
Obtuse Triangular Billiards II: One Hundred Degrees
Worth of Periodic Trajectories
Richard Evan Schwartz

CONTENTS

1. Introduction
2. Unfoldings and Stability
3. The Infinite Families
4. The Verification Algorithm
5. Special Cases
6. Computational Details
7. Using McBilliards
Acknowledgments
References

2000 AMS Subject Classification: Primary 37E15

Keywords: Obtuse, triangles, periodic, billiards, orbits, dynamics

We give a rigorous computer-assisted proof that a triangle has a
periodic billiard path when all its angles are at most one hundred
degrees.

1. INTRODUCTION

1.1 Background

The theory of billiards on rational polygons, i.e., poly-
gons whose angles are all rational multiples of π, is a well-
studied subject with deep connections to areas such as
Teichmüller theory. See [Gutkin 96, Masur and Tabach-
nikov 02, Tabachnikov 95] for some surveys on billiards,
mainly rational. Very little is known about the existence
of periodic orbits in irrational polygonal billiards. Here
is a basic conjecture.

Conjecture 1.1. (Triangular billiards conjecture.) Every
triangle has a periodic billiard path.

By triangle we mean a solid triangular region of the
plane. I think that it is fair to say that this two-hundred-
year-old problem is widely regarded as impenetrable.

In order to survey some results related to the trian-
gular billiards conjecture, we introduce a bit of notation.
Let T be a triangle, with the shortest edge labeled 1,
the next-shortest edge labeled 2, and the longest edge
labeled 3.

Any periodic billiard path in T gives rise to an infi-
nite repeating word that records the succession of sides
encountered by the billiard path. This periodic word is
called the combinatorial type of the path.

In 1775, Fagnano proved that the combinatorial type
123 (repeating) describes a periodic billiard path on every
acute triangle.

It is an exercise to show that 312321 (repeating) de-
scribes a periodic billiard path on all right triangles. See

c© A K Peters, Ltd.
1058-6458/2009 $ 0.50 per page

Experimental Mathematics 18:2, page 137

138 Experimental Mathematics, Vol. 18 (2009), No. 2

[Galperin et al. 91, Hooper 07, Troubetzkoy 04] for some
deeper results on right-angled billiards. Any given ra-
tional polygon has a dense set of periodic billiard paths
[Boshernitzyn et al. 98]; see also [Masur 86]. See [Veech
92] or the surveys mentioned above for the connections to
Teichmüller theory. The papers [Galperin et al. 91, Hal-
beisen and Hungerbuhler 00] produce some infinite fami-
lies of combinatorial types that describe periodic billiard
paths on some obtuse triangles.

A periodic billiard path on a triangle is called stable
if a periodic billiard path of the same combinatorial type
exists on all nearby triangles. In Section 2 we explain
that stability is a combinatorial property of the word. In
[Hooper 07] it is shown that no right triangle has a stable
periodic billiard path.

In [Schwartz 06], I prove that any triangle sufficiently
close to the 30-60-90 triangle has a periodic billiard path.
At the same time, I prove the following “pessimistic”
result: For any ε > 0 there is a triangle within ε of the
30-60-90 triangle that has no periodic billiard path of
combinatorial length less than 1/ε.

In [Hooper and Schwartz 08], Pat Hooper and I prove
that any sufficiently small perturbation of an isosceles
triangle has a periodic billiard path. This result is decep-
tively hard: We require several infinite families of com-
binatorial types.

The purpose of this paper is to prove the following
result.

Theorem 1.2. (100 degree theorem.) Let T be an obtuse
triangle whose largest angle is at most 100 degrees. Then
T has a stable periodic billiard path.

I discovered this result operating McBilliards, a graph-
ical user interface that Pat Hooper and I wrote for
the purpose of studying the triangular billiards conjec-
ture. (McBilliards also inspired [Hooper 07, Schwartz
06, Hooper and Schwartz 08].)

We will prove the 100 degree theorem rigorously, using
a combination of traditional mathematics and exact inte-
ger computation. We recommend that the reader operate
McBilliards while reading the paper.

McBilliards really brings the ideas in the paper to life,
and also allows the reader to survey the computer parts
of our proof to a very fine level of detail. In Section 7 we
give instructions for accessing and operating McBilliards.

For the reader who doesn’t want to learn McBilliards
but who still would like a visual guide to the paper, we
have written a simple-to-use stand-alone Java applet that
illustrates our proof. See Section 7 for details.

For the reader who does not want to use either of our
programs, I have tried to make the mathematics stand
on its own. Also, I have tried to explain the methods suf-
ficiently well that the interested reader could start from
scratch and reproduce the result in its entirety.

As I explain in the next section, my method of find-
ing the needed periodic billiard paths is rather simple-
minded. Someone reproducing the experiment would
probably not find exactly the same list of combinatorial
types I use, but I would bet that the hypothetical new
list would have considerable overlap with my list. I think
that my list is rather efficient.

My method of verifying that these combinatorial types
do the job is rather complicated and idiosyncratic. Some
of the complexity in the verification process is probably
necessary, but some of it is a result of my needing to get
a feasible computation. (I worked quite hard to develop
an efficient method.) On much faster computers, the
verification algorithms would be simpler. See Section 4.2,
for instance. Perhaps the main point of my verification
process is to convince the reader that the result can be
proved by a finite computation.

One might wonder whether 100 degrees is a natural
cutoff for our result. It is not. We stopped at 100 degrees
because it is a nice round number. With a great deal
more effort, we could perhaps get to 105 or 110 degrees.
Below we will explain why 112.5 degrees (= 5π/8 radians)
is a very hard barrier to pass.

To use an analogy, our approach to the triangular bil-
liards conjecture is a bit like trying to ride a bicycle to
the North Pole. It is fairly clear that the approach will
come to grief, but it is hard to say in advance exactly
where or how.

Results like the “pessimistic result” in [Schwartz 06]
mentioned above, and also the deeper complications re-
vealed in [Hooper and Schwartz 08], indicate some of the
difficulties.

1.2 Discussion of the Experiment and the Proof

Let Δ denote the parameter space of obtuse triangles.
The point (x, y) ∈ Δ represents a triangle with small
angles of x and y radians. To each combinatorial type
W , we can associate the region O(W) consisting of points
(x, y) ∈ Δ such that W is the combinatorial type of a
periodic billiard path on the triangle corresponding to
(x, y).

When O(W) is nonempty, we call O(W) an orbit tile,
or tile for short. The periodic billiard path represented
by W is stable if and only if O(W) is a nonempty open

Schwartz: Obtuse Triangular Billiards II: One Hundred Degrees Worth of Periodic Trajectories 139

set. When O(W) is not an open set, O(W) is contained
in a line. See Section 2.2 for details.

Let S100 ⊂ Δ denote the region corresponding to tri-
angles whose largest angle is at most 100 degrees. For
convenience we also assume x ≤ y in S100. Our general
method of proof is to cover S100 with orbit tiles. We use
stable words because the orbit tiles are much larger. Two
problems emerge.

Problem 1.3. Consider a boundary point (0, y) ∈ ∂Δ,
with y ∈ (0, π/2). A triangle very near such a point
has no short periodic billiard path. See Lemma 3.1 for a
proof. Thus, the covering we seek is necessarily infinite.

Problem 1.4. Our “pessimistic result” from [Schwartz 06]
can be restated like this: No neighborhood of the point
p6 := (π/6, π/3) has a finite covering by orbit tiles. This
point corresponds to the 30-60-90 triangle.

While there is no hope of finding a finite cover of S100,
because of these two problems (and other problems), we
nonetheless used McBilliards to find an infinite cover.
McBilliards essentially does two things:

1. Given (x0, y0) ∈ Δ and some N , McBilliards finds
all stable combinatorial types W of length at most
N such that (x0, y0) ∈ O(W). The program makes a
depth-first search through the tree of words, pruning
any branch of the tree as soon as it is clear that
no completion of the corresponding word prefix can
result in a periodic billiard path. Setting N = 50
gives a quick answer, and setting N = 1000 takes all
day.

2. Given a stable combinatorial type W , McBilliards
computes, to specified precision, the orbit tile O(W).
As we will discuss in this paper, O(W) is a “finite-
sided” region, bounded by analytic arcs. We think
that O(W) is always connected and simply con-
nected, but we don’t know how to prove it.

Our experimental method works like this. We initially
set (say) N = 50 and sample many points in Δ. We first
search for all the stable combinatorial types of length at
most N corresponding to some given point. Assuming
that we find some words, we then plot the corresponding
tiles. Now we repeat.

Roughly speaking, at any stage of the process, we
choose a point that is near the center of the largest region
we have not covered by orbit tiles. When it seems that
our searches for N = 50 are no longer meeting with any

success, we increase N to 100. And so on. One could
perhaps automate this process, but we have not done so.

Sometimes, guided by a hunch, we focus on a small
“hole” around a particular point. (Other users are likely
to develop similar hunches.) In this case, we steadily
increase N while zooming in on the region of interest.
Sometimes we find a finite cover; sometimes we find the
initial portion of an infinite sequence of tiles whose union
seems to cover the hole; and sometimes we have to give
up without being able to draw any conclusion.

Let

pk =
(

π

k
,
π

2
− π

k

)
∈ ∂Δ; (1–1)

pk corresponds to a right triangle. Our search reveals five
features:

1. Solving Problem 1.3, we found an infinite union of
tiles that covers a neighborhood P3 of the segment
{0}× [5π/9, π/2]. Here 5π/9 radians is 100 degrees.

2. The point p4 presents a minor inconvenience. It
seems that no neighborhood of this point in Δ is con-
tained in an orbit tile. However, we cover a neigh-
borhood P4 of this point by a union of nine orbit
tiles. (Restricting to the set {x ≤ y} as we do for
S100, we need only five orbit tiles.)

3. The point p5 presents a similar inconvenience. We
cover a neighborhood P5 of this point by a union of
two orbit tiles.

4. Solving Problem 1.4, we found an infinite family of
orbit tiles whose union covers a neighborhood P6 of
p6. We establish this result in [Schwartz 06].

5. Any point in S100 − (P3 ∪P4 ∪P5 ∪P6) is contained
in one of 215 orbit tiles O(W7), . . . , O(W221). The
maximum word length is 184.

Once we have established the listed results, we have
just to show that

S100 ⊂
221⋃
i=3

Pi. (1–2)

We introduce “dummy” polygons P1 and P2 that cover
Δ − S100. Thus, (1–2) is equivalent to

Δ ⊂
221⋃
i=1

Pi. (1–3)

Establishing this result is a purely combinatorial result.
We have a finite number of polygons and we want to see
that they form a covering of Δ.

140 Experimental Mathematics, Vol. 18 (2009), No. 2

Referring to item 1 above, P3 is a certain triangular
region in the parameter space. The infinite family of
words corresponding to the tiles covering P3 grows in a
very predictable way, and we will use analytic techniques
to deal with all the words at once. The method we use
here for P3 is similar to the method we use for P6 in
[Schwartz 06].

The computer-aided portion of our proof deals with
items 2, 3, and 5. To explain the general idea, we con-
centrate on item 5. For each word Wj we will produce
a polygon Pj ⊂ O(Wj). We choose Pj such that it has
dyadic rational vertices. We also choose the polygons
P1, . . . , P6 to have dyadic rational vertices. Choosing
dyadic rational coordinates is useful for technical pur-
poses, as we somewhat explain below.

In Section 4 we will explain how we check, with a fi-
nite amount of computation, that Pj ⊂ O(Wj). Without
going into too much detail in this introduction, perhaps
we can explain why this really is a finite computation.
Starting in O(Wj) and moving toward ∂O(Wj), we ob-
serve that the corresponding billiard path “disappears”
in one of finitely many ways. Essentially, some portion
of the (geometrically changing) path has to crash into a
vertex of the (geometrically changing) triangle. We have
just to show that none of these finitely many bad events
occurs when we move around the smaller Pj .

For the purposes of giving a proof, it doesn’t mat-
ter how we produce our polygons. However, it seems
worthwhile to explain the general idea behind our choices.
First, we plot O(Wj) to high precision. Then, we select a
dyadic rational polygon Pj ⊂ O(Wj) roughly according
to three criteria:

• The polygon Pj must be fairly well contained inside
O(Wj), so that a relatively small amount of compu-
tation reveals that Pj ⊂ O(Wj). It is usually quite
hard to verify that points very near the boundary of
O(Wj) are actually contained in O(Wj).

• The polygon Pj should be a sufficiently close approx-
imation to O(Wj) that (considering pairs of poly-
gons) Pi and Pj have about the same overlap as Wi

and Wj . This condition guarantees that we retain
the covering property when we replace O(Wj) by Pj .

• The denominators of the vertex coordinates are not
too large. The largest denominator we use is 217.
Having fairly simple coordinates involved turns out
to be useful for our rigorous calculations. The tech-
nical difficulty is that we want to make exact integer

calculations, but we also need to evaluate trigono-
metric functions on the vertices of our polygons. To
solve the problem, we create a lookup table of ratio-
nal approximations to cos(πk/2n) for the relevant
pairs (k, n).

It takes some work to satisfy all these requirements.
What helps us tremendously is that the orbit tiles, espe-
cially the small ones, are extremely close to being convex
polygons. Thus, we can get very nice inner approxima-
tions. We produced the final polygons “by hand,” using
a special feature of McBilliards designed to help us se-
lect, manage, and modify such polygons. We got lucky in
that the whole business worked out to a feasible compu-
tation. The near-convexity of the orbit tiles seems to be
a general phenomenon, but we don’t know how to prove
any general result along these lines.

Now we explain why 5π/8 is a hard barrier to pass.
Our region P3 actually covers a neighborhood of the
larger segment {0} × (5π/8, π/2]. However, we have no
idea how to cover the neighborhood of any point (0, y)
with y ≥ 5π/8. Fairly deep searches by McBilliards re-
veal interesting infinite patterns of orbit tiles that stop
well short of covering any such neighborhood. It seems
to me that the most sensible continuation of the ap-
proach here would be to find a cover of a neighborhood
of (0, 5π/8) by orbit tiles.

1.3 Plan of the Paper

This paper is organized as follows.

• In Section 2 we will present some basic material
about triangular billiards. Some of this theory is
well known, and some of it is (probably) new.

• In Section 3 we deal with P3, proving that this polyg-
onal region can be covered by infinitely many orbit
tiles. This part of the proof is purely traditional,
but of course is heavily inspired by computer exper-
imentation.

• In Section 4 we explain our basic computational al-
gorithm, which verifies an equation of the form

P ⊂ O(W),

where P is a polygon with dyadic rational vertices
and W is a word. Running this algorithm, we verify
that Pj ⊂ O(Wj) for j = 7, . . . , 221.

• In Section 5 we deal with P4 and P5. For the most
part, our treatment of P4 and P5 uses the algorithm

Schwartz: Obtuse Triangular Billiards II: One Hundred Degrees Worth of Periodic Trajectories 141

presented in Section 4, but we need to intervene oc-
casionally and do some hands-on analysis. For the
sake of completeness, we briefly review how we cov-
ered the region P6 in [Schwartz 06].

• In Section 6 we discuss the main computational is-
sues in the paper. In particular, we explain how we
verify (1–3). We also explain how we reduce all our
calculations to integer arithmetic.

