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Let E : y2 = x3 + D be an elliptic curve, where D is an integer
that contains no primes p with 6 | ordpD. For a nontorsion
rational point P on E, write x(nP ) = An(P )/B2

n(P ) in lowest
terms. We prove that for the sequence {B2m(P )}m≥0, the term
B2m(P ) has a primitive divisor for all m ≥ 3. As an application,
we give a new method for solving the Diophantine equation
y2 = x3 + dn under certain conditions.

1. INTRODUCTION

Let C : y2 = x3 + ax + b be an elliptic curve with integer
coefficients. We denote by C(Q) the additive group of
all rational points on the curve C. Let P ∈ C(Q) be a
nontorsion point. Write

x(nP ) =
An(P )
B2

n(P )

in lowest terms with An(P ) ∈ Z and Bn(P ) ∈ N. The
sequence {Bn(P )}n≥1 is known as an elliptic divisibility
sequence. A prime q is a primitive divisor for the term un

of an integer sequence {un}n≥1 if q divides un but does
not divide uk for any 0 < k < n.

M. Ward [Ward 48] first studied the arithmetic prop-
erties of elliptic divisibility sequences. Silverman [Sil-
verman 88] was the first to show that for all sufficiently
large integers n, the term Bn(P ) has a primitive divi-
sor. Everest, Mclaren, and Ward [Everest et al. 06] ob-
tained a uniform and quite small bound beyond which
a primitive divisor is guaranteed for congruent number
curves ET : y2 = x3 − T 2x with T > 0 square-free. Im-
proving their work, Ingram [Ingram 07] showed that for
the curve ET , if 5 | n or n > 2 is even, then Bn(P )
has a primitive divisor, and furthermore, if x(P ) < 0 or
{x(P ), x(P ) + T, x(P ) − T} contains a rational square,
then Bn(P ) has a primitive divisor for all n > 2.

The main purpose of this paper is to prove the fol-
lowing theorems. For a rational number r �= 0 we write
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r = pes/t, where p is a prime and s, t are integers prime
to p. We define ordp(r) = e.

Theorem 1.1. Let E : y2 = x3 + D be an elliptic curve,
where D is an integer that contains no primes q with
6 | ordqD, and assume that E has a nontorsion ratio-
nal point P . Then for the elliptic divisibility subsequence
{B2n(P )}n≥0, the term B2n(P ) has a primitive divisor
for all integers n ≥ 3.

Theorem 1.2. Let C : y2 = x3 + Ax be an elliptic curve,
where A is an integer that contains no primes q with
4 | ordqA, and assume that C has a nontorsion ratio-
nal point P . Then for the elliptic divisibility subsequence
{B2n(P )}n≥0, the term B2n(P ) has a primitive divisor
for all integers n ≥ 3.

These bounds in Theorems 1.1 and 1.2 are sharp. The
proofs are elementary. However, our results are signifi-
cant because the duplication map plays a very important
role in the arithmetic of elliptic curves. Unfortunately,
our methods do not work for other Weierstrass curves in
minimal form. We anticipate that Theorems 1.1 and 1.2
might be generalized by other methods.

We next give a new method for solving the Diophan-
tine equation y2 = x3 + dn in the integer variables x, y,
and n under certain conditions. We call an integral solu-
tion (x, y) trivial if xy = 0, and primitive if gcd(x, y) = 1.
We can write n = 6m+ r with 0 ≤ r < 6. Applying The-
orem 1.1, we obtain the following theorem.

Theorem 1.3. Let r be an integer with 0 ≤ r < 6, and
let d be an even integer that is sixth-power-free. Let
Em : y2 = x3 + d6m+r be an elliptic curve, and assume
that E0 : y2 = x3 + dr has rank one. If EN has a non-
trivial primitive integral point, then Em has no nontrivial
primitive integral points for any integer m ≥ N + 3.

In 1977, using algebraic number theory, Rabinowitz
[Rabinowitz 77] gave the full sets of integer solutions to
the Diophantine equations y2 = x3 ± 2n. As an appli-
cation of Theorem 1.3, we will give a new method for
solving the equations y2 = x3 ± 2n. Our method is geo-
metric. We anticipate that our results might find other
applications.

