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We determine the rational homology group of Out(Fn) for
n ≤ 6. Combining this result with results of Conant and Vogt-
mann proves that the first two Morita classes are nontrivial. We
conclude that these classes generate the nontrivial part of the
rational homology in the range n ≤ 6.

1. INTRODUCTION

1.1 Basic Notation and Historical Background

We denote by Fn a free group of rank n. In this paper,
we always assume that n ≥ 2. Let Aut(Fn) be the auto-
morphism group of Fn. The outer automorphism group
of Fn, denoted by Out(Fn), is the quotient of Aut(Fn)
by the inner automorphism group Inn(Fn) of Fn.

In the fundamental paper [Culler and Vogtmann 86],
the authors constructed a space called the Outer Space
on which the group Out(Fn) acts properly discontinu-
ously. Here we briefly recall those of their results that
will be needed in this paper. By a graph we mean a 1-
dimensional finite CW-complex. The 0-cells are called
vertices, and the 1-cells are called edges. The valency of
a vertex is the number of half-edges adjoining the vertex.
A graph is called minimal if it is connected and has no
univalent or bivalent vertex. We denote by Rn a graph
with one vertex and n edges, and call it a rose with n

petals.
A tree is a subgraph with no cycles, and a forest is a

disjoint union of trees. Consider a graphG and an edge e.
We denote by G−e the new graph obtained by removing
e from G. We also denote by Ge the new graph obtained
by collapsing the edge e in G. An edge e of a graph G is
called a separating edge or a bridge if removing e makes
the graph disconnected.

A metric graph is a graph equipped with lengths on
the edges. The volume of a metric graph is the sum of
the lengths of the edges.

A marking of a metric graph G is a homotopy equiv-
alence

g : Rn → G.
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Two markings g1 : Rn → G1 and g2 : Rn → G2 are equiv-
alent if there is an isometry i : G1 → G2 such that the
following diagram commutes up to homotopy:

Rn
g1−−−−→ G1∥∥∥

⏐⏐�i

Rn
g2−−−−→ G2

Using the notation above, the Outer Space Xn was
defined in [Culler and Vogtmann 86] as follows. A point
in Xn is an equivalence class of pairs (g,G), where
g : Rn → G is a marking of a metric graph G whose
volume is 1. The Outer Space Xn is a topological space,
where a neighborhood of a point (g,G) in Xn is obtained
by changing the metric of G slightly. The space Xn is
represented by a set of open simplices. However, it does
not have the structure of a simplicial complex. We define
a subspace Yn ofXn to be the subspace obtained fromXn

by deleting all the graphs with separating edges. Then
the whole space Xn can be deformed onto the subspace
Yn by collapsing separating edges uniformly.

We now define a subspace Kn to be a subcomplex of
the barycentric subdivision of Yn as follows. Since Kn

is an equivariant deformation retract of Yn, it is called a
spine of Yn.

A vertex of Kn is an equivalence class of pairs (g,G),
where G is a minimal graph with no separating edges and

g : Rn → G

is a marking. This vertex can be interpreted as a point
in Xn by regarding G to have the same length on each
edge. In other words, it is a barycenter of a corresponding
simplex in Xn. As mentioned above, the spine Kn and
the subspace Yn are deformation retracts of the Outer
Space Xn.

A k-dimensional simplex of Kn is given by a triple

(g,G,Φ1 ⊂ · · · ⊂ Φk),

where (g,G) is a vertex of Kn and each Φi is a nonempty
forest (subgraph with no cycles) of G. A 0-face of this
simplex is represented by

(g,G), (c1 ◦ g,GΦ1), . . . , (ck ◦ g,GΦk
),

where ci : G→ GΦi is the collapse of the forest Φi in G.
The (k − 1)-faces are obtained by removing one forest
from the sequence.

The boundary map of each cell of Kn is defined by

∂(g,G,Φ1 ⊂ · · · ⊂ Φk)

= (c1 ◦ g,GΦ1 , c1(Φ2) ⊂ · · · ⊂ c1(Φk))

+
k∑

i=1

(−1)i(g,G,Φ1 ⊂ · · · ⊂ Φi−1 ⊂ Φi+1

⊂ · · · ⊂ Φk).