• In Section 7 we provide some operating instructions
for McBilliards.

The list of all polygons and words we use seems too
long to include in this paper. The complete list resides
both in McBilliards and in our companion Java applet.
Also, the publications list on my website1 has a link to a
written list of the words and polygons right next to the
link to this paper.

2. UNFOLDINGS AND STABILITY

In this section we develop some of the basic theory of tri-
angular billiards. Some of this material is well known,
and some of it appears in [Schwartz 06, Hooper and
Schwartz 08].

2.1 Unfoldings

We always work with even-length words. Our convention
is that a finite word is meant to be a portion of an infinite
periodic word. The infinite periodic word is obtained
from the given portion just by repeating it endlessly.

Given a word W = w1, . . . , w2k we define a sequence
T1, . . . , T2k of triangles by the rule that Tj−1 and Tj are
related by reflection across the wjth edge of Tj. Here
j = 2, . . . , 2k. The set U(W, T) = {Tj}2k

j=1 is known as
the unfolding of the pair (W, T). This is a well-known
construction; see [Tabachnikov 95]. Figure 1 shows an
example.

The first edge of U(W, T) is the edge of T1 labeled w1.
The last edge of U(W, T) is the edge of T2k labeled w2k.
In Figure 1, the first edge is the segment joining a1 to b1,
and the last edge is the segment joining a8 to b8.

The word W represents a periodic billiard path in T

if and only if the following hold:

1. The first and last edges of U(W, T) are parallel.

2. There is a line segment L joining equivalent inte-
rior points on the first and last edges that remains
entirely inside U(W, T).

1http://www.math.brown.edu/∼res.

By equivalent points we mean that the translation carry-
ing the one edge to the other identifies the points. When
we fold up the line segment, so to speak, it becomes a pe-
riodic billiard path on the original triangle. Conversely,
a periodic billiard path unfolds into a segment as we have
described.

The line segment L is never unique. Small paral-
lel translations of L will also satisfy all the hypotheses.
We call L a centerline for the unfolding. Sometimes we
will abuse the terminology and call L the centerline even
though it is never unique when it exists.

We now describe a labeling convention for the ver-
tices of U(W, T). We can think of U(W, T) as the im-
age in the plane of a polygonal disk U∗(W, T) made by
abstractly gluing together triangles as indicated above.
The first and last edges of U∗(W, T) make sense as we
described them above. Deleting the first and last edges
on U∗(W, T), we have two remaining arcs on the bound-
ary ∂U∗(W, T). We call one of these arcs the “a-arc”
and the other one the “b-arc.” We choose so that the
circuit “first-a-last-b” makes a clockwise loop around the
boundary, as in Figure 1. We label the vertices of the a-
arc a1, a2, . . . going from the first edge to the last edge,
and similarly for the b-arc.

In case the centerline exists, we can rotate so that the
centerline is horizontal. In this case our labeling scheme
is exactly as in Figure 1. All the a-vertices lie above the
centerline and all the b-vertices lie below it. For certain
choices of W , called stable words, the first and last sides
of U(W, T) are always parallel. In this case, we will rotate
so that a horizontal translation in the positive direction
carries the first edge to the last edge. In this case, a
centerline exists if and only if all the a-vertices lie above
all the b-vertices.

Remark 2.1. Given that our labeling is determined in
a combinatorial way, we don’t actually need a point in
O(W) in order to plot (or estimate) this tile. In practice,
we always have such a point, but we don’t use it.

Remark 2.2. In the end, we always rotate U(W, T) so that
a horizontal translation in the positive horizontal direc-
tion carries the first edge to the last. We call this horizon-
tal position. However, when we compute certain quanti-
ties associated with U(W, T), we initially have U(W, T)
in a potentially different position that we call first posi-
tion below.

Remark 2.3. The unfolding window on McBilliards shows
the unfoldings we have discussed in this section.

142 Experimental Mathematics, Vol. 18 (2009), No. 2

a8

b8

a1

a2

b1

b2

b3 b4

b5 b6

b7

a3

a4
a6

a7

FIGURE 1. The unfolding for W = (1232313)2 .

Remark 2.4. Our figures of unfoldings do not always show
the label of every relevant vertex. However, the required
labels can easily be deduced from the labeling scheme we
have described here. Essentially, one locates the vertices
a1 and b1 on the left side of the picture and then “counts
out to the right” to find the label of the vertex under
discussion.

2.2 Stability

Recall that a periodic billiard path on a triangle is stable
if nearby triangles have a periodic billiard path of the
same combinatorial type. As a related notion, we say
that a combinatorial type W is stable if the first and last
sides of U(W, T) are parallel for any triangle T .

Lemma 2.5. If W is the combinatorial type for a stable
billiards path, then W is a stable word. Conversely, if W

is a stable word, then any periodic billiard path described
by W is stable.

Proof: Suppose that W describes a stable periodic bil-
liard path on T . Then U(W, T) has a centerline, and
the first and last sides are parallel, as discussed above.
When we perturb T slightly to a new triangle T ′, we
still have a periodic billiard path with the same com-
binatorics. Hence, U(W, T ′) still has a centerline. In
particular, the first and last sides of U(W, T ′) are still
parallel. We have shown that the first and last sides of
U(W, ∗) are parallel for an open set of triangles. But
then, by analytic continuation, these sides are always
parallel.

Conversely, suppose that W describes a periodic bil-
liard path on T and W is a stable word. When we
perturb T slightly, the first and last sides are still par-
allel, and all the a-vertices still lie above all the b-
vertices. Hence, a centerline still exists. Hence, nearby
triangles still have a periodic billiard path described
by W .

Remark 2.6. In our proof, we used analytic continuation
as a hammer to smash a pea. Just below, we will see that
the parallelism of the first and last sides is a combinato-
rial condition.

Remark 2.7. One can certainly have stable words that
describe no periodic billiard paths on any triangle. How-
ever, given our method of “search, then plot,” the stable
words we find always describe periodic billiard paths on
triangles. That is, all the orbit tiles are guaranteed to be
nonempty.

The well-known condition that W is a stable word
is a combinatorial one. We will describe the stability
condition in three equivalent ways. First, we break W

into couplets, as we illustrate using the example from
the previous section:

W = 12 32 31 31 23 23 13.

Let Nij denote the number of couplets having type ij.
In our example, we have

N12 = 1, N21 = 0, N23 = 2, N32 = 1,

N31 = 2, N13 = 1.

Lemma 2.8. A word W is stable if and only if

N12 − N21 = N23 − N32 = N31 − N13.

Proof: Let T1, . . . , T2k be the triangles in the unfolding
U(W, T). We put one more triangle T0 at the beginning
of our unfolding, so that reflection across the first edge
maps T0 to T1. The first and last sides (both oriented
the same way) are parallel if and only if T0 and T2k are
related by a translation.

Let αj be the angle of our triangle T opposite side j.
Looking only at the even triangles of the unfolding, N12

Schwartz: Obtuse Triangular Billiards II: One Hundred Degrees Worth of Periodic Trajectories 143

33

31

1

1

2

2

2

2

3

31

3

FIGURE 2. The hexpath for W = (1232313)2 .

counts the number of times a triangle Tj is rotated coun-
terclockwise by 2α3 into Tj+2. Likewise, N21 represents
the same thing, but in the clockwise direction. The situ-
ation is similar for the other quantities. Thus, the angle
through which we rotate T0 to get to T2k is

2(N12−N21)α3+2(N23−N32)α2+2(N31−N13)α1. (2–1)

The map carrying T0 to T2k is a translation if and only
if the sum above is an integer multiple of 2π.

If our criterion holds, this quantity always equals an
integer multiple of 2π. The point here is that 2α1+2α2+
2α3 = 2π. If our criterion fails, then we can produce
triangles in which the corresponding sum is not an integer
multiple of 2π.

Remark 2.9. When W is unstable, setting the quantity
in (2–1) to be a multiple of 2π puts a locally linear con-
straint on the angles. This explains why an unstable
orbit tile is contained in a finite union of parallel lines.
A bit more work shows that the orbit tile is contained in
only one line.

Now we will describe stability a second way. Let H
denote the 1-skeleton of the usual regular hexagonal grid
in the plane. Then H has three parallel families of edges.
Given a word, we can draw a path in H by following
the edges as determined by the word: we move along the
dth family when we encounter the digit d. We call this
path the hexpath associated to the word. Figure 2 shows
the hexpath corresponding to the example we have been
considering. Note that the hexpath is closed in this case.

Lemma 2.10. A word is stable if and only if its hexpath
is closed.

Proof: For this proof, we identify the plane with C and
scale the picture so that opposite sides of each hexagon
are one unit apart. Considering the hexpath two edges
at a time, we see that the location of the final point has
the same formula as in (2–1) except that we replace the

angles α1, α2, α3 by three unit complex numbers z1, z2, z3

forming the vertices of an equilateral triangle on the unit
circle. An easy exercise shows that the corresponding
sum vanishes exactly when our stability condition holds.

Remark 2.11. The word window in McBilliards draws
the hexpaths for the combinatorial types that the search
engine finds.

Here we mention one last formulation of the stability
condition.

Lemma 2.12. Let W = w1, . . . , w2n. Let ndj denote the
number of solutions to the equation wi = d with i con-
gruent to j modulo 2. Let nd = nd0 − nd1. Then W is
stable if and only if nd(W) is independent of d.

Proof: Interpreted in terms of the hexpath, the condition
here again says that the hexpath is closed.

2.3 Special Palindromes

We call W a special palindrome if W is stable and has
the form

W = dwd
(
w−1

)
. (2–2)

Here d ∈ {1, 2, 3} and w is a subword, and w−1 is the re-
verse of w. In this case, U(W, T) has bilateral symmetry,
and the translation carrying the first side to the last side
of U(W, T) moves perpendicular to these sides.

If U(W, T) has a centerline, then the centerline is nec-
essarily perpendicular to the first and last sides. Hence,
the corresponding periodic billiard path on T starts and
ends perpendicular to one of the sides of T . Conversely,
a stable periodic billiard path in T with this property has
a combinatorial type that is a special palindrome.

Note that there are unstable words that satisfy some
but not all of the mentioned properties. For instance,
123132 describes an unstable periodic billiard path in
any right triangle, and this path starts and ends perpen-
dicular to side 3.

2.4 Turning Angles and Turning Pairs

2.4.1 Definition. Let U(W, T) be the unfolding. Let
e1 be the first edge, oriented so that it points from b1

to a1. We say that U(W, T) is in first position if e1 is
parallel to (0, 1). That is, e1 points in the direction of
the positive Y -axis.

Given any oriented edge e of U(W, T), we let θ(e) de-
note the angle through which one must rotate the positive

144 Experimental Mathematics, Vol. 18 (2009), No. 2

y-axis counterclockwise so that it coincides with e. Thus,
θ(e1) = 0. In general, θ(e) is defined modulo 2π. The
function θ(e) is really a function of (x, y) ∈ Δ, and we
write this dependence as θ(e; x, y). It is not hard to see,
by induction, that there are integers M(e) and N(e) such
that

θ(e; x, y) = M(e)x + N(e)y + επ mod 2π.

Here ε ∈ {0, 1}. It is sometimes more convenient to con-
sider unoriented edges, in which case we have

θ(e; x, y) = M(e)x + N(e)y mod π.

We call (M(e), N(e)) the turning pair for e. The rest of
this section is devoted to explaining how one computes
the turning pairs algorithmically.

2.4.2 The Angular Correspondence. First we will give
an abstract formulation of how the turning pairs are de-
fined. There is a canonical map from the set of triangles
of the unfolding to the set of vertices of the hexpath: We
simply map Ti to the ith vertex vi of the hexpath. The
edge of U(T, ∗) between Ti and Ti+1 corresponds nat-
urally to the midpoint of the edge joining vi and vi+1.
The other two edges of Ti correspond naturally to the
midpoints of the other two edges of H emanating from
vi. We call this correspondence the angular correspon-
dence. For any object of the unfolding X , we let Θ(X)
denote the point in the plane corresponding to X un-
der the angular correspondence. It turns out that there
is a real affine transformation R of the plane such that
(M(e), N(e)) = R(Θ(e)). The map R depends on how
we coordinatize H. This is the abstract formulation.

2.4.3 A Concrete Algorithm. The algorithm that we
describe is implemented in McBilliards. In Section 7 we
explain how the reader can see this algorithm in action.

Let d be the first digit of W . For ε ∈ {−1, 0, 1} let dε ∈
{1, 2, 3} denote the congruence class of (d + ε) modulo 3.
We define

α0(dε) = ε.

Suppose that we have determined αi−1(1), αi−1(2), and
αi−1(3). Let d be the ith digit of W . Define

αi(dε) = αi−1(dε) + (−1)i2ε. (2–3)

In this way we produce a triple of labels for each triangle
in the unfolding. If the plane is suitably coordinatized by
variables (x, y, z) such that x+ y + z = 0, then the triple
associated to Ti is precisely the coordinates of Θ(Ti), the
ith vertex of the hexpath.

(0,0,0)

(−2,−2,4)

e1
z

y

z (−3,0,3)

x
x

y

(1,−2,1)

edge labels

(−2,−1,3)

(0,−1,1)

T1

T2

triangle labels

(−1,−1,2)

FIGURE 3. Labels for W = 12

Let e be an edge of U(W, T). Suppose that e is the
dth edge of Ti. We define

β(e, dε) = αi(dε) − (−1)iε. (2–4)

Note that e could also be an edge of another triangle of
U(W, T). This happens when Ti−1 and Ti are related by
a reflection through e. In other words, d is the ith digit
of W . In this situation, (2–4) gives the same answer
whether we use i − 1 or i in the formula. This can be
seen by comparing (2–3) and (2–4).

Lemma 2.13. We have the general formula

θ(e) = −β(e, 1)x + β(e, 2)y + β(e, 3)z
3

. (2–5)

Here z is such that x + y + z = 0.

Proof: We first check our formula on the edges of T1.
If 1 is the first digit of W , then the edge labels of e1

are (0, 0, 0), and hence both sides of (2–5) are 0. The
edge labels of e2 are (−1,−1, 2). In this case, (2–5) gives
θ(e2) − θ(e1) = −(−x − y + 2z)/3 = −z, as it should.
The edge labels of e3 are (1,−2, 1). In this case, (2–5)
gives θ(e3) − θ(e1) = −(x − 2y + z)/3 = y, as it should.

Given the simple nature of the formulas in (2–3) and
(2–4), it suffices to check the induction step for i = 2.
In other words, we just have to see that (2–5) works for
the edges of T2. Again, we can suppose that 1 is the first
digit of W . Suppose that 2 is the second digit. Figure 3
shows a picture of the situation. One easily checks that
(2–5) holds for all these edges. When the second digit of
W is a 3, the verification is similar.

It is useful to have a formula that doesn’t involve the
angle z. We define

M(e) =
β(e, 3) − β(e, 1)

3
, N(e) =

β(e, 3) − β(e, 2)
3

.

If follows from Lemma 2.13 that (M(e), N(e)) is the turn-
ing pair for e.

Schwartz: Obtuse Triangular Billiards II: One Hundred Degrees Worth of Periodic Trajectories 145

a1

b1
b4

FIGURE 4. The 3-spine for W = 123231323123232313.

