
Strong Diophantine Triples
Andrej Dujella and Vinko Petričević
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We prove that there exist infinitely many triples a, b, c of nonzero
rational numbers with the property that a2 + 1, b2 + 1, c2 + 1,
ab + 1, ac + 1, and bc + 1 are perfect squares.

1. INTRODUCTION

A set {a1, a2, . . . , am} of m nonzero integers (rationals)
is called a (rational) Diophantine m-tuple if ai · aj + 1
is a perfect square for all 1 ≤ i < j ≤ m. Diophantus
of Alexandria found a rational Diophantine quadruple{

1
16 ,

33
16 ,

17
4 ,

105
16

}
, while the first Diophantine quadruple

in integers, the set {1, 3, 8, 120}, was found by Fermat.
Euler was able to add a fifth positive rational, 777480

8288641 , to
Fermat’s set (for the results of Diophantus, Fermat, and
Euler, see [Dickson 66, Diophantus 74, Heath 03]). Eu-
ler’s construction was generalized in [Dujella 97], where
it was shown that every rational Diophantine quadruple
the product of whose elements is not equal to 1 can be
extended to a rational Diophantine quintuple. Recently,
Gibbs [Gibbs 06] found several examples of rational Dio-
phantine sextuples. The first one was

{
11
192

,
35
192

,
155
27

,
512
27

,
1235
48

,
180873

16

}
.

A famous conjecture is that there does not exist a
Diophantine quintuple (in nonzero integers) (see, for ex-
ample, [Guy 04, Waldschmidt 04]). In 1969, Baker and
Davenport [Baker and Davenport 69] proved that the Fer-
mat set {1, 3, 8, 120} cannot be extended to a Diophan-
tine quintuple. In 1998, Dujella and Pethő proved that
the pair {1, 3} cannot be extended to a Diophantine quin-
tuple [Dujella and Pethő 98]. Recently, the first author
proved in [Dujella 04] that there does not exist a Dio-
phantine sextuple and that there are only finitely many
Diophantine quintuples.

Note that in the definition of (rational) Diophantine
m-tuples we exclude i = j, i.e., the condition that a2

i +1 is
a square. It is obvious that for integers, such a condition
makes no sense. But for rationals, there is no obvious
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reason why the sets that satisfy these stronger conditions
should not exist. Therefore, we introduce the following
notion:

Definition 1.1. A set of m nonzero rationals
{a1, a2, . . . , am} is called a strong Diophantine m-tuple
if ai · aj + 1 is a perfect square for all i, j = 1, . . . ,m.

It is obvious that there does not exist a strong Dio-
phantine pair consisting of integers. However, it seems to
be very hard to find an absolute upper bound for the size
of strong (rational) Diophantine tuples. The problem of
extension of a given strong Diophantine triple {a1, a2, a3}
to a quadruple {a1, a2, a3, x} leads to the hyperelliptic
curve

y2 = (x2 + 1)(a1x+ 1)(a2x+ 1)(a3x+ 1)

of genus g = 2. According to Lang’s conjecture on vari-
eties of general type, there should be an absolute upper
bound B(2,Q) for the number of rational points on such
curves [Caporaso et al. 97]. This would imply that there
does not exist a strong Diophantine (B(2,Q) + 4)-tuple.
However, Lang’s conjecture is far from being proved. Let
as mention that an example in [Keller and Kulesz 95]
shows that B(2,Q) ≥ 588. The first strong Diophantine
triple, the set

{
1976
5607

,
3780
1691

,
14596
1197

}
,

was found by the first author in 2000. No example of a
strong Diophantine quadruple is known. Although the
examples from Section 5 might suggest that the hope of
discovering strong Diophantine quadruples is not unreal-
istic, the existence of a strong Diophantine quintuple is
very unlikely.

