
On the Equation Y 2 = X5 + k

Andrew Bremner

CONTENTS

1. Introduction
2. The Case k < 0
3. The Case k > 0
4. An Example: k = −7
References

2000 AMS Subject Classification: Primary 11D41;
Secondary 11D25, 11G05, 11G30

Keywords: Fifth powers, genus two curve, elliptic curve

We show that there are infinitely many nonisomorphic curves
Y 2 = X5 + k, k ∈ Z, possessing at least twelve finite points for
k > 0, and at least six finite points for k < 0. We also determine
all rational points on the curve Y 2 = X5 − 7.

1. INTRODUCTION

We are interested in rational solutions to the title equa-
tion

Ck : Y 2 = X5 + k,

where we may assume without loss of generality that
k is tenth-power-free. The equation defines a curve of
genus 2, so has only finitely many points (with precisely
one point at infinity). When the Jacobian variety of Ck

(which is irreducible) has rank at most 1, then there exist
“Chabauty” techniques for determining the set of ratio-
nal points on Ck. Michael Stoll [Stoll 06] has proved the
interesting and elegant theorem that when the Jacobian
variety of Ck does have rank at most 1, then the number
of rational points on Ck is bounded above by 7; further,
the bound of 7 is achieved only for k = 324.

We were motivated to see what can be said about the
number of points on curves of this type when we allow
the Jacobian to have rank greater than 1.

The smallest value of |k| for which we found 9 points
on the curve is k = 257; with 11 points, k = 153124. No
k with 13 points has yet been found for |k| < 107.

Stoll gives the example of

k = 25344958401 = 3474194

when there are at least 15 points; we found several
other such examples (all with larger k), and just one
case in which there are at least 17 points: k =
26345474134174194374, when Ck has points with x-
coordinates equal to 2 · 3 · 5 · 7 · 13 · 17 · 19 · 37 · a, for

a = 0, 4,
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When k < 0, then Ck seems to possess far fewer points,
and in the range 0 < −k < 107, we found only 12 values
of k such that Ck possesses at least 6 finite points (we
searched for points with height less than 106): namely,
−k equal to 21303, 114143, 148507, 204732, 1044976,
1541468, 3369375, 3926151, 7019351, 7907868, 7942460,
and 9055625. (For these k, the point of largest height
occurred for k = −148507 with x = 17299/169.)

We shall prove below that there do, however, exist
infinitely many nonisomorphic curves Ck, k < 0, that
possess at least 6 finite points. We know of only two
examples for k < 0 where Ck has at least 8 finite points,
namely k = −11331151, with points at x = 35, 40, 56,
386, and k = −16410368, with the 10 points at x = 48,
153, 464, 568

9 , 1752
49 .

For positive k, we note that the curve

y2 = x5 +
(
210r−2 + 1

)
contains one point at infinity and the 8 finite points

(x,±y) =
(−1, 25r−1

)
,
(−2r, 25r−1 − 1

)
,(

2r, 25r−1 + 1
)
,

(
1
2r

,
1

25r
+ 25r−1

)
.

But we can do better, and shall show by parameterization
that there exist infinitely many nonisomorphic curves Ck,
k > 0, that possess at least 12 finite points.

In analogy with Mordell’s equation y2 = x3 + k, it is
of interest to describe all the rational solutions of y2 =
x5 + k. For any given value of k such that the Jacobian
of Ck has rank at least 2, it is not at all straightforward
to determine explicitly all rational points on Ck.

We conclude this note with an example in which we
find all rational points on y2 = x5 − 7 whose Jacobian
is of rank 2. The methods are not intrinsically new, but
they do show that (working over a fifth-degree number
field) a certain amount of luck is required in order that
computer routines finish in a reasonable amount of time.

2. THE CASE k < 0

Theorem 2.1. There exist infinitely many nonisomorphic
curves y2 = x5 + k, k < 0, containing six finite points.

Proof: Put −k = m4, where m = u2 +1. Then the curve
contains the two points (x,±y) = (m, m2u). Demanding
that there be points with x = rm, x = sm, necessitates

r5u2 + (r5 − 1) = �, s5u2 + (s5 − 1) = �.

Choosing r, s essentially at random can lead to some
thorny elliptic-curve computations, so we set (r, s) =
(1
4 , 2

5 ), values chosen by observation of numerical data.
Then

u2 − 1023 = v2, 160u2 − 15465 = w2. (2–1)

The intersection of these two quadrics represents a
curve of genus 1, which is a rational elliptic curve given
that there exists a rational point at u = 137

4 . The routine
GenusOneModel of Magma [Bosma et al. 97] establishes
an isomorphism of this curve with the cubic model

E : Y 2Z = (X − 103965Z)(X + 44250Z)(X + 59715Z),

which Magma tells us is of rank 2, with generators
(127975,−27858950), (−46710,−2195550). These latter
correspond to u = −137/4 and u = −24884803/278396,
respectively.