The spine Kn also has the natural structure of a cu-
bical complex. The k-dimensional cube in Kn is given
by the triple (g,G,Φ), where Φ is a forest that contains
exactly k edges. An orientation on the cube is specified
by the ordering of the edges of Φ up to even permutation.
The boundary map is

∂(g,G,Φ) =
∑
ei∈Φ

(−1)i((g,G,Φ− ei)− (g,Gei ,Φei)).

The former definition of Kn is the subdivision of the lat-
ter.

The following theorem is proved in [Culler and Vogt-
mann 86].

Theorem 1.1. [Culler and Vogtmann 86] The Outer Space
Xn and the spine Kn are contractible.

Fix an identification π1(Rn) ∼= Fn. For each ϕ ∈
Out(Fn), there exists a homotopy equivalence f : Rn →
Rn that satisfies f∗ = ϕ. The mapping f is unique up to
homotopy. The action of Out(Fn) on Kn is defined by

(g,G,Φ) · ϕ = (g ◦ f,G,Φ).

According to [Culler and Vogtmann 86], this action is
properly discontinuous and cocompact, so that the sta-
bilizers are finite. It follows that the rational homology
of Out(Fn) can be computed as the quotient of Kn by
Out(Fn); namely, we have

H∗(Out(Fn); Q) ∼= H∗(Kn/Out(Fn); Q).

The quotient Qn = Kn/Out(Fn) is a cell complex, but
no longer a cubical complex.

The quotient space Xn/Out(Fn) of the whole Outer
SpaceXn by Out(Fn) is called the moduli space of graphs.
The Outer Space and the moduli space of graphs are ana-
logues for the Teichmüller space and the moduli space
of Riemann surfaces. In the case of Riemann surfaces,
the mapping class group Mg acts on the contractible Te-
ichmüller space Tg properly discontinuously, so that the
homology of the moduli space Tg/Mg is the same as that
of Mg rationally. Similarly, the rational homology of Qn

computes the rational homology of Out(Fn).
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1.2 Known Results

In the case of Aut(Fn), Hi(Aut(Fn); Q) for i ≤ 6 and all
n is computed in [Hatcher and Vogtmann 98]:

Theorem 1.2. [Hatcher and Vogtmann 98]

H̃i(Aut(Fn); Q) ∼=
{

Q, if i = n = 4,
0, otherwise (i ≤ 6).

Thus the authors concluded that there is a single non-
trivial class in

H4(Aut(F4); Q)

up to degree i ≤ 6. Their strategy is also useful for com-
putation of the rational homology of Out(Fn). However,
it becomes more complicated than the case of Aut(Fn)
because of the problem of base points in graphs.

The rational homology of Out(Fn) has a stable
range. It is proved in [Hatcher and Vogtmann 04] that
Hi(Out(Fn); Q) is independent of n when n ≥ 2i+4 (see
also [Hatcher et al. 06]). Therefore we can speak of the
stable homology of Out(Fn). Very recently, it was shown
in [Galatius 06] that this stable homology is trivial.

Theorem 1.3. [Galatius 06]

lim
n→∞ H̃i(Out(Fn); Q) = 0 for all i.

On the other hand, the unstable homology
Hi(Out(Fn); Q) for n ≤ 5 is now known from [Vogtmann
02, Vogtmann 06, Gerlits 02, Ohashi 05]. The result is

Hi(Out(Fn); Q) ∼=

⎧⎪⎨
⎪⎩

Q, if i = 0,
Q, if i = n = 4 (Vogtmann),
0, otherwise.

S. Morita defined the trace map as a mapping from
some Lie algebra to a certain polynomial algebra [Morita
93]. Furthermore, Kontsevich ([Kontsevich 93], [Kontse-
vich 94]; see also [Conant and Vogtmann 03]) defined a
certain series of homology classes of Out(Fn), namely

μi ∈ H4i(Out(F2i+2); Q).

