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We study certain combinatoric aspects of the set of all uni-
tary representations of a finite-dimensional semisimple Lie alge-
bra g. We interpret the Hardy–Ramanujan–Rademacher formula
for the integer partition function as a statement about su2, and
explore in some detail the generalization to other Lie algebras.
We conjecture that the number Mod(g, d) of g-modules in di-
mension d is given by (α/d) exp(βdγ) for d � 1, which (if true)
has profound consequences for other combinatorial invariants of
g-modules. In particular, the fraction F1(g, d) of d-dimensional
g-modules that have a one-dimensional submodule is deter-
mined by the generating function for Mod(g, d). The depen-
dence of F1(g, d) on d is complicated and beautiful, depending
on the congruence class of d mod n and on generating curves
that resemble a double helix within a given congruence class.
We also consider the total number of repeated irreducible sum-
mands in the direct sum decomposition as a function on the
space of all g-modules in a fixed dimension, and plot its his-
togram. This is related to the concept (used in quantum infor-
mation theory) of noiseless subsystem. We identify a simple
function that is conjectured to be the asymptotic form of the
aforementioned histogram, and verify numerically that this is
correct for sun.

1. INTRODUCTION

Let d be a positive integer, let g be a Lie algebra, and
let R(g, d) denote the (finite) set of all d-dimensional
modules of g, up to equivalence. The set R(g, d) has
a great deal of internal structure; of particular relevance
for the current study is the natural map

p : R(g, d) → P(d), (1–1)

where P(d) denotes the set of all integer partitions of
d. The map (1–1) is defined by taking the dimensions
of the irreducibles in the direct sum decomposition of
a representation as elements of a partition. Thus if R ∈
R(g, d) is a representation, and R ∼= ⊕n

i=1 Ri, where Ri is
irreducible, then p(R) = (p1, . . . , pn), where pi = dimRi.
This notation is sometimes undesirable because it allows
for repetitions, such as p1 = p2.
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A multiset is a set for which repeated elements are
counted. To formally specify a multiset, one must give a
pair (A,m), where A is a set and m : A → N. For each
a ∈ A the number m(a) is called the multiplicity of a.
We will also make use of the total multiplicity,

MT (A) =
∑
a∈A

m(a).

An integer partition is naturally a multiset, as is the
set of dimensions of irreducible components of a repre-
sentation. The multiplicity of each summand in a di-
rect sum is important, but not the order in which the
summands are specified. We will use square-bracket
notation for multisets of integers; the integer partition
5 = 3 + 1 + 1 therefore consists of the multiset A = [1, 3]
with m(1) = 2, m(3) = 1. If A = [p1, . . . , pn], we will
sometimes use the notation ni = m(pi).

Representation theory of su2 reduces to the theory of
integer partitions. For each integer d ≥ 1, there is pre-
cisely one irreducible representation of su2 of dimension
d, where the half-integer 1

2 (d−1) is called spin in physics.
For Lie algebras other than su2, there may exist more
than one irreducible representation in a given dimension,
or none at all.

Definition 1.1. Let ξg(d) denote the number of irre-
ducible g-modules in dimension d. Let

Mod(g, d) := |R(g, d)| (1–2)

denote the total number of g-modules in dimension d.

In the appendix (Section 5), we give an explicit for-
mula for ξsu3(d) that is particularly amenable to com-
putation, and an algorithm to calculate ξg(d) for other
g. Note that ξsu2(d) = 1 ∀d, while this will not hold
for any other Lie algebra. This implies that the map
(1–1) is bijective, a property that also is unique to su2.
For k ≥ 1, let P(d)k denote the set of partitions of d

that contain k at least once. There is a clear bijection
P(d)k ↔ P(d − k). Hence if k/d is small, we obtain by
the Hardy–Ramanujan formula

P(d)k

P(d)
∼ d

d − k
eπ
√

2/3((d−k)1/2−d1/2). (1–3)

Equation (1–3) is the asymptotic fraction of su2 repre-
sentations that contain a k-dimensional irreducible sub-
representation. For all k, d in the allowed range, (1–3)
is a concave function increasing monotonically to 1 as d

increases; see Figure 1.
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FIGURE 1. The asymptotic fraction of d-dimensional
su2-modules that contain a 1-dimensional submodule,
as a function of d.