In [Arkin et al. 93], a family of nonzero rational sex-
tuples {x1, x2, x3, x4, x5, x6} was constructed such that
x1 = x2 and xixj + 1 is a perfect square for i �= j. Ele-
ments xi were given in terms of Fibonacci numbers. Us-
ing the construction from [Dujella 97], we can construct
octuples {x1, x2, x3, x4, x5, x6, x7, x8} such that x1 = x2,
x3 = x4, x5 = x6, and xixj + 1 is a perfect square for
i �= j. For example, we may take

x1 = x2 =
1976
5607

, x3 = x4 =
3780
1691

,

x5 = x6 =
14596
1197

, x7 =
256234396682152
182474628172489

,

x8 =
7374752853358991555754
1664625949782757005653

,

or alternatively,

x8 =
−429021998726549866
35408767381264887813

.

We have performed a search for more examples of
strong Diophantine triples in various regions. We have
found more than 50 such triples with at least two ele-
ments with relatively small numerators and denomina-
tors. The analysis of the special properties of some of
these examples leads us to the following theorem, which
is the main result of this paper.

Theorem 1.2. There exist infinitely many strong Dio-
phantine triples of positive rational numbers.

In Sections 3 and 4, we give two different proofs of
Theorem 1.2, i.e., two different constructions of infinitely
many strong Diophantine triples (and we show that more-
over, infinitely many of them have positive elements).
Both constructions are based on some elliptic curves over
Q with positive rank.

2. ASSOCIATED ELLIPTIC CURVES

To a nonzero rational a we associate the elliptic curve

Ea : y2 = (x2 + 1)(ax+ 1). (2–1)

It has a rational point T = [−1/a, 0], which is the torsion
point of order 2, and another rational point P = [0, 1],
which is (in general) a point of infinite order. Indeed, by
considering the coordinates of the point

3P =
[
8a(a2 + 4)
(a2 − 4)2

,
(3a2 + 4)(a4 + 24a2 + 16)

(a2 − 4)3

]
,

using the Lutz–Nagell theorem, it is easy to check that P
has infinite order, except for a = ±2, when it has order
3. Note that P + T = [a,−a2 − 1].

We may consider the elliptic surface E associated with
the family of curves Ea. We will compute rank E(C(a))
using Shioda’s formula [Shioda 90, Corollary 5.3]:

rank E(C(a)) = rankNS(E ,C)− 2−
∑

ν

(mν − 1).

Here NS(E ,C) is the Néron–Severi group of E over C,
and the sum ranges over all singular fibers of the pencil
Ea, with mν the number of irreducible components of
the fiber. Since E is a rational surface, by [Shioda 90,
Lemma 10.1], we have rankNS(E ,C) = 10. The num-
bers mν can be easily determined from Kodaira types of
singular fibers (see [Miranda 97, Section 4] and [Shioda
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90, p. 224]). The discriminant of Ea is −64a2(a2 + 1)2,
so that Ea is singular at a = 0,±i,∞, and the Kodaira
types are I2, I2, I2, and I∗0 , respectively. Therefore, we
have

rank E(C(a)) = 10− 2− 1− 1− 1− 4 = 1.

Since we already know that [0, 1] is a point of infi-
nite order on E(Q(a)), we conclude that here as well,
rank E(Q(a)) = 1.

Assume now that a2 + 1 is a perfect square. Then all
points of the form mP or mP + T satisfy the additional
condition that both factors of the cubic polynomial in
(2–1) are perfect squares (by the standard 2-descent ar-
gument [Knapp 92, Theorem 4.2 and Proposition 4.6],
it suffices to check that this condition is satisfied for T ,
P , and P + T ). Therefore, the first coordinates of these
points induce pairs {a, b} that are strong Diophantine
pairs. If we parameterize a by a = 2t

t2−1 , then we may
take, for example,

b =
−(t2 + t− 1)(t2 − t− 1)

2t(t2 − 1)
,

b =
t6 − 1
2t3

,

b =
4t(t2 − 1)(t4 − t2 + 1)

(t2 + t− 1)2(t2 − t− 1)2
,

b =
2t(3t4 − t8 − 1)

(t2 − 1)(t4 + t2 + 1)2
,

which are respectively the first coordinates of the points
2P , 2P + T , 3P , 3P + T .