Conant and Vogtmann interpreted these classes graph-
ically as cycles in the Outer Space [Conant and Vogt-
mann 04]. Whether these classes are 0 is an inter-
esting problem. However, the answer is unknown ex-
cept for the first two classes μ1 ∈ H4(Out(F4); Q) and
μ2 ∈ H8(Out(F6); Q). The first class, μ1, was shown to

be nonzero in [Morita 93] and confirmed geometrically by
Conant and Vogtmann (see also [Ohashi 05]). The sec-
ond class, μ2, was shown to be nonzero in [Conant and
Vogtmann 04].

In this paper, Hi(Out(Fn); Q) was computed for n ≤
6. From this and the known results above, we can con-
clude that the Morita classes {μi} generate the non-
trivial part of the rational homology of Out(Fn) in the
range n ≤ 6.

2. A CHAIN COMPLEX THAT COMPUTES
H∗(Out(Fn); Q)

2.1 Definitions

As mentioned before, the spine Kn of the Outer Space
Xn is a locally finite contractible simplicial complex. The
action of Out(Fn) on Kn is properly discontinuous and
cocompact, so that the stabilizers are finite. It follows
that the rational homology of Out(Fn) can be computed
as the quotient of Kn by Out(Fn); namely, we have

H∗(Out(Fn); Q) ∼= H∗(Kn/Out(Fn); Q).

The action of Out(Fn) on each cell of Kn changes only
the marking. We note that if (G,Φ) ∼= (G′,Φ′), then
there exists a certain element ϕ ∈ Out(Fn) such that ϕ
maps (g,G,Φ) to (g′, G′,Φ′). Therefore we can use pairs
{(G,Φ)} for a set of representatives of cells in

Qn = Kn/Out(Fn).

Each element of Aut(G,Φ) induces a permutation of
the edges of Φ. If there is an odd permutation, the
forested graph (G,Φ) is said to have odd symmetry. In
this case, the cube (g,G,Φ) in Kn is folded under the
action of Out(Fn), so that the cube can be eliminated in
the computation of the rational homology of Qn.

The rational homology of Qn is computed by the
chain complex {Cp}, with C∗ a vector space spanned
by the isomorphism classes of (G,Φ) with a relation
(G,Φ) = −(G,−Φ), which implies that a graph with
odd symmetry is equal to 0. The dimension of (G,Φ)
is the number of edges in Φ. The boundary operator is
naturally defined.

2.2 The Filtration of Kontsevich

For a graph G, we define the degree of G to be
∑

(|v|−3),
where |v| represents the valency of the vertex v and we
take the sum over all vertices of G. The filtration of
Kontsevich {FpKn}p is defined as follows. The pth term
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FpKn is the subcomplex ofKn consisting of cells (g,G,Φ)
such that the degree of GΦ is at most p. We have

F0Kn ⊂ F1Kn ⊂ · · · ⊂ F2n−3Kn = Kn.

Note that the complex FpKn has dimension p. Since the
action of Out(Fn) on Kn changes only the marking, this
filtration on Kn induces a filtration on Qn and so on C∗.

The boundary map on our chain complex {C∗} is rep-
resented by the sum of the two maps

∂C
p,q : FpCp+q → FpCp+q−1

and

∂R
p,q : FpCp+q → Fp−1Cp+q−1.

More precisely,

∂C(G,Φ) =
∑
ei∈Φ

(−1)i−1(Gei ,Φei),

∂R(G,Φ) =
∑
ei∈Φ

(−1)i(G,Φ− ei).

The filtration F∗ induces a spectral sequence Er
p,q that

converges to H∗(Qn; Q). The boundary operator ∂C in-
duces the d0-map of E0

p,q.

2.3 Convergence

Kontsevich proved, among other things, the following re-
sult [Kontsevich 93, Kontsevich 94]; see also [Conant and
Vogtmann 03], [Vogtmann 90, Proposition 2.4].

Proposition 2.1.

E1
p,q = Hp+q(FpQn, Fp−1Qn; Q) = 0 for q 	= 0.

This means that

Er
p,q = 0 for r ≥ 2, q 	= 0,

so that

dr
p,q : Er

p,q → Er
p−r,q+r−1

is the 0-map if r ≥ 2. Therefore the spectral sequence
degenerates at degree 2.