2.5 Defining Functions

Given two points v, w ∈ R2 we write v ↑ w if the y-
coordinate of v exceeds the y-coordinate of w. In the
opposite case, we write v ↓ w. In case of equality, we
write v
 w. We are interested in the case that v and w

are vertices of an unfolding that is in horizontal position.
In this section we will explain how to define a function

fuv such that fuv > 0 if and only if u ↑ v. Here fuv is a
function of (x, y) ∈ Δ. The function fuv has a combina-
torial definition in terms of the positions of u and v on
the unfolding. We warn the reader in advance that we
will define fuv using constructions that make sense when
U(W, T) is in first position, but we will interpret fuv as
making statements about U(W, T) when the unfolding is
in horizontal position.

Given our functions, we are left with the following
problem: To show that Q ⊂ O(W) for some region Q,
we just have to show that fai,bj > 0 throughout Q, for
all pairs (ai, bj). This explains why the orbit tiles are
“finite-sided” regions with sides defined by (as we will
see) analytic functions.

Let Ũ(W, T) be the bi-infinite periodic continuation of
U(W, T). For any d ∈ {1, 2, 3} there is an infinite periodic
polygonal path made from type-d edges in Ũ(W, T). The
image of this path in U(W, T) is what we call the d-
spine. Figure 4 shows the 3-spine for U(W, T), where T

is some triangle of no interest to us. When the first and
last sides of U(W, T) are glued together, the d-spine is a
closed polygonal loop.

Let e1, . . . , en be a complete and irredundant list of
the edges that appear in the d-spine. We label so that e1

is the leftmost edge. Let

gd(x, y) =
n∑

k=1

(−1)k−1 exp(i(M(ek)x + N(ek)y)). (2–6)

Lemma 2.14. Suppose that U(W, T) is in first posi-
tion. The translation direction of U(W, T) is parallel to
±igd(x, y) for any d ∈ {1, 2, 3}.

Proof: Suppose e1 and e2 are oriented edges of U(W, T),
incident to a common vertex v, and oriented the same
way with respect to v. See Figure 5. Suppose that e2 lies
to the right of e1. Then

Mx+Ny, M = M(e2)−M(e1), N = N(e2)−N(e1),
(2–7)

represents, modulo 2π, the counterclockwise angle
through which e1 is rotated to produce e2.

We identify the plane with C. We scale so that the
vectors e1, . . . , en of the spine are all unit vectors and
the tail vertex of e1 is 0. We consider two orientations
on these edges. Say that the red orientation is the one in
which the head of each edge hits the tail of the next one.
Say that the blue orientation is the one in which incident
edges both point either away or toward the vertex of
incidence, as in Figure 5.

e2

v

e1 e2ve1

FIGURE 5. Two edges.

Let ρk ∈ C denote the head of ek minus the tail of
ek when this edge is oriented according to the red orien-
tation. Likewise define βk for the blue orientation. We
have βk = ±ρk, with the sign depending on the parity
of the index. The initial point e1 is 0. The translation
we seek carries 0 to the endpoint z of en with the red
orientation. Thus, our translation carries 0 to

n∑
k=1

ρk =
n∑

k=1

(−1)k−1βk. (2–8)

On the other hand, it follows from induction and (2–7)
that

ρk = ε exp(iθk), θk = M(ek)x + N(ek)y. (2–9)

Here ε ∈ {−1, 1} is a global sign that does not depend
on k.

Combining (2–8) and (2–9) gives us our result.

146 Experimental Mathematics, Vol. 18 (2009), No. 2

Let v and w be two vertices of U(W, T). We say that v

and w are d-connected if there is a polygonal path of type-
d edges connecting v to w, and d is as large as possible.

Lemma 2.15. Any pair of vertices are d-connected for a
unique d ∈ {1, 2, 3}.

Proof: If d exists, then by definition d is unique. For the
existence, let v and w be our vertices. Then v and w are
each incident to two types of vertices. Hence, there is
some type, say d, such that v and w are both incident
to an edge of type d. We take d as large as possible.
Either v lies on the d-spine or else we can connect v to
the d-spine with an edge of type d. The same goes for w.
Thus, we form our path by connecting v to the d-spine,
traveling along the d-spine, and then connecting to w.

Let e′1, . . . , e′m be the set of type-d edges joining v to
w, ordered from left to right. We define

h(x, y) =
m∑

k=1

(−1)k−1 exp
(
i(M(e′k)x + N(e′k)y)

)
.

Lemma 2.16. Suppose that U(W, T) is in first position.
The vector pointing from p to q is parallel to ±h(x, y).

Proof: This has almost exactly the same proof as
Lemma 2.14.

Letting d be such that v and w are d-connected, we
set g = gd.

Lemma 2.17. Let T be the triangle corresponding to
(x, y) ∈ Δ. Suppose that U(W, T) is in horizontal po-
sition. Then the function

f(x, y) = ±�(gh) (2–10)

vanishes if and only if v
 w.

Proof: We observe that v
 w when U(W, T) is in hori-
zontal position if and only if g = g(x, y) and g = h(x, y)
are real multiples of each other, which happens if and
only if gh ∈ R, which happens if and only if f(x, y) = 0.

2.6 Getting the Sign Right

Now we discuss the sign in front of (2–10). We want to
use our function to determine when a given vertex lies
above another one, and not just when two given vertices
are at the same height. That is, we would like to know

which sign choice guarantees that fvw(x, y) > 0 if and
only if v(x, y) ↑ w(x, y). Here we emphasize that the
positions of v and w depend on a parameter (x, y) ∈ Δ.

There are two approaches we might take. One ap-
proach is to make a guess in any given case and then use
a single auxiliary computation for some point (x0, y0) to
correct the guess if necessary. By continuity, if the sign is
right (or wrong) at one parameter, it is right (or wrong)
at all parameters. Given that the computer-aided por-
tion of our proof involves only a finite number of these
functions, we could easily have taken this approach.

The approach we actually take is to establish some
general sign conventions and follow them. After an em-
barrassingly huge amount of trial and error, we discov-
ered the general rule that allows us to establish and im-
plement our sign conventions. The proof that the sign
formula is correct is a matter of induction. We omit the
details.

Recall that v lies to the left of w, and e′1, e
′
2, . . . are

the edges of our chosen path connecting v to w. Finally,
we note that there is a canonical left-to-right ordering on
all the edges of the same type.

The d-spine gives a natural ordering to the edges
e1, . . . , en (the red ordering in our proof of Lemma 2.14),
and so it makes sense to speak of the left vertex of e1.
This is the tail vertex of e1 relative to the red ordering.
The left vertex of e1 is either a1 or b1.

We establish the following rule:

Rule 2.18. (The sign rule.) Let s be the number of edges
on the list e1, . . . , en that lie to the left of e′1.

• Suppose the left vertex of e1 is a1. Then
(−1)s�(gh) > 0 if and only if v ↑ w.

• Suppose the left vertex of e1 is b1. Then
(−1)s�(gh) > 0 if and only if v ↓ w.

McBilliards uses the sign rule as a basis for establish-
ing the following sign conventions:

1. Suppose v = ai and w = bj . Then f > 0 if and only
if v ↑ w.

2. Suppose v = ai and w = bj and i < j. Then f > 0
if and only if w ↑ v.

3. Suppose v = bi and w = bj and i < j. Then f > 0
if and only if w ↑ v.

Schwartz: Obtuse Triangular Billiards II: One Hundred Degrees Worth of Periodic Trajectories 147

2.7 Notation

We introduce a shorthand notation for the function f .
It suffices to list the turning pairs defining h and then
the turning pairs defining g. For instance, in the exam-
ple above, the defining function for the pair (a1, b4) is
recorded as

0 1
4 1
4 −1
6 −1
6 −3
0 −3

0 1 (+)
4 1

Here m = 2 and n = 6. The (+) indicates the sign choice.
From the notation we read off that

g(x, y) = exp(i(y)) − exp(i(4x + y)) + exp(i(4x − y))

− · · · − exp(i(−3y)),

h(x, y) = (+1) × (exp(i(y)) − exp(i(4x + y))).

We call this form 1 for the defining function.
To arrive at a second convenient form for our function

we multiply g and h together, collect terms, and use the
fact that sine is an odd function. This gives us what we
call form 2 for the defining function:

f(x, y) =
∑

k

Jk sin(Akx + Bky), Jk ∈ N, Ak, Bk ∈ Z.

(2–11)

Remark 2.19. Using McBilliards, the reader can see com-
putations of the turning pairs and defining functions for
any given example. See Section 7 for details.

3. THE INFINITE FAMILIES

3.1 The Region of Interest

The region P3 ⊂ Δ has coordinates(
0,

π

2

)
,

(
0,

3π

8

)
,

(
π

8
,
3π

8

)
.

The lightly shaded region in Figure 6 is S100. The darkly
shaded region is P3. Note that S100 continues behind P3.

Lemma 3.1. The region P3 has no covering by finitely
many orbit tiles.

Proof: Let T be a triangle whose largest angle is 90 + ε

and whose smallest angle is δ, where δ � ε. Any billiard
path P in T must eventually hit the short side of T at
a point x. But then at least one of the segments S of
P , incident to x, will make an angle comparable to ε

(0,0)

3

Δ

100S

P

FIGURE 6. The region P3.

with one of the long sides. Tracing P out from x in the
direction of this segment, we see that P has to make
about ε/δ bounces, moving roughly away from the short
side, before its direction can change enough for it to turn
around. This shows that T supports no short periodic
billiard paths. Hence, we need infinitely many orbit tiles
to cover P3.

We introduce the words An and Bn for n = 1, 2, 3, . . . :

An = 3wn3w−1
n , Bn = 3wn+13w−1

n ,

wn = 1(32)n+11(23)n2.

We break P3 into subregions, each of which is covered
by a single tile. Let Nn denote the open triangle bounded
by

• the bottom edge of P3, namely the line y = 3π/8;

• the line through (0, π/2) having slope −(n + 1)/2;

• the line through (0, π/2) having slope −(n + 2)/2.

Let N ′
n denote the open line segment that is the common

boundary of Nn and Nn+1. We will prove that

Nn ⊂ O(An), N ′
n ⊂ O(Bn), n = 1, 2, 3, (3–1)

Figure 7 shows the tiles O(A1), . . . , O(A6), and the
right-hand side shows O(B1), . . . , O(B6) superimposed
over the left-hand side. The tiles continue sweeping out
to the left, covering P3.

We deal with the A tiles first, then the B tiles.

FIGURE 7. Some orbit tiles.

148 Experimental Mathematics, Vol. 18 (2009), No. 2

3.2 The A Unfoldings

Figures 8 through 10 show unfoldings for A1, A2, and A3

respectively, for various choices of triangle. The pattern
continues in the obvious way.

3.3 A Special Case

We will concentrate on the case n = 2, which is suffi-
ciently complex to contain all the ideas in the proof. At
the end we will explain the general case.

Here we analyze the vertices of U(A2, T) when T corre-
sponds to a point in N2. By symmetry, it suffices to con-
sider the vertices on the right half of the unfolding. We
change our labeling scheme somewhat and start counting
our vertices from the center, as in Figure 9.

Lemma 3.2. For any T ∈ N2 and any j, we have aj ↑ a2

or aj ↑ a7. In other words, the lowest top vertex is either
a2 or a7 in all cases.

Proof: Let θ(e) denote the turning angle of an edge e, as
discussed in the previous section. We write (for instance)
θ(a1b2) = θ(

−−→
a1b2). We let z denote the angle opposite

edge 3, so that x + y + z = π. Here are the angles of
importance to us:

θ(a1a2) = 6x+π, θ(a7a8) = −x, θ(b7a5) = π+3x+2y.

(3–2)
We derive the third equation, which is the least obvious.
We rotate

−−→
b1a1 by 6x to get −−→a2a1. Then we rotate −−→a2a1

by 2y to get to
−−→
a2b7. Then we rotate

−−→
a2b7 by −3x to get

to
−−→
a5b7. Then we rotate by π to reverse the direction.
The conditions (x, y) ∈ N2 give rise to the angle con-

straints

x ∈
(
0,

π

12

)
, y ∈

(
3π

8
,
π

2

)
. (3–3)

See Figure 8.
From (3–2) we now get

θ(a1a2) ∈ (π, π + π/2), θ(a7a8) = x ∈ (−π/2, 0).

But this means that a1 ↑ a2 and a8 ↑ a7.
Consider the polygonal “fan” F whose vertices are b7

and a3, . . . , a7. Note that b7a5 is the line of bilateral
symmetry for F . Our constraint (x, y) ∈ N2 gives

π − π/4 < 2y < π − 3x, 3x < π/4. (3–4)

Combining these bounds with (3–2), we get

θ(b7a5) ∈
(

7π

4
, 2π

)
. (3–5)

Hence b5a7 has positive slope.

Equation (3–4) guarantees that F is contained in a
half-plane. We can write F = F1 ∪ F2, where F1 is the
convex hull of b7 and the odd vertices a3, a5, a7. Then
F2 is a union of two small triangles, as shown in Figure
11. Given the conditions on F , we see that a3 ↑ a7

and a5 ↑ a7.
Since the line of symmetry of F has positive slope

and F lies in a half-plane, each even a-vertex of the fan
lies above one of the adjacent odd a-vertices. The point
here is that the line segments connecting b7 to the even
vertices are longer than the line segments connecting b7

to the odd vertices. All in all, aj ↑ a7 for j = 3, 4, 5, 6.

Now we deal with the bottom vertices.

Lemma 3.3. In all cases, the highest bottom vertex is
either b6 or b8.

Proof: The proof is almost the same as for the top ver-
tices. Let (x, y) ∈ N2, as above. Since y < π/2, the line
b1b2 has positive slope. Hence b2 ↑ b1. To understand
the vertices b2, . . . , b4, we consider the “fan” whose ver-
tices are a1, b2, b3, b4, b5, b6. This polygon is isometric to
the one considered in the previous subsection. The line
of symmetry of F is a1b4. This line has negative slope
because of the fact that 3x < π/2. The same argument
as above now shows that b6 ↑ bj for j = 2, 3, 4, 5. The
angle between

−−→
b7b6 and

−−→
b7a5 is 4x < π/3. Combining this

information with (3–5), we see that

θ(b7b6) ∈
(

7π

4
,
5π

2

)
≡

(
−π

4
,
π

3

)
.

From this we see that b6 ↑ b7.

To finish the proof that N2 ⊂ O(A2), we prove the
following result.

Lemma 3.4. When T corresponds to a point in N2, we
have ai ↑ bj for i ∈ {2, 7} and j ∈ {6, 8}.

b7

a3
a4

a5
a6

a7

FIGURE 11. The fan.

Schwartz: Obtuse Triangular Billiards II: One Hundred Degrees Worth of Periodic Trajectories 149

FIGURE 8. Unfolding for A1.

b1
b3

b5

b8

a8

a1

a2
a4 a6

FIGURE 9. Unfolding for A2.

FIGURE 10. Unfolding for A3.

Proof: Consider first (a7, b8). We have

θ(b8a7) = y ∈ (0, π/2).
Hence a7 ↑ b8.

Now consider (a2, b6). We have θ(a2b6) = 4x + y ∈
(π/2, π). Hence a2 ↑ b6.