Primitive divisors have been studied by many authors.
A Lucas sequence is defined by Un = (αn − βn)/(α− β),
where α + β and αβ are coprime nonzero integers and
the quotient of α and β is not a root of unity. In 1892,
Zsigmondy [Zsigmondy 92] showed that for the sequence

un = an − bn, the term un has a primitive divisor for
all n > 6, where a and b are positive coprime integers.
In 1913, Carmichael [Carmichael 13] showed that if α

and β are real, then Un has a primitive divisor for all
n > 12. Ward [Ward 55] and Durst [Durst 59] ex-
tended Carmichael’s result to Lehmer sequences. In 1974,
Schinzel [Schinzel 74] proved that there exists an effec-
tively computable constant N independent of α and β

such that Un has a primitive divisor for all n > N pro-
vided α and β are complex. In 1977, Stewart [Stewart
77] showed that if n > e452267, then Un has a primi-
tive divisor. In 1998, Voutier [Voutier 98] proved that if
n > 30030, then the nth term of any Lucas or Lehmer
sequence has a primitive divisor. In 2001, Bilu, Han-
rot, and Voutier [Bilu et al. 01] obtained a major result
for Lucas and Lehmer sequences. They proved that if
n > 30, then every nth Lucas and Lehmer number has a
primitive divisor, and they listed all Lucas and Lehmer
numbers without a primitive divisor.

In the same paper, Bilu et al. linked the existence of
primitive divisors for Lucas and Lehmer numbers with
Thue equations of high degree. Traditionally, primi-
tive divisor theory has been associated with Diophantine
equations. Our approach follows the classical path. We
also link the existence of primitive divisors for elliptic di-
visibility sequences with resolving an important class of
Diophantine equations.

2. PROOF OF THEOREM 1.1

In this section, we consider an elliptic curve E : y2 =
x3 + D, where D is a nonzero integer that contains no
primes q with 6 | ordqD. Assume that E has a nontorsion
rational point P . Write x(nP ) = An(P )/B2

n(P ) in lowest
terms with An(P ) ∈ Z and Bn(P ) ∈ N. The sequence
{Bn(P )}n≥1 is a divisibility sequence, which means that
Bm(P ) | Bn(P ) whenever m | n. For P ∈ E(Q) we
write P =

(
u/e2, v/e3

)
in lowest terms. Then by the

duplication formulas we obtain

x(2P ) =
u(u3 − 8De6)

4v2e2
=

u(9u3 − 8v2)
4v2e2

,

y(2P ) =
u6 + 20Du3e6 − 8D2e12

8v3e3

=
−27u6 + 36u3v2 − 8v4

8v3e3
.

We use the following standard notation: if p is a prime,
we write pk ‖ m to indicate that pk is the highest power
of p dividing m.
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Lemma 2.1. For P ∈ E(Q) write P = (u/e2, v/e3) and
2nP = (un/e2

n, vn/e3
n) in lowest terms. If u and v are

coprime, then vn is odd, not divisible by 3, and prime to
un for all integers n ≥ 1.

Proof: Put

U = u(9u3 − 8v2), V = −27u6 + 36u3v2 − 8v4.

If u is even, then 23 ‖ V . Otherwise, V is odd. If v is
divisible by 3, then 33 ‖ V . Otherwise, V is not divisible
by 3. Hence v1 is odd and not divisible by 3.

We will prove that un and vn are coprime. The proof
is by contradiction. Suppose that u1 ≡ v1 ≡ 0 mod p for
some prime p. Since v1 is odd and not divisible by 3, we
may assume that p ≥ 5. We have

u(9u3 − 8v2) ≡ 0 mod p, (2–1)

−27u6 + 36u3v2 − 8v4 ≡ 0 mod p. (2–2)

If u ≡ 0 mod p, then from (2–2) we have v ≡ 0 mod p.
If 9u3 − 8v2 ≡ 0 mod p, then substituting v2 ≡
9u3/8 mod p into (2–2), we have that u ≡ v ≡ 0 mod p,
which is a contradiction. Hence u1 and v1 are coprime.
Using induction gives the desired result.

Lemma 2.2. Let P = (pks/e2, plt/e3) ∈ E(Q) be in lowest
terms with k > 0 and l > 0, where p is a prime and s,
t are prime to p. Write 2nP =

(
pknsn/e2

n, plntn/e3
n

)
in lowest terms, where sn and tn are prime to p. Put
νn = 3kn − 2ln and

Tn+1 = −27p2νns6
n + 36pνns3

nt2n − 8t4n.

Assume that s and t are coprime. Then for all integers
n ≥ 1,

(1) tn is odd, not divisible by 3, and prime to sn.

(2) 3pνn is an integer, and tn+1 = Tn+1 or 2−3Tn+1.

Proof: Put ν = 3k − 2l. By duplication formulas we
obtain that

x(2P ) =
pks(9pνs3 − 8t2)

4t2e2
,

y(2P ) =
pl(−27p2νs6 + 36pνs3t2 − 8t4)

8t3e3
.