The associated homology group E2
p,0 gives the desired

homology group, namely

Hp(Out(Fn); Q) ∼= Hp(Qn; Q) ∼= E2
p,0.

3. COMPUTATIONS

3.1 The First Step of the Computation

By the result of the preceding section, we have

E2
p,0 =

FpCp ∩Ker∂
FpCp ∩ ∂(Fp+1Cp+1)

=
Ker∂C

p,0 ∩Ker∂R
p,0

∂R
p+1,0(Ker∂C

p+1,0)
.

From this, we should first compute Ker∂C
p,0. Note that a

generator of FpCp is a forested graph (G,Φ) such that G
is a trivalent graph.

3.2 Ker ∂C
p,0

We divide FpCp into components. Consider the map

cp : FpCp → FpC0,

which takes a generator (G,Φ) to (GΦ,∅), where the
symbol ∅ denotes the empty set. We define the direct
sum decomposition of FpCp so that the generators of
each component in this decomposition are mapped to the
same image under the mapping cp. This implies that the
mapping cp is the direct sum of the restriction of cp to
each component. The following result follows immedi-
ately from the above definition.

Lemma 3.1. Ker∂C
p,0 is the direct sum of the kernels of

∂C
p,0 restricted to each component.

See Figure 1 for an example. The third forested graph
is in a different component from that of the first two.

Definition 3.2. Let (G,Φ) be a trivalent graph with a
forest, and (G′,Φ′) a degree-1 graph with a forest. If
there is e ∈ Φ such that (Ge,Φe) = (G′,Φ′), we call
(G,Φ) a parent of (G′,Φ′) and call (G′,Φ′) a child of
(G,Φ).

FIGURE 1. Decomposition of ∂C .
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Lemma 3.3. Suppose (G′,Φ′) is a child of a forested
trivalent graph (G,Φ). We denote by π(G′,Φ′) a pro-
jection with respect to (G′,Φ′). Then the composition
π(G′,Φ′) ◦ ∂C(G,Φ) is nonzero unless (G,Φ) = 0 or
(G′,Φ′) = 0.

Proof: Fix an ordering of edges in Φ such that it rep-
resents the orientation of (G,Φ). We denote it by
{e1, . . . , ek}. We define

E = {i = 1, 2, . . . , k | (Gei ,Φei) = ±(G′,Φ′)}.

Since (G′,Φ′) is a child of (G,Φ), we have that #E ≥ 1.
We claim that

∀i, j ∈ E, (−1)i(Gei ,Φei) = (−1)j(Gej ,Φej ).

If this holds, the lemma follows immediately from the
definition of ∂C .

Now we consider the process of edge collapsing more
precisely by taking care of the orientation. Consider the
situation in which we collapse an edge ẽ of a forested
graph (G̃, Φ̃). If ẽ is the first edge in the sequence Φ̃,
the orientation of the forest Φ̃ẽ is obtained simply by
deleting ẽ from the sequence of Φ̃. If ẽ is at the ith
position (i 	= 1), then we have to apply the transposition
(1, i) to the sequence Φ̃ to move ẽ to the first position
and multiply the resulting forested graph by (−1). We
may erase ẽ from the sequence Φ̃ and multiply by (−1)i−1

instead.
Note that (G,Φ) does not have odd symmetry, because

(G,Φ) 	= 0. For i < j ∈ E, there is an even symmetry
ϕ ∈ Aut(G,Φ) such that ϕ(ei) = ej. Then

(−1)j(Gej ,Φej ) = (−1)j(Gϕ(ei),Φϕ(ei))

= (−1)j(Gei , ϕ
−1(Φ)ei ).

Now think of ϕ−1(Φ)ei . Since the permutation ϕ−1 is
even and the collapsed edge ei is at the jth position in
the sequence ϕ−1(Φ), we have

(−1)j(Gej ,Φej ) = (−1)j(Gei , ϕ
−1(Φ)ei )

= (−1)j(−1)(i−1)−(j−1)(Gei ,Φei)

= (−1)i(Gei ,Φei).