Accordingly, we can find infinitely many points u sat-
isfying equations (2–1), and with −k = m4 = (u2 + 1)4,
the corresponding curve y2 = x5 + k has six points at
x = m, 1

4m, 2
5m.

The curves arising from u1 and u2 are isomorphic if
and only if the ratio of u2

2 + 1 to u2
1 + 1 is a fifth power.

Suppose we have constructed as above ui, i = 1, . . . , n,
corresponding to nonisomorphic quintic curves Ci. Then
the n curves x2 + 1 = (u2

i + 1)y5, i = 1, . . . , n, are all
curves of genus 2 with accordingly only finitely many
rational points lying on their union.

By constructing un+1 as above, and avoiding a finite
set of values, we thus construct an (n + 1)th curve Cn+1

not isomorphic to any Ci, i = 1, . . . , n. Inductively, we
obtain infinitely many nonisomorphic curves with six fi-
nite rational points.

3. THE CASE k > 0

Theorem 3.1. There exist infinitely many nonisomorphic
curves y2 = x5+k, k > 0, containing twelve finite points.

Proof: Put k = m4 with m = u2−1. This ensures points
at x = 0, m. We demand points at x = am for further
values of a, equivalent to demanding

f(a) = ma5 + 1 = (u2 − 1)a5 + 1 = �.

Taking u = (n2 + 2nr + 2r2)/n2 (a parameterization
suggested by tables of numerical data) yields

m =
4r(n + r)(n2 + nr + r2)

n4
,
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and we obtain the following points (x,±y) on Ck, an
extra pair corresponding to a = n/r, −n/(n + r):(

0, m2
)
,
(
m, m2u

)
,
(
mn/r, m2

(
2n2 + 2nr + r2

)
/r2
)
,(

−mn/ (n + r) , m2
(
n2 + r2

)
/ (n + r)2

)
.

To get additional points, set (n, r) = (2t5, 1− t5− t10).
Then

m =
1 − 2t10 − t20 − 2t30 + t40

4t20
, (3–1)

with

f
(
t2
)

= mt10 + 1 =
(−1 − t10 + t20

2t5

)2

and

f

(
1
t2

)
=

m

t10
+ 1 =

(−1 + t10 + t20

2t15

)2

,

in addition to the points already known, given by

f (0) = 1, f (1) = u2,

f
(n

r

)
=

(
2n2 + 2nr + r2

)2
r4

,

f

(
− n

n + r

)
=

(
n2 + r2

)2
(n + r)4

.

Accordingly, the curve Ck with k = m4, where m is given
by (3–1), has at least twelve finite points. Similar argu-
ments as in Theorem 2.1 show that infinitely many non-
isomorphic curves arise.

4. AN EXAMPLE: k = −7

While there exist in the literature examples in which all
integer points are found on curves of type y2 = x5 + k

(see, for example, [Blass 74, Blass 76, Mignotte and de
Weger 96, Wren 73]), the methods will not determine the
full set of rational points. When the rank of the Jacobian
variety is at least 2, standard Chabauty arguments (see,
for example, the exposition in [Cassels and Flynn 96]) are
inapplicable, and it is difficult to determine explicitly all
rational points. It seems that the best approach is the
elliptic-curve Chabauty method developed by Bruin; for
a good overview, see [Bruin 06].

We do not know of any example in the literature
that finds all the rational points on a curve Ck whose
Jacobian is at least of rank 2, though Bremner and
Tzanakis consider the similar family of genus 2 curves
y2 = x6 + k [Bremner and Tzanakis 06]. Here, we take a

specific curve and find all rational points corresponding
to k = −7.

Theorem 4.1. The finite points on

Y 2 = X5 − 7 (4–1)

are given by (X,±Y ) = (2, 5), (8, 181).

Proof: We work in the algebraic number field K = Q(θ),
where θ5 = 7. The ring of integers is

OK = Z

[
1, θ, θ2, θ3,

1
5
(θ4 + 2θ3 + 4θ2 + 3θ + 1)

]
,

the class number of OK is 1, the ideal 〈5〉 factors as
〈5〉 = P1P4

2 , and the real fifth root of 7 is given by
θ0 ≈ 1.475773161594552. There are two fundamental
units ε1, ε2 in K, which we normalize to satisfy εi(θ0) > 0,
i = 1, 2.

In (4–1), put

X = x/z2, Y = y/z5, x, y, z ∈ Z, (x, z) = 1.

The equation takes the form

(x − θz2)(x4 + θx3z2 + θ2x2z4 + θ3xz6 + θ4z8) = y2.

A prime ideal dividing the two factors on the left divides
both 〈x−θz2〉 and 〈5θ4〉, and since clearly (x, 7) = 1, the
greatest common divisor is 〈1〉 for x �≡ 2z2 mod 5, and is
P1P2 = 〈2 − θ〉 in the case x ≡ 2z2 mod 5.