We put Sn+1 = sn(9pνns3
n − 8t2n).

(1) A similar argument to that in the proof of
Lemma 2.1 would show that tn is odd not divisible by
3 and prime to sn.

(2) We distinguish three cases.

Case 1. Let p ≥ 5. If ν is positive then k1 = k and l1 = l,
so ν1 is also positive. If ν is negative then k1 = k+ν and
l1 = l+2ν, so ν1 is zero. Assume that ν is zero. Then we
can write k = 2m and l = 3m for some positive integer m.
If we let x = p2ms/e2 and y = p3mt/e3, then the equation
y2 = x3 + D becomes p6m(t2 − s3) = De6. From our
assumption 6 � ordpD, we have that ordpD > 6m, so we
must have t2 − s3 ≡ 0 mod p. Then S1 ≡ s4 �≡ 0 mod p

and T1 ≡ s6 �≡ 0 mod p. Therefore k1 = 2m and l1 = 3m,
and hence ν1 is zero.

Case 2. Let p = 2. Then

x(2P ) =
2ks(9 · 2ν−2s3 − 2t2)

t2e2
=

2k+ν−2s(9s3 − 23−νt2)
t2e2

,

y(2P ) =
2l(−27 · 22ν−3s6 + 9 · 2ν−1s3t2 − t4)

t3e3

=
2l+2ν−3(−27s6 + 9 · 22−νs3t2 − 23−2νt4)

t3e3
.

If ν ≥ 2 then k1 ≥ k and l1 = l; therefore ν1 ≥ 2. If
ν < 2 then k1 = k + ν − 2 and l1 = l + 2ν − 3; therefore
ν1 is zero.

Case 3. Let p = 3. Then

x(2P ) =
3ks(9 · 3νs3 − 8t2)

4t2e2
=

3k+ν+2s(s3 − 8 · 3−ν−2t2)
4t2e2

,

y(2P ) =
3l(−27 · 32νs6 + 36 · 3νs3t2 − 8t4)

8t3e3

=
3l+2ν+3(−s6 + 4 · 3−ν−1s3t2 − 8 · 3−2ν−3t4)

8t3e3
.

If ν ≥ 0 then k1 = k and l1 = l; therefore ν1 = ν ≥ 0. If
ν ≤ −2 then k1 ≥ k + ν +2 and l1 = l +2ν +3; therefore
ν1 ≥ 0. If ν = −1 then k1 = k and l1 = l; therefore
ν1 = ν = −1.

Thus we obtain that 3pν1 is an integer. Next we will
show that t2 = T2 or 2−3T2. As mentioned before, t1 is
an odd integer not divisible by 3 and prime to s1. So if
p ≥ 3 and 2 | s1 or if p = 2 and ν1 ≥ 2, then 23 ‖ T2.
Otherwise, T2 is odd. A similar argument to that in
Lemma 2.1 gives that S2 and T2 have no common prime
divisors larger than 2. It follows that t2 is equal to T2 or
2−3T2. Using induction gives the desired result.

Now we are ready to prove Theorem 1.1.

Proof of Theorem 1.1: Let P be a nontorsion rational
point on the curve E, and let n ≥ 1 be an arbitrary pos-
itive integer. Write 2nP = (ansn/e2

n, bntn/e3
n) in lowest

terms with en > 0, where an and bn have the factor-
izations an = pα1

1 pα2
2 · · · pαm

m and bn = pβ1
1 pβ2

2 · · · pβm
m ,

and gcd(sn, tn) = gcd(sn, an) = gcd(tn, bn) = 1. Let
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cn = a3
nb−2

n . Then cn = pν1
1 pν2

2 · · · pνm
m , where νi =

3αi − 2βi. From Lemma 2.2 we have that 3cn is an
integer. As mentioned in the proof of Lemma 2.2, the
hypothesis that there are no primes q with 6 | ordqD

is used to show that νi ≥ 0, provided pi ≥ 5. By the
duplication formulas we obtain

x(2n+1P ) =
ansn(9cns3

n − 8t2n)
4t2ne2

n

,

y(2n+1P ) =
bn(−27c2

ns6
n + 36cns3

nt2n − 8t4n)
8t3ne3

n

.

From Lemma 2.2 we see that tn is odd, not divisible
by 3, and prime to sn for all n ≥ 1. So to prove that
the denominator of x(2n+2P ) has a primitive divisor, it
suffices to show that tn+1 �= ±1. Now put

Tn+1 = −27c2
ns6

n + 36cns3
nt2n − 8t4n. (2–3)

Then from Lemma 2.2 we have that tn+1 = Tn+1 or
2−3Tn+1.

