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For several values of m, we show ways to construct some fam-
ilies of cyclic monic polynomials of degree m with integer co-
efficients and constant terms ±1, and to express their roots in
terms of Gaussian periods. We give several examples illustrat-
ing those techniques. With the aim to find other methods to
construct such families of polynomials, we consider the ques-
tion whether one of them can be obtained by means of rational
transformations of a given ordinary family F (t,X) ∈ Z[t][X] (at
the parameter t) of cyclic monic polynomials of degree m (such
families F are easy to find). We show a method, due to René
Schoof, that allows us to answer at least the simpler question
whether a family G(t, X) ∈ Q[t][X] of cyclic monic polynomi-
als of degree m prime with constant term in Q

× (independent of
t) can be obtained from F by means of rational transformations.

1. INTRODUCTION

Let m > 2 be an integer, ζm an mth primitive root of
1, ν = ϕ(m), where ϕ is Euler’s function, t0, t1, . . . , tν−1

parameters that are supposed to take integer values, α =
t0 + t1ζm + · · · + tν−1ζ

ν−1
m , N the norm from Q[ζm] to

Q, and q = q(t0, . . . , tν−1) = N(α). We assume that
the numbers ti are such that q is a prime that does not
divide m. (In our examples all the ti will depend on a
single parameter t.) We have that q ≡ 1 mod m. Let
f = (q− 1)/m, ζq a qth primitive root of 1, s a primitive
root mod q, and ηi =

∑f−1
j=0 ζsi+mj

q , i = 0, . . . , m − 1,
the Gaussian periods of degree m in Q[ζq]. They are
real numbers if f is even and complex nonreal if f is
odd. To simplify matters we assume that f is even. Let
L = Q[η0] = Q[η0, . . . , ηm−1], the cyclic subfield of degree
m of Q[ζq], and D = Dq its ring of algebraic integers. We
have that {η0, η1, . . . , ηm−1} is a normal integral basis for
L; in particular, D = Z[η0, . . . , ηm−1]. Denote by τ the
generator of Gal(L/Q) such that τ(ηi) = ηi+1 (indices
modulo m).

In this article we show some ways to construct, for sev-
eral values of m, families of elements that are (nontrivial)
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units of Dq for distinct primes q = q(t0, . . . , tν−1) cor-
responding to special values of the parameters ti. More
generally, our techniques allow us to construct families of
cyclic polynomials (that is, irreducible polynomials with
cyclic Galois groups over Q), monic of degree m, with
coefficients in Z and constant terms ±1, and to express
their roots in terms of Gaussian periods.

We are mainly interested in families of polynomials,
as above, such that their splitting fields have prime con-
ductors of the form q(t0, . . . , tν−1). Those families are,
in general, difficult to find for arbitrary m.

Here are a few of the known examples:

• For m = 3,

F = x3 − tx2 − (t + 3)x − 1,

with q = t2 + 3t + 9, studied by D. Shanks (1974).

• For m = 5,

F = x5 + t2x4 − (2t3 + 6t2 + 10t + 10)x3

+ (t4 + 5t3 + 11t2 + 15t + 5)x2

+ (t3 + 4t2 + 10t + 10)x + 1,

with q = t4 + 5t3 + 15t2 + 25t + 25, due to Emma
Lehmer [Lehmer 88].

This family was used in [Schoof and Washington 88]
to construct a real p-cyclotomic field with class number
divisible by a large prime. The authors showed that when
for some integer t the number q is prime, then any set of
four of the roots of F is a fundamental system of units
of the ring of integers of the splitting field of F .

• For m = 4,

F = x4 + tx3 − 6x2 − tx + 1,

with q = t2 + 16, M-N. Gras (1977).

• For m = 6,

F = x6 + 2tx5 − (5t + 15)x4 + 20x3 + 5tx2

− (2t + 6)x + 1,

with q = t2 + 3t + 9, M.-N. Gras (1987).

• For m = 8, families were found by Emma Lehmer
[Lehmer 88] and by Y. Y. Shen (1988).

More examples and references can be found in [Wash-
ington 90].

• For m = 7 no such families are known, but
Hashimoto and Hoshi [Hashimoto and Hoshi 05], us-
ing their geometric method to construct families of
cyclic polynomials, have found a family

F = x7 − (t3 + t2 + 5t + 6)x6

+ (9t3 + 9t2 + 24t + 12)x5

+ (t7 + t6 + 9t5 − 5t4 − 15t3 − 22t2 − 36t − 8)x4

− (t8 + 5t7 + 12t6 + 24t5 − 6t4 + 2t3 − 20t2 − 16t)x3

+ (2t8 + 7t7 + 19t6 + 14t5 + 2t4 + 8t3 − 8t2)x2

− (t8 + 4t7 + 8t6 + 4t4)x + t7,

with constant term t7.

We will study these and other new examples in Sec-
tion 4.

This work originated in a question posed to me by
René Schoof regarding the possibility of generalizing the
above family of cyclic quintic polynomials discovered by
Emma Lehmer.

In Section 2, we recall some basic facts about the mul-
tiplication matrices C of Gaussian periods and the arith-
metic of D, and show some polynomials ai,j of degree
ν/2 in the parameters ti, with which we can construct q

and C.
In Section 3, we show several ways to use those poly-

nomials ai,j in the search for families of units of cyclic
fields.

In Section 4, we apply the techniques of Section 3 to
construct several families of cyclic polynomials of degrees
3, 4, 5, 6, 8, and 9 whose roots are algebraic units, and
also other families, of degree 7, similar to Hashimoto and
Hoshi’s family of polynomials mentioned above, which
have “small” constant terms.

In Section 5, we show a way to construct a family of
cyclic polynomials of degree mn whose roots are algebraic
units when m and n are relatively prime positive integers
and we are given the multiplication matrices of the roots
of two such families with degrees m and n. As examples,
we calculate families of polynomials of degrees 10 and 12.

Since we have good methods to construct cyclic monic
polynomials F (t, X) ∈ Z[t][X ] of arbitrary degree m > 2
over Q(t), it would be interesting to have a way to know
whether, by applying rational transformations on such
a polynomial F , we can find a cyclic monic polynomial
G(t, X) ∈ Z[t][X ], of degree m, whose constant term is
±1 (that is, a polynomial of the kind we consider in Sec-
tions 3 and 4).

Suppose that m is prime. In Section 6 we present
a method, shown to us by René Schoof, that allows
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us to know at least whether a cyclic monic polynomial
G(t, X) ∈ Q[t][X ] of degree m over Q(t) with constant
term in Q× can be obtained by applying rational trans-
formations on a given F . Some examples illustrating
Schoof’s method are given at the end of the section.

2. PRELIMINARIES

Let ci,j , 0 ≤ i, j ≤ m − 1, be the integers such that

η0ηi =
m−1∑
j=0

ci,jηj (2–1)

and let C = [ci,j ]0≤i,j<m. We call C the multiplication
matrix of the ηi. We use the following version of Kro-
necker’s delta: for i, j ∈ Z,

δi,j =

{
1 if i ≡ j mod m,

0 if i �≡ j mod m.

Let K be the m × m matrix [δi+1,j ]i,j , that is,

K =

⎡
⎢⎢⎢⎢⎢⎣

0 1 0 . . . 0
0 0 1 . . . 0
...

...
...

. . .
...

0 0 0 . . . 1
1 0 0 . . . 0

⎤
⎥⎥⎥⎥⎥⎦ .

We have that Km = I, the identity matrix. The matrix
C contains key information on the arithmetic of D.

Let P (x) = (x− η0)(x− η1) · · · (x− ηm−1) ∈ Z[x], the
minimal polynomial of the Gaussian periods ηi. Recall
that η0 +η1 + · · ·+ηm−1 = −1. We have that P (x) is the
characteristic polynomial of C. Also, for l = 0, . . . , m−1,

C(K−lCK l) = (K−lCK l)C, (2–2)

and the field Q[C] is a decomposition field for P (x). In
Q[C] we have

P (x) = (x − C)
(
x − K−1CK

)× · · ·
×
(
x − K−(m−1)CK(m−1)

)
,

so we can identify, and we often do, the Gaussian periods
ηi with the matrices K−iCKi (for the proofs of these
facts see, for example, [Thaine 01] or [Thaine 04]).