After developing the necessary tools, we will consider
which aspects of this behavior generalize to sun. For
n > 2, the fraction of d-dimensional sun-modules that
contain a one-dimensional submodule depends strongly
on the congruence class of d mod n. For a fixed
congruence class, the points align themselves along a
smooth curve as soon as d is moderately large, and
these curves generically have multiple maxima and min-
ima. There is just one qualitative feature of Figure 1
that seems to generalize: the fact that the curve ap-
proaches 1 as d → ∞. We will return to this point in
Section 3.1.

2. THE NUMBER OF g-MODULES IN A FIXED
DIMENSION

2.1 The Exact Formula

In this section, we will compute (1–2) by several different
methods.

One formula for (1–2) is in terms of partitions. Given
an integer partition p, we say that a representation R

has shape p if p(R) = p. A naive guess for the number
of representations with shape p might be

∏n
i=1 ξg(pi).

This guess is correct if and only if p does not con-
tain repetitions (i.e., every element has multiplicity
one). For example, if m(p1) > 1 and ξg(p1) > 1, then
the naive guess is high. These cases may be counted
using a standard combinatorial function, which we
now explain.

Writing p as a multiset, p = [p1, . . . , pn] with multi-
plicities ni = m(pi), we consider the ki = ξg(pi) different
pi-dimensional irreducible representations as “letters” in
an alphabet. The set of distinct ni-fold direct sums of
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these irreducible representations is in one-to-one corre-
spondence with the set of words of length ni in an alpha-
bet with ki letters, and the size of this set is

S(ni, ki) :=
(

ni + ki − 1
ni

)
.

Therefore, one anticipates an exact formula for Mod(g, d)
that sums

∏
i S(ni, ξg(pi)) over partitions, and the pre-

cise version is (2–2). Unfortunately, (2–2) is not numer-
ically efficient; a more efficient computation will be ob-
tained using generating functions in the following section.

Given a set H of nonnegative integers, let P(H, d) ⊂
P(d) denote the set of partitions of d with parts in H.
Let

D(g) = ξg
−1(N \ {0}), (2–1)

so D(g) is the (infinite) set of possible dimensions of ir-
reducible g-modules. For example,

D(su3) = {1, 3, 6, 8, 10, 15, 21, 24, 27, 28, 35, 36, . . . } ,

D(su4) = {1, 4, 6, 10, 15, 20, 35, 36, 45, 50, 56, . . . } .

Elements of D(sun) for any n can be computed using the
method given in the appendix.

Theorem 2.1. Assume that each partition p of d is ex-
pressed as a multiset p = [p1, . . . , pn] with multiplicity
vector �n (so the pi are all distinct and d =

∑n
i=1 nipi).

Then

Mod(g, d) =
∑

p∈P(D(g),d)

|p|∏
i=1

(
ni + ξg(pi) − 1

ni

)
. (2–2)

Note that |p| denotes the length of the multiset, i.e., the
number of unique elements.

When ξsu3 
= 0, its most frequently assumed value is
ξsu3 = 2, in which case the binomial coefficient in (2–2)
simplifies to

(
ni+1

ni

)
= ni + 1. In that case, the parti-

tions that contribute the most are those that maximize
the product

∏
i(ni +1), which is the same as maximizing∏

ni. Therefore, the largest terms in the sum (2–2) are
those that do not contain singlets;1 however, the terms
that do contain singlets are more numerous. The compe-
tition between these two types of terms determines the
fraction of representations that contain a singlet, which
we will analyze. Unfortunately, the computing time nec-
essary to evaluate the right-hand side of (2–2) has super-
polynomial growth as a function of d. In the next section
we discuss a polynomial-time algorithm.