Some generators do not contribute to the kernel of
∂C

p,0. For example, a trivalent forested graph (G,Φ) does
not if G has double edges and Φ contains one of these
edges. This is because a component of the image of the

FIGURE 2. Isomorphic faces.

FIGURE 3. Wedge summands.

forested graph has a valence-4 vertex two of whose ad-
joining half-edges compose a loop. Since Kn does not
contain graphs with separating edges, no other trivalent
forested graphs have the same component in the image
of ∂C . In other words, (G,Φ) has a child that has no
parents other than (G,Φ). Lemma 3.3 guarantees that
there is no (G,Φ) that satisfies ∂C

p,0(G,Φ) = 0 and con-
tributes to the kernel of ∂C

p,0. Hence this pair does not
contribute to the kernel.

More generally, we can prove the following lemma.
First, we recall some technical terminology from [Hatcher
and Vogtmann 98].

For a graph G and its vertex v, a wedge summand with
respect to v is one of the connected components obtained
by dividing G at v.

Lemma 3.4. (1) Let G be a minimal trivalent nonsepa-
rating graph. If we remove a neighborhood of an edge e
of G, either the graph remains connected or it is divided
into two components. In the latter case, each endpoint of
e is adjacent to the both components.
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FIGURE 4. The I-parent has a separating edge, and
the H-parent is equal to the X-parent.

(2) Let (G,Φ) be a degree-1 graph with a forest. Sup-
pose that if we remove the unique valence-4 vertex, then
G becomes disconnected and one of the wedge summands
with respect to the vertex has the symmetry of interchang-
ing the edges adjoining the vertex. In this situation,
(G,Φ) has only one parent and therefore does not con-
tribute to the kernel of ∂C.

Proof: (1) Since G is trivalent, removing e from G for-
mally divides the graph into four components (see Figure
5), where some of these components may be the same.

Since e is nonseparating, then exchanging A with C

and B with D if necessary, A and B denote the same
component. Similarly, the component C is equal to D or
A = B, and the component D is equal to C or A = B.
Therefore C = D, and this proves the lemma.

(2) Suppose (G,Φ) ∈ FpCp−1 is of degree 1 and hence
has one vertex with valency 4. If we remove a neighbor-
hood of this vertex, either the graph remains connected
or it is divided into two components. In the latter case,
suppose one of the components has a symmetry switch-
ing the adjoining edges. Then there is only one gener-
ator (G′,Φ′) ∈ FpCp that has the ∂C -image on (G,Φ),
because Kn contains no graphs with separating edges.

FIGURE 5. A neighborhood of an edge of a trivalent graph.

FIGURE 6. An example of a graph.

Therefore (G,Φ) and (G′,Φ′) do not contribute to the
kernel of ∂C .

3.3 Implementation on Computers

To perform calculations on computers, we must represent
graphs and forests in some numerical form. The method
of this section is taken from [Hatcher and Vogtmann 98].

In the situation in which vertices are labeled by dis-
tinct integers, we can represent the set of edges by the
set of the pairs of endpoint integers. Since the vertices of
our graphs have valency at least 3, the set of edges com-
pletely determines the graph, so that this set contains all
the information about the graph with each vertex labeled.
To compare these, we store the set in lexicographically
ordered form.

Given a specific graph G, consider all the labelings of
the vertices of G such that the labels are taken from the
set {1, 2, . . . , |v(G)|}. Here |v(G)| is the number of ver-
tices in the graph G. Represent these in numerical form
as above and take the first one in lexicographic order.
We call this normal form. Note that two graphs that are
isomorphic have the same normal form.

For example, the normal form of the graph in Figure
6 is
{{1, 2}, {1, 2}, {1, 3}, {2, 4}, {3, 4}, {3, 5}, {4, 6}, {5, 6},
{5, 7}, {6, 8}, {7, 9}, {7, 9}, {8, 10}, {8, 10}, {9, 10}}.
The automorphism group of a graph G induces a sub-

group of the symmetric group of {1, 2, . . . , |v(G)|}. We
represent a forest of a graph G by the subset of the nor-
mal form of G. We are concerned only with the isomor-
phism classes of the pair (G,Φ). Therefore, this subset
is not uniquely determined. However, it is unique up to
the action of the automorphism group of G. We take the
first one with respect to the lexicographic order for its
representative.
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FIGURE 7. Normal form of forests.