The elements ci,j can be regarded as polynomials over
Q in the parameters t0, . . . , tm−1. We can calculate these
elements by first expressing them in terms of some Jacobi

sums Ja,b and then constructing those Jacobi sums us-
ing Stickelberger’s theorem and some roots of unity (see
[Thaine 01]). More precisely, for 0 ≤ a, b ≤ m − 1, let

Ja,b = −
q−1∑
k=2

ζ a inds(k)+b inds(1−k)
m ,

where inds(k) is the least nonnegative integer such that
s inds(k) ≡ k mod q. We have [Thaine 01, (15) and (4)]

ci,j = −fδ0,i − 1
m2

m−1∑
a=0

m−1∑
b=0

ζ−ia−jb
m Ja,b

= −fδ0,i − 1
m2

(
mδ0,i + mδ0,j + mδi,j − q − 1

+
∑

1≤a,b<m
a+b�=m

ζ−ia−jb
m Ja,b

)
. (2–3)

If c ∈ Z and gcd(c, m) = 1, we denote by σc the au-
tomorphism of Q[ζm] such that σc(ζm) = ζc

m. Let Q be
the prime ideal of Z[ζm] over q such that sf ≡ ζm mod
Q, and suppose that Q is a principal ideal: Q = (α) =
(t0 + t1ζm + · · · + tν−1ζ

ν−1
m ). Then by Stickelberger’s

theorem we have that for all a, b such that a + b �≡ 0
mod m,

(Ja,b) =
( ∏

1≤c<m
(c,m)=1

σ−1
c (α)[

(a+b)c
m ]−[ ac

m ]−[ bc
m ]
)

(2–4)

(an equality of ideals), where the overbar denotes com-
plex conjugation and [ρ] is the integral part of the real
number ρ.

To remove the parentheses in (2–4), we have to multi-
ply by some suitable roots of unity; this can be tricky
when m is not a prime number. More precisely, for
1 ≤ a, b ≤ m − 1 with a + b �≡ 0 mod m, there exist
roots of unity εa,b ∈ Z[ζm] such that

Ja,b = εa,b

∏
1≤c<m
(c,m)=1

σ−1
c (α)[

(a+b)c
m ]−[ ac

m ]−[ bc
m ] (2–5)

(see, for example, the comments preceding [Thaine 04,
Proposition 11]).

When m is a prime number we have Ja,b ≡ 1
mod (ζm − 1)2, for a, b as in (2–5), and these congru-
ences are enough to determine the εa,b. One way to get
the products in the right-hand side of (2–5) to be con-
gruent to 1 mod (ζm−1)2 (when m is prime) is to choose
α such that α ≡ c mod (ζm − 1)2 with c ∈ Z − pZ and
εa,b = ε =

(
c
m

)
(Legendre symbol), since the products in

(2–5) have ϕ(m)/2 terms. To simplify things, for general
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m, in this article we are going to consider only the situ-
ation in which the Jacobi sums Ja,b can be written, as in
(2–5), with εa,b = ε = ±1 (independent of a, b) for some
suitable α = t0 + t1ζm + · · · + tν−1ζ

ν−1
m .

So the theory above will hold only for values of the
parameters ti for which those conditions are satisfied. In
particular, the entries of C are guaranteed to be integers
only for those values of the parameters. But these con-
siderations should not prevent us from performing the
formal calculations with general α = t0 + t1ζm + · · · +
tν−1ζ

ν−1
m and ε = ±1 if this results at the end in nice

cyclic monic polynomials in Z[t] with constant terms ±1.
(For a more elaborate account on the right choices of the
roots of unity εa,b, in the general situation, see [Thaine
04, Proposition 11].)

We calculate the matrix C by replacing in (2–3) the
values of Ja,b obtained by the formulas in (2–5).

Remark 2.1. A program to calculate C can be found at
the end of [Thaine 01]. There we take ε = 1; you can
change it to ε = −1 by replacing the entry

H[i4,j4]:=sort(collect(rem(B[i4,j4],R,z),z));

by

H[i4,j4]:=sort(collect(-rem(B[i4,j4],R,z),z));

What one obtains from that program, after writing the
value of m and F := (t0, t1, . . . , tν−1) -> t0 + t1z +
· · · + tν−1z

(ν−1) (write all the terms of the sum) in
the first line, is an m × m matrix C with entries in
Q[t0, t1, . . . , tν−1].1

The entries of the matrix C, as polynomials in the ti,
have degree ν = ϕ(m). This matrix is much too large for
the information it contains, but it can be expressed in
terms of a relatively small set of elements of degree ν/2,
as we are going to show.

For 0 ≤ i, j ≤ m−1, define c′i,j = ci,j +fδ0,i. (The c′i,j
are the so-called cyclotomic numbers of order m corre-
sponding to q.) Regard indices modulo m. For all i, j ∈ Z

we have that

c′i,j = c′j,i, c′i,j = c′−i,j−i,

m−1∑
k=0

c′i,k = f − δ0,i. (2–6)

1Alternatively, see the program at my web page (http://cicma.
mathstat.concordia.ca/faculty/thaine/homepage.html).

It follows from (2–3) that

c′i,j = − 1
m2

(
mδ0,i + mδ0,j + mδi,j − q − 1

+
∑

1≤a,b<m
a+b�=m

ζ−ia−jb
m Ja,b

)
. (2–7)

In particular (regarding the ti and the c′i,j as integers),
this implies, by the triangle inequality, that

∣∣c′i,j − q

m2

∣∣ ≤ 3
m

+
1

m2
+

(m − 1)2 − (m − 1)
m2

√
q

<
√

q,

since |Ja,b| =
√

q when 1 ≤ a, b ≤ m − 1 and a + b �= m.
For i, j ∈ Z, regarding as always indices modulo m,

define ai,j = m2c′i,j − q. These numbers are more conve-
nient to work with than the ci,j . Set A = [ai,j ]0≤i,j<m.
We have just proved that

|ai,j | < m2√q. (2–8)

It follows from formulas (2–5) and (2–7) that the ai,j

have degrees ≤ ν/2 as polynomials in the parameters ti.
In fact, by (2–5), the Jacobi sums Ja,b have degree ν/2
in those parameters, since for fixed 1 ≤ a, b ≤ m−1 such
that a+b �≡ 0 mod m, the numbers

[
(a+b)c

m

]
−[ac

m

]−[ bc
m

]
are equal to 1, ν/2 times, and equal to 0, ν/2 times, when
1 ≤ c ≤ m−1 with gcd(c, m) = 1. By (2–6) we also have
that

ai,j = aj,i, ai,j = a−i,j−i,

m−1∑
k=0

ai,k = −m − m2δ0,i.

(2–9)
It follows from straightforward calculations (assuming
(2–9)) that formula (2–2) is equivalent to the following
equalities. For 0 ≤ i, j, l ≤ m − 1,

m−1∑
k=0

ai,kak−j,l−j −
m−1∑
k=0

aj,kak−i,l−i

= m2q(δ0,i − δ0,j − δl,iδl,j) (2–10)

− m4f(δ0,iδl,j − δ0,j + δl,i).

In particular, we can express q in terms of the ai,j , for
example by

q =
1

m2

(m−1∑
k=0

a2,kak−1,0 −
m−1∑
k=0

a1,kak−2,−1

)
, (2–11)

and, of course, we can express C = [ci,j ] in terms of the
ai,j as

ci,j =
ai,j + q

m2
− fδ0,i. (2–12)
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It can be shown that properties (2–9) through (2–12)
characterize the integers ai,j and ci,j [Thaine 01]. We
will show later how a few values of the elements ai,j give
us all the information we need to construct A = [ai,j ],
and so also q and C.

We have q = NQ[ζm]/Q(α); this is the only prime that
ramifies in L/Q, and (q) = Pm, where P is a prime ideal
of D. This ideal divides all elements μ = d0η0 + d1η1 +
· · ·+dm−1ηm−1 with di ∈ Z and d0 +d1 + · · ·+dm−1 ≡ 0
mod q. So q divides the norms (from L to Q) of such
elements μ.

For example, we have that ηi ≡ ηj mod P for all i, j.
So

mη0 ≡ η0 + η1 + · · · + ηm−1 = −1 ≡ q − 1 mod P .

Hence ηi ≡ f mod P for all i. Therefore for all λ =
z0η0 + · · · + zm−1ηm−1 ∈ D, with z0, . . . , zm−1 ∈ Z, we
have that

λ ≡ f
m−1∑
i=0

zi ≡ −1
m

m−1∑
i=0

zi mod P .

Let

F (x) = (x − λ)(x − τ(λ)) · · · (x − τm−1(λ))

be the characteristic polynomial of λ. Then we have that

F (x) ≡
(
x +

1
m

m−1∑
i=0

zi

)m

mod P .

So

F (x) ≡
(
x +

1
m

m−1∑
i=0

zi

)m

mod q.

Now suppose that λ ∈ D is an element of norm
NL/Q(λ) = qk, for some k ≥ 0. Then (λ) = Pj, for
some j ≥ 0, and since τ(P) = P , we have that τ(λ)/λ is
a unit of D. This shows that in order to find units of D,
it is enough to look for elements of norm qk.

2.1 Values of q and A for Small m

We end this section by showing the values of q and A for
small m. Let ε = εa,b be as in formula (2–5) (see the
comments following that formula):

• For m = 3 we have α = t0 + t1ζ3, q = t20 − t0t1 + t21,
and

A =

⎡
⎣−12 − a − b a b

a b c
b c a

⎤
⎦ ,

where a = −2 + ε(t0 − 2t1), b = −2+ ε(t0 + t1), and
c = 1 − ε(2t0 − t1).

• For m = 4 we have α = t0 + t1ζ4, q = t20 + t21, and

A =

⎡
⎢⎢⎣
−20 − a − b − c a b c

a c d d
b d b d
c d d a

⎤
⎥⎥⎦ ,

where a = −3 + ε(2t0 − 4t1), b = −3 + 2εt0, c =
−3 + ε(2t0 + 4t1), and d = 1 − 2εt0.