1A singlet is a one-dimensional subrepresentation.

2.2 Generating Function for Mod gd

Although (2–2) gives one way to compute Mod(g, d), this
is by far not the most efficient way. In fact, it is not
necessary to list the partitions contributing to the sum in
(2–2). The following result, which was contributed by the
journal referee, improves upon the algorithm originally
suggested by the author.

Theorem 2.2. Mod(g, d) is the coefficient of qd in the
power series expansion of

Mg(q) :=
∏
k≥1

1
(1 − qk)ξg(k)

. (2–3)

The product over k ≥ 1 could be replaced by a product
over k ∈ D(g), since ξg(k) = 0 for all k 
∈ D(g). The
computation of the power series itself can be done in
time

d∑
k=0

(d − k)ξg(k) ≤ d
d∑

k=0

ξg(k).

The reciprocal can be done in time O(d log d).

2.3 Asymptotics for Large d

Theorem 2.2 gives a means of evaluating Mod(g, d)
exactly that scales polynomially with d, but it un-
fortunately does not give a closed-form expression for
Mod(g, d). Therefore, it is also interesting to determine
the asymptotic behavior of the coefficients of (2–3) at
large d.

The Hardy–Ramanujan formula is

Mod(su2, d) = |P(d)| ∼
d�1

1
4d

√
3

exp
(
π
√

2d/3
)

.

(2–4)
For a proof, see [Hardy and Wright 79, Andrews 98].
The Hardy–Ramanujan formula is the simplest case of
Meinardus’s theorem [Meinardus 54], a more general re-
sult that gives asymptotic behavior of the coefficients of
a large class of generating functions. Specifically, if

∞∑
n=0

r(n)qn =
∏
m≥1

(1 − qm)−am , am ≥ 0,

then, under certain assumptions on the Dirichlet series
D(s) associated to the sequence {am}, Meinardus’s theo-
rem gives an asymptotic formula (2–6) for r(n), valid for
large n.

The following conjecture is the “Hardy–Ramanujan
formula for Lie algebras,” from which the title of this
paper is drawn.
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Conjecture 2.3. Mod(g, d) is given, asymptotically for
d � 1, by a formula similar to the Hardy–Ramanujan
formula (2–4). Specifically,

Mod(g, d) ∼ α

d
exp(β dγ) (2–5)

for positive real n-dependent constants α, β > 0 and 0 <

γ < 1.

Proof Proof (sketch): Meinardus [Meinardus 54] applied
a saddle-point method to obtain the asymptotic value of
the power-series coefficients r(n) of the function f(q) =∏∞

n=1(1 − qn)−an , where the an are real, nonnegative
numbers. His formula is

r(n) = αnκ exp (βnγ) · [1 + O(n−k1)], (2–6)

where

γ =
σ

σ + 1
, (2–7)

β = (1 +
1
σ

) [AΓ(σ + 1) ζ(σ + 1)]1/(σ+1)
,

where σ is the convergence abscissa of

D(s) =
∞∑

n=1

ann−s,

A is the residue of D(s) at s = 1, and κ, C, k1 are
explicitly given in terms of σ, D(0), D′(0). The va-
lidity of (2–6) requires that D(s) and

∑∞
1 anqn sat-

isfy certain function-theoretic conditions, as discussed in
[Andrews 98]. We assume that for semisimple Lie alge-
bras, the sequence an = ξg(n) leads to the fulfillment
of the relevant function-theoretic conditions. Then (2–6)
is precisely our conjectured relation for Mod(g, n) with
κ = −1.