We will now prove that Tn+1 �= ±1,±23. The proof is
by contradiction. From (2–3) we have that

27c2
ns6

n − 36cns3
nt2n + 8t4n + Tn+1 = 0.

Then
9cns3

n = 6t2n ±
√

12t4n − 3Tn+1. (2–4)

Since 3cn is an integer, 12t4n − 3Tn+1 must be square,
namely 4t4n − Tn+1 = 3w2

n for some positive integer wn.
Case 1. Suppose that Tn+1 = −1. Reducing the equa-
tion 4t4n + 1 = 3w2

n modulo 3, we obtain the congruence
4t4n +1 ≡ 0 mod 3. But this congruence has no solutions.
Hence Tn+1 �= −1.
Case 2. Suppose that Tn+1 = 1. Then we have that
4t4n − 1 = 3w2

n. Putting X = 12t2n and Y = 36tnwn, we
obtain

Y 2 = X3 − 36X.

Using SIMATH, we can solve the Diophantine equa-
tion y2 = x3 − 36x. All integer solutions are as follows:
(x, y) = (±6, 0), (−3,±9), (−2,±8), (0, 0), (12,±36),
(18,±72), (294,±5040). So (12t2n, 36tnwn) = (12,±36),
and therefore tn = ±1. Substituting this and Tn+1 = 1
into (2–4), we obtain cns3

n = 1. Therefore cn = 1 and
sn = 1. Hence

2nP =
(an

e2
n

, ± bn

e3
n

)
, 2n+1P =

( an

4e2
n

, ± bn

8e3
n

)
.

The points 2nP and 2n+1P lie on the curve y2 = x3 +D.
Therefore

b2
n = a3

n + De6
n and b2

n = a3
n + 64De6

n.

This is impossible. Hence Tn+1 �= 1.

Case 3. Suppose that Tn+1 = 23. Reducing the equation
4t4n − 23 = 3w2

n modulo 3, we obtain the congruence
4t4n−23 ≡ 0 mod 3. But this congruence has no solutions.
Hence Tn+1 �= 23.

Case 4. Suppose that Tn+1 = −23. Then we have that
4t2n + 23 = 3w2

n. Putting X = 12t2n and Y = 36tnwn, we
have

Y 2 = X3 + 288X.

By SIMATH, all integer solutions of the equation
y2 = x3 + 288x are as follows: (x, y) = (0, 0), (1,±17),
(12,±72), (24,±144), (288,±4896). So (12t2n, 36tnwn) =
(0, 0), (12,±72), and therefore tn = 0 or ±1. Then from
(2–4) we have 9cns3

n = 12, which is impossible. Hence
Tn+1 �= −23. We have thus completed the proof.

Remark 2.3. The bound of Theorem 1.1 is sharp. For ex-
ample, if E : y2 = x3 +80 and P = (4, 12) is a nontorsion
point on E, then 2P = (−4, 4) and 22P = (44,−292).

3. PROOF OF THEOREM 1.2

The proof of Theorem 1.2 is a slight variant of that of
Theorem 1.1. In this section we consider an elliptic curve
C : y2 = x3 + Ax, where A is an integer that contains no
primes q with 4 | ordqA. Assume that the curve C has
a nontorsion rational point P . If we let P = (x, y), then
by the duplication formulas we obtain

x(2P ) =
(x2 − A)2

4y2
=

(y2 − 2x3)2

4x2y2
,

y(2P ) =
x6 + 5Ax4 − 5A2x2 − A3

8y3

=
(y2 − 2x3)(4x6 − 4x3y2 − y4)

8x3y3
.

We can write P = (bu2/e2, buv/e3) in lowest terms,
where u and v are coprime; see [Silverman and Tate 94].

Lemma 3.1. Let P ∈ C(Q) be of the form (u2/e2, uv/e3)
in lowest terms with gcd(u, v) = 1. Then 2nP has the
form (u2

n/e2
n, unvn/e3

n) in lowest terms, where un and vn

are odd and coprime for all integers n ≥ 1.

Proof: By duplication formulas we obtain that

x(2P ) =
(v2 − 2u4)2

4u2v2e2
,

y(2P ) =
(v2 − 2u4)(4u8 − 4u4v2 − v4)

8u3v3e3
.

Put U1 = v2 − 2u4 and V1 = 4u8 − 4u4v2 − v4. If v is
odd, then U1 and V1 are odd, while if v is even, then
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2 ‖ U1 and 22 ‖ V1. Therefore both u1 and v1 are odd. A
similar argument to that in Lemma 2.1 would show that
u1 and v1 are coprime. Using induction gives the desired
result.