• For m = 5 we have α = t0 + t1ζ5 + t2ζ
2
5 + t3ζ

3
5 ,

q = 1
25 (ac− ad− 2ae+ bd− be+ bf− ce+ cf − 2de−

2ef − 30e), and

A =

⎡
⎢⎢⎢⎢⎣
−30 − a − b − c − d a b c d

a d e f e
b e c f f
c f f b e
d e f e a

⎤
⎥⎥⎥⎥⎦ ,

where

a = −4 + ε(3t20 + 3t21 − 2t22 + 3t23 − 9t0t1 − 4t0t2 + t0t3

+ 6t1t2 − 4t1t3 − 4t2t3),

b = −4 + ε(3t20 + 3t21 + 3t22 − 7t23 + t0t1 − 9t0t2 + 6t0t3

− 4t1t2 + t1t3 + t2t3),

c = −4 + ε(3t20 − 2t21 − 7t22 + 3t23 − 4t0t1 + 6t0t2 − 9t0t3

+ 6t1t2 + 6t1t3 + t2t3),

d = −4 + ε(3t20 − 7t21 + 3t22 − 2t23 + 6t0t1 + t0t2 − 4t0t3

+ t1t2 + 6t1t3 − 4t2t3),

e = 1 − ε(2t20 − 3t21 + 2t22 + 2t23 − t0t1 − t0t2 − t0t3

+ 4t1t2 − t1t3 − 6t2t3),

f = 1 − ε(2t20 + 2t21 − 3t22 − 3t23 − t0t1

− t0t2 − t0t3 − t1t2 + 4t1t3 + 4t2t3).

• For m = 6 we have α = t0 + t1ζ6, q = t20 + t0t1 + t21
and

A =

⎡
⎢⎢⎢⎢⎢⎢⎣

−42 − a − b − c − d − e a b c d e
a e f f f f
b f d f f f
c f f c f f
d f f f b f
e f f f f a

⎤
⎥⎥⎥⎥⎥⎥⎦

,

where

a = −5 + ε(4t0 − 7t1),

b = −5 + ε(4t0 − t1),

c = −5 + ε(4t0 + 2t1),

d = −5 + ε(4t0 + 5t1),

e = −5 + ε(4t0 + 11t1),

f = 1 − ε(2t0 + t1).
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3. SEARCHING FOR THE FAMILIES OF UNITS

Suppose that t0, . . . , tν−1 depend on a single parameter
t; then q and C are functions of t. We are looking for ele-
ments z0, . . . , zm−1 ∈ Z[t] such that for suitable values of
t, the numbers εt = z0η0 + · · ·+ zm−1ηm−1 are nontrivial
units of Dq.

As we observed in Section 2, we can identify the Gauss-
ian periods ηi with the conjugates K−iCKi of C; so our
problem can be restated as follows: Find z0, . . . , zm−1 ∈
Z[t] such that for suitable values of t, the matrices M =
Mt = z0C + z1K

−1CK + · · · + zm−1K
−(m−1)CK(m−1)

have inverses in Z[t][C] (and are nontrivial). We can re-
gard the parameter t as an indeterminate, the entries ci,j

of C as polynomials in 1
m2 Z[t] (by (2–3) and (2–5)), and

the elements zi as polynomials in Z[t].
We have that the minimal polynomial of εt over Q(t)

is equal to the characteristic polynomial of M . (For a
more formal approach to the construction and proper-
ties of the matrices of polynomials C and M see [Thaine
04].) So it is enough to look for matrices M , as above,
with determinant ±1; and in fact, by the observations in
Section 2, it is also enough to find a matrix M such that

M = z0C + z1K
−1CK + · · · + zm−1K

−(m−1)CK(m−1),
(3–1)

with det(M) = ±qk, for some k ≥ 0.
For M as in (3–1), the matrices K−jMKjM−1, 1 ≤

j ≤ m− 1, have characteristic polynomials in Z[t][x] and
determinants equal to 1.

One way to search for matrices of one parameter sat-
isfying (3–1) is to give a large number of distinct integer
values to z0, . . . , zm−1 and to t1, . . . , tν−1, for example,
leaving t0 = t as the parameter, and check whether for
some of those values we get det(M) = ±qk. We used
variations of this straightforward method to find some
of our examples. (However, giving polynomial values of
degrees greater than 1 in some parameter t to all the zi

or ti proved to need much computer memory.)
Another way is to give several integer values to

z0, . . . , zm−1, satisfying z0 + · · · + zm−1 = 0, and take
t2 = 0, . . . , tν−1 = 0, for example, leaving t0 = u and
t1 = v as parameters, searching for matrices M such that
det(M)/q has small degree in u or v and then trying to
write u and v as functions of some parameter t for which
det(M)/q = ±1. That works well, for example, when
m = 3, 4, 6, or 8.

One can also regard all, or most, of the ti and zi as
indeterminates, write det(M) as a polynomial in t0, say,
and factor the leading coefficient. One can then give the

variables some values that annihilate this coefficient and
start the process again with the new variables. Proceed-
ing in this way, we end up with one free variable, say
t, and det(M) with small degree in t. If we are lucky,
we get this degree to be 0. Some of our examples were
calculated using a variation of this idea, which we show
next.

The problem of finding M as in (3–1) is included in
the less-restrictive, but still difficult, problem of finding
nontrivial solutions for the equation

m−1∑
i=0

ziK
−iCKi

m−1∑
j=0

wjK
−jCKj = u, (3–2)

with z0, . . . , zm−1, w0, . . . , wm−1 ∈ Q[t0, . . . , tν−1], and
u ∈ qkQ× for some k ≥ 0.

Let us use for the moment the simpler notation ηi for
K−iCKi. By applying powers of τ to (2–1) we get, for
all i, j ∈ Z, ηiηj =

∑m−1
k=0 cj−i,k−iηk. From (3–2) we get

u =
m−1∑
i=0

ziηi

m−1∑
j=0

wjηj

=
m−1∑
i=0

m−1∑
j=0

ziwjηiηj

=
m−1∑
k=0

(m−1∑
i=0

m−1∑
j=0

cj−i,k−iziwj

)
ηk.

That is, for k = 0, . . . , m − 1,

−u =
m−1∑
i=0

m−1∑
j=0

cj−i,k−iziwj .

Since ci,j = ai,j+q
m2 − fδ0,i, this gives

−u =
m−1∑
i=0

m−1∑
j=0

(aj−i,k−i + q

m2
− fδi,j

)
ziwj .

Therefore (3–2) is equivalent to

m−1∑
i=0

m−1∑
j=0

aj−i,k−iziwj = −m2u − q

m−1∑
i=0

zi

m−1∑
j=0

wj

+ m2f

m−1∑
l=0

zlwl, (3–3)

for k = 0, . . . , m − 1. Adding (3–3) for k = 0, . . . , m − 1
and using (2–9), we get

mu = q

m−1∑
l=0

zlwl − f

m−1∑
i=0

zi

m−1∑
j=0

wj . (3–4)
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From (3–3) and (3–4) we get

m−1∑
i=0

m−1∑
j=0

aj−i,k−iziwj = −
m−1∑
i=0

zi

m−1∑
j=0

wj − m

m−1∑
l=0

zlwl.

(3–5)
Equalities (3–4) and (3–5) are equivalent to (3–2). If,

for example, we stipulate that
∑m−1

i=0 zi = 0, then, by
(3–4), it is convenient to assume as well that u = ±q

and
∑m−1

l=0 zlwl = ±m. In that case we get the system
of linear equations

m−1∑
i=0

m−1∑
j=0

aj−i,k−iziwj = ∓m2

in the indeterminates w0, . . . , wm−1, and we can proceed
(in the way we explained before) to look for values of
z0, . . . , zm−1 and t1, . . . , tm−1 such that the determinant
of the coefficients of this system has small degree in, say,
t0 = t, and then we can use, for example, Cramer’s rule
to find the wi.

4. EXAMPLES

In the following examples we give, for several values of
m, elements α(t) = t0(t) + t1(t)ζm + · · · + tν−1(t)ζν−1

m ∈
Z[t][ζm] such that their norms q(t) = N(α(t)) ∈ Z[t]
from Q(t)(ζm) to Q(t) are irreducible, and matrices M ∈
Q(t)(C), where C is constructed from α(t) as in Section
2 and

M =
(∑

i

ai(t)K−iCKi
)(∑

j

bj(t)K−jCKj
)−1

.

Each matrix M is chosen so that its characteristic
polynomial F (x) is irreducible over Q(t). Recall that
then, for each value of the parameter t such that q(t)
is a prime number q, we have that F (x) is the minimal
polynomial of

∑
i ai(t)ηi/

∑
j bj(t)ηj , where the ηi are

the Gaussian periods of degree m in Q[ζq]. So we are not
only finding the cyclic polynomials F (x) but also their
roots in terms of Gaussian periods. If F (x) ∈ Z[x] and
F (0) = ±1, then those roots are units of Z[η0, . . . , ηm−1].

