this g to Theorem 4.1(4), we get that the sin-
gular points are cuspidal edges. This figure is obtained
when c = 2.

Example 5.5. (Enneper–Wente-type surface.) CMC sur-
faces under a curvature line condition are constructed
in [Abresch 87] and [Walter 87]. In this example, we
construct CMC surfaces in L

3 by an analogy to Wal-
ter’s method. Here, the curvature line condition is the
condition that each u-curve is to lie in some Minkowski
sphere, and each v-curve is to lie in some plane where the
Minkowski sphere is a quadric surface expressed by

{(x0, x1, x2) | −(x0)2 + (x1)2 + (x2)2 = c}.

When the constant c is a positive number, negative num-
ber, or zero, the Minkowski sphere is respectively the hy-
perbolic plane H2, the de-Sitter plane S2

1, or the light
cone.

Let σ be a solution of the sinh–Gordon equation

∂2σ

∂u2
+
∂2σ

∂v2
= sinhσ (5–1)

under the relation

σuv =
1
2
σuσv coth

σ

2
. (5–2)

Then there is a CMC surface with the following first and
second fundamental forms:

ds2 = eσ(du2 + dv2),

II =
eσ + 1

2
du2 +

eσ − 1
2

dv2,

with curvature line condition described above. The solu-
tion of (5–1) and (5–2) is written as

σ = log
(

1 + k(u)l(v)
1 − k(u)l(v)

)2

,

with functions k(u) and l(v) that satisfy

2(k′(u))2 = −pk(u)4 + 2(1 − b)k(u)2 + q, (5–3)

2(l̇(v))2 = −ql(v)4 + 2bl(v)2 + p, (5–4)

where b, p, q are real constants, ′ = d/du, and ˙ = d/dv.
For the sake of simplicity, we set b = 1/2, p = q = 1.
Then we obtain solutions of (5–3) and (5–4) explicitly
by

k(u) =

√
1 +

√
5

2
cn

⎛
⎝
√√

5
2
u

⎞
⎠ ,

l(v) =

√
1 +

√
5

2
cn

⎛
⎝
√√

5
2
v

⎞
⎠ ,

where cn is the Jacobi cn function of modulus

√
(5 +

√
5)/10.
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Domain of Enneper–Wente type Surface with swallowtail

FIGURE 8. Enneper–Wente type surface for b =
1

2
, p = q = 1.

FIGURE 9. Enneper–Wente-type surface for b = 0, p = 2, q = 1.

Applying Walter’s construction [Walter 87] to the
Minkowski case, we get a CMC surface explicitly by

x0 =
−h′(u)√

h(u)2 − h′(u)2
sinhμ(u) + η(u, v) coshμ(u),

x1 =
2√
5

(
2h(u)h′(v)

1 − h(u)h(v)
+
∫ (

−h(v)2 +
1
2

)
dv

)
,

x2 =
−h′(u)√

h(u)2 − h′(u)2
coshμ(u) + η(u, v) sinhμ(u),

where

h(x) =

√
1 +

√
5

2
cn

⎛
⎝
√√

5
2
x

⎞
⎠ ,

μ(u) =
∫ u(2 + (1 +

√
5h(t)2)

2 − (1 +
√

5h(t)2)

+
h(t)4 + 1

h(t)4 + h(t)2 − 1

)
dt,

h′(x) =
dh

dx
(x)

= −
√

5 +
√

5
2

sn

⎛
⎝
√√

5
2
x

⎞
⎠ dn

⎛
⎝
√√

5
2
x

⎞
⎠ ,

η(u, v) =
h(u)(1 + 2h(u)2) − h(v)(2 − h(u)2)√

5(1 − h(u)h(v))
√
h(u)2 − h′(u)2

.

This surface is defined on the following domain M2:

M2 =

{
(u, v) | cn

⎛
⎝
√√

5
2
u

⎞
⎠ cn

⎛
⎝
√√

5
2
v

⎞
⎠ >

1 −√
5

2
,

cn

⎛
⎝
√√

5
2
u

⎞
⎠ >

√
3 −√

5
2

}
.
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Then we can calculate the Gauss map g : M2 −→ C ∪
{∞} explicitly by

g =
1
Δ
{

(h(u)3h(v)2 + 2h(u)3 − 2h(u)h(v)2

+ h(u)) sinhμ(u)

−√
5(1 − h(u)2h(v)2)h′(u) coshμ(u)

+ 4
√−1h(u)h′(v)

√
h(u)2 − h′(u)2

}
,

where

Δ =
√

5
(
1 − h(u)2h(v)2

)√
h(u)2 − h′(u)2

−
√

5(1 − h(u)2h(v)2)h′(u) sinhμ(u)

− (h(u)3h(v)2 + 2h(u)3 − 2h(u)h(v)2

+ h(u)) coshμ(u).

The solution σ of (5–1) diverges to −∞ at some
points, but the harmonic map g is defined at these points
smoothly. We get that this map is an extended harmonic
map. Therefore, the map g gives an example of an ex-
tended CMC surface. The set of singularities is⎧⎨
⎩(u, v)

∣∣ cn
⎛
⎝
√√

5
2
u

⎞
⎠ cn

⎛
⎝
√√

5
2
v

⎞
⎠ =

√
5 − 1
2

⎫⎬
⎭

(see Figure 8, left).
By applying this g to Theorem 4.1(4) and (5), we get

that the points⎧⎨
⎩(u, v) | cn

⎛
⎝
√√

5
2
u

⎞
⎠ = 1, cn

⎛
⎝
√√

5
2
v

⎞
⎠ =

√
5 − 1
2

⎫⎬
⎭

are swallowtails, and the singular points other than the
above points are cuspidal edges.

Remark 5.6. In the Euclidean case, Walter gives some
doubly periodic constant-mean-curvature immersions.
However, in the Minkowski case, we cannot obtain a
doubly periodic constant-mean-curvature immersion by
analogy to Walter’s method.

Remark 5.7. Under another choice of b, p, q, we get a
similar surface. For example, Figure 9 shows the surface
when b = 0, p = 2, q = 1.

Finally we conclude this paper with the following open
problem.

Open Problem 5.8. Are there extended CMC surfaces in
L

3 with cuspidal cross cap?

It is expected that there exists such an example among
Enneper–Wente-type surfaces or similar classes.

ACKNOWLEDGMENTS

The author thanks Professors Kotaro Yamada and Wayne
Rossman for their useful advice. The author also thanks the
referee for a careful reading of this paper and valuable com-
ments.

REFERENCES

[Abresch 87] U. Abresch. “Constant Mean Curvature Tori in
Terms of Elliptic Functions.” J. reine angew. Math. 374
(1987), 169–192.

[Akutagawa 94] K. Akutagawa. “Harmonic Diffeomorphisms
of the Hyperbolic Plane.” Trans. Amer. Math. Soc. 342
(1994), 325–342.

[Akutagawa and Nishikawa 90] K. Akutagawa and S. Nishi-
kawa. “The Gauss Map and Spacelike Surfaces with Pre-
scribed Mean Curvature in Minkowski 3-Space.” Tôhoku
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467–476.
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