Lemma 3.2. Let p be a prime, and let P =
(pks2/e2, plst/e3) ∈ C(Q) be in lowest terms with k > 0,
l > 0, and gcd(s, t) = gcd(s, p) = gcd(t, p) = 1. Then
2nP has the form (pkns2

n/e2
n, plnsntn/e3

n) in lowest terms
with gcd(sn, p) = gcd(tn, p) = 1 for all n ≥ 1. Put
νn = 3kn − 2ln. Then for all integers n ≥ 1,

(1) sn and tn are odd coprime integers.

(2) sn+1 = t2n−2pνns4
n and tn+1 = 4p2νns8

n−4pνns4
nt2n−

t4n.

Proof: If we put ν = 3k − 2l, then

x(2P ) =
pk−ν(t2 − 2pνs4)2

4s2t2e2
,

y(2P ) =
pl−ν(t2 − 2pνs4)(4p2νs8 − 4pνs4t2 − t4)

8s3t3e3
.

Put S1 = t2 − 2pνs4 and T1 = 4p2νs8 − 4pνs4t2 − t4.
(1) The proof is similar to that for Lemma 3.1, so we

omit it.
(2) We will show that ν1 is nonnegative. We distin-

guish two cases.

Case 1. Let p ≥ 3. If ν is positive then k1 = k − ν

and l1 = l − ν; therefore ν1 is zero. If ν is negative then
k1 = k + ν and l1 = l + 2ν; therefore ν1 is zero. Assume
that ν is zero. Then we can write k = 2m and l = 3m

for some positive integer m. If we let x = p2ms2/e2 and
y = p3mst/e3, then the equation y2 = x3 + Ax becomes
p4m(t2 − s4) = Ae4. From our assumption 4 � ordpA,
we have that ordpA > 4m. Therefore we must have t2 −
s4 ≡ 0 mod p. We obtain S1 ≡ −s4 �≡ 0 mod p and
T1 ≡ −s8 �≡ 0 mod p. Therefore k1 = k = 2m and
l1 = l = 3m, and hence ν1 is zero.

Case 2. Let p = 2. Then

x(2P ) =
2k−ν−2(t2 − 2ν+1s4)2

s2t2e2
=

2k+ν(2−ν−1t2 − s4)2

s2t2e2
,

y(2P ) =
2l−ν−3(t2 − 2ν+1s4)(22ν+2s8 − 2ν+2s4t2 − t4)

s3t3e3

=
2l+2ν(2−ν−1t2 − s4)(s8 − 2−νs4t2 − 2−2ν−2t4)

s3t3e3
.

If ν ≥ 0 then k1 = k − ν − 2 and l1 = l− ν − 3; therefore
ν1 is zero. If ν ≤ −2 then k1 = k + ν and l1 = l + 2ν;

therefore ν1 is zero. Assume that ν = −1. Then

x(2P ) =
2k−1(t2 − s4)2

s2t2e2
,

y(2P ) =
2l−2(t2 − s4)(s8 − 2s4t2 − t4)

s3t3e3
.

Put S1 = t2 − s4 and T1 = s8 − 2s4t2 − t4. Since s and
t are odd, we have 2 ‖ T1 and 2r ‖ S1 for some integer
r ≥ 2. Therefore k1 = k + 2r − 1 and l1 = l + r − 1, and
hence ν1 = 4r − 1 > 0.

It follows that ν1 is nonnegative. We put

S2 = t21 − 2pν1s4
1 and T2 = 4p2ν1s8

1 − 4pν1s4
1t

2
1 − t41.

Here s1 and t1 are odd and coprime, so an argument
similar to that for Lemma 2.1 would show that S2 and
T2 are odd coprime integers and both of them are prime
to p. Hence s2 = S2 and t2 = T2. Using induction gives
the desired result.

Proof of Theorem 1.2: Let P be a nontorsion ratio-
nal point on the curve C : y2 = x3 + Ax, and let
n ≥ 1 be an arbitrary positive integer. Write 2nP =
(ans2

n/e2
n, bnsntn/e3

n) in lowest terms with en > 0, where
an and bn have the factorizations an = pα1

1 pα2
2 · · · pαm

m

and bn = pβ1
1 pβ2

2 · · · pβm
m , and gcd(sn, tn) = gcd(sn, an) =

gcd(tn, bn) = 1. Let cn = a3
nb−2

n . Then cn =
pν1
1 pν2

2 · · · pνm
m , where νi = 3αi − 2βi. From Lemma 3.2

we have that cn is an integer for all n ≥ 1. As mentioned
in the proof of that lemma, the hypothesis that there are
no primes q with 4 | ordqA is used to show that νi ≥ 0,
provided pi ≥ 3. By the duplication formulas we obtain

x(2n+1P ) =
anc−1

n (t2n − 2cns4
n)2

4s2
nt2ne2

n

,

y(2n+1P ) =
bnc−1

n (t2n − 2cns4
n)(4c2

ns8
n − 4cns4

nt2n − t4n)
8s3

nt3ne3
n

.