The examples in this and the next sections were calcu-
lated using the Maple system. Many of them were shown
in [Thaine 05], but here we include some new ones. We
calculated the matrices C using the value ε = εa,b = 1 in
formula (2–5) (see Remark 2.1 following that formula).
Similar examples can be calculated using ε = −1. For
convenience, we name our parameters n, t, u, v, . . . in-
stead of t0, t1, . . . .

4.1 Degree m = 3

For m = 3, with α = n + tζ3, we get q = n2 − nt + t2.
(The following are essentially cases of Shanks’s simplest
cubics, but the parameter is taken to be of a special form.
This allows a factor to be removed from the conductor.
See the comment below.)

Let W = C −K−1CK. We have that det(W ) = tq/3.
For B = K−1WKW−1, we have that

F = det(xI − B) = x3 + 3
n

t
x2 + 3

n − t

t
x − 1.

Taking t = 1, we get q = n2 − n + 1 and

F = x3 + 3nx2 + (3n − 3)x − 1.

Taking t = 3, we get q = n2 − 3n + 9 and

F = x3 + nx2 + (n − 3)x − 1,

Shanks’s polynomial.
Also we have, for example,

det(W − K−1WK) = (2n − t)q,

det(W − 2K−1WK − K−2WK2) =
(

6n +
t

3

)
q,

det(W − 2K−1WK + 2K−2WK2) =
(
−12n− 17t

3

)
q,

det(W − 3K−1WK + 2K−2WK2) = (−20n− 17t)q.

By finding values of n and t depending on one parameter
such that those determinants equal ±q, we can obtain
more families of cyclic polynomials. For example, for
t = 2n + 1, we have q = 3n2 + 3n + 1, and for U =
W − K−1WK and B = K−1UKU−1, we get

F = det(xI − B) = x3 + (9n + 6)x2 + (9n + 3)x − 1.

In this and in the following examples, observe that F

has the form x3 + ux2 + (u − 3)x − 1 as before, but the
conductor is distinct than that corresponding to Shanks’s
polynomial. In particular, when n runs through the in-
tegers, the sets of prime values taken by the conductors
q are different.

For t = −18n+3, we have q = 343n2−111n+9, and for
U = W − 2K−1WK −K−2WK2 and B = K−1UKU−1,
we get

F = det(xI−B) = x3 +(343n−54)x2+(343n−57)x−1.

For n = −17u + 7 and t = 36u − 15, we have q =
2197u2 − 1825u + 379, and for U = W − 2K−1WK +
2K−2WK2 and B = K−1UKU−1, we get

F = det(xI−B) = x3+(2197u−911)x2+(2197u−914)x−1.
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For n = −17u − 6 and t = 20u + 7, we have q =
1029u2 + 723u + 127, and for U = W − 3K−1WK +
2K−2WK2 and B = K−1UKU−1, we get

F = det(xI − B)

= x3 + (3087u + 1086)x2 + (3087u + 1083)x− 1.

4.2 Degree m = 4

For m = 4, with α = n + tζ4, we get q = n2 + t2.
Let W = C − K−1CK. We have that det(W ) =

−t2q/16. For B = K−1WKW−1, we have that

F = det(xI − B) = x4 + 4
n

t
x3 − 6x2 − 4

n

t
x + 1.

Taking t = 1 and t = 2, we get some families.
Taking t = 4, we get q = n2 + 16 and F = x4 + nx3 −

6x2 − nx + 1, first found by M.-N. Gras.
For B = K−2WK2W−1, we have that

F = det(xI − B)

= x4 + 4x3 − 16n2 + 10t2

t2
x2 + 4x + 1.

Taking t = 1, t = 2, and t = 4, we get more families.
Let U = W −K−1WK. We have that det(U) = t2q/4.

For B = K−1UKU−1, we have that

F = det(xI − B)

= x4 +
8n2 + 8t2 + 4nt

t2
x3 +

20n2 + 14t2

t2
x2

+
8n2 + 8t2 − 4nt

t2
x + 1.

Taking t = 1 and t = 2, we get more families.
For B = K−2UK2U−1, we have that

F = det(xI − B)

= x4 +
−16n2 − 12t2

t2
x3 +

32n2 + 38t2

t2
x2

+
−16n2 − 12t2

t2
x + 1.

Taking t = 1, t = 2 and t = 4, we get more families.
Also we have, for example,

det(W − 3K−2WK2 + 3K−3WK3) = − (24n + 7t)2q
16

.

If we take n = −7u−8 and t = 24u+28, then q = 625u2+
1456u+ 848, and for U = W − 3K−2WK2 + 3K−3WK3

and B = K−1UKU−1, we get

F = det(xI − B)

= x4 − (625u + 728)x3 − 6x2 + (625u + 728)x + 1.

4.3 Degree m = 5

For m = 5, with α = n + tζ5 + uζ2
5 + vζ3

5 , we get

q = 2v2ut + 2vt2n + 2vu2n − 3v2tn + 2v2un + v4 + 2u2tn

+ v2n2 + 2vtn2 − u3n − v3t − vutn − u3t + u2n2 − tn3

− un3 − ut3 + u2t2 − vn3 − vt3 − vu3 + v2t2 + v2u2

− v3n − 3vun2 − 3ut2n + n4 + 2vut2 − 3vu2t + 2utn2

+ t2n2 + u4 + t4 − t3n − v3u.

For α = n + 2 + ζ5 + 2ζ2
5 , we get q = n4 + 5n3 +

15n2 + 25n + 25. Let W = C − K−1CK. We have that
det(W ) = −q.

For B = −K−2WK2W−1, we have that

F = det(xI − B)

= x5 + n2x4 − (2n3 + 6n2 + 10n + 10)x3

+ (n4 + 5n3 + 11n2 + 15n + 5)x2

+ (n3 + 4n2 + 10n + 10)x + 1,

Lehmer’s polynomial.
For B = K−1WKW−1, we have that

F = det(xI − B)

= x5 + (2n2 + 5n + 10)x4

+ (n4 + 5n3 + 17n2 + 25n + 25)x3

+ (n4 + 3n3 + 7n2 + 5n + 5)x2

− (n3 + 3n2 + 5n + 5)x − 1.

For α = n − ζ5 − (2 + 3n)ζ2
5 − (1 + 3n)ζ3

5 , we get
q = 25n4+25n3+15n2+5n+1. Let W = C−K−2CK2.
We have that det(W ) = q/125.

For B = K−1WKW−1, we have that

F = det(xI − B)

= x5 + (−125n3 − 100n2 − 50n− 10)x4

+ (625n4 + 625n3 + 275n2 + 75n + 5)x3

+ (250n3 + 150n2 + 50n + 10)x2 + 25n2x − 1.

For B = K−2WK2W−1, we have that

F = det(xI − B)

= x5 + (50n2 + 25n + 10)x4

+ (625n4 + 625n3 + 425n2 + 125n + 25)x3

+ (625n4 + 375n3 + 175n2 + 25n + 5)x2

+ (−125n3 − 75n2 − 25n − 5)x − 1.

This answers affirmatively a question of Emma
Lehmer [Lehmer 88, comment at end of Section 5]:
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“There may possibly be a second case for which p =
25n4 − 25n3 + 15n2 − 5n + 1, but we have not been able
to find the coefficients, which could be quite large in this
case.” Observe that the set

{q = n4 + 5n3 + 15n2 + 25n + 25 | n ∈ Z and q is prime}
is distinct from the set

{q = 25n4+25n3+15n2+5n+1 | n ∈ Z and q is prime}.

4.4 Degree m = 6

For m = 6, with α = n+ tζ6, we get q = n2 +nt+ t2. Let
W = C − K−1CK. We have that det(W ) = −t4q/5184.

For B = K−1WKW−1, we have that

F = det(xI − B)

= x6 + 6
n

t
x5 − 15

n + t

t
x4 + 20x3 + 15

n

t
x2

− 6
n + t

t
x + 1.

Taking t = 1, we get q = n2 + n + 1 and

F = x6 + 6nx5 − (15n + 15)x4 + 20x3 + 15nx2

− (6n + 6)x + 1.

Taking t = 3, we get q = n2 + 3n + 9 and

F = x6 + 2nx5 − (5n + 15)x4 + 20x3 + 5nx2

− (2n + 6)x + 1,

first found by M.-N. Gras.
For B = K−2WK2W−1, we have that

F = det(xI − B)

= x6 + 6
n + t

t
x5 − 3

24n2 + 24t2 + 19nt

t2
x4

+ 20
9n2 + 8t2 + 9nt

t2
x3 − 3

24n2 + 29t2 + 29nt

t2
x2

− 6
n

t
x + 1.

Taking t = 1 and t = 3, we get more families.
For B = K−3WK3W−1, we have that

F = det(xI − B)

= x6 + 6x5 − 3
48n2 + 43t2 + 48nt

t2
x4

+ 4
72n2 + 77t2 + 72nt

t2
x3 − 3

48n2 + 43t2 + 48nt

t2
x2

+ 6x + 1.

Taking t = 1, t = 2, t = 3, t = 4, t = 6, and t = 12,
we get more families.