Assume now that {a, b, c} is an arbitrary strong Dio-
phantine triple. Then the points with the first coordi-
nates b and c also belong to Ea(Q). Denote these points
by B and C. Let e and f be the first coordinates of the
points B + T and C + T , respectively. Then it is easy to
verify that {a, e, f} is also a strong Diophantine triple.
Indeed, we have

e =
a− b
ab+ 1

, f =
a− c
ac+ 1

,

ae+ 1 =
a2 + 1
ab+ 1

, af + 1 =
a2 + 1
ac+ 1

,

e2 + 1 =
(a2 + 1)(b2 + 1)

(ab+ 1)2
, f2 + 1 =

(a2 + 1)(c2 + 1)
(ac+ 1)2

.

Of course, we can interchange the roles of a, b, c in the
above construction. In that way, starting with one strong
Diophantine triple {a, b, c}, we obtain (in general) an-

other three strong Diophantine triples:{
a,

a− b
ab+ 1

,
a− c
ac+ 1

}
,

{
b,

b− a
ab+ 1

,
b− c
bc+ 1

}
,

{
c,

c− a
ac+ 1

,
c− b
bc+ 1

}
.

Note that among these four triples, exactly two have all
positive elements (after multiplying all elements by −1 if
necessary). Indeed, we may assume that a > b > c and
b > 0. If c > 0, then exactly

{a, b, c} and
{
a,

a− b
ab+ 1

,
a− c
ac+ 1

}

have all positive elements, while if c < 0, then exactly{
a,

a− b
ab+ 1

,
a− c
ac+ 1

}
and

{
−c, a− c

ab+ 1
,
b− c
bc+ 1

}

have all positive elements.

Example 2.1. Starting with the triple{
140
51

,
187
84

, − 427
1836

}
,

we obtain three new strong Diophantine triples:{
140
51

,
2223
30464

,
278817
33856

}
,

{
187
84

, − 2223
30464

,
15168
2975

}
,

{
427
1836

,
278817
33856

,
15168
2975

}
.

However, it should be observed that the four strong
Diophantine triples obtained with the above construction
are not always necessarily distinct.

Example 2.2. If we start with the triple{
1976
5607

,
3780
1691

,
14596
1197

}
,

then the only new triple obtained with the above con-
struction is {

1976
5607

, −19853044
16950717

, −3780
1691

}
.

Note that the strong Diophantine pair

{a, b} =
{

1976
5607

,
3780
1691

}
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has the additional property that a · (−b) + 1 is also a
perfect square. The triple

{
1617
10744

,
15168
2975

,
99807
4424

}
,

that is, its subpair
{

1617
10744

,
15168
2975

}
,

possesses the same property.
In the next section, we will show that there exist in-

finitely many such pairs.

Lemma 2.3. Each strong Diophantine pair {a, b} with the
property that 1 − ab is a perfect square can be extended
to a strong Diophantine triple.

Proof: We take c = a+b
1−ab , and we claim that {a, b, c} is a

strong Diophantine triple. Indeed,

ac+ 1 =
a2 + 1
1− ab ,

bc+ 1 =
b2 + 1
1− ab ,

c2 + 1 =
(a2 + 1)(b2 + 1)

(1− ab)2

are perfect squares.