Now consider (a2, b8). Note that a2 and b8 are sym-
metrically located with respect to our favorite line b7a5.
Thus a2 and b8 have the same height if and only if our
line is vertical. From (3–2) and (3–5) we see that this
happens for a point in the closure of N2 if and only if

2y + 3x = π. That is, (x, y) has to lie on the right
boundary line of N2. Equation (3–5) shows that a2 ↑ b8

for (x, y) ∈ N2.
Now consider (a7, b6). Note that a7 and b6 have the

same height if and only if the line b7a4 is vertical. Essen-
tially the same analysis as we have already done shows
that our line has negative slope for (x, y) ∈ N2 and is
vertical for 2y + 4x = π. Hence a4 ↑ b7. The two points
have the same height when (x, y) is in the left boundary
of N2.

150 Experimental Mathematics, Vol. 18 (2009), No. 2

a5
a3

a7

a8

a9
a11

a13

b13

b12

b10

b8
b6

b4

b2

b1

a1

FIGURE 12. Unfolding for B1.

3.4 The General Case

We deal with the top vertices first. The general version
of (3–2) is

θ(a1a2) = (2n + 2)x + π, θ(a2n+3a2n+4) = −x,

and

θ(b2n+3an+3) = π + (n + 1)x + 2y. (3–6)

Equation (3–6) eliminates a2n+4 and a1 from considera-
tion.

The conditions (x, y) ∈ Nn give rise to the angle con-
straints

x ∈
(

0,
π

4n + 8

)
, y ∈

(
3π

4
,
π

2

)
. (3–7)

For (x, y) ∈ Nn we have

π − π/4 < 2y < π − (n + 1)x.

These equations combine together with (3–6) to show
that the line b2n+3an+3 has positive slope. This line
is the center of symmetry of the fan with vertices
b2n+3, a3, . . . , a2n+3. The same argument as above then
shows that a2, . . . , a2n+2 lie above aj ↑ a2n+3 for j =
2, . . . , 2n+2. In this way we eliminate everything but a2

and a2n+3.
Essentially the same argument eliminates all the b-

vertices except b2n+2 and b2n+4. The key point is that
the line a1bn+2, which is the line of symmetry for the fan
with vertices a1; b2, . . . , b2n+2, has negative slope. This
follows from (3–7).

The analysis of the edges is the same in the general
case. The main points that need to be observed are these:

• The points a2 and b2n+4 have the same height if and
only if b2n+4an+3 is vertical, and this happens if and
only if 2y + (n + 1)x = π.

• The points a2n+3 and b2n+2 have the same height if
and only if the line b2n+3an+2 is vertical, and this
happens if and only if 2y + (n + 2)x = π.

All this information assembles together in the same way
as in the case n = 2 to show that Nn ⊂ O(An).

3.5 The B Unfoldings

Now we turn to the B tiles. We will draw U(B1, T) for
some triangle T , and then explain the general case.

Figure 12 shows U(B1, T) for some triangle corre-
sponding to a point (x, y) ∈ N ′

1. We return to our orig-
inal convention of labeling the vertices of the unfolding,
where we start all the way to the left. Such points satisfy
the equation

3x + 2y = π. (3–8)

The (near) central edge (a8, b8) is parallel to both
(a1, b1) and (a13, b13). Indeed, the portion of U(B1, A)
to the left of (a8, b8) is isometric to the right half of
U(W2, A), and the portion to the right of (a8, b8) is iso-
metric to the left half of U(W1, A). This is fitting, be-
cause O(B1) fits “between” O(W1) and O(W2).

In general, U(Bn) is obtained by splicing together the
left half of O(An) with the right half of O(An+1).

We will take the same approach as for the A tiles. We
first consider a special case in detail and then explain
the changes needed for the general case. Again, this is
entirely for the sake of exposition. We first show that
N ′

1 ⊂ O(B1).

Schwartz: Obtuse Triangular Billiards II: One Hundred Degrees Worth of Periodic Trajectories 151

3.6 An Estimate for the Rotation Angle

In the section, we prove that

θ(b13a13) ∈ (0, x), θ(a12, a13) ∈ (−x, 0). (3–9)

Lemma 3.5. There is some ε > 0 such that θ(a12, a13) ∈
[0, ε) is impossible.

Proof: The conditions in (3–8) guarantee that the follow-
ing lines are parallel:

a11b12, a8b7, a5b2, a12a13.

By symmetry, the points b13 and a3 are related by a
reflection in a8b7. The points a3 and b1 are related by
a reflection in a2b2. If a12a13 is vertical or has negative
slope, then a3 lies below b13. On the other hand, if a12a13

is vertical and has large negative slope, then a2b2 has
negative slope. (Here we are using 3x ≤ π/4. Compare
(3–4).) But then b1 lies below a3. But then b1 lies below
b13, a contradiction.

Lemma 3.6. There is some ε > 0 such θ(b13, a13) ∈
(−ε, 0] is impossible.

Proof: Condition (3–8) guarantees that a10b12, a8b8,
a4b2, and a1b1 are all parallel to a13b13. Let a0 denote the
reflection of a2 through the line a1b1. Our normalization
puts a0 and a12 at the same height. The points a0, a2,
a6 are successively related to each other by reflections in
the lines mentioned above.

Likewise, the points a12, b11, b5 are successively related
to each other by reflections in the lines mentioned above.
If a13b13 either is vertical or has sufficiently large negative
slope, then b5 lies above a6.

The points a6 and b3 are related to each other by a
reflection through b2a7. The points b3 and b5 are related
to each other by reflection in the line a8b4. If a13b13

is either vertical or has sufficiently large negative slope,
then these two last-mentioned lines both have negative
slope, and hence b5 lies below a6. This is a contradiction.

When x is near 0, the 1-spine of our unfolding con-
verges to a horizontal path. Hence, the two lines a13, b13

and a12, a13 converge to vertical lines. By our previous
results, these lines have opposite slopes. As we increase
x and remain on N ′

1, this property cannot be lost, by our
two results. This establishes our inequalities.

3.7 Most of the Vertices

Lemma 3.7. For any T corresponding to points in N ′
1, the

lowest top vertex is either a9 or a12. The highest bottom
vertex is one of b1, b3, b13.

Proof: From (3–9) we get θ(a2a1) ∈ (x, 2x). Hence
a1 ↑ a2.

We have θ(b2a5) = θ(a12a13). By (3–9) we see that
b2a5 has positive slope. This line happens to be the line
of symmetry for the fan with vertices b2; a3, . . . , a7. The
same argument as in Section 3.3 shows that aj ↑ a7 for
j = 2, 3, 4, 5, 6. Similarly, considering the fan with ver-
tices a8, b3, . . . , b11, whose line of symmetry a8b7 has pos-
itive slope, we see that b3 ↑ bj for j = 4, . . . , 11.

Equation (3–9) gives θ(a7a8) ∈ (0, 6x) ⊂ (0, π/2).
Hence a8 ↑ a7. Similarly, b4 ↑ b2 and b13 ↑ b12.

Vertices a7 and a9 are related by reflection through
a8b7, a line with negative slope. Hence a7 ↑ a9.

Note that a12 and a10 are related by a reflection
through b12a10, a line that has negative slope because
it is parallel to a13b13. Hence a10 ↑ a12.

Vertices a12 and a0, the point defined in the proof of
Lemma 3.6, are at the same height. Moreover, a0 and a2

are related by a reflection through the negatively sloped
a1b1. Hence a2 ↑ a12.

3.8 The Six Pairs

It remains to deal with six pairs of vertices. Throughout
our argument, we work with triangles corresponding to
points in N ′

1.

Lemma 3.8. We have ai ↑ bj for i ∈ {9, 12} and j ∈
{1, 13}.

Proof: Note that b1 and b13 are vertices related by a
horizontal translation. Thus, we need not consider b1.

We have θ(b13, a12) ∈ (y, x+y). We also have 3x+2y =
π. Hence θ(b13, a12) ∈ (0, π/2). Hence a12 ↑ b13.

Consider the pair (a9, b13). Since b13 and a9 are
related by reflection through b12a12 and θ(b12, a12) =
θ(a12, a13) ∈ (−x, 0), we have a9 ↑ b13.

It remains to consider the pairs (a9, b3) and (a12, b3).

Lemma 3.9. The vertex a9 lies above the line b3a12.
Hence, a12 ↑ b3 implies a9 ↑ a3.

Proof: Let θ1 denote the angle ∠b3a8a9. Let θ2 denote
the angle ∠b12a9a12. The point a9 lies on b3a12 if and

152 Experimental Mathematics, Vol. 18 (2009), No. 2

b3

b11

b12

a12
a14

b14

b15

a13

a8

FIGURE 13. Cut and paste version of Figure 12.

only if (π − θ2) + θ1 = ∠a8a9b12 = 2y. Using this fact as
a guide, we check signs to determine that a9 lies above
b4a12, provided that π − θ2 + θ1 > 2y.

Using the law of sines, we can normalize so that our
triangles all have side lengths sin(x), sin(y), sin(z). Let
θ3 = ∠a9a12b12. Looking at the triangle with vertices a3,
a8, b9 and using the law of sines, we get

θ3 =
sin(z)
sin(y)

θ1.

Using that the sum of the three angles in a triangle is
π, together with (3–8), we get

θ1+θ3 = π−9x = π−4×3x+3x = −3π+8y+3x = 5y−3z.

(3–10)
The first equation uses (3–8). Solving for θ1, we get

θ1 =
(5y − 3z) sin(y)
sin(y) + sin(z)

. (3–11)

Let θ4 = ∠a9a12b12. From the law of sines we have

θ4 =
sin(z)
sin(y)

θ2.

We also have

θ2 + θ4 = π − 3x = π − 2 × 3x + 3(π − y − z)

= π − 2(π − 2y) + 3π − 3y − 3z (3–12)

= 2π + y − 3z.

(We have complicated this equation so that it readily
generalizes.)

Solving for θ2, we get

θ2 =
(2π + y − 3z) sin(y)

sin(y) + sin(z)
. (3–13)

Using (3–11) and (3–13), we compute

(π − θ2 + θ1) − 2b =
(π − 2y)(sin(z) − sin(y))

sin(y) + sin(z)
. (3–14)

Note that sin(z) > sin(y). The expression in (3–14) is
positive as long as y < π/2, which is certainly our situa-
tion.

Lemma 3.10. We have a12 ↑ b3.

Proof: It is useful to cycle our picture so that b3 is all the
way to the left. See Figure 13, which is a cut-and-paste
equivalent to Figure 12.

Note that a12 lies to the left of both b14 and b15. To see
this, note that a14 and b15 are related by reflection in the
nearly vertical line b14a17, and a14 and a12 are related by
reflection in the nearly vertical line a13b13. These lines
make an angle of less than x with the vertical, from (3–9).
The same argument shows that b3 lies to the left of a12.

Let σ1 and σ2 respectively denote the slopes of b15a12

and b3b15 when the picture is rotated so that b15b14 is
horizontal. Since a12 and b3 lie to the left of both b14

and b15, the slopes σ1 and σ2 are finite. We will show
that that σ1 < σ2. This, together with the fact that b3

lies to the left of a12, shows that a12 ↑ b3, as desired.
Consider the path of eight vectors v1, . . . , v8 defined

by the vertex sequence

(b15, b14, a14, a13, a12, b12, b11, a8, b3).

In the terminology of Section 4, this path is part of the
1-spine. The first vector points from b15 to b14, and so
forth. These vectors all have the same length, which we
normalize to be 1.

Let θk denote the counterclockwise angle through
which v1 must be rotated to produce vk. We now cal-
culate these vectors.

Schwartz: Obtuse Triangular Billiards II: One Hundred Degrees Worth of Periodic Trajectories 153

b3

a11 a16

FIGURE 14. Unfolding for B2.

Looking at Figure 13, we have θ1 = 0 and

θ2 = 6x + π = −4y + π,

θ3 = 6x − 2z = −4y − 2z,

θ4 = 4x − 2z + π = −2y + π,

θ5 = 4x − 4z = −2y − 2z,

θ6 = 8x − 4z + π = −4y + π,

θ7 = 8x − 2z = −4y + 2z,

θ8 = −2z + π.

In working out some of the equalities, we used the
relations

6x = −4y, 2αj = −2αj−1 − 2αj+1.

These relations hold modulo 2π, which is all we care
about. The first equation comes from (3–8). To give
an example derivation, we will work out the derivations
for θ4 and θ6:

4x − 2z = 4x + 2x + 2y = 6x + 2y = −4y + 2y = −2y,

8x − 4z = 12x − 4x − 4z = −8y + (4y + 4z)− 4z = −4y.

We want to eliminate x, because this is the approach that
generalizes to the other words W ′

n.
To compute the slope of a point, we divide its y-

displacement by its x-displacement. We set

Ck =
k∑

j=1

cos(θj), Sk =
k∑

j=1

sin(θj).

Then σ1 = S4/C4 and σ2 = S8/C8. Since σ1 and σ2

are both finite, the terms C4 and C8 never vanish. We
compute that

σ1 − σ2 =
2 sin(z)
C4C8

(cos(z) − cos(y)).

The condition z ∈ (π/2, π) makes cos(z) < 0. The con-
dition y ∈ (0, π/2) makes cos(y) > 0. Hence σ1 − σ2 < 0,
whence σ1 < σ2.

This completes our proof that N ′
1 ⊂ O(B1), the first

tile in the second family.

3.9 The General Case

For N ′
n we have the angle condition

(n + 2)x + 2y = π. (3–15)

The proof of (3–9) works exactly the same way, with the
same outcome. Armed with (3–9), we can use the same
arguments as above to eliminate all the pairs of vertices
except (b3, a3n+6) and (b3, a4n+8). Figure 14 shows the
situation for n = 2.

Lemma 3.9 works in general with the following
changes: Equation (3–10) becomes

θ1 + θ3 = π − 4 × (n + 2)x − 3x = 8y − 3x = 5y + 3x.

Equation (3–12) becomes

θ2 + θ4 = 2 × (n + 2)x − 3x = 2(π − 2y) − 3(π − y − z)

= 2π + y − 3z.

In other words, we get the same equations! The rest of
the proof is the same.

The analysis of the pair (b4, a4n+8 generalizes in the
same way. In general, we consider the path of vectors

(b4n+11, b4n+10, a4n+10, a4n+9, a4n+8, b4n+8, b4n+7,

a2n+6, b3).

154 Experimental Mathematics, Vol. 18 (2009), No. 2

The angle sequences we get are

θ2 = 2(n + 2)x + π = −4y + π,

θ3 = 2(n + 2)x − 2z = −4y − 2z,

θ4 = 2nx − 2z + π = −2y + π,

θ5 = 2nx − 4z = −2y − 2z,

θ6 = (4n + 4)x − 4z + π = −4y + π,

θ7 = (4n + 4)x − 2z = −4y + 2z,

θ8 = −2z + π.

As above, we will show the derivations for θ4 and θ6:

2nx − 2z = 2nx + 2x + 2y = (2n + 2)x + 2y

= −4y + 2y = −2y,

(4n + 4)x − 4z = (4n + 8)x − 4x − 4z

= −8y + 4y + 4z − 4z = −4.

The rest of the proof is the same.

4. THE VERIFICATION ALGORITHM

The publications list on my website has a link to a writ-
ten list of the words W7, . . . , W221 and the polygons
P7, . . . , P211. One can also see the complete list using
McBilliards or the Java applet. See Section 7.