4.5 Degree m = 7

For m = 7, we could not find a family of cyclic poly-
nomials in Z[x] whose roots are units, but the following
family of cyclic polynomials, with constant term n7, was
found by Hashimoto and Hoshi using a different method
[Hashimoto and Hoshi 05]:

F = x7 − (n3 + n2 + 5n + 6)x6 + (9n3 + 9n2 + 24n + 12)x5

+ (n7 + n6 + 9n5 − 5n4 − 15n3 − 22n2 − 36n − 8)x4

− (n8 + 5n7 + 12n6 + 24n5 − 6n4 + 2n3 − 20n2 − 16n)x3

+ (2n8 + 7n7 + 19n6 + 14n5 + 2n4 + 8n3 − 8n2)x2

− (n8 + 4n7 + 8n6 + 4n4)x + n7.

This can be obtained using our method as follows: Take
α = n − 2 + (1 − ζ7)(1 − ζ3

7 )(1 + ζ7 + ζ3
7 ) and U = C −

K−2CK2. We have that det(U) = −n4q. With B =
−nK−2UK2U−1, we have that F = det(xI − B). Here

q = N(α) = n6 + 2n5 + 11n4 + n3 + 16n2 + 4n + 8.

If we take B1 = nK−6UK6U−1, we get another family

F1 = det(xI − B1)

= x7 − (n5 + 2n4 + 11n3 + 2n2 + 10n + 2)x6

+ (n9 + 4n8 + 16n7 + 26n6 + 31n5 + 45n4 + 21n3

+ 12n2 + 12n − 4)x5

+ (n11 + 2n10 + 12n9 + 7n8 + 39n7 + 58n6 + 74n5

+ 68n4 + 74n3 + 24n2 + 16n + 8)x4

− (n12 + 4n11 + 16n10 + 27n9 + 33n8 + 54n7 + 19n6

+ 2n5 − 9n4 − 14n3 − 20n2)x3

− (2n11 + 7n10 + 30n9 + 40n8 + 56n7 + 66n6 + 46n5

+ 30n4 + 20n3 + 8n2)x2

− (n10 + 3n9 + 12n8 + 10n7 + 12n6 + 10n5 + 4n4)x − n7.

Also, for α = n − 1 + (1 − ζ7)(1 − ζ3
7 ) and U = C −

K−2CK2, we have that det(U) = n4q. If we take B2 =
−nK−1UKU−1, we get

F2 = det(xI − B2)

= x7 + (n3 + 4n2 + 3n + 6)x6

+ (3n5 + 6n4 + 15n3 + 15n2 + 12n + 12)x5

+ (3n7 + 4n6 + 20n5 + 11n4 + 27n3 + 6n2 + 12n + 8)x4

+ (n9 + n8 + 8n7 + n6 + 7n5 − 17n4 − 2n3 − 20n2)x3

− (n8 + 7n7 + 11n6 + 19n5 + 16n4 + 8n3 + 8n2)x2

− (n9 + 5n7 − 4n6 + 2n5 − 4n4)x + n7.
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If we take B3 = nK−5UK5U−1, we get

F3 = det(xI − B3)

= x7 + (2n3 + n2 + 6n − 2)x6

+ (n6 + n5 + 5n4 + n3 − 2n2 − 16n − 4)x5

− (n7 + 12n5 + 13n4 + 36n3 + 16n2 − 8)x4

− (n8 + 4n7 + 6n6 + 10n5 − 26n3 − 28n2 − 16n)x3

+ (n9 + 2n8 + 9n7 + 18n6 + 38n5 + 36n4 + 28n3

+ 8n2)x2

+ (n9 + 2n8 + 5n7 + 5n6 + 4n5 + 4n4)x − n7.

Here q = N(α) = n6 + n5 + 8n4 + n3 + 22n2 + 8n + 8.
Observe that if

q1(n) = n6 + 2n5 + 11n4 + n3 + 16n2 + 4n + 8

and

q2(n) = n6 + n5 + 8n4 + n3 + 22n2 + 8n + 8,

then

q2(n) =
1
8
n6q1(2n−1) and q1(n) =

1
8
n6q2(2n−1).

Similarly, for

α = n − 2 − ζ7 − 2ζ2
7 + ζ3

7 + ζ4
7 + ζ5

7 ,

we get

q = n6 − 12n5 + 67n4 − 153n3 + 128n2 + 144n + 64.

Let W = C − K−1CK. We have that det(W ) =
−n2(15n + 8)2q. The characteristic polynomials of
n(15n + 8)K−iWKiW−1, i = 1, . . . , 6, are all in Z[n][x]
and have constant terms equal to −n7(15n + 8)7.

4.6 Degree m = 8

For m = 8, take, for example, α = n + tζ8. We get
q = n4 + t4. Let U = C − K−2CK2. We have that
det(U) = −t12q/4096.

Take t = 1. For B = K−1UKU−1, we have

F = det(xI − B)

= x8 + 8nx7 + (−16n4 + 28n2 − 16)x6

+ (−64n5 − 16n4 + 56n3 − 64n − 16)x5

+ (−64n6 + 96n4 − 64n2 + 26)x4

+ (64n6 + 128n5 + 16n4 + 64n2 + 72n + 16)x3

+ (−32n5 − 16n4 − 28n2 − 32n − 16)x2 − 8n3x + 1.

For B = K−2UK2U−1, we have

F = det(xI − B)

= x8 + (16n4 − 8n2 + 16)x7 + (80n4 + 52)x6

+ (−64n6 + 64n4 − 8n2 + 64)x5

+ (−64n6 − 48n4 − 64n2 + 22)x4

+ (−16n4 − 56n2 − 16)x3 + (16n4 − 12)x2 + 8n2x + 1.

For B = K−4UK4U−1, we have

F = det(xI − B)

= x8 + (−16n4 − 8)x7 + (64n6 − 32n4 + 64n2 − 4)x6

+ (16n4 + 72)x5 + (−128n6 − 192n4 − 128n2 − 122)x4

+ (16n4 + 72)x3 + (64n6 − 32n4 + 64n2 − 4)x2

+ (−16n4 − 8)x + 1.

Take t = 2. For B = K−1UKU−1, we have

F = det(xI − B)

= x8 + 4nx7 + (−n4 + 7n2 − 16)x6

+ (−2n5 − n4 + 7n3 − 32n − 16)x5

+ (−n6 + 6n4 − 16n2 + 26)x4

+ (n6 + 4n5 + n4 + 16n2 + 36n + 16)x3

+ (−n5 − n4 − 7n2 − 16n − 16)x2 − n3x + 1.

For B = K−2UK2U−1, we have

F = det(xI − B)

= x8 + (n4 − 2n2 + 16)x7 + (5n4 + 52)x6

+ (−n6 + 4n4 − 2n2 + 64)x5

+ (−n6 − 3n4 − 16n2 + 22)x4

+ (−n4 − 14n2 − 16)x3

+ (n4 − 12)x2 + 2n2x + 1,

first found by Emma Lehmer [Lehmer 88].
For B = K−4UK4U−1, we have

F = det(xI − B)

= x8 + (−n4 − 8)x7 + (n6 − 2n4 + 16n2 − 4)x6

+ (n4 + 72)x5 + (−2n6 − 12n4 − 32n2 − 122)x4

+ (n4 + 72)x3 + (n6 − 2n4 + 16n2 − 4)x2

+ (−n4 − 8)x + 1.

4.7 Degree m = 9

For m = 9, take α = n+ζ9−ζ4
9 . We get q = n6+9n3+27.

Let

W = C − K−2CK2 − K−4CK4 + K−6CK6.
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We have that det(W ) = q; therefore the characteristic
polynomials Fi of K−iWKiW−1, i = 1, . . . , 4, are cyclic
of degree 9 in Z[n][x], with constant terms −1. For ex-
ample,
F2 = x9 + (−n7 + n6 + n5 − 9n4 + 9n3 + 3n2 − 27n + 27)x8

+ (−n10 + 2n9 + 2n8 − 19n7 + 23n6 + 18n5 − 113n4

+ 99n3 + 54n2 − 234n + 135)x7

+ (n11 − 4n10 + 2n9 + 16n8 − 47n7 + 22n6 + 90n5

− 207n4 + 62n3 + 189n2 − 297n + 24)x6

+ (n11 − n9 + 5n8 + 8n7 − 16n6 + 5n5 + 72n4 − 90n3

− 24n2 + 216n − 189)x5

+ (−n11 + 4n10 + n9 − 17n8 + 49n7 + 6n6 − 99n5

+ 211n4 − 216n2 + 351n − 81)x4

+ (−n11 + n10 − 13n8 + 12n7 + 8n6 − 63n5 + 54n4

+ 44n3 − 108n2 + 81n + 48)x3

+ (−n8 − n7 + n6 − 9n5 − 9n4 + 9n3 − 15n2

− 27n + 27)x2

+ (−2n4 − 9n)x − 1

and
F4 = x9 + (n7 + 8n4 + 18n)x8

+ (n10 − n8 + 13n7 − 2n6 − 5n5 + 63n4 − 18n3 − 3n2

+ 108n − 54)x7

+ (2n10 + 2n8 + 24n7 − 14n6 + 18n5 + 108n4 − 98n3

+ 54n2 + 162n − 210)x6

+ (n10 − 2n9 + 3n8 + 14n7 − 27n6 + 27n5 + 44n4

− 135n3 + 81n2 + 9n − 243)x5

+ (−2n9 − 3n7 − 20n6 + 14n5 − 27n4 − 72n3 + 42n2

− 81n − 54)x4

+ (n8 − n7 − n6 + 9n5 − 9n4 + 19n3 + 27n2

− 27n + 57)x3

+ (n6 − 4n4 + 9n3 + 27)x2 − 3n2x − 1.