Remark 2.4. Note that if c = a+b
1−ab (as in the proof of

Lemma 2.3), then

c− a
ac+ 1

= b and
c− b
bc+ 1

= a,

and therefore we obtain only two different triples with
our construction (only one with positive elements), since
in that case {

c,
c− a
ac+ 1

,
c− b
bc+ 1

}
= {a, b, c},

while the triples
{
a,

a− b
ab+ 1

,
a− c
ac+ 1

}
=

{
a,

a− b
ab+ 1

,−b
}

and {
b,
b− a
ab+ 1

,
b− c
bc+ 1

}
=

{
b,
b− a
ab+ 1

,−a
}

are essentially the same (elements of one set are obtained
by multiplying the elements of the other set by −1). In
terms of the elliptic curve Ec, in this case the addition of

the 2-torsion point just interchanges the points with the
first coordinates a and b.

Example 2.5. Consider the strong Diophantine triple
{

364
627

,
475
132

, −132
475

}
.

It has the form {a, b,−1/b}. In Section 4, we will show
that there exist infinitely many triples of this form.

Our construction gives now only one new triple,
{

364
627

, −297
304

,
304
297

}
,

(of the same form). In general, we obtain one new triple
{
a,

a− b
ab+ 1

,
1 + ab

b− a
}

(and no triples with positive elements). In terms of the
elliptic curve Eb, the point with the first coordinate c =
−1/b is the 2-torsion point, so in this case, the addition
of the 2-torsion point gives the point at infinity.

3. CONSTRUCTION OF SPECIAL STRONG
DIOPHANTINE PAIRS AND THE FIRST
PROOF OF THEOREM 1.2

In this section, we will first show that there exist infinitely
many strong Diophantine pairs {a, b} with the additional
property that 1− ab is also a perfect square.

Hence, we want to find nonzero rationals a, b such that

a2 + 1, b2 + 1, ab+ 1, 1− ab (3–1)

are perfect squares.
Thus, the question is how we can satisfy the four con-

ditions from (3–1). Let us fix α := a · b such that 1 + α

and 1− α are perfect squares. The condition that b2 + 1
is a square has the parametric solution b = 2t/(t2 − 1).
Inserting this into the condition that a2 + 1 is a square,
we obtain the condition

α2(t2 − 1)2 + (2t)2 = s2. (3–2)

The quartic (3–2) can be transformed in the standard
way (see, e.g., [Kulesz 03]) into an elliptic curve in Weier-
strass form. If such curve has positive rank, we will ob-
tain infinitely many pairs {a, b} with the desired prop-
erty. Let us use the pairs from Example 2.2. For

α =
1617
10744

· 15168
2975

=
5544
7225

,
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we obtain the curve

y2+xy = x3−43024332146390x−32779590846716529900.

Using a specialized program such as MWRANK [Cremona
97] or APECS [Connell 03], we can compute the rank of
this curve. We obtain that the rank is equal to 1 (with
the generator [−802370,−1106521940] and torsion group
isomorphic to Z/2Z×Z/4Z). Therefore, we have proved
the following lemma.

Lemma 3.1. There exist infinitely many strong Diophan-
tine pairs {a, b} with the property that 1− ab is a perfect
square.

Lemmas 2.3 and 3.1 imply that there exist infinitely
many strong Diophantine triples, and by Remark 2.4 we
also know that there exist infinitely many such triples
with positive elements. Thus, we have actually proved
Theorem 1.2.

We list some of the triples obtained with this construc-
tion:{

54619093071

22098986000
,

544519015040

1753879766391
,

107828640285956516216761

9017829641758970738160

}
,

{
54619093071

22098986000
, − 544519015040

1753879766391
,

83762004105751017336761

68500099164556988313840

}
,

{
1447635586012047235857910848

927754486218138903868576025
,

504261850156211968926214263

1025408540091866792066020184
,

1161361740957008922125901324903233342330112123673647

131671608758009932651459660743253005341982491486296

}
.

For another pair from Example 2.2, i.e.,

α =
1976
5607

· 3780
1691

=
6240
7921

,

the rank of the corresponding elliptic curve is equal to 2,
and again we obtain infinitely many strong Diophantine
triples. The simplest triple is{

18685436
39898077

,
7857720
4671359

,
400794297231964
39553316910723

}
.