From Lemma 3.2 we observe that sn and tn are odd co-
prime integers and

sn+1 = t2n − 2cns4
n, tn+1 = 4c2

ns8
n − 4cns4

nt2n − t4n.

Put X = t2n and Y = 2cns4
n. Then

sn+1 = X − Y and tn+1 = Y 2 − 2XY − X2,

and so

2X2 = s2
n+1 − tn+1 and Y = X − sn+1. (3–1)

To prove that the denominator of x(2n+2P ) has a primi-
tive divisor, it suffices to show that sn+1tn+1 �= ±1. The



308 Experimental Mathematics, Vol. 18 (2009), No. 3

proof is by contradiction. Suppose that sn+1tn+1 = ±1.
Then from (3–1), we have X = 1 and Y = 2, and there-
fore sn = ±1, tn = ±1, and cn = 1. So

2nP =
(an

e2
n

, ± bn

e3
n

)
and 2n+1P =

( an

4e2
n

, ± bn

8e3
n

)
.

The points 2nP and 2n+1P lie on the curve y2 = x3+Ax.
Therefore

b2
n = a3

n + Aane4
n and b2

n = a3
n + 16Aane4

n.

This is impossible. Hence sn+1tn+1 �= ±1. We have
completed the proof.

Remark 3.3. The bound of Theorem 1.2 is sharp. For
example, if C : y2 = x3 − 192x and P = (24, 96) is a
nontorsion point on C, then 2P = (16,−32) and 22P =
(49, 329).

4. PROOF OF THEOREM 1.3

Let r be a fixed integer with 0 ≤ r < 6. Let E0 : y2 =
x3 +dr be an elliptic curve, where d is a sixth-power-free
even integer. For a positive integer k and the curve E0,
we define

E0(k)

= {(x, y) ∈ E0(Q) : k2 divides the denominator of x}.

The following proposition is well known (see, for example,
[Cassels 91]).

Proposition 4.1. Let p be a prime. Then for every point
P ∈ E0(p) and every nonzero integer n,

ordpx(nP ) = ordpx(P ) − 2ordpn.

Lemma 4.2. If the curve E0 : y2 = x3 + dr has rank one,
then E0(d) is an infinite cyclic group.

Proof: The set E0(d) is simply the intersection of E0(pe)
for all prime powers pe dividing d. Each E0(pe) is torsion-
free, so E0(d) is torsion-free. Since E0(d) sits inside Z×F

for a finite group F , it follows that E0(d) itself is cyclic.

Proof of Theorem 1.3: If Em : y2 = x3 + d6m+r has a
nontrivial primitive integral point (s, t), then E0 : y2 =
x3 + dr has a rational point of the form (s/d2m, t/d3m)
in lowest terms. This theorem can be restated as saying
that for any integer m ≥ N + 3, the group E0(Q) of all

rational points on the curve E0 has no points of the form
(s/d2m, t/d3m) in lowest terms.

By our assumption, the curve E0 has rank one, so
from Lemma 4.2, we have that E0(d) is an infinite cyclic
group. Let P0 be a generator for E0(d). Assume that
EN has a nontrivial primitive integral point. Let k0 be
the least positive integer k such that kP0 has the form
(u/d2N , v/d3N ) in lowest terms. Then, from Theorem
1.1 we obtain that the denominator of x(2nk0P0) has a
divisor not dividing d for all integers n ≥ 3. Hence,
for any nontorsion point P ∈ E0(Q), if the denominator
of x(P ) is divided by d2(N+3), then it has a divisor not
dividing d. It follows that Em has no nontrivial primitive
integral points for any integer m ≥ N + 3.

5. THE DIOPHANTINE EQUATION y2 = x3 − 2n

As an application of Theorem 1.3, we will give a new
method for solving the Diophantine equation y2 = x3 −
2n. The following argument is another approach to the
results of [Rabinowitz 77].

All integer solutions of the equation y2 = x3 − 2n for
integers 0 ≤ n ≤ 5 are as follows:

n Solutions

0 (1, 0)
1 (3,±5)
2 (2,±2), (5,±11)
3 (2, 0)
4 no solutions
5 no solutions

Lemma 5.1. Let n ≥ 0 be an integer. Then the elliptic
curve Cn : y2 = x3−2n has a nontrivial primitive integral
point if and only if n = 1, 2.