5. A COMPOSITION OF MULTIPLICATION
MATRICES

Let F be a cyclic monic polynomial with coefficients in a
field K. Let θ0, θ1, . . . , θm−1 be the roots of F in an alge-
braic closure K of K, L = K[θ0] = K[θ0, . . . , θm−1], and τ

a generator of Gal(L/K). Suppose that θ0, θ1, . . . , θm−1

are linearly independent over K and that they are labeled
such that τ(θi) = θi+1 (indices modulo m).

For 0 ≤ i, j ≤ m − 1 define the elements bi,j ∈ K by

θ0θi =
m−1∑
j=0

bi,jθj . (5–1)

Let B = [bi,j]0≤i,j<m. We call B the multiplication ma-
trix of the θi.

By applying powers of τ to (5–1), we get, for all i, j,

θiθj =
m−1∑
k=0

bi−j,k−jθk (5–2)

(indices modulo m).
Let K = [δi+1,j ], as in Section 2. It follows from

formula (5–2) and a little linear algebra that F is the
characteristic polynomial of B, that K[B] is a split-
ting field for F , and that the conjugates K−iBKi of B

(i = 0, . . . , m − 1) belong to K[B].
It follows that F splits in K[B][x] as

F = (x − B)(x − K−1BK) · · · (x − K−(m−1)BKm−1).

Hence we can identify the conjugates K−iBKi with the
roots θi of F . (For proofs of these statements see [Thaine
04].)

By knowing the multiplication matrices of the roots of
cyclic polynomials we get more information than by just
knowing the polynomials. For example, suppose m and
n are relatively prime integers ≥ 2. Suppose A and B are
multiplication matrices of orders m and n respectively of
the roots of cyclic polynomials Fi over Ki = Q(ti), i =
1, 2 respectively, which are monic and have coefficients
in Z[ti] and constant terms equal to ±1. Then we can
construct a cyclic monic polynomial F over Z[t1, t2], of
degree mn, with constant term ±1, by calculating first
the multiplication matrix of its roots.

So, for example, since we can construct such poly-
nomials for m = 2, 4, 8, 3, 9, 5, we can construct several
families of cyclic polynomials at two parameters of de-
grees 10, 12, 15, 18, 20, 30, etc. (We can also construct,
for example, families at three parameters of degree 360.)

In fact, let A = [ai,j ] and B = [bi,j ]. Denote by θi

the roots of F1 = det(xI − A) and by ηi the roots of
F2 = det(xI −B). They are units in the integral closures
of Z[t1] and Z[t2] in K1[θ0] and K2[η0] respectively. Since
gcd(m, n) = 1 we have that the θiηj , 0 ≤ i ≤ m − 1,
0 ≤ j ≤ n− 1, are linearly independent (over K) units in
the composite field K[θ0, η0].

If we arrange these elements as θ0η0, θ1η1,

. . . , θmn−1ηmn−1 (indices of θ modulo m and indices
of η modulo n), then their multiplication matrix is the
mn × mn matrix E = [ei,j ] with ei,j = a|i|m,|j|mb|i|n,|j|n ,
where |i|m is the integer such that 0 ≤ |i|m < m − 1
and |i|m ≡ i mod m. (This fact was also noticed by
Professor Hashimoto, who pointed out that E is the
tensor product of the matrices A and B.) Therefore, as
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announced, F = det(xI −E) is a cyclic polynomial, over
Z[t1, t2], of degree mn, with constant term equal to ±1.
As examples we construct families at two parameters of
degrees 10 and 12.

Example 5.1. For m = 2, the matrix

A =
[
n + 1/n 1/n
−1/n −1/n

]

is the multiplication matrix of the roots of the polynomial

F1 = det(xI − A) = x2 − nx − 1.

For m = 5, α = t − 1 − ζ5 − 2ζ2
5 and W = C − K−1CK,

we have that q = t4 − t3 + 6t2 − 6t + 11,

B = K−2WK2W−1

=
1
25

⎡
⎢⎢⎢⎢⎣

a a c a − 25 a − 25
a a c − 25 a a − 25
b b − 25 d f f

a − 25 a e g a
a − 25 a − 25 e a g + 25

⎤
⎥⎥⎥⎥⎦ ,

where

a = −t4 + t3 − 4t2 + 5t,

b = 4t4 − 4t3 + 21t2 − 10t + 50,

c = −t4 + t3 − 9t2 + 20t,

d = 4t4 − 4t3 + 41t2 − 20t + 50,

e = −t4 + t3 − 9t2 − 5t,

f = 4t4 − 4t3 + 21t2 − 35t + 50,

g = −t4 + t3 − 4t2 + 30t− 25,

and

F2 = det(xI − B)

= x5 + (−t2 − 2t − 1)x4 + (2t3 + 4t− 4)x3

+ (−t4 + t3 − 2t2 + 4t + 3)x2

+ (−t3 + t2 − 5t + 3)x − 1.

Let E be the composite of A and B as defined before.
Then we have the following family at two parameters of
degree 10:

F = det(xI − E)

= x10 − n(t2 + 2t + 1)x9

+ (2n2t3 + 4n2t − 4n2 − t4 − 6t2 + 4t − 9)x8

+ n(−n2t4 + n2t3 − 2n2t2 + 4n2t + 3n2 + 2t5 + t4 + 9t3

− 2t2 + 8t + 5)x7

+ (−n4t3 + n4t2 − 5n4t − n2t6 − n2t5 − n2t4 − 3n2t3

+ 13n2t2 − 10n2t + 3n4 + 15n2 + 2t6 − 2t5 + 14t4

− 16t3 + 36t2 − 22t + 28)x6

− n(n2t5 + n2t4 + 4n2t3 + 6n2t2 − n2t + n4 + 2n2

+ 2t7 − 2t6 + 11t5 − 13t4 + 18t3 − 6t2 + t + 8)x5

+ (−n4t2 − 2n4t − 2n2t6 + 2n2t5 − 14n2t4 + 14n2t3

− 28n2t2 + 24n2t − n4 − 16n2 − t8 + 2t7 − 9t6 + 16t5

− 34t4 + 38t3 − 54t2 + 36t − 35)x4

− n(2n2t3 + 4n2t − 4n2 + t7 − 2t6 + 8t5

− 14t4 + 20t3 − 23t2 + 9t − 3)x3

+ (−n2t4 + n2t3 − 2n2t2 + 4n2t + 3n2 + t6 − 2t5 + 9t4

− 14t3 + 27t2 − 22t + 15)x2

+ n(t3 − t2 + 5t − 3)x − 1.

Example 5.2. For m = 3, α = n + 3ζ3 and W = C −
K−1CK, we have that q = n2 − 3n + 9,

A = K−1WKW−1 =
1
9

⎡
⎣a a c

a a − 9 c + 9
b b + 9 d

⎤
⎦ ,

where a = n2−5n+13, b = −2n2+7n−23, c = n2−2n+1,
d = −2n2 + n − 17, and

F1 = det(xI − A) = x3 + nx2 + (n − 3)x − 1.

For m = 4, α = t + 2ζ4, and W = C − K−1CK, we
have that q = t2 + 4,

B = K−1WKW−1 =
1
8

⎡
⎢⎢⎣
a a c a
a a − 8 c + 8 a
b b + 8 d b − 8
a a c − 8 a + 8

⎤
⎥⎥⎦ ,

where a = t2 − 2t+5, b = −3t2 +2t− 11, c = t2 +2t+1,
d = −3t2 − 10t − 15, and

F2 = det(xI − B) = x4 + 2tx3 − 6x2 − 2tx + 1.

Let E be the composite of A and B as defined before.
Then we have the following family at two parameters of
degree 12:

F = det(xI − E)

= x12 − 2ntx11 + (4nt2 − 6n2 + 12n − 12t2 − 36)x10

+ (2n3t + 6n2t − 18nt + 8t3 + 30t)x9
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+ (−4n3t2 + 20n2t2 − 28nt2 + n4 − 4n3 + 50n2 − 160n

+ 72t2 + 342)x8

+ (−2n4t − 8n2t3 + 10n2t + 16nt3 + 16nt − 48t3

− 210t)x7

+ (−36n2t2 + 108nt2 − 6n4 + 36n3 − 138n2 + 252n

− 156t2 − 522)x6

+ (2n4t − 24n3t + 8n2t3 + 98n2t − 32nt3 − 140nt

+ 72t3 + 234t)x5

+ (4n3t2 − 16n2t2 + 16nt2 + n4 − 8n3 + 68n2

− 140n + 60t2 + 285)x4

+ (2n3t − 24n2t + 72nt − 8t3 − 84t)x3

+ (−4nt2 − 6n2 + 24n − 54)x2 + (−2nt + 6t)x + 1.