In this section we will explain how we verify compu-
tationally that

Pi ⊂ O(Wi), i = 7, . . . , 221.

Here Pi is a given convex dyadic rational polygon, and
O(Wi) is the orbit tile of a word Wi. The basic algorithm
works for indices i = 30, . . . , 221. These orbit tiles are
contained in the interior of the parameter space Δ. After
we describe the basic algorithm, we will explain how it is
modified so as to handle the indices i = 7, . . . , 29. These
indices correspond to orbit tiles that contain a segment
on ∂Δ.

Let us call a square in Δ whose sides are parallel to
the coordinate axes and whose vertices have the form
x(π/2), where x ∈ [0, 1] is a dyadic rational, a dyadic
rational square.

Our verification algorithm tries to produce a cover of
P by dyadic squares P ⊂ ⋃

Qi such that Qi ⊂ O(W) for
all i. To show that Q ⊂ O(W), we need to show that all
the associated defining functions fai,bj are positive on Q.
We will sometimes write fij = fai,bj for ease of notation.

In the first section we will explain how we verify the
positivity of the defining functions. In the sections fol-
lowing the first one, we will explain our main algorithm.

4.1 Certificates of Positivity

Let Q be a dyadic rational square with center q and ra-
dius r. Here r denotes half the edge length of Q. Suppose
that f is a defining function for a pair of vertices of the
unfolding U(W, T). There are two ways we try to cer-
tify that f > 0 on Q: the gold and the silver. The gold
method is nicer.

4.1.1 The Gold Method. Let ∇f = (fx, fy) be the
gradient. From (2–10) we have

fa = �(gah + gha), a ∈ {x, y}. (4–1)

We use (2–11) to get bounds on the second partial deriva-
tives. Using the letters a and b to stand arbitrarily for x

and y, we have bounds on the second derivatives:

|fab| ≤ Fab,

where

Fxx =
∑

k

A2
k|Jk|, Fxy =

∑
k

AkBk|Jk|,

Fyy =
∑

k

B2
k|Jk|.

We introduce the quantities

ax = r(Fxx + Fxy), ay = r(Fyx + Fyy).

Finally, we define the rectangle

G(q, f) = [fx(q)−ax, fx(q)+ax]× [fy(q)−ay, fy(q)+ay].

Here q is the center of Q.
It follows by integration that

∇f(x, y) ⊂ G(Q, f), ∀(x, y) ∈ Q.

We say that f is gold certified if G(Q, f) is disjoint from
the coordinate axes in R2. This is to say that G(Q, f) is
contained in one of the standard quadrants in R2.

If f is gold certified, then there is some vertex v of Q

such that throughout Q, the gradient ∇f is a positive lin-
ear combination of the edges of Q that emanate from Q.
This means that f(x, y) > f(v) for all (x, y) ∈ Q. Thus,
if f is gold certified and f(v) > 0, then f |Q > 0. We
say that we have shown that f |Q > 0 by the gold method
if this situation obtains. Note that the gold method re-
quires only a finite number of computations. The gold
method works poorly if ∇f points nearly horizontally or
vertically in Q.

Schwartz: Obtuse Triangular Billiards II: One Hundred Degrees Worth of Periodic Trajectories 155

Q

Q

FIGURE 15. Two squares.

4.1.2 The Silver Method. Let Q̂ denote the square
with the following property: Q is midscribed in Q̂, as
shown in Figure 15. Note that Q̂ is not a dyadic ratio-
nal, because its sides are not parallel to the coordinate
axes. However. the vertices and center of Q̂ all have the
form πx, where x is a dyadic rational.

We use all the same notation as in the previous section.
We define the rectangle

S(q, f) = [fx(q) − 2ax, fx(q) + 2ax]

× [fy(q) − 2ay, fy(q) + 2ay].

It follows from integration that

∇f(x, y) ⊂ S(Q, f), ∀(x, y) ∈ Q̂.

We say that f is silver certified if G(Q, f) is disjoint from
the lines through the origin of slope ±1. This is to say
that S(Q, f) is contained in one of images obtained by
rotating the standard quadrants by 45 degrees.

If f is silver certified, then there is some vertex v of
Q̂ such that throughout Q̂, the gradient ∇f is a positive
linear combination of the edges of Q̂ that emanate from
Q̂. This means that f(x, y) > f(v) for all (x, y) ∈ Q̂. In
particular, this is true for all (x, y) ∈ Q. Thus, if f is
silver certified and f(v) > 0, then f |Q > 0. We say that
we have shown that f |Q > 0 by the silver method if this
situation obtains.

Remark 4.1. The silver method is not as nice as the gold
method because Q̂ is much larger than Q. In practice,
we mainly use the gold method. However, we can’t get
by entirely without the silver method. We need the silver
method in the cases in which ∇f is nearly parallel to one
of the coordinate axes.

Remark 4.2. The constant r in the formulas above has the
form r = πx/2, where x is some dyadic rational number.

When it comes time to do our rigorous computation, we
will replace r by the larger r̃ = 2x because it is a rational
quantity. We will then work with the rectangles G̃(Q, f)
and S̃(Q, f), which are defined as above, but with r̃ in
place of r. This replacement makes the functions a bit
harder to certify, but helps us reduce the problem to an
integer calculation.

4.2 An Inefficient First Try

As we mentioned in the introduction, a much faster com-
puter would allow us to use a simpler verification algo-
rithm. Here we describe a simple verification algorithm
that is too slow to use on a typical computer in 2008,
but easy to understand. Following this section, we will
describe the algorithm we actually do use.

Let Q be a dyadic square and let W be a word. We say
that W is good on Q if for every defining function fij we
can prove that fij |Q > 0 either by the gold method or by
the silver method. If W is good on Q, then Q ⊂ O(W).

Let

Q0 =
[
0,

π

2

]2

.

For our algorithm we start with a list of squares having
Q0 as its sole member. At any point of the algorithm we
have a list of dyadic rational squares. We let Q be the
last square on the list. There are several options:

• If f is good on Q, we delete Q from our list and add
it to our covering.

• If Q ∩ P = ∅, then we delete Q from our list.

• If neither of the above is true, we replace Q on our
list by the four squares obtained by dividing Q in
half.

If our list ever becomes empty, then we have a covering
of P by dyadic squares, each of which is contained in
O(W). This does the job. The problem with this algo-
rithm is that it is too slow. We must evaluate all O(n2)
defining functions for each square on the list. Our actual
algorithm is similar to the one above, but enhanced so as
to be much faster.

4.3 The Tournament

As above, W is a fixed word. Let Q be a dyadic rational
square. A player list for Q will be a pair (A, B), where
both A and B are lists of indices. We think of A as being
a list of some distinguished a-vertices and B as being
a list of some distinguished b-vertices. We say that lists
i < j ∈ A are adjacent if there is no index k ∈ A such that

156 Experimental Mathematics, Vol. 18 (2009), No. 2

i < j < k. In this section we will make some definitions
for A and at the end make the same definitions for B.

We define an A-function to be a defining function as-
sociated to (ai, aj), where i and j are adjacent indices in
A. We say that a vertex i ∈ A is an A-loser if one of the
following two situations (when applicable) obtains:

• Let j > i be the index adjacent to i. Let f be an
A-function for the pair (ai, aj). Then −fQ can be
certified positive.

• Let j < i be the index adjacent to i. Let f be an
A-function for the pair (ai, aj). Then fQ can be
certified positive.

One of the situations is not applicable if i is the first or
last index in A. If i is the only index in A, then neither
situation is applicable.

If i ∈ A is an A-loser, this means that there is another
index j ∈ A such that ai ↑ aj throughout Q. In this case,
any result aj ↑ bk in Q automatically implies that ai ↑ bk

in Q. If i is not an A-loser, we call i an A-survivor.
We make all the same definitions for the B list, except

that we reverse the signs. That is, we say that a vertex
i ∈ B is a B-loser if one of the following two situations
(when applicable) obtains:

• Let j > i be the index adjacent to i. Let f be a B-
function for the pair (bi, bj). Then fQ can be shown
to be positive using either the gold or silver method.

• Let j < i be the index adjacent to i. Let f be an
B-function for the pair (bi, bj). Then −fQ can be
shown to be positive using either the gold or silver
method.

We call the following elimination process a round (of
a tournament): We consider in order all the A-functions
f1, . . . , fm. We form a new list A′ consisting of the A-
survivors. We call A stable (with respect to Q) if A′ = A.
If A is not stable, we form a sequence A ⊃ A′ ⊃ A′′ ⊃
· · · until the list stabilizes. We call this process the A-
tournament on Q. We call the indices of the final list the
A-winners. We carry out the same processes for the B

list.

4.4 The Improved Algorithm

We start our algorithm with the list consisting of the
triple (Q0, A0, B0), where Q0 = [0, π/2]2 as above, and
A0 = B0 = {1, 2, 3, . . . , k} is the complete list of indices.
Here k is half the length of W . During the algorithm
we maintain a list of triples like this. At any stage we
consider the last triple (Q, A, B) on the list.

If Q ∩ P = ∅, we discard (Q, A, B) from our list and
move on. Otherwise, we proceed as follows:

• We perform the A-tournament and B-tournament to
produce triples (Q, A∗, B∗), where A∗ consists of the
A-winners and B∗ consists of the B-winners.

• For each index (i, j) ∈ A∗×B∗ we try to show, using
the gold and silver methods, that fij |Q > 0. If we
succeed for every pair, then we add Q to our covering
of P .

• Otherwise, we delete (Q, A, B) from our list, then
replace by the four triples (Qj , A

∗, B∗), where
Q1, Q2, Q3, Q4 are obtained by bisecting Q.

If the list becomes empty, then we have produced a
covering of P by dyadic squares each of which is con-
tained in O(W). This is justified by the following result.

Lemma 4.3. If Q is added to our cover then Q ⊂ O(W).

Proof: Let (i, j) ∈ A0 ×B0 be arbitrary indices. There is
a nested sequence of squares Q0 ⊃ Q1 ⊃ · · · ⊃ Qn = Q

together with a sequence of indices i = i0, . . . , in = i′

such that Q ⊂ Qk and aik
↑ aik+1 for all k. Moreover,

i′ ∈ A∗. The same goes for j in place of i. Therefore, on
Q we have ai ↑ ai′ ↑ bj′ ↑ bj .

We point out three nice features of our algorithm:

• If P ⊂ P ′ ⊂ O(W) and the algorithm works for
both P and P ′, then the covering produced for P ′ is
obtained from the covering produced for P just by
adding some squares.

• The gold and silver certificates are inherited: If a
defining function f is gold/silver certified on a square
Q, it is also gold/silver certified on a subsquare Q′

of Q. We don’t need to recompute the bounds.

• If Q is one of the squares in our covering, then there
is a canonical sequence of squares Q0, . . . , Qn = Q,
where Qk+1 is one of the four squares in the bisec-
tion of Qk for all k. The presence of Q in our cover
can be completely explained by looking at what hap-
pens in Q0, . . . , Qn. We don’t have to look at other
“branches” of the algorithm. As we will explain in
Section 7, McBilliards exploits this feature to pro-
duce a nice way for the (tireless) reader to inspect
the operation of the algorithm piece by piece.

Schwartz: Obtuse Triangular Billiards II: One Hundred Degrees Worth of Periodic Trajectories 157

FIGURE 16. Exceptional dyadic squares.

4.5 Exceptional Pairs

Here we explain how to modify our algorithm so that
it works when Pi and O(Wj) both have a segment in
common with the right-angled line in ∂Δ

We shall say that a pair of vertices (ai, bj) is excep-
tional if the associated defining function vanishes along
the right-angled line. We call such a defining function
exceptional as well. For any word W there is a list A of
a-vertices of U(W, ∗) and a list B of b-vertices of U(W, ∗)
such that the set of exceptional pairs of vertices is pre-
cisely A × B. For the words W30, . . . , P229, the lists A

and B are typically (though not always) empty. However,
the polygons P30, . . . , P221 are all (very) disjoint from the
right-angled line, and so the lists A and B do not con-
cern us. For the words W7, . . . , W29, the lists A and B are
always nonempty, and as we mentioned above, the poly-
gons P7, . . . , P29 always have an edge on the right-angled
line. For this reason, we need to understand what hap-
pens with the defining functions associated with vertices
in A × B. It is hard to deal computationally with these
defining functions, because they take arbitrarily small
positive values on points in the polygons.

We shall say that a dyadic square is exceptional if it
has one or two vertices on the right-angled line and at
least one vertex in the parameter space Δ of obtuse tri-
angles. Figure 16 shows the two kinds of exceptional
dyadic squares. Let Q be an exceptional dyadic square
and let f be an exceptional defining function. We say
that f is certified on Q if the gold method shows that
∇f is contained in a quadrant throughout Q. We also
insist that ∇f point into the obtuse parameter space. In
this situation, the axis of the quadrant containing ∇f is
perpendicular to the right-angled line, and f > 0 on the
portion of Q that lies in Δ.

When we run our algorithm for the indices i =
7, . . . , 29, we first isolate the lists A and B. We then
run the algorithm as in Section 5, except that we auto-
matically “pass” any exceptional defining function in the
playoffs if the dyadic square in question is exceptional
and the defining function is certified on the square. If

the algorithm halts, we have a covering of Pi by a union
of dyadic squares and dyadic triangles, each of which is
contained in O(Wi).

Now we explain how we find special pairs. Each of the
exceptional words is a special palindrome. Hence, the
first and last edges of U(W, ∗) are always vertical. This
allows us to predict the turning angles of the other edges
solely from their turning pairs. Also, we have to worry
only about the exceptional pairs involving vertices on the
left half of the unfolding.

Figure 17 shows the example of W11. We have not
labeled the vertices in Figure 17, but the reader can eas-
ily deduce the relevant labels from the labeling scheme
we have described in Section 2.1. In this case, the only
exceptional pair of vertices is (a5, b1).

The vertices a5 and b1 are joined by two edges of
type 3. The union of these two edges has a line of bi-
lateral symmetry. Call this line Λ51. The turning pair
for Λ51 is (−2,−2). Modulo π, the angle between the
first edge, which is always vertical, and Λ51 is −2x− 2y.
But x + y = π/2 on the right-angled line. Hence Λ51 is
vertical for any unfolding with respect to a right triangle.
Hence a5
 b1 for all points on the right-angled line.

Remark 4.4. It is not actually necessary for us to show
explicitly that we have obtained an exhaustive list of ex-
ceptional pairs. We just have to run the modified algo-
rithm and see that it halts, given the exceptional pairs
we have singled out. Given that the algorithm is based
on finite-precision (though exact) arithmetic, another ex-
ceptional pair would cause the algorithm to get hung up,
producing a list of ever smaller dyadic squares converging
to the right-angled line.

4.6 Case-by-Case Analysis

We recommend that the reader read this part of our anal-
ysis while using McBilliards or the accompanying Java
applet. The reader can survey all the unfoldings we dis-
cuss and verify that the analysis is correct.