Proof: As mentioned above, Cn has a primitive integral
point for n = 1, 2, and does not for n = 0, 3, 4, 5. Now
write n = 6m + r with 0 ≤ r < 6. Then each of the
curves C0, C3, C4, and C5 has rank zero. First we will
show that C6m has no primitive integral points for any
m ≥ 1. Suppose that the curve C6m has a primitive
integral point (u, v). Then

v2 = u3 − 26m or (v/23m)2 = (u/22m)3 − 1.

The curve C0 : y2 = x3−1 has rank zero; in other words,
all rational points on C0 are torsion. By the Nagell–Lutz
theorem, a torsion point has integer coordinates. Hence
m = 0. It follows that C6m has no primitive integral
points for any m ≥ 1. Similarly, none of C6m+3, C6m+4,
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and C6m+5 has primitive integral points for any integer
m ≥ 1.

Both C1 and C2 have rank one, and C1(Q) � 〈(3, 5)〉
and C2(Q) � 〈(2, 2)〉. Let

Cn(2)

= {(x, y) ∈ Cn(Q) : 22 divides the denominator of x}.
Then Cn(2) is an infinite cyclic group. Put P = (3, 5).
Then

2P =
(

129
22 · 52

, − 383
23 · 53

)
,

and therefore 2P is a generator for C1(Q). Next put
Q = (2, 2). Then

2Q = (5,−11),

3Q =
(

106
32

,
1090
33

)
,

22Q =
(

785
22 · 112

,− 5497
23 · 113

)
,

and therefore 22Q is a generator for C2(Q). From
Proposition 4.1, there are no rational points of the form
(u/22m, v/23m) on C1 and C2 for any integer m ≥ 1.
Hence neither C6m+1 nor C6m+2 has primitive integral
points for any integer m ≥ 1. We have thus completed
the proof.

Using this lemma, we will give all integer solutions to
the equation y2 = x3 − 2n.

Theorem 5.2. [Rabinowitz 77] All integer solutions of the
Diophantine equation y2 = x3 − 2n are as follows:

n Solutions

n ≡ 0 mod 6
(
22m, 0

)
n ≡ 1 mod 6 (3 · 22m,±5 · 23m)

n ≡ 2 mod 6 (2 · 22m,±2 · 23m), (5 · 22m,±11 · 23m)

n ≡ 3 mod 6 (2 · 22m, 0)

n ≡ 4 mod 6 no solutions

n ≡ 5 mod 6 no solutions

Proof: We write n = 6m + r with 0 ≤ r < 6. Assume
that the equation y2 = x3−26m+r has an integer solution
(u, v). Then

( v

23m

)2

=
( u

22m

)3

− 2r.

As shown in the proof of Lemma 5.1, for all m ≥ 1 both
u/22m and v/23m must be integers. If (u0, v0) is an inte-
ger solution of the equation y2 = x3−2r, then u = 22mu0

and v = 23mv0. Thus we have completed the proof.

6. THE DIOPHANTINE EQUATION y2 = x3 + 3n

In this section, we will solve the equation y2 = x3 + 3n

by our methods.

Lemma 6.1. Let n ≥ 0 be an integer. Then the ellip-
tic curve Cn : y2 = x3 + 3n has no nontrivial primitive
integral points for all integers n ≥ 6.

Proof: All integer solutions of the equation y2 = x3 + 3n

for integers 0 ≤ n ≤ 5 are as follows:

n Solutions

0 (−1, 0), (0 ± 1), (2,±3)

1 (1,±2)

2 (0,±3), (−2,±1), (3,±6), (6,±15), (40,±253)

3 (−3, 0)

4 (0,±9)

5 no solutions

Each of the curves C0, C3, C4, and C5 has rank zero.
By a similar argument as in the proof of Lemma 5.1,
we have that none of C6m, C6m+3, C6m+4, C6m+5 has
primitive integral points for any integer m ≥ 1. Both C1

and C2 have rank one, and C1(Q) � 〈(1, 2)〉 and C2(Q) �
〈(−2, 1)〉 ⊕ 〈(0, 3)〉. Let

Cn(3)

= {(x, y) ∈ Cn(Q) : 32 divides the denominator of x}.

Put P = (1, 2). Then we have

2P =
(
−23

24
,−11

26

)
, 3P =

(
1873

32 × 132
,− 130870

33 × 133

)
.