6. SCHOOF’S CRITERION

Suppose now that m is an odd prime number. Let D =
Z[t], where t is an indeterminate, and K = Q(t). Let C
be the curve f(t, x) = 0, where

f(t, X) = Xm + cm−1(t)Xm−1 + · · · + c0(t) ∈ D[X ]

is a cyclic polynomial (over K). Let L = K(x) = Q(t, x),
G = Gal(L/K), and τ a generator of G. Let R be the
integral closure of D in L.

Question: when is there a unit of R of degree m over
K? If ε0 is such a unit, then the polynomial g0(t, X) =∏m−1

i=0 (X−τ i(ε0)) belongs to D[X ], is cyclic over K, and
has a constant term equal to ±1.

Such a polynomial can be regarded as one of the fam-
ilies (at the parameter t) considered in the previous sec-
tions of cyclic polynomials over Q whose roots are al-
gebraic units. This seems a difficult question. Let us
consider instead the following easier and, for our practi-
cal purposes equivalent, question, for which we do have a
satisfactory answer thanks to some ideas of René Schoof.

Let D′ = Q[t] and let R′ be the integral closure of D′

in L. Question: when is there a unit of R′ of degree m

over K (that is, an element of R′× − Q×)?
If ε is such a unit then the polynomial g(t, X) =∏m−1

i=0 (X − τ i(ε)) belongs to D′[X ], is cyclic over K, and
has a constant term belonging to Q×.

Let S be the set of prime divisors of L at infinity. The
units ε we are searching for are precisely the noncon-
stant S-units of L. In this section we show a way to find
whether such units exist, given a curve C and L as above,
and we give some examples (mostly negative) for m = 5
and m = 7.

Since the degree of the divisor (ε) is 0, when a non-
constant S-unit ε exists we must have |S| > 1; hence the

prime divisor of K at infinity splits in L (recall that L/K

is cyclic of degree m). Denote by J the Jacobian of C,
that is,

J =
{divisors of L of degree zero}

{principal divisors of L} .

Proposition 6.1. Suppose that the prime divisor of K at
infinity splits in L. Let S = {P0, P1 = τ(P0), . . . , Pm−1 =
τm−1(P0)} be the set of prime divisors of L at infin-
ity. Then L has nonconstant S-units if and only if the
subgroup I of J generated by the classes of the divisors
Pi − Pj, 0 ≤ i < j ≤ m − 1, is finite.

Proof: Suppose that I is finite. Let k be a positive integer
such that k(P0 − P1) = (β) is a principal divisor; then β

is a nonconstant S-unit of L. Conversely, suppose that
L has a nonconstant S-unit ε. We must prove that I is
finite.

If I = {0} there is nothing to prove. Assume that
I �= {0}. Observe first that I is a Z[G]-module generated
by the class of P0 − P1 = (1 − τ)P0. Since τm = 1,
we have that I is a cyclic Z[G]/(1 + τ + · · · + τm−1)-
module; that is (since m is a prime number), a cyclic
Z[ζm]-module, where ζm is a primitive mth root of 1 if
we set ζm ·α = τ(α) for all α ∈ I. Hence I is isomorphic,
as a Z[ζm]-module, to a quotient ring of Z[ζm].

Therefore, either I is finite or I is isomorphic to Z[ζm]
as a group. This proves that if I has a nonzero element
of finite order, then it is finite. Since ε is a nonconstant
S-unit, we have that (ε) = (

∑m−2
i=0 kiτ

i)(P0 − P1), for
some ki ∈ Z, not all zero.

But then, if k = NQ[ζm]/Q(
∑m−1

i=0 kiζ
i
m), we have that

k �= 0 annihilates the class of P0 − P1 in J . Therefore,
this class is a nonzero element of finite order in I, and I
is finite.

Denote by g the genus of L/K. Suppose that g > 0
and that L contains nonconstant S-units. Then the prime
divisor of K at infinity splits in L. Let S = {P0, P1 =
τ(P0), . . . , Pm−1 = τm−1(P0)} be the set of prime divi-
sors of L at infinity. We have that the divisor P0 − P1

is not principal [Stichtenoth 93, Theorem I.4.11], and by
Proposition 6.1, its class in J has finite order. Therefore
we have the following necessary condition for the exis-
tence of S-units.

Proposition 6.2. If L has nonconstant S-units and g > 0,
then J contains a nontrivial finite subgroup.
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Let p be a prime at which (the nonsingular model of)
C has good reduction; then also J has good reduction
at p. Denote by Jp the Jacobian J reduced modulo p,
which is also the Jacobian of the reduced curve Cp over
the residue field Fp (see, for example, [Mazur 86, pp. 237–
238] and [Poonen 96, Section 5]). Denote by hp = |Jp|
the class number of the function field of Cp over Fp. We
have that if p is odd, then Jp has a subgroup isomorphic
to the torsion group of J , and if p = 2, then Jp has a
subgroup isomorphic to the odd part of the torsion group
of J (see, for example, [Poonen 96, Section 5] and [Katz
81, Appendix]). Therefore, we have the following result.

Proposition 6.3. If L has nonconstant S-units and g > 0,
then either there is an integer r > 1 such that r | hp for
all primes p at which C has good reduction or hp is even
for all odd primes p at which C has good reduction.

In order to use Proposition 6.3 in our search for fami-
lies of units, we must calculate the class numbers hp for
function fields arising from the families of cyclic poly-
nomials we studied in Section 2. (Here we name the
parameter t instead of n.)

Let m be an odd prime, α = β+tγ with β, γ ∈ Z[ζm]−
{0} such that q = NK[ζm]/K(α) is irreducible in D′, and
C = [ci,j ] the m × m matrix, with entries in D′, defined
in Section 2 by formulas (2–3) and (2–5) (which can be
easily calculated using the program in [Thaine 01]). We
have that K[C]/K is a cyclic field extension.

Let M ∈ K[C]−K and f(t, X) the characteristic poly-
nomial of M over K. Then f(t, X) ∈ D′[X ] is a cyclic
polynomial of degree m (we can easily find M such that
f(t, X) ∈ D[X ]). From now on we will consider only
such polynomials f(t, X) and the corresponding curves
C : f(t, x) = 0. Observe that L is K-isomorphic to K[C].

We start by calculating the genus g of L/K. We have
that q is the only prime of K that is ramified in L, and its
degree is m− 1 (since we are assuming that m is prime).
By the formula in [Stichtenoth 93, Corollary III.5.6], we
have that 2g − 2 = −2m + (m − 1)(m − 1). So g =
(m2 − 4m + 3)/2. This gives g = 0 for m = 3, g = 4 for
m = 5, g = 12 for m = 7, and g = 40 for m = 11.

Let p be a prime at which C has good reduction;
denote by Lp the function field of Cp over Fp and
by Lpk the constant field extension of Lp of degree k

(i.e., Lpk = LpFpk). Let Z(t) be the zeta function of
Lp/Fp and L(t) = (1 − t)(1 − pt)Z(t). We have that
hp = L(1) [Stichtenoth 93, Theorem V.1.15], and that
L(t) = a0 + a1t + · · · + a2gt

2g, where a0 = 1, a2g = pg,
a2g−i = pg−iai, for 0 ≤ i ≤ g, and the ai can be ob-

tained by the recursive rule [Stichtenoth 93, Corollary
V.1.17] a0 = 1 and iai = Sia0 + Si−1a1 + · · · + S1ai−1

for i = 1, . . . , g, where Sk = Nk − pk − 1 and Nk is the
number of places of degree 1 of Lpk/Fpk .

By the above formulas, to calculate hp we have only to
find the numbers Nk for k = 1, . . . , g. We calculate these
numbers by studying ramification of primes in Lpk/Fpk(t)
with the use of Kummer’s theorem [Stichtenoth 93, The-
orem III.3.7]. Recall that the extension Lpk/Fpk(t) is
cyclic of degree m.

For a ∈ Fpk denote by Pa the place of Fpk(t) that
is the zero of (t − a). The finite places of degree 1 in
Lpk are above the places Pa, a ∈ Fpk . To see how these
places factor, we must look at the factorization of the
polynomials f(a, X) ∈ Fpk [X ]. If this factorization has
two or more distinct factors, then we can be sure that Pa

splits in Lpk . If the polynomial f(a, X) is an mth power,
then (very likely) Pa totally ramifies in Lpk . If f(a, X)
is irreducible, then Pa is inert in Lpk .

Let l be the degree of the polynomial f(t, X) ∈
Fpk [t, X ]. Let s = 1/t and Y = X/t. In order to see how
the place of Fpk(t) at infinity factors in Lpk , we look at
the factorization of slf(1/s, Y/s), when s = 0, in Fpk [Y ].