4.6.1 The Easy Cases. With six exceptions, the words
W7, . . . , W29 have the same analysis as W11. That is,
they have a single exceptional pair of vertices (on the
left), and the spine connecting these vertices has bilat-
eral symmetry. In all these cases, the same analysis as
for W11 works here word for word. Here we list these
cases, together with the exceptional pairs. Referring to
the example in Figure 17, the exceptional pair for the
word W11 is (a5, b1). We denote this by (11; 5, 1). Here
are the easy cases:

158 Experimental Mathematics, Vol. 18 (2009), No. 2

FIGURE 17. Unfolding for W11.

FIGURE 18. Unfolding for W8.

(7; 5, 1), (9; 5, 10), (10, 5, 1), (11; 5, 1), (12; 8, 13),

(13; 1, 11), (14; 5, 1), (17; 5, 1), (19; 19, 3), (20; 5, 1),

(22; 1, 23), (24; 27, 5), (25; 5, 33), (26; 42, 31),

(27; 38, 7), (28; 5, 45), (29; 48, 11).

Notice that the pair (a5, b1) occurs quite often. In all
cases, the path connecting the vertices in the exceptional
pair has the same bilateral symmetry as in Figure 17,
and the line Λ of bilateral symmetry has turning pair
either (2, 2) or (−2,−2) and hence is vertical when the
unfolding is done with respect to a right triangle.

4.6.2 The Case W8. Figure 18 shows U(W8, T) for
some T . We have highlighted eight line segments that
are all horizontal when x lies on the right-angled line.
The turning pairs for these segments are all of the form
(k, k) for k ∈ {±1,±3,±5}. Restricting our attention to
the left-hand side, we see that the exceptional sets are
A = {1, 2, 4, 5} and B = {8}. These are exactly the ones
we single out when we run our algorithm.

4.6.3 The Case W21. For W21 we have A = {22, 23}
and B = {4}. In this case, the pair (a4, b22) has the
same kind of bilateral symmetry as for the easy cases.
Hence a4
 b22 for any unfolding with respect to a right
triangle. Finally, the turning pair for the edge connecting
b22 and b23 is (1, 1). Hence, this edge is horizontal for any
unfolding with respect to a right triangle.

4.6.4 The Cases W16 and W23. For W16 we have the
lists A = {4} and B = {7, 8, 14, 15}. There is an edge
of U(W16, ∗) connecting a4 and b7, and this edge has
turning pair (1, 1). Hence (a4, b7) is an exceptional pair.
There is an edge connecting b7 and b8, and this edge has
turning pair (5, 5). Hence b7
 b8 on the right-angled
line. Hence (a4, b8) is an exceptional pair. There is a
path connecting b8 to b14 that has bilateral symmetry.
The line of symmetry contains an edge whose turning
pair is (2, 2). Hence b8
 b14 on the right-angled line.
Hence (a4, b14) is an exceptional pair. Finally, there is an
edge connecting b14 to b15 that has turning pair (−1,−1).
Hence (a4, b15) is an exceptional pair.

For W23 we have A = {12, 13, 29, 30} and B = {9}.
There is an edge connecting b9 to a12, and this edge has
turning pair (−5,−5). Hence (a12, b9) is an exceptional
pair. The other three pairs are shown to be exceptional
as for W16.

4.6.5 The Cases W15 and W18. For W15 we have A =
{1, 2, 4} and B = {8, 9, 11, 12, 13}. The same arguments
as in the previous section show that a1, a2, a4 all lie at
the same height when the unfolding is done with respect
to a right triangle. The same goes for b8, b9, b11, b12, b13.
Finally, a4 and b8 are connected by an edge whose turn-
ing angle is (5, 5). Hence (a5, b8) is an exceptional pair.
Hence all the pairs listed are exceptional.

Schwartz: Obtuse Triangular Billiards II: One Hundred Degrees Worth of Periodic Trajectories 159

For W18 we have A = {1, 2, 4, 5, 6, 8, 9} and B =
{14, 16, 17, 18}. This case is essentially the same as the
case of W15.

5. SPECIAL CASES

5.1 The Regions of Interest

Figure 19 shows a fairly accurate picture of the param-
eter space Δ of obtuse triangles, as well as the regions
P1, . . . , P6 discussed in the introduction. The dotted lines
indicate that P1 and P4 continue “behind” P2. Equa-
tion (1–3) is easier to check computationally if these
two polygons continue as indicated. As we mentioned
in the introduction, P1 and P2 are just dummy triangles.
They don’t correspond to periodic billiard paths in tri-
angles. We dealt with P3 in Section 3. We dealt with
S′ = Δ100 − P3 − P4 − P5 − P6 in Section 4. Here we
deal with P4, P5, P6. (Actually, we already dealt with P6

in [Schwartz 06]. Here we just recall what we did.)
We introduce the notation∣∣∣∣n1 k1

n2 k2

∣∣∣∣ =
π

2
×

(
k1

2n1
,

k2

2n2

)

An example is ∣∣∣∣2 1
2 3

∣∣∣∣ =
(

π

8
,
3π

8

)
.

To describe a dyadic polygon, we will list the vertices.
For instance,

P4 :
∣∣∣∣7 63
7 65

∣∣∣∣
∣∣∣∣7 65
7 63

∣∣∣∣
∣∣∣∣7 63
7 63

∣∣∣∣ ,

P5 :
∣∣∣∣12 1641
12 2455

∣∣∣∣
∣∣∣∣12 1637
12 2455

∣∣∣∣
∣∣∣∣12 1637
12 2459v

∣∣∣∣ ,

P6 :
∣∣∣∣10 345
10 679

∣∣∣∣
∣∣∣∣12 1380
12 2712

∣∣∣∣
∣∣∣∣12 1352
12 2740

∣∣∣∣
∣∣∣∣9 169
9 343

∣∣∣∣ .
0 6

π
8

π
4

π
5

π

P3

P4

S’ P5

P6

P2

P1

FIGURE 19. Regions in the parameter space.

Here Pk is a tiny region, one of whose boundary com-
ponents contains the point pk from (1–1).

5.2 Covering P6

Let P ′
6 denote the region{

(x, y) ∈ Δ :
∣∣∣x − π

6

∣∣∣ <
1

175
,

∣∣∣(x + y) − π

2

∣∣∣ <
1

400
√

2

}
.

In [Schwartz 06] we covered P ′
6 by a union of two infinite

families of orbit tiles. A straightforward computation
shows that P6 ⊂ P ′

6.
For the record, we describe the main result here.

We used two families of orbit tiles, {O(Yk)}∞k=8 and
{O(Zk)}∞k=8. The words Yk are defined for all k ≥ 1,
and the words Zk are defined for all k ≥ 0, but we took
k fairly large to get better estimates.

We first define the Y family. Let

A = 3123, B1 = 23213, B2 = 23123,

C1 = 213123, C2 = 123123.

We have Yk = 2yk2y−1
k . For odd indices we have

y2k+1 = AB1(B2B1)kC1(B1B1)k, k = 0, 1, 2,

For even indices we have

y2k+2 = AB1(B2B1)kC2(B1B2)k+1, k = 0, 1, 2,

Now we define the Z family. Define

A = 123, B = 231, C = 32, D = 213.

Next define E0 to be the empty word and

E1 = DD, E2 = DAAD, E3 = DADDAD,

E4 = DADAADAD,

and so on. Then Zk = 3zk3z−1
k , where

zk = ABC3EkABC

(the digit 3 included in the equation is deliberate).
Figure 20 shows the tiles O(Y1), . . . , O(Y4). The “tips”

of these tiles converge to the point P (π/6). The largest
tile O(Y1) obscures the other tiles. The left vertical gray
line indicates the set y = π/6, and the right vertical gray
line indicates the set y = π/5.

Figure 21 shows how the tiles O(Y1), . . . , O(Y4) and
O(Z0), . . . , O(Z3) interlock and suggests how the neigh-
borhood of P (π/6) is filled.

160 Experimental Mathematics, Vol. 18 (2009), No. 2

FIGURE 20. The tiles O(Yk) for k = 0, 1, 2, 3, 4.

FIGURE 21. Interlocking tiles cover P6.

5.3 Covering P5

Let H+ denote the half-plane given by x ≥ π/5 and let
H− denote the half-plane given by x ≤ π/5. We consider
the words

F = 3123231312313232313213132321,

G = 1323123231323213213123231323213123123231323
21323.

We will show that

P5 ∩ H+ ⊂ O(F), P5 ∩ H− ⊂ O(G).

The basic idea is to check that the verification algorithm
described in the previous section halts when we ignore
certain additional pairs of vertices. Then, at the end, we
intervene and analyze the pairs of vertices we ignored.

5.3.1 Dealing with F . In terms of our listing, we have
F = W7, but P ∩ H+ is not contained in P7. Indeed,
P ∩H+ shares a vertex with O(F), and we have to work
harder. From the list in Section 4.6, we see that the pair
(a5, b1) is exceptional. When we also ignore the pairs
(a5, b5) and (a5, b6), we find that our verification algo-
rithm produces a covering of P5 ∩H+. We already know
from our analysis in the previous section that f51 > 0

FIGURE 22. Covering P5.

on P5. The point here is that the relevant line of bilat-
eral symmetry has turning pair (−2,−2), and hence this
line has positive slope throughout P5. This positive slope
forces a5 to lie above b1.

It remains to show that f55 and f56 are positive on
P5 ∩ H+. Figure 23 shows a picture of U(F, T) when T

is the right triangle corresponding to the point p5 ∈ P5.
The edge connecting a5 and b6 has turning pair

(−4, 1). Points (x, y) ∈ P5 ∩ H+ have the form

x = π/5 + ε, y = 3π/10− ε − δ.

Here ε and δ are numbers much smaller than π/10. The
turning angle of the edge connecting a5 to b5 is therefore

−π/2 − 3ε − δ.

This line has negative slope throughout P5 ∩ H+, and
hence a5 ↑ b5 there.

The vertices a5 and b6 are connected by a path of
length 2 whose line of bilateral symmetry has turning
pair (−3, 2). The corresponding turning angle is

−ε − 2δ.

This line has positive slope for (x, y) ∈ P5 ∩ H+, and
hence a5 ↑ b6 throughout P5 ∩ H+.

5.3.2 Dealing with G. In terms of our listing, we have
G = W13. However, P5 ∩ H− is not a subset of P13,
so we have to do more work. When we omit the pairs
(a1, b11), (a1, b12), and (a1, b13), our algorithm produces
a covering of P5 ∩ H−. It remains to show only that the
defining functions associated with these pairs are positive
on P5 ∩ H−. The function f1,11 is positive on P5 for the
symmetry reason we discussed in the previous section.

Here we explain a proof that works for all three defin-
ing functions at once. When we run our algorithm, each
of these omitted defining functions gets certified on a

Schwartz: Obtuse Triangular Billiards II: One Hundred Degrees Worth of Periodic Trajectories 161

FIGURE 23. The unfolding for F .

dyadic square that contains P5. We just check that in all
three cases, the quadrant that contains the gradients is
the negative quadrant. Hence ∇f1j lies in the negative
quadrant. Also, these functions all vanish at p5. Every
p ∈ P ∩ H− can be joined to p5 by a path that points
from p5 into the negative quadrant. Hence f1j > 0 on
P ∩ H−, as desired. Hence P ∩ H− ⊂ O(G), as desired.

5.4 Covering P4

Figure 24 shows a partition of P4 ∩ Δ into five regions.
The regions c, d1, d2 are meant to be open. The segments
e1 and e2 are meant to be open line segments. The four
solid lines through p4 have slope −1,−1/3, 0,∞. The
dotted line is contained in ∂Δ and bisects P4.

Since we are taking x ≤ y in Δ, only the left half of
P4 lies in Δ. We will use the following words:

C = (1232313)2,

D1 = 231323123231323123232132313232132313,

D2 = 23132313231232313231323123232132313231323213
23132313,

d2

c

d1

e2

e1

FIGURE 24. Dividing up P4.

E1 = 12323132312323213231323132321323132313231323,

E2 = 12323132313231232321323132313231323213231323
1323132313231323.

The left-hand side of Figure 25 shows a closeup of O(C),
O(D1), and O(D2). Note that O(C) slops over the
boundary of P4 ∩ Δ. The boundary here is contained
in the line through p4 of slope 1. (See the dotted line in
Figure 24.) The large tile O(C) is not completely shown.
The union of these three tiles covers all of P4 ∩Δ except
for two line segments. These two line segments are then
covered by O(E1) and O(E2), as shown on the right-hand
side of Figure 25.

We will prove that z ⊂ O(Z), for z ∈ {c, d1, d2, e1, e2}.
5.4.1 Dealing with C. In terms of our listing, we have
C = W30. Let T be the triangle corresponding to the
point p4, the right isosceles triangle.

The defining function fij vanishes at p4 when i ∈
{1, 2} and j ∈ {4, 5}. When we run our algorithm with
these vertex pairs excepted, it produces a cover of P by
four squares. Thus, all the defining functions but the
excepted ones are positive on P . The algorithm in this
case does not also verify that the gradients of the ex-
cepted functions lie in the negative quadrant; this is not
true for f14 and f25.

FIGURE 25. Covering P4.

162 Experimental Mathematics, Vol. 18 (2009), No. 2

FIGURE 26. U(C, T).

FIGURE 27. U(D1, T).

In dealing with the four exceptional defining functions,
we first compute that

|fxx|, |fxy|, |fyy| ≤ 26,

in all cases. We also note that P4 is contained in a square
of radius 2−6. Hence, both ∂xf and ∂yf vary by at most
two units throughout P4.

Here is the formula for f15:

0 1
4 1
4 −3
0 −3

0 1 (−1)
4 1
4 −3

We compute that ∇f15(p4) = (−8,−8). Hence ∇f15 lies
in the negative quadrant throughout P4. Hence f15 > 0
on the interior of c.

A similar computation to the one above gives
∇f24(p4) = (−8,−8). Hence f24 > 0 on c.

Here is the formula for f14:

0 1
4 1
4 −3
0 −3

0 1 (−1)
4 1

We compute that f14 vanishes identically along the line
y = π/4. Also, we compute that ∇f14(p4) = (0,−16).
Hence ∇f14 has positive y-coordinate throughout P4.
Hence f14 > 0 on c.

The calculation for f25 is just like the one for f14, but
with the roles of x and y switched. Hence f25 > 0 on c.

In summary, all (a, b) defining functions are positive
on c. We conclude that c ⊂ O(C).

5.4.2 Dealing with D1. In terms of our listing, D1 =
W9. Let T be the right-angled isosceles triangle, as above.

Taking i and j on the left half of the unfolding (Figure
27), we see that the defining function fij vanishes at p4

if and only if

i ∈ {5, 6, 7, 8} and j ∈ {1, 2, 3, 4, 10}.

(The center point by convention counts as a vertex on
the left half.)

When we run the algorithm with these pairs excepted,
it produces a covering of P4 by three squares. Once again,
the algorithm here does not verify anything about the
gradients of the exceptional defining functions.

Reflection in a certain edge e swaps a6 and a8. The
turning pair for e is (2, 2). Since the leftmost edge stays
vertical for all points in the parameter space, e has nega-
tive slope throughout P4. Hence a6 ↑ a8 throughout P4.
This eliminates a6 from consideration.