Therefore 3P is a generator for C1(3).
Next put Q = (−2, 1) and R = (0, 3). Then R is a

torsion point of order 3. After a little computation, we
have that the denominator of x(iQ + jR) is not divisible
by 3 for i = 1, 2, 3 and j = 1, 2, and

2Q = (40,−253), 3Q =
(
− 629

32 × 72
,

22870
33 × 73

)
.

Therefore 3Q is a generator for C2(3). Hence from
Proposition 4.1 there are no rational points of the form
(u/32m, v/33m) on C1 and C2 for any integer m ≥ 1.
Hence neither C6m+1 nor C6m+2 has primitive integral
points for any integer m ≥ 1. We have thus completed
the proof.

Theorem 6.2. All integer solutions of the Diophantine
equation y2 = x3 + 3n are as follows:
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n Solutions

n ≡ 0 mod 6 (−32m, 0),
(0,±33m), (2 · 32m,±3 · 33m)

n ≡ 1 mod 6 (32m,±2 · 33m)

n ≡ 2 mod 6 (0,±3 · 33m), (−2 · 32m,±33m),
(3 · 32m,±6 · 33m),

(6 · 32m,±15 · 33m),
(40 · 32m,±253 · 33m)

n ≡ 3 mod 6 (−3 · 32m, 0)

n ≡ 4 mod 6 (0,±9 · 33m)

n ≡ 5 mod 6 no solutions

The proof is similar to that for Theorem 5.2, so we
omit it.

ACKNOWLEDGMENTS

The author would like to express his gratitude to the anony-
mous referee for many useful and valuable suggestions that
improved this paper, in particular the suggestions that the
proofs could be made more rigorous, that one could verify
that the bounds in Theorems 1.1 and 1.2 are sharp, and that
the Diophantine equation y2 = x3 + 3n could be resolved.

REFERENCES

[Bilu et al. 01] Y. Bilu, G. Hanrot, and P. Voutier (with an
appendix by M. Mignotte). “Existence of Primitive Di-
visors of Lucas and Lehmer Numbers.” J. Reine Angew.
Math. 539 (2001), 75–122.

[Carmichael 13] R. D. Carmichael. “On the Numerical Fac-
tors of the Arithmetic Forms αn ± βn.” Ann. of Math. 15
(1913), 30–70.

[Cassels 91] J. W. S. Cassels. Lectures on Elliptic Curves.
Cambridge: Cambridge University Press, 1991.

[Durst 59] L. K. Durst. “Exceptional Real Lehmer Se-
quences.” Pacific J. Math. 9 (1959), 437–441.

[Everest et al. 06] G. Everest, G. Mclaren, and T. Ward.
“Primitive Divisors of Elliptic Divisibility Sequences.” J.
Number Theory 118 (2006), 71–89.

[Ingram 07] P. Ingram. “Elliptic Divisibility Sequences over
Certain Curves.” J. Number Theory 123 (2007), 473–486.

[Rabinowitz 77] S. Rabinowitz. “The Solution of y2 ± 2n =
x3.” Proc. Amer. Math. Soc. 62 (1977), 1–6.

[Schinzel 74] A. Schinzel. “Primitive Divisors of the Expres-
sion An−Bn in Algebraic Number Fields.” J. Reine Angew.
Math. 268/269 (1974), 27–33.

[Silverman 88] J. H. Silverman. “Wieferich’s Criterion and
the ABC-Conjecture.” J. Number Theory 30 (1988), 226–
237.

[Silverman and Tate 94] J. H. Silverman and J. Tate. Ratio-
nal Points on Elliptic Curves. New York: Springer-Verlag,
1994.

[Stewart 77] C. L. Stewart. “Primitive Divisors of Lucas and
Lehmer numbers.” In Transcendence Theory: Advances
and Applications, edited by A. Baker and D. W. Masser,
pp. 79–92. London: Academic Press, 1977.

[Voutier 98] P. M. Voutier. “Primitive Divisors of Lucas and
Lehmer Sequences, III.” Math. Proc. Cambridge Phil. Soc.
123 (1998), 407–419.

[Ward 48] M. Ward. “Memoir on Elliptic Divisibility Se-
quences.” Amer. J. Math. 70 (1948), 31–74.

[Ward 55] M. Ward.” The Intrinsic Divisors of Lehmer Num-
bers.” Ann. of Math. (2) 62 (1955), 230–236.

[Zsigmondy 92] K. Zsigmondy. “Zur Theorie der Potenz-
reste.” Monatsh. Math. 3 (1892), 265–284.

Minoru Yabuta, Senri High School, 2-17-1, Takanodai, Suita, Osaka, 565-0861, Japan (yabutam@senri.osaka-c.ed.jp)

Received August 11, 2008; accepted September 9, 2008.