Figure 7 is an example that contains isomorphic
forested graphs with different edge sets. In this case,
the normal form of the graph is

{{1, 2}, {1, 2}, {1, 3}, {2, 4}, {3, 4}, {3, 4}},
and the edge sets of the forests are

{{1, 2}} and {{3, 4}}.
We take {{1, 2}} for the normal form in this example.

By definition, we have to take all the labelings on ver-
tices to compute the normal form of a graph. As n in-
creases, this takes a large amount of time.

Lemma 3.5. (1) Fix a graph G. For each vertex labeled
by k 	= 1, there is a vertex labeled by a smaller number �
such that the edge {�, k} is in the normal form of G.

(2) Fix a graph G. In the normal form, if a vertex v of
G has shorter distance from the vertex labeled by 1 than
that of another vertex w, then v is labeled by a smaller
number than w, where the distance between two vertices
is the minimum number of edges of paths adjoining the
vertices.

Proof: (1) We denote by n(w) the number attached to a
vertex w in normal form. Take a vertex v labeled by the
largest number that is not connected to vertices labeled
by smaller numbers. If there is no such vertex except for
the vertex labeled by 1, then the lemma is proved.

Choose a vertex v1 that is connected to v. Since v1
is labeled by a larger number than that of v, v1 is con-
nected to vertices labeled by smaller numbers than that
of v1. Take the vertex labeled by the smallest in these
and call it v2. If v2 is labeled by a larger number than
that of v, v2 is connected to vertices labeled by smaller
numbers than that of v2. Take the vertex labeled by the
smallest in these and call it v3. Repeat this procedure
until vk+1 is labeled by a smaller number than that of v.
Now consider a labeling that is the same as the normal
form except that labels of v and vk are exchanged. Then
the pair {n(vk+1), n(vk)} is replaced by {n(vk+1), n(v)},
and pairs that are smaller in lexicographic order do not

FIGURE 8. The case in which there is a vertex not
connected to vertices with smaller numbers.

change. Since {n(vk+1), n(vk)} > {n(vk+1), n(v)}, this
contradicts that the original labeling represents the nor-
mal form.

(2) Take a pair (v, w) such that the distance from the
vertex labeled by 1 to v is shorter than that of w, and
n(v) > n(w) such that (n(w), n(v)) is the smallest in lex-
icographic order among pairs satisfying the above condi-
tion. Note that n(w) is not equal to 1.

By (1), w is connected to a vertex w′ labeled by a
smaller number, namely n(v) > n(w) > n(w′). From the
smallest condition, w′ has shorter distance to the vertex
1 than w, and v does not have shorter distance than w′.
This implies that v is connected to a vertex v′ labeled
by a smaller number than the numbering of n(w′). This
means that if we exchange the numbering of w and v, we
obtain a smaller form in the lexicographic order. This
contradicts that the original form is normal.

Fix a graph G. Suppose that the numbering 1 is given
on a specified vertex. We divide V (G), the set of ver-
tices in G, into components {Vk(G)} such that Vk(G)
consists of vertices that are k edges away from the ver-
tex 1. Lemma 3.5 implies that the set of numberings on
vertices in Vk(G) is
{

k−1∑
i=0

#Vi(G) + 1,
k−1∑
i=0

#Vi(G) + 2, . . . ,
k∑

i=0

#Vi(G)

}

FIGURE 9. The case in which there is a pair of vertices
that does not satisfy the condition of the lemma.
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in normal form. Therefore we can apply the symmetric
group “distancewise,” namely on the set of numberings
in each Vk(G), to obtain the normal form.

3.4 Trivalent Graphs

We obtain trivalent graphs by induction. For conve-
nience, in this section we denote by Tn the set of trivalent
nonseparating graphs in whose fundamental group is the
free group of rank n. In the case of n=2, Tn consists of
only one trivalent graph, whose normal form is

{{1, 2}, {1, 2}, {1, 2}}.