Thus we have the element equations

x − θz2 = g · u · α2, (4–2)

x4 + θx3z2 + θ2x2z4 + θ3xz6 + θ4z8 = g · u−1 · β2,

for the greatest common divisor g equal to 1 or 2 − θ,
unit u, and elements α, β ∈ OK, with gαβ = y.

Without loss of generality, u = ±εi1
1 εi2

2 , where i1, i2 =
0, 1, and by specializing the second equation in (4–2) to
θ0, only the positive sign can hold. Eliminating x in (4–2)
results in

g4u4α8 + 5θg3u3α6z2 + 10θ2g2u2α4z4 + 10θ3guα2z6

+ 5θ4z8 = u−1β2. (4–3)

We consider two cases:

Case 1: g = 1. The cases u = ε2, ε1ε2, render (4–3)
locally unsolvable at P2, so only u = 1, ε1, must be
considered.

When u = 1, we have

x4 + θx3z2 + θ2x2z4 + θ3xz6 + θ4z8 = β2,
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defining an elliptic curve E1 over K with Z/2Z torsion.
The routine PseudoMordellWeilGroup in Magma tells
us that the K-rank of E1 is equal to 2; and the routine
Chabauty, which works p-adically in this instance with
p = 3, tells us that the only K-points on E1 satisfying
x/z2 ∈ Q are given by(

x, z2, β
)

= (1, 0, 1) ,
(
0, 1, θ2

)
,

and (
8, 1,

1
5
(
42θ4 − 26θ3 − 27θ2 + 146θ + 82

))
.

Only the latter returns a finite point on the original
curve, namely at X = 8.

When u = ε1, then

ε1
(
x4 + θx3z2 + θ2x2z4 + θ3xz6 + θ4z8

)
= β2,

defining an elliptic curve (again with Z/2Z torsion) of
K-rank 2 (this computation was laborious, taking two
weeks on a desktop PC, in contrast to at most a cou-
ple of minutes for the computation of the other ranks
in this paper). Using Magma with Chabauty working
11-adically, we discover that there are no points on the
curve satisfying x/z2 ∈ Q. (This ran for four days, com-
pared to the one or two seconds for the corresponding
calculations in the other cases).

Case 2: g = 2 − θ. At u = ε1, ε1ε2, the curve (4–3) is
locally unsolvable at the prime 〈2, 3 + θ〉; and at u = ε2,
we have unsolvability at the prime 〈2, θ4+θ3+θ2+θ+1〉.
So only u = 1 remains to be considered, giving the curve

x4 + θx3z2 + θ2x2z4 + θ3xz6 + θ4z8 = (2 − θ)β2,

defining an elliptic curve of K-rank 2 with Z/2Z torsion.
Working 3-adically, Chabauty shows that the only K-

point with x/z2 ∈ Q is given by

(
x, z2, β

)
=
(

2, 1,
1
5
(
θ4 + 2θ3 + 4θ2 + 8θ + 16

))
,

returning X = 2 on the original curve.

REFERENCES

[Blass 74] J. Blass. “On the Diophantine Equation Y 2 +K =
X5.” Bull. Amer. Math. Soc. 80 (1974), 329.

[Blass 76] J. Blass. “A Note on Diophantine Equation Y 2 +
k = X5.” Math. Comp. 30:135 (1976), 638–640.

[Bosma et al. 97] W. Bosma, J. Cannon, and C. Playoust.
“The Magma Algebra System. I. The User Language.” J.
Symbolic Comput 24:3–4 (1997), 235–265.

[Bremner and Tzanakis 06] A. Bremner and N. Tzanakis.
“On the Equation Y 2 = X6 + k.” Preprint, 2006.

[Bruin 06] N. Bruin. “Some Ternary Diophantine Equations
of Signature (n, n, 2).” In Discovering Mathematics with
Magma, pp. 63–91, Algorithms Comput. Math. 19. Berlin:
Springer 2006.

[Cassels and Flynn 96] J. W. S. Cassels and V. E. Flynn.
Prolegomena to a Middlebrow Arithmetic of Curves of
Genus 2, London Math. Soc. Lect. Notes 230. Cambridge:
Cambridge University Press, 1996.

[Mignotte and de Weger 96] M. Mignotte and B. M. M. de
Weger. “On the Diophantine Equations x2 + 74 = y5 and
x2 + 86 = y5.” Glasgow Math. J. 38:1 (1996), 77–85.

[Stoll 06] M. Stoll. “On the Number of Rational Squares at
Fixed Distance from a Fifth Power.” Acta Arith. 125:1
(2006), 79–88.

[Wren 73] B. M. E. Wren. “y2 + D = x5.” Eureka 36 (1973),
37–38.

Andrew Bremner, Department of Mathematics and Statistics, Arizona State University, Tempe AZ 85287-1804
(bremner@asu.edu)

Received April 18, 2007; accepted January 9, 2008.