Moreover, we can show that there exist infinitely many
α’s with the property that there exist infinitely many
rational points on (3–2). Let

a =
u2 − 1

2u
, b =

(1 + 1
u )2 − 1

2(1 + 1
u )

=
2u+ 1

2u(u+ 1)
.

Then the conditions that ab + 1 and 1 − ab are squares
become

(3u+ 1)(2u− 1) is a square, (3–3)

2u2 + u+ 1 is a square. (3–4)

Multiplying the conditions (3–3) and (3–4) together, we
again obtain an elliptic curve. By the transformation
u = −x−11

3x−7 we transform it into its Weierstrass form:

y2 = x3 + 37x+ 138. (3–5)

It has rank equal to 1, with the generator P = [−1, 10]
and 2-torsion point T ′ = [−3, 0]. The point P induces
the trivial solution u = 1 (corresponding to a = 0). By
the 2-descent argument, we conclude that the points of
the form (2k + 1)P (and (2k + 1)P + T ) satisfy as well
the original system (3–3), (3–4). For example, the point
3P gives the pair

a =
18048
34655

, b =
12189
27260

,

while the point 5P gives the pair

a =
12423058053504
12908664457247

, b =
−4521252839715
14832397620092

.

For each such point, we consider α = ab = (u−1)(2u+1)
4u2

and the corresponding elliptic curve (3–2). The curve
(3–2) has positive rank, since the point [2u + 1, (2u +
1)(u2 + 1)/u] is of infinite order (for almost all u). Ac-
tually, using Shioda’s formula [Shioda 90, Corollary 5.3],
it can be proved that the elliptic surface associated with
the family of curves (3–2) (which is a K3 surface) has
rank over Q(u) equal to 1. Therefore, each point on
(3–5) of the form (2k + 1)P induces infinitely many
strong Diophantine triples by the construction described
in Lemma 2.3.

4. THE SECOND PROOF OF THEOREM 1.2

In this section we will first prove that there exist infinitely
many strong Diophantine triples of the form {a, b,−1/b}.

Assume that we can somehow find nonzero rationals
b, g such that

b2 + 1, g2 + 1,
b

g
,

b

g
+ 1,

g

b
+ 1 (4–1)

are perfect squares. Define a = bg−1
b+g . Then we claim

that {a, b,−1/b} is a strong Diophantine triple. Indeed,
we have

ab+ 1 =
g(b2 + 1)
b+ g

, a ·
(
−1
b

)
+ 1 =

b2 + 1
b(b+ g)

,

a2 + 1 =
(b2 + 1)(g2 + 1)

(b+ g)2
.

Let us fix a positive rational β such that β2 + 1 is a
perfect square. If b/g = β2, then the last three conditions



88 Experimental Mathematics, Vol. 17 (2008), No. 1

from (4–1) are satisfied. The remaining conditions are
that g2 +1 and β4g2 +1 are perfect squares. Multiplying
these two conditions together, we again obtain an elliptic
curve, and we hope that it will have positive rank. So,
let us use Example 2.5, i.e., put

β2 =
475
132
· 297
304

=
(

15
8

)2

.

We obtain the quartic

z2 =
50625
4096

g4 +
54721
4096

g2 + 1,

which we transform (with g = (128x+1167392)/(2y+x))
into minimal Weierstrass form:

E : y2 + xy = x3 − 114223080x− 283150929600.

Using MWRANK we find that this curve has rank equal to 1,
with generator Q = [−8520,−263280] and torsion group
Z/2Z × Z/4Z generated by T1 = [29100, 4571880] and
T2 = [−36481/4, 36481/8].

We are interested in rational points on this curve for
which the corresponding number g satisfies the condition
that g2 + 1 is a perfect square. We have

g2 + 1 = (4x+ 36481)(x− 2512)2.