From Tn−1, the elements in Tn are obtained by attaching
an edge to a graph in Tn−1. More precisely, choose two
edges, placing new vertices in the middle of the edges,
and join the vertices by a new edge. The new graph
is also trivalent, and its fundamental group is the free
group of rank n, which is easily verified by considering
the Euler number. The next lemma guarantees that all
minimal trivalent nonseparating graphs are obtained by
this procedure.

Lemma 3.6. Suppose n ≥ 3. Each graph in Tn is obtained
by attaching a new edge to some element in Tn−1.

Proof: To prove that any graph in Tn is obtained from
some graph in Tn−1, we have to show that each element
in Tn has an edge that if removed, leaves the graph non-
separating.

Fix a graph G ∈ Tn. If G has a double edge, our claim
is proved by removing one of the double edges. Hence we
assume that G has no double edges.

First, we choose an edge e of G. We denote by G′

the new graph obtained from G− e by removing valence-
2 vertices. The new graph G′ may contain separating
edges. However, separating edges in G′ are also edges in
G, because the unified edges that are adjacent to e in G
are not separating by Lemma 3.4(1) and Figure 5.

Separating edges in the edge-removed graph are not
adjacent to each other. Suppose that there are two sepa-
rating edges in G′ adjacent to each other. In the notation
in Figure 10, suppose {u, v} and {u,w} are separating
edges.

The vertices u, v, w are in distinct connected compo-
nents if the edges {u, v} and {u,w} are removed. The
edge e joins at most two of these in the original graph
G and is not attached to {u, v} or to {u,w}. Therefore,
{u, v} or {u,w} is a separating edge also in G, which
contradicts that G is nonseparating.

FIGURE 10. Separating edges are not adjacent to each
other.

Now remove separating edges in G′ to obtain a new
nonempty graph. The connected components of the new
graph are trivalent graphs, a loop, or a single vertex. If
one of the connected components were a loop, then G

would have a double edge. Also, if one of the connected
components were a single vertex, then there would be
separating edges adjacent to each other in G′. There-
fore the connected components are trivalent nonseparat-
ing graphs. Induction on the rank of the fundamental
group of the graph guarantees that there is an edge that
if removed, leaves the component nonseparating in a con-
nected component of the new graph. Since this edge is
in a connected component of the new graph, it can be
interpreted as an edge in G. The lemma is proved. Note
that a nonseparating edge stays nonseparating if other
edges are attached.

Lists of all the trivalent graphs for n ≤ 6 are given in
Tables 1–5.

We also need the list of all the forested graphs on a
specified graph G. It is obtained by listing all the subsets
of E(G) and the set of edges in G, and erasing subgraphs
containing cycles. Whether a subgraph contains cycles
is verified by computing the Euler number and counting
the number of connected components.

3.5 Process of Computation

Now we are ready to compute the desired homology. The
computation goes through the following steps.

(1) Enumerate all the minimal trivalent nonseparating
graphs whose fundamental groups are the free groups
of rank n.

(2) Enumerate all the degree-1 graphs whose fundamen-
tal groups are the free groups of rank n.

(3) Enumerate all the forests of the graphs obtained in
(1) and (2).

(4) Compute the automorphism groups of forested
graphs and erase forested graphs with odd symmetry
from the list.
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TABLE 1. Trivalent graphs of n = 3.

TABLE 2. Trivalent graphs of n = 4.

TABLE 3. Trivalent graphs of n = 5.
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TABLE 4. Trivalent graphs of n = 6 (part 1).

(5) Erase all the pairs that satisfy the condition of
Lemma 3.4.

(6) Classify forested graphs with respect to the image
of cp.

(7) Construct the matrices that represent ∂C for each
component in (6).

(8) Compute the kernel of the matrices in (7).

(9) Construct the matrices that represent ∂R
∣∣
Ker∂C .

(10) Compute the kernel of the matrices in (9).

To compute the kernels of these matrices, we use the
usual method of Gauss–Jordan elimination. Since the

boundary operator ∂C is represented by a sparse matrix,
the most important technique for reducing the computa-
tion is to manage the pivoting in a given matrix appro-
priately.