Figure 28 shows U(D1, T
′), where T ′ is a triangle cor-

responding to a point of Δ between e1 and the right-
angled line. (This point isn’t actually in d1, because such
points give rise to a picture that looks almost identical
to Figure 27; we wanted to show the difference dramat-

Schwartz: Obtuse Triangular Billiards II: One Hundred Degrees Worth of Periodic Trajectories 163

b4 b10

a5 a8

FIGURE 28. U(D1, T
′).

FIGURE 29. U(D2, T).

b6 b14

a7 a12

FIGURE 30. U(D2, T
′).

ically.) Figure 28 serves as a reality check to the argu-
ments we give below.

The point a6 is connected to a7 by an edge whose
turning pair is (0, 2). As long as y < π/4, this edge has
positive slope and a7 ↑ a6. This condition holds in d1.
This eliminates i = 7 from consideration. Similar argu-
ments show that b2 ↑ b1, b3 ↑ b2, and b3 ↑ b4 throughout
d1. All in all, we have only to deal with the four defining
functions fij , where i ∈ {5, 8} and j ∈ {4, 10}. Here is
the analysis:

• Points a8 and b4 are swapped by reflection in an edge
whose turning pair is (1, 3). This edge has positive
slope throughout the interior of d1, and vanishes on
e1, the line of slope −1/3 through p4. Hence a8 ↑ b4

throughout d1. Hence f84 > 0.

• Points a5 and b10 are swapped by reflection in an
edge whose turning pair is (2, 2). Hence f5,10 > 0
on d1.

• Points b4 and a5 are connected by an edge whose
turning pair is (−2, 4). This edge has positive slope
in d1. Hence f54 > 0 in d1.

• Points a8 and b10 are connected by an edge whose
turning pair is (0, 2). This line has negative slope in
d1. Hence f8,10 > 0 in d1.

This takes care of all the cases. Hence d1 ⊂ O(D1).

5.4.3 Dealing with D2. In terms of our listing, D2 =
W87. The analysis of D2 is almost identical to that of
D1. We will omit most of the details, but illustrate the
main ideas with pictures. Figure 29 shows U(D2, T).

Figure 30 shows U(D3, T
′). Here T ′ is a triangle cor-

responding to a point that lies between the lines e1 and
e2. (We have gone outside d2 to get a more dramatic
picture.)

When we except all the index pairs entailed by Fig-
ure 29, our algorithm produces a covering of P4 by
four squares. Using the turning pair arguments, as for
D1, we eliminate all the indices except i ∈ {7, 12} and
j ∈ {6, 14}. Figure 30 illustrates the signs of the slopes
of the lines relevant to the analysis of the four remaining
defining functions. These four defining functions have
the same analysis as for D1.

5.4.4 Dealing with E1. In terms of our listing, E1 =
W107. Recall that e1 is the intersection of the line of

164 Experimental Mathematics, Vol. 18 (2009), No. 2

FIGURE 31. U(E1, T).

FIGURE 32. U(E2, T).

slope −1/3 through p4 with P4. Figure 31 shows a pic-
ture of U(E1, T). When we run our algorithm with all
the excepted vertices, it produces a covering of P4 by 47
squares. We also check, during the algorithm, that ∇f

has positive dot product with the vector (−3, 1) through-
out P4 whenever f is an exceptional defining function.
This shows that all the exceptional defining functions are
negative on e1.

Hence e1 ∈ O(E1).

Remark 5.1. Our gradient check is just a small tweak
of the silver method. We compute ∇f , then add all the
error bounds coming from the second partials, and check
that the entire “error box” makes positive dot product
with (−3, 1).

5.4.5 Dealing with E2. In terms of our listing, E2 =
W85. Recall that e2 is the intersection of the horizontal
line through p4 with P4. Figure 32 shows a picture of
U(E2, T).

When we run our algorithm with all the excepted ver-
tices, it produces a covering of P4 by 29 squares. We
also check during the algorithm that ∂xf < 0 through-
out P4 whenever f is an exceptional defining function.
This shows that all the exceptional defining functions are
negative on e2. Hence e2 ∈ O(E2).

6. COMPUTATIONAL DETAILS

6.1 The Covering Problem

Here we explain how we verify (1–3). Let Pj be one of
the polygons on our list. Let e be an edge of P . We say

that e is good if

e − ∂Δ ⊂
⋃
i�=j

Pi. (6–1)

In case e ∈ ∂Δ, this condition is vacuous. We say that
Pj is good if every edge of Pj is good.

Lemma 6.1. We have Δ ⊂ ⋃
Pj , provided that every Pj

is good.

Proof: If Δ is not covered by our polygons, then Δ −⋃
Pj contains some open set U , and some point of ∂U is

contained in some edge e of some Pj . But then e is not
good.

To make our problem easier, we scale all our polygons
by the constant 227/π. The result is that all the coordi-
nates of all the polygons are positive integers between 0
and 223. Also, given the comments at the beginning of
Section 2.7, we know that all the coordinates are divisi-
ble by 29. This fact is useful because we sometimes want
to subdivide our edges in half a few times, while retain-
ing the property that the break points are integers. We
now are left with the problem of showing that a certain
convex integer triangle is covered by 221 other convex
integer polygons.

6.1.1 The Algorithm. Let S be some segment in the
plane whose endpoints are integers. We call S an integer
segment. We say that S is admissible if the midpoint
of S also has integer coordinates. In this case, the two
segments S1 and S2 formed by bisecting S are also integer
segments.

Schwartz: Obtuse Triangular Billiards II: One Hundred Degrees Worth of Periodic Trajectories 165

Let e be an edge of Pi. To show that a given edge e is
covered by our polygons, we perform the following algo-
rithm. We start with a list of edges whose sole member
is e. At any stage of the algorithm we have a finite list
of integer segments. We consider the last segment S on
the list.

• If we can show that S ⊂ Pj for some j �= i, then we
omit S from our list. Then we continue.

• If S is admissible and we cannot show that S ⊂ Pj

for some j �= i, then we omit S from our list and
append S1 and S2 to the list. Then we continue.

• If S is not admissible and we cannot show that S ⊂
Pj for some j �= i, then we fail.

• If the list becomes empty, we have succeeded in
showing that e is good.

The main step in our algorithm involves showing that
an integer segment is contained in an integer convex poly-
gon. This problem in turn boils down to checking that
each of the endpoints of the segment is contained in the
polygon. Showing that an integer point z is contained
in an integer polygon P is an integer calculation. We
just check the orientations of all the triangles obtained
by coning the edges of P to z and see that they all agree.
This calculation is done entirely in Z and produces inte-
gers that have roughly three times as many digits as the
coordinates of z and P . We implement our algorithm in
Java, using the BigInteger class. We discuss this in the
next section. The interested reader can see and interact
with the cover using McBilliards. In particular, one can
rerun our algorithm, either one polygon at a time or all
at once.

6.2 BigIntegers and BigIntervals

We wrote McBilliards in Java. The Java programming
language has a class called BigInteger. A BigInteger is
an integer with an “arbitrary” number of base-10 digits.
Here “arbitrary” means “subject to the memory limita-
tions of the machine.” Once two BigIntegers are defined,
they can be added, subtracted, multiplied, and even ex-
ponentiated. If the process of computing the resulting
quantity does not exhaust the memory of the machine,
then the result is correct. It would probably take inte-
gers billions of digits long to exhaust the memory of the
machine. In our case we work with integers all of which
have fewer than two hundred digits. For this reason, we
are convinced that the basic arithmetic operations of the

BigInteger class work without fail on the numbers we
supply.

Our basic method is to convert all our calculations
into integer calculations and then use BigIntegers to get
the calculations exactly right. Our trick is to multiply
the naturally computed quantities of interest to us by a
huge integer, namely 2106, and then trap these quantities
inside an interval of BigIntegers. We then perform a cal-
culation using BigInteger arithmetic, and in the end pro-
duce an interval of BigIntegers that contains 2106 times
the quantity of interest to us.

The only real-valued functions we compute are the
ones in (2–10) and (2–11). Once we have these quanti-
ties, we make some further algebraic manipulations, as
discussed in connection with the gold and silver meth-
ods of Section 5. However, once we have finished with
(2–10) and (2–11), we have our intervals of BigIntegers,
and then we manipulate them as discussed below.

We define a BigInterval to be a pair (L, R) of BigInte-
gers with L ≤ R. There are several basic operations that
we can perform on these intervals:

(L1, R1) + (L2, R2) = (L1 + L2, R1 + R2),

(L1, R1) − (L2, R2) = (L1 − R2, L2 − R1),

(L1, R1) × (L2, R2) = (L3, R3),

where

L3 = min(L1L2, L1R2, L2R1, L2R2),

R3 = max(L1L2, L1R2, L2R1, L2R2).

These operations have the following property: If xj ∈
(Lj , Rj) for j = 1, 2, then xj ∗ yj ∈ (L1, R1) ∗ (L2, R3).
Here ∗ is any of the three operations just mentioned.
All our calculations boil down to showing that x > 0 or
x < 0 for some real number x. We do our calculations in
such a way as to produce a BigInterval (L, R) such that
2106x ∈ (L, R). We would show that x < 0 by showing
that R < 0, and we would show that x > 0 by showing
that L > 0.

6.3 The Interval Cosine Function

Looking at (2–10) and (2–11), we see that we need some
way to deal with the sine and cosine functions. When
we run our subdivision algorithm, we find that it never
produces a dyadic square whose side length is less than
218. For this reason, we are evaluating the sine and cosine
functions only on numbers2 of the form

π

2
· k

220
.

2Actually, we need only 218 rather than 220, but we want to
give ourselves a little cushion here.

166 Experimental Mathematics, Vol. 18 (2009), No. 2

Using the identities

sin(x) = cos
(π

2
− x

)
, cos(x + nπ) = (−1)n cos(x),

we see that it suffices to consider the 221 values

ck := 253 cos
(

π

2
× k

220

)
, k = 0, . . . , 221 − 1.

(There is nothing special about 253. We like it because
it affords about the same precision as a double in C.)

We now explain how we produce a BigInterval Ik such
that ck ∈ Ik. Once we have Ik, we evaluate (2–10) and
(4–1) using the operations discussed above. Producing
Ik is quite easy. The tricky part is proving rigorously
that our method really works. We know that there ex-
ist packages in Java that perform this task for the ele-
mentary functions, but we prefer to work from scratch.
We want to stress that it doesn’t really matter how we
produce our BigInterval Ik. The important point is the
proof that ck ∈ Ik. However, it seems worth explaining
our simple method.

6.3.1 Producing the Interval. We introduce the rou-
tine cosBestApprox. When we evaluate this routine on
the pair (k, 20), it produces a BigInteger Ck. We then
take Ik = (Ck − 4, Ck + 4). The routine cosBestApprox

essentially computes the “usual” cosine on the relevant
point—here n = 20, and k is as above—and then rounds
to the nearest BigInteger. Our method uses the BigDeci-
mal class, which is just a BigInteger together with a sep-
arate integer that tells where to put the decimal point.
Here is our code, all of which can be found online in the
file Deg100Trig.java:

public static BigInteger cosBestApprox(int k,int n)

{
double d=Math.PI/2.0;

d=d*k/Math.pow(2.0,n);

d=Math.cos(d);

BigDecimal Y1=new BigDecimal(d);

BigInteger BIG=getBIG();

BigDecimal Y2=new BigDecimal(BIG);

Y1=Y1.multiply(Y2);

BigInteger X=Y1.toBigInteger();

return(X);

}
The BigInteger BIG is 253. Here is the routine that

gets it:

public static BigInteger getBIG() {
BigInteger BIG=new BigInteger("9007199254740992");

return(BIG); }

6.3.2 Checking That the Method Works. What we ac-
tually show is that

235720!ck ∈ 235720!Ik.

A huge number like this appears fairly naturally because
we want to clear denominators in some Taylor series ap-
proximations for cosine.

For j = 0, 1, . . . , 10, let Lj be the greatest integer less
than

240020!
240j(2j)!

·
(π

2

)2j

.

Let Rj = Lj + 1. We compute these twenty integers us-
ing Mathematica, which has a reliable arbitrary-precision
evaluation of the trig functions. The reader can see our
values in the file Deg100Trig.java. Consider the sums

Ak = L0 − R1k
2 + L2k

4 − R3k
6 + · · · − R10k

20,

Bk = R0 − L1k
2 + R2k

4 − L3k
6 + · · · + R9k

18.

Considering the Taylor series for cosine, we easily get
that

235720!ck ∈ [Ak, Bk].

To verify that ck ∈ Ik, it suffices to check that

225720!(Ck − 4) < Ak, Bk < 235720!(Ck + 4).

This is purely a calculation involving BigIntegers. We
perform the verification, and it works. As a control, we
performed the verification using 2 in place of 4, and it
failed at some point. The program is contained in the
same file as already mentioned. The reader can launch
the program right from the “100 Degree” window in Mc-
Billiards.

Remark 6.2. We found that 235720! worked well for us.
This choice yields the following values:

A8 = 193117979382323170336391434868704,

A9 = 1416254196461936667,

A10 = 8363,

A11 = 0.

Thus the choice 235720! is well adapted to an approxima-
tion based on about ten terms of the Taylor series.

6.4 BigInterval Structures

As one last bit of structure, we define a BigComplexIn-
terval to be a structure of the form X + iY , where X

and Y are BigIntervals. The arithmetic on these objects

Schwartz: Obtuse Triangular Billiards II: One Hundred Degrees Worth of Periodic Trajectories 167

is just the same as the arithmetic on ordinary complex
numbers, except that we substitute the BigInterval op-
erations for the ordinary arithmetic operations on reals.
(We never have occasion to do any division, so we are just
talking about addition, subtraction, and multiplication.)

Once we have our BigInterval version of sine and co-
sine, and the BigComplexInterval class, we plug these
objects into (2–10) and (4–1), wrapping every integer in
sight inside a BigInterval. We then perform all the oper-
ations described in Section 5. Our algorithm halts for all
221 polygons, and this constitutes our proof of the 100
degree theorem.

The reader can run our algorithm and survey its out-
put using McBilliards, as discussed in the paper. In par-
ticular, the reader can run the algorithm with or without
the BigInterval arithmetic, and see that the output is
about the same in both cases. (The output is not ex-
actly the same because we make some convenient but
arbitrary cutoffs in the numerical version.)

6.5 Sanity Checks

In order to help ensure that we have programmed the
computer correctly, we have made three additional sanity
checks in our calculations.

1. We make sure that our combinatorial method of
computing the defining functions, namely (2–10), is cor-
rect. We introduce a straightforward geometric method
of computing the defining functions geometrically: We
just take the unfolding for the word and the given trian-
gle, rotate it so that it is horizontal, and then measure
the difference in heights of the relevant vertices. For each
word Wi we evaluate each defining function on the first
vertex of the polygon Pi, using both methods.

As long as the geometric method yields a number that
is at least 0.001, we check, up to a tolerance of 0.000001,
that there is a single ratio ρ such that the ratio of the
combinatorial answer to the geometric answer is always
ρ. (This ratio depends on the point of evaluation.) In
other words, up to an initial rescaling, the two methods
agree.

We consider this to be extremely strong evidence that
we have got (2–10) correct and also programmed it cor-
rectly into the computer. We do not consider the very
small percentage of defining functions that evaluate to a
very small number, because the roundoff error interferes
with the computation of the ratio.