Let Ak be the number of places (finite and infinite) of
degree 1 of Fpk(t) totally ramified in Lpk , Bk the number
of places (finite and infinite) of degree 1 of Fpk(t) splitting
in Lpk , and Ck the number of places of degree 1 of Fpk(t)
inert in Lpk . Then Nk = Ak +mBk and Ak +Bk +Ck =
pk + 1.

Schoof’s result follows from Propositions 6.1 and 6.3
and can be stated as follows: If for two odd primes p1 and
p2 at which C has good reduction we have gcd(hp1 , hp2) =
1, or if C has good reduction at 2 and at an odd prime
p and we have gcd(h2, hp) = 1 and hp is odd, then L

has no nonconstant S-units, and certainly we are not
going to find families of units by using such a curve C.
On the other hand, if for several primes p where C has
good reduction the numbers hp are divisible by a number
r > 1, then it is worth searching for families of units
arising from C (I found no such curve C, apart from Emma
Lehmer’s, in the few examples I was able to calculate).

The following examples were calculated using the
Maple system.2

Example 6.4. Let us consider first Emma Lehmer’s poly-
nomial. Let m = 5 and α = t + 2 + ζ5 + 2ζ2

5 . We get
q = t4 + 5t3 + 15t2 + 25t + 25. The characteristic poly-

2The program is available online (http://cicma.mathstat.
concordia.ca/faculty/thaine/homepage.html).
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nomial of C − K−1CK is

f(t, X) = X5 − qX3 − (t + 2)qX2 − tqX + q.

(We know immediately that a family of units can be ob-
tained using f because f(t, 0) = q, but we want to show
how Schoof’s method works when such a family indeed
exists.)

The Jacobian of f(t, x) = 0 has a subgroup of order
71. This is apparent when we consider the reduced curves
modulo p for several primes p. We have g = 4.

For p = 2, we have A1 = 0, B1 = 1, C1 = 2; A2 = 0,
B2 = 1, C2 = 4; A3 = 0, B3 = 4, C3 = 5; A4 = 4,
B4 = 5, C4 = 8. Hence, S1 = 2, S2 = 0, S3 = 11,
S4 = 12, and we get

L2(t) = 1+2t+2t2 +5t3 +11t4 +10t5 +8t6 +16t7 +16t8.

So h2 = L2(1) = 71.
For p = 3, we have A1 = 0, B1 = 1, C1 = 3; A2 = 0,

B2 = 1, C2 = 9; A3 = 0, B3 = 4, C3 = 24; A4 = 4,
B4 = 17, C4 = 61. Hence, S1 = 1, S2 = −5, S3 = −8,
S4 = 7, and we get

L3(t) = 1 + t− 2t2 − 5t3 + t4 − 15t5 − 18t6 + 27t7 + 81t8.

So h3 = L3(1) = 71.
The curve f(t, x) = 0 has bad reduction at p = 5.
For p = 7, we have A1 = 0, B1 = 2, C1 = 6; A2 = 0,

B2 = 20, C2 = 30; A3 = 0, B3 = 62, C3 = 282; A4 = 4,
B4 = 432, C4 = 1966. Hence, S1 = 2, S2 = 50, S3 =
−34, S4 = −238, and we get

L7(t) = 1 + 2t + 27t2 + 40t3 + 281t4 + 280t5 + 1323t6

+ 686t7 + 2401t8.

So h7 = L7(1) = 712.
For p = 11, we have A1 = 4, B1 = 2, C1 = 6; A2 = 4,

B2 = 28, C2 = 90; A3 = 4, B3 = 272, C3 = 1056;
A4 = 4, B4 = 3024, C4 = 11614. Hence S1 = 2, S2 = 22,
S3 = 32, S4 = 482, and we get

L11(t) = 1 + 2t + 13t2 + 34t3 + 225t4 + 374t5 + 1573t6

+ 2662t7 + 14641t8.

So h11 = L11(1) = 52 × 11 × 71. Likewise we get

h13 = 24 × 11 × 71,

h17 = 11 × 61 × 71,

h19 = 24 × 5 × 31 × 71.

As we showed in Section 3, if W = C − K−1CK,
then the characteristic polynomial of −K−2WK2W−1 is

Lehmer’s polynomial:

X5 + t2X4 − (2t3 + 6t2 + 10t + 10)X3

+ (t4 + 5t3 + 11t2 + 15t + 5)X2

+ (t3 + 4t2 + 10t + 10)X + 1.

I am grateful to the referee for pointing out that this is
a modular curve of level 25, as in work of Darmon and
Lecacheux.

Example 6.5. Let m = 5 and α = 1 + (ζ5 − ζ4
5 )3t. We get

q = 125t4 + 50t2 + 1. The characteristic polynomial of C

is

f(t, X) = X5 + X4 + (−50t4 − 20t2)X3

+ (−10t4 − 4t2)X2 + (625t8 + 300t6 + 24t4)X

− 95t8 − 36t6.

The Jacobian of f(t, x) = 0 has no nontrivial finite sub-
groups, since the greatest common divisor of the distinct
hp is 1; this curve is birationally equivalent to

x5 + (t3 − 5t2 + 35t + 25)x4

+ (−4t5 + 16t4 − 120t3 + 240t2 + 700t)x3

+ (−32t6 − 128t5 − 960t4 − 1920t3 + 5600t2)x2

+ (−512t6 − 2560t5 − 17920t4 + 12800t3)x

− (8t)5 = 0.

We have g = 4.
For p = 3, we have A1 = 0, B1 = 2, C1 = 2; A2 = 0,

B2 = 4, C2 = 6; A3 = 0, B3 = 2, C3 = 26; A4 = 4,
B4 = 16, C4 = 62. Hence S1 = 6, S2 = 10, S3 = −18,
S4 = 2, and we get

L3(t) = 1 + 6t + 23t2 + 60t3 + 121t4 + 180t5 + 207t6

+ 162t7 + 81t8.

So h3 = L3(1) = 292.
For p = 7, we have A1 = 0, B1 = 4, C1 = 4; A2 = 0,

B2 = 14, C2 = 36; A3 = 0, B3 = 40, C3 = 304; A4 = 4,
B4 = 538, C4 = 1860. Hence S1 = 12, S2 = 20, S3 =
−144, S4 = 292, and we get

L7(t) = 1 + 12t + 82t2 + 360t3 + 1131t4 + 2520t5

+ 4018t6 + 4116t7 + 2401t8.

So h7 = L7(1) = 114.

Example 6.6. Let m = 5 and α = t + (1− ζ5)2ζ5. We get
q = t4 + 10t2 + 25t + 25. The characteristic polynomial
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of C − K−2CK2 is

f(t, X) = X5 − qX3 + (2t + 2)qX2 + (−t2 − 3t)qX

+ (t2 − t − 1)q.

The Jacobian of f(t, x) = 0 has no nontrivial finite sub-
groups, since the greatest common divisor of the distinct
hp is 1, but this is not apparent for small values of p. We
have g = 4.

The curve f(t, x) = 0 has bad reduction at p = 5 and
at p = 11, and we have h2 = 112, h3 = 24 × 11, and
h7 = 11 × 251; but unfortunately, h13 = 34141, a prime
number.

Example 6.7. Let m = 7 and α = t + (1 − ζ7)2. We get

q = t6 + 7t5 + 21t4 + 35t3 + 49t2 − 49t + 49.

The characteristic polynomial of C − K−3CK3 is

f(t, X) = X7 − qX5 + (−t2 − 4t + 2)qX4

+ (−4t3 − 2t2 + 5t + 8)qX3

+ (−5t4 + 11t3 + 34t − 21)qX2

+ (−2t5 + 16t4 − 6t3 + 44t2 − 42t− 7)qX

+ (6t5 − 3t4 + 19t3 − 19t2 − 35t + 31)q.

The Jacobian of f(t, x) = 0 has no nontrivial finite sub-
groups, since the greatest common divisor of the dis-
tinct hp is 1. We have g = 12, h2 = 7 × 11677, and
h3 = 29 × 3137.

Example 6.8. (Hashimoto and Hoshi’s polynomial.) Let
m = 7 and

α = t − 2 + (1 − ζ7)(1 − ζ3
7 )(1 + ζ7 + ζ3

7 ).

We get

q = t6 + 2t5 + 11t4 + t3 + 16t2 + 4t + 8.

Let W = C − K−2CK2. The characteristic polynomial
of tK−2WK2W−1 is

f(t, X) = X7 + (t3 + t2 + 5t + 6)X6

+ (9t3 + 9t2 + 24t + 12)X5

+ (−t7 − t6 − 9t5 + 5t4 + 15t3

+ 22t2 + 36t + 8)X4

+ (−t8 − 5t7 − 12t6 − 24t5 + 6t4 − 2t3 + 20t2

+ 16t)X3

+ (−2t8 − 7t7 − 19t6 − 14t5 − 2t4 − 8t3 + 8t2)X2

+ (−t8 − 4t7 − 8t6 − 4t4)X − t7.

The curve f(t, x) = 0 has bad reduction at p = 2. We
have g = 12 and h3 = 17865037, a prime number. We
were not able to calculate h5 in a reasonable amount of
time, but it seems unlikely that all hp have that large a
common prime factor.
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