4. MAIN RESULTS

By making an explicit computation according to the
recipe given above, we obtain the rank of the kernels
as shown in Table 6.

The dimension of

E2
p,0 =

Ker∂C
p,0 ∩Ker∂R

p,0

∂R
p+1,0(Ker∂C

p+1,0)

is obtained from dim
(
Ker∂C

p,0 ∩Ker∂R
p,0

)
and

dim Ker∂C
p,0, because the dimension theorem about
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TABLE 5. Trivalent graphs of n = 6 (part 2).

the denominator says that

dim ∂R
p+1,0(Ker∂C

p+1,0)

= dim Im ∂R
p+1,0

∣∣
Ker∂C

p+1,0

= dim Ker∂C
p+1,0 − dim Ker ∂R

p+1,0

∣∣
Ker∂C

p+1,0

= dim Ker∂C
p+1,0 − dim

(
Ker∂C

p+1,0 ∩Ker∂R
p+1,0

)
.

Tables 7, 8, and 9 contain the dimensions of the kernels
of the boundary maps. Note that the number of trivalent

n Number of Trivalent Graphs

2 1

3 2

4 5

5 16

6 66

TABLE 6. Number of trivalent graphs.

graphs for each n also appears on the top left of the table,
because trivalent graphs are 0-cells.

Since the rank of the homology group is computed
through

Hp(Out(Fn); Q) ∼= Hp(Qn; Q) = E2
p,0

=
Ker∂C

p,0 ∩Ker∂R
p,0

∂R
p+1,0(Ker∂C

p+1,0)
,

we obtain the following theorem.

Theorem 4.1. For n ≤ 6, the rational homology of
Out(Fn) is given as follows:

Hp(Out(Fn); Q) ∼=

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

Q, if p = 0,
Q, if p = n = 4,
Q, if p = 8, n = 6,
0, otherwise.
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p dim Ker∂C
p,0 dim (Ker∂C

p,0 ∩ Ker∂R
p,0) dim ∂R

p+1,0(Ker∂C
p+1,0) dim E2

p,0

0 5 5 4 1

1 4 0 0 0

2 0 0 0 0

3 1 1 1 0

4 4 3 2 1

5 2 0 0 0

TABLE 7. The ranks of the kernels in the case of n = 4.

p dim Ker∂C
p,0 dim (Ker∂C

p,0 ∩ Ker∂R
p,0) dim ∂R

p+1,0(Ker∂C
p+1,0) dim E2

p,0

0 16 16 15 1

1 26 11 11 0

2 20 9 9 0

3 37 28 28 0

4 69 41 41 0

5 53 12 12 0

6 12 0 0 0

7 0 0 0 0

TABLE 8. The ranks of the kernels in the case n = 5.

p dim Ker∂C
p,0 dim (Ker∂C

p,0 ∩ Ker∂R
p,0) dim ∂R

p+1,0(Ker∂C
p+1,0) dim E2

p,0

0 66 66 65 1

1 193 128 128 0

2 372 244 244 0

3 807 563 563 0

4 1389 826 826 0

5 1440 614 614 0

6 889 275 275 0

7 399 124 124 0

8 160 36 35 1

9 35 0 0 0

TABLE 9. The ranks of the kernels in the case n = 6.

Since the first two Morita classes μ1 ∈ H4(Out(F4); Q)
and μ2 ∈ H8(Out(F6); Q) are known to be nontrivial, as
mentioned above, we have the following corollary.

Corollary 4.2. For n ≤ 6, Morita classes generate the
nontrivial part of H∗(Out(Fn); Q).

Remark 4.3. The cycle representing μ1 has a very sim-
ple form, as depicted in Figure 11. It is a multiple of

−2

FIGURE 11. Cycle representing μ1 .

the cycle z(γ) described in [Conant and Vogtmann 06].
The description of the 4-dimensional boundaries is also
simple. However, the boundary image related to μ2 is at
present very complicated. In fact, the size of our file that
contains the boundaries is more than two megabytes.
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