2. We make sure that our BigInterval versions of our
functions yield essentially the same answers as our nu-
merical versions. We make the same evaluations as for

the first sanity check, except that now we compare the
numerical and BigInterval implementations of the com-
binatorial method.

We check that the first seven digits of the left endpoint
of the BigInterval version agree with the first seven digits
of 2106 times the numerical version.

In the interest of having the check move along at a
steady clip when run from the interface, we check only
about four percent of the defining functions. This still
comes out to a huge number of checks.

In contrast to the first check, where the point is to
verify that all cases of a complicated combinatorial pro-
cedure work, here we are just checking a fairly straight-
forward conversion from ordinary arithmetic operations
to BigInterval operations.

3. We make sure that our formula for (4–1) is correctly
implemented. For this purpose we compare the partial
derivatives of the defining functions with a crude version
of the partial derivatives obtained by taking a difference
quotient. Our value for Δx and Δy in this computation
is 2−30.

We check that the two computations of the partial
derivatives agree up to a relative error of 0.001. By this
we mean that |X1 − X2|/|X1| < 0.001. Here X1 and X2

are the two computed versions of the same quantity. We
also require X1, which is the difference quotient, to be at
least 0.000001.

We test about one percent of the defining functions.
Given the simple nature of the passage from (2–10) to
(4–1), this is overwhelming evidence that we have pro-
grammed (4–1) correctly into the computer.

The reader can run our sanity checks, either for
individual words or else for all words in sequence,
from the “100 Degree” window in McBilliards. The
code for our sanity checks is contained in the file
Deg100SanityCheck.java. Indeed, all our computer
code pertaining to the 100 degree theorem can be
launched from this window.

We also mention another sanity check. Originally we
had programmed McBilliards in C and Tcl. We originally
did all the computations for this paper in the C ver-
sion. (We switched to Java so that the whole proof could
be easily accessible right on the web, to someone with-
out specialized computer knowledge, and also because we
wanted to make a new and improved McBilliards.)

Perhaps the best sanity check of all is that McBilliards
works. This program has many interlocking features, and
the interested reader can see that they all fit together in

168 Experimental Mathematics, Vol. 18 (2009), No. 2

a way that would be extremely unlikely if there were
serious bugs in the program.

7. USING MCBILLIARDS

7.1 The Applet

For the reader mainly interested in seeing the results
in this paper illustrated, we recommend the Java ap-
plet that we wrote. One can access this applet in sev-
eral ways. One address is http://mcbilliards/sourceforge.
net/Deg100/. Another address is my website: http:
//www.math.brown.edu/∼res/Java/App46/test1.html.

This applet is a toy version of McBilliards specifically
designed for the 100 degree theorem. The Java applet
displays the polygons P3, . . . , P221. One can zoom into
the picture to see the fine structure of the covering.

1. For each j = 7, . . . , 221, a click on the polygon Pj

calls forth a display of the vertices of the polygon,
and also the word Wj and its unfolding. One can
drag the mouse around Pj and check visually that
(modulo roundoff error) Pj ⊂ O(Wj).

2. We break P5 into two regions P51 and P52. One can
click on each of these regions and see the vertices and
corresponding words W51 and W52 as above. (These
regions are not actually named in the program.)

3. We do the same for P4 as we do for P5, using subre-
gions P41, . . . , P45.

4. For j = 3 and j = 6, we break Pj into an infi-
nite number of smaller polygonal regions. In each
case, one can see the words and regions correspond-
ing to the first ten terms in the sequence. We show
enough so that the pattern is fairly clear. Again,
for these first few words, one can verify visually that
the polygonal region is contained in the correspond-
ing orbit tile.

The words and polygon vertices are displayed in full,
so that (modulo the reader being able to fill in several
infinite patterns from a finite start) the complete record
of the words and polygons resides in the applet.

7.2 The Basics of the Main Program

McBilliards can be run either as an applet or as a stand-
alone Java program. To save yourself the trouble of
downloading and installing the program, you should first
try running McBilliards as an applet. The stand-alone
version has some additional features, but these additional

features would probably not be the first thing you would
want to learn.

Assuming that your browser can handle Java, you
can run McBilliards from my website: http://www.
math.brown.edu/∼res/Java/App47/A2.html. You can
also find both the applet and the program on the website
http://mcbilliards.sourceforge.net.

For the rest of this discussion, I will assume that you
can actually access and run McBilliards, one way or an-
other.

7.2.1 Accessing the Documentation. The first thing
to do is to see how the documentation for the program
works. For example, there is a little black box with a
question mark at the very bottom right of the program.
If you click on this box (or any other box that has a
question mark in it), the documentation window will pop
up. Most of the features of McBilliards have a question
box beside them, so that you can learn what they do and
how to use them.

7.2.2 The Mouse Emulator. The mouse emulator lives
at the bottom right of the program. The question box we
mentioned above pertains to this module, and explains
how to use the mouse emulator. McBilliards is meant to
be run with a three-button mouse. If you don’t have one
or if your browser does not interpret your mouse clicks
correctly, you can get around the problem by using the
mouse emulator on the bottom right. By clicking on the
question box, you can see how to operate the emulator.

7.2.3 Parameter Selection. The big central window in
McBilliards is the parameter window. This window con-
tains the region Δ that we have discussed in this paper.
You select points in this window by clicking button 2 of
the mouse over a point. You can also drag the mouse,
again button 2, to select a point. If you want to see the
triangle to which your selection corresponds, click on the
“more popups” window at the top of the program. This
brings up an auxiliary menu. From this menu, click on
the “billiard path” option. This brings up another win-
dow, which displays the triangle corresponding to the
point in parameter space you have selected. This auxil-
iary window also displays billiard paths in the triangle,
whence the name.

7.2.4 Searching. Once you have selected a point you
like, you can press the “seek” button at the bottom of the
program. This will find all the stable words of length less
than the displayed length. We initially set the program to
50. We recommend that you choose a point on the obtuse
side that is fairly near the right-angled line. If you pick

Schwartz: Obtuse Triangular Billiards II: One Hundred Degrees Worth of Periodic Trajectories 169

a point too far into the obtuse region, your search won’t
turn up anything (unless you increase the maximum word
length.) When your search is done, an auxiliary window
pops up, displaying all the hexpaths of the words you
have found.

7.2.5 Plotting. Once you have selected a point and
done a search, you can select one of the hexpaths from the
auxiliary window that has popped up. After you select
one of these hexpaths, you can plot the corresponding
orbit tile by pushing the plot button. The color selec-
tor allows you to change the color of the plotted tile.
The bottom left portion of the program gives controls
for managing the plotted tiles: deleting, raising, lower-
ing, and recoloring.

7.2.6 Unfolding Window. Once you have plotted an
orbit tile (or before), you can click on the top of the pro-
gram to bring up the unfolding window. The unfolding
window draws the unfolding U(W, T), where W is the
currently selected word and T is the currently selected
triangle. By dragging the mouse around an orbit tile,
you can see the unfolding change with the point selec-
tion. This is a powerful sanity check that the searching
and plotting options are working correctly. Like almost
all the windows in McBilliards, the unfolding window is
resizable. You can see a nice large picture of the unfold-
ing if you like.

7.2.7 Word Window. Clicking at the top of the pro-
gram brings up the word window. This shows a large
copy of the hexpath for the current word. The word
window is animated, so one can see how the hexpath is
created from the word.

The best way to get a feel for the basic features of Mc-
Billiards is to play with the program, i.e. search, plot,
survey tiles, with both the word and unfolding windows
open. The unfolding and word windows have many aux-
iliary features embedded in them, and in time, the user
can learn these from the documentation. We will talk
more about the unfolding window below.

7.3 The Unfolding Window: More Details

Now we will assume that you have mastered the basic
features of McBilliards, discussed above. Here we discuss
the unfolding window in more detail.

7.3.1 Turning Pairs. If you click the middle mouse
button on an edge of the unfolding, you can see the turn-
ing pair of that edge displayed at the left. The turning
pairs were discussed in Section 2.4. This will give you a
better feel for the algorithm presented in that section.

7.3.2 Defining Functions. You can select a pair of
vertices from the unfolding that is drawn in the unfold-
ing window. Once you select these vertices, the unfolding
window computes the defining function associated with
these vertices. The defining function is then displayed at
the bottom of the unfolding window, using the conven-
tions described in Section 2.7. One peculiar feature is
that positive numbers are displayed in white, and nega-
tive numbers are displayed (without signs) in black. We
somewhat regret this convention now, but it does save
space.

As an aid to the computation of the defining func-
tion, the unfolding window also shows the path of edges
connecting the one vertex to the other, as discussed in
Lemma 2.15.

7.3.3 The Leading Vertices. One can also access the
defining functions in another way. One can turn on the
“compute leaders” option in the unfolding window. As-
suming that you have plotted a tile, the unfolding window
will automatically select and display the pair of vertices
on the unfolding, one top and one bottom, that come
closest to having the same height. In this way, you can
see which defining functions define the edges of the tile.

7.3.4 Derivative Bounds. Once a defining function is
computed, the derivative bounds discussed in Section 4.1
are displayed at the bottom of the unfolding window.
The documentation for this part of the unfold window
has more information.

7.4 Surveying our Proof

One can survey our proof using a version of our applet
that we have “embedded” into McBilliards. One accesses
this embedded version of the applet by bringing up the
“more popups” menu and selecting the “100 degree re-
sult” window. This brings up the embedded copy of the
applet. Using the “100 degree result” window, you can
survey our computational algorithm down to the last de-
tail. (This is extremely tedious, but possible.) Here we
explain how one surveys the results of the tournament
algorithm, discussed in Section 4.

• To run the verify algorithm for a particular word, se-
lect the verify single mode in the 100 degree window
interface and then click on the desired word. (These
words are indexed by little square buttons on the
interface.) Be sure to have the trace verify button
off.

• Once the picture is plotted on the main McBilliards
window, turn on the trace verify button and select

170 Experimental Mathematics, Vol. 18 (2009), No. 2

your favorite dyadic square that you have just plot-
ted by clicking inside it. Now click on the same word
you just clicked.

• With the trace verify mode on, McBilliards reruns
the algorithm, discarding any square that does not
contain the selected point. This has the effect of just
tracing through the part of the algorithm that deals
with the selected square.

• Open up the unfolding window after the selected
square has been plotted. Along the bottom of the
square you will see three kinds of boxes: the top
winners, the bottom winners, and the tournament
record. The tournament record consists of a num-
ber of pairs of the form (p, q), where p loses to q on
some box that contains the selected one. We call
these match boxes.

• If you click on one of these match boxes, you will
see the formulas for the defining function associ-
ated with the relevant pair of vertices. You also
get to see a graphical display of the gradient and
the quadrant that contains the gradient throughout
the dyadic square. By moving the point around on
the main interface, you can visually check that the
gradient remains within the quadrant. Also, you see
displayed all the quantities that go into the calcula-
tion of the certificates, so you can recompute them
yourself from the information.

• If you click on every single match box and make the
computations yourself, by hand, you will have given
your own proof that the tournament has performed
correctly. Finally, you can go through all the pairs
of the form (top winner, bottom winner) and make
all the same checks.

7.5 Surveying McBilliards as a Whole

We think that the internal consistency of McBilliards,
the extensive testing we have done, and the exact cor-
respondence between experimental predictions and the
theoretical proofs (as in Section 3) gives extremely strong
evidence that McBilliards does what we claim it does.
However, we can imagine that some readers would dis-
agree.

Some readers may feel that a rigorous computer-aided
proof would include a complete description of all the com-
puter code used in the proof. McBilliards is an enormous
program, and obviously it would not be possible to give
a complete description of the code here.

The interested reader can survey the McBilliards code
in full. Going back to the sourceforge McBilliards web
page, you can browse through our online documentation
for McBilliards, which shows the details of essentially ev-
ery class, method, and interface in McBilliards.

The code relevant to the 100 degree theorem takes up
a only small subset of the total program. To isolate the
relevant code, we have put it in files that have the Deg100
prefix, such as Deg100Verifier.java. However, there
are some basic classes, such as the complex number class
and some graphics classes, that are required to support
the code in the Deg100 files.

ACKNOWLEDGMENTS

I did the initial experiments for this project at the Max
Planck Institute in Bonn, during July 2004. I would like to
thank the institute for their hospitality and generous support,
and also the Guggenheim Foundation. I would like to thank
Mike Boyle, Curt McMullen, Dan Rudolph, Martin Schmoll,
Serge Troubetzkoy, and Sergei Tabachnikov for their encour-
agement, and also for helpful conversations related to this
work.

I would especially like to thank Pat Hooper, who is my
collaborator on McBilliards, for many, many helpful conver-
sations about triangular billiards.

The author’s research has been supported by NSF Grant
DMS-0305047 and by a Guggenheim Fellowship.

REFERENCES

[Boshernitzyn et al. 98] M. Boshernitzyn, G. Galperin, T.
Kruger, and S. Troubetzkoy. “Periodic Billiard Trajectories
Are Dense in Rational Polygons.” Trans. AMS 350 (1998),
3523–3535.

[Galperin et al. 91] , G. A. Galperin, A. M. Stepin, and Y.
B. Vorobets. “Periodic Billiard Trajectories in Polygons.”
Russian Math Surveys 47 (1991), 5–80.

[Gutkin 96] E. Gutkin. “Billiards in Polygons: Survey of Re-
cent Results.” J. Stat. Phys. 83 (1996), 7–26.

[Halbeisen and Hungerbuhler 00] L. Halbeisen and N.
Hungerbuhler. “On Periodic Billiard Trajectories in
Obtuse Triangles.” SIAM Review 42:4 (2000), 657–670.

[Hooper 07] W. P. Hooper. “Periodic Billiard Paths in Right
Triangles Are Unstable.” Geometriae Dedicata 125 (2007),
39–46.

[Hooper and Schwartz 08] W. P. Hooper and R. E. Schwartz.
“Billiards in Nearly Isosceles Triangles.” Preprint, 2008.

[Masur 86] H. Masur. “Closed Trajectories for Quadratic Dif-
ferentials with an Application to Billiards.” Duke Math J.
53 (1986), 307–314.

Schwartz: Obtuse Triangular Billiards II: One Hundred Degrees Worth of Periodic Trajectories 171

[Masur and Tabachnikov 02] H. Masur and S. Tabachnikov.
“Rational Billiards and Flat Structures.” In Handbook
of Dynamical Systems 1A, edited by B. Hassleblatt and
A. Katok, pp. 1015–1089. Amsterdam: North-Holland,
2002.

[Schwartz 06] R. Schwartz. “Obtuse Triangular Billiards I:
Near the (2, 3, 6) Triangle.” Experimental Mathematics 15:2
(2006), 161–182.

[Tabachnikov 95] S. Tabachnikov. Billiards, SMF Panoramas
et Syntheses 1. Paris: Société Mathématique de France,
1995.

[Troubetzkoy 04] S. Troubetzkoy. “Billiards in Right Trian-
gles.” Preprint, 2004.

[Veech 92] W. Veech. “Teichmüller Curves in Moduli Space:
Eisenstein Series and an Application to Triangular Bil-
liards.” Invent. Math. 97 (1992), 341–379.

Richard Evan Schwartz, Department of Mathematics, Brown University, Providence, RI 02912 (res@math.brown.edu)

Received September 8, 2007; accepted in revised form August 26, 2008.