We note here the linear factor 4x + 36481, which corre-
sponds to the 2-torsion point T2. Since all points from
E(Q)/2E(Q) satisfy the condition that g2 +1 is a perfect
square, by the 2-descent argument used already several
times in this paper, this condition is satisfied for all points
in E(Q). Therefore, we have proved the following lemma.

Lemma 4.1. There exist infinitely many strong Diophan-
tine triples of the form {a, b,−1/b}.

Torsion points induce trivial solutions with a = 0. The
point P induces

g = − 28
195

, b = −105
208

, a =
37620
26299

,

which gives the triple{
37620
26299

, −105
208

,
208
105

}
.

Some other triples obtained with the this construction
(for points of the form iP + T ′′, where i = 1, 2 and T ′′ is
a torsion point) are{

364
627

, −297
304

,
304
297

}
,

{
37620
26299

,
195
28

, − 28
195

}
,

{
232371144612352
548740392625425

, −4176991
3636600

,
3636600
4176991

}
,

{
28481335257375
14523196538272

, − 9106080
23923351

,
23923351
9106080

}
.

Of course, triples of the form {a, b,−1/b} cannot have
all positive elements. We will now describe how from a
triple of the form {a, b,−1/b}, a new strong Diophantine
triple with positive elements can be constructed. This
will also give a connection between Diophantine triples
of the form {a, b,−1/b} and the special Diophantine pairs
from Section 3.

Let {a, b,−1/b} be a strong Diophantine triple, and
define g = (ab+1)/(b−a). We may assume that a and b
are positive. The product bg = ab+1

1−a/b is a perfect square,
so there exists a rational number t > 1 such that bg = t2.
Let us define h = 2t

t2−1 . Then h is positive and h2 + 1 is
a perfect square. Moreover, we will show that ah+1 and
1− ah are perfect squares. We have

a =
b(t2 − 1)
b2 + t2

.

Hence,

b2 + t2 = (t2 − 1) · b
a

=
b2 + 1
1− a/b

is a perfect square. Therefore,

ah+ 1 =
(t+ b)2

b2 + t2
, 1− ah =

(t− b)2
b2 + t2

,

are also perfect squares. Now we can apply the con-
struction from Example 2.2, and we obtain the strong
Diophantine triple

{
a, h,

a+ h

1− ah
}

with positive elements. This construction, together with
Lemma 4.1, gives a new proof of Theorem 1.2.

For example, starting with the triple
{

37620
26299

,
195
28

, − 28
195

}
,

we obtain the triple
{

37620
26299

,
364
627

,
33160576
2795793

}
.

5. “ALMOST” STRONG DIOPHANTINE
QUADRUPLES

It is not known whether there exist any strong Diophan-
tine quadruples. Such a set has to satisfy ten conditions
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of the form xy + 1 is a square. However, we were able
to find quadruples (with relatively small numerators and
denominators) satisfying nine of these ten conditions. In
Example 2.1, we considered the strong Diophantine triple{

140
51 ,

187
84 , − 427

1836

}
. Perhaps surprisingly, we were able to

find another extension of the pair
{

140
51 ,

187
84

}
to a strong

Diophantine triple, namely the triple
{

140
51 ,

187
84 , − 7200

20111

}
.

Therefore, we obtained an “almost” strong Diophantine
quadruple

{
140
51

,
187
84

, − 427
1836

, − 7200
20111

}
,

which satisfies almost all conditions for a strong Diophan-
tine quadruple. The only missing condition comes from
the fact that (− 427

1836 )·(− 7200
20111 )+1 is not a perfect square.

Using the construction from Section 3, we can find an-
other example with the same property (and with positive
elements):

{
140
51

,
2223
30464

,
278817
33856

,
3182740
17661

}
.

In this case, the only missing condition is that 278817
33856 ·

3182740
17661 + 1 is not a perfect square.
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