2.4 Numerical Evidence

We now give strong numerical evidence in support of
Conjecture 2.3. For computational purposes, let us
restrict attention to g = sun, and check the conjec-
ture for various values of n and ranges of d. Note
that in every plot of Mod(sun, d) as a function of d,
for small values of d, the points will appear in “hor-
izontal groups” of n points. For example, the num-
ber of (7 + k)-dimensional representations of su7 is the
same as the number of 7-dimensional ones, for 0 <

k < 7. Each of the (7 + k)-dimensional representa-
tions is either completely reducible into singlets, or else
takes the form of the one nontrivial 7-dimensional rep-
resentation, plus a direct sum of k singlets. On the
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FIGURE 2. Graph of log Mod(su3, d) for d/2 ∈
[102, 103], fitted by the curve log(α

d
) + β dγ with pa-

rameter values as shown.

other hand, this reasoning breaks down for d/n � 1,
and in that region, the curve joining the points will
become smooth.

The su3 values for (α, β, γ), approximately 0.03, 3.0,
and 0.45 (see Figure 2), are close to the values 0.14,
2.57, and 0.5 given by Hardy–Ramanujan for su2. Even
though (2–7) shows that β and γ are not truly in-
dependent, we have treated them as independent pa-
rameters in our curve-fitting, since we are not able to
determine A, the residue of the Dirichlet series. If
Conjecture 2.3 is true, one can estimate the conver-
gence abscissa of D(s) =

∑
ξg(n)n−s by fitting a value

of γ, and then estimate its residue A at s = 1 by
fitting β.

Although it is not possible to show them all here, plots
of Mod(sun, d) as a function of d were found to be ex-
tremely similar to Figures 2 and 3 (verifying Conjecture
2.3) for all n in the range 3 ≤ n ≤ 50. The main dif-
ference between the plots for various values of n comes
through the dependence of (α, β, γ) on n.

3. STATISTICS OF THE SET OF ALL
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log Mod su40, d

0.042, 3.1, 0.24

FIGURE 3. Graph of log[Mod(su40, d)] for d ∈ [0, 2 ×
104], fitted by the curve log(α

d
) + β dγ with parameter

values as shown. The agreement between the points
and the curve is sufficiently close that it is not possible
to distinguish them visually.
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REPRESENTATIONS

3.1 Statistics of Submodules

A singlet in a g-module is a one-dimensional (i.e., triv-
ial) submodule. Singlets in a representation correspond
to decoherence-free subspaces in quantum computation
[Lidar et al. 98].

Consider g = su3 in dimension 6. There are 11 par-
titions of 6, only 4 of which correspond to direct sum
decompositions of representations of su3:

p = {6} 2 representations,
p = {3, 3} 3 representations,
p = {3, 1, 1, 1} 2 representations,
p = {1, . . . , 1} 1 representation.

Therefore in d = 6, three of eight total representations
contain a singlet, or 37.5%. By contrast, for d = 5, be-
cause there are no representations of su3 in dimensions
2, 4, and 5, only two partitions contribute. These are
5 = 3 + 1 + 1 and 5 = 1 + · · · + 1, giving two represen-
tations and one representation respectively, and 100% of
the representations contain a singlet.

In Figure 4, we plot the fraction of su3 representations
that contain a singlet, as a function of d. For d > 25, one
can clearly distinguish three series in Figure 4 that all
seem to converge to 1. These three series correspond
respectively to the cases d ≡ 0, 1, 2 (mod 3). Within
each series, the points are very regular and seem to line
themselves up along a smooth curve, which at first seems
mysterious.

Definition 3.1. Let Modk(g, d) denote the number
of g-modules in dimension d that contain at least
one k-dimensional submodule, and define Fk(g, d) :=
Modk(g, d)/Mod(g, d).

50 100 150
d

0.8
0.82
0.84
0.86
0.88

0.9
0.92
0.94

1 su3, d )

FIGURE 4. Fractions F1(su3, d) of su3 representations
that contain a singlet versus d. There are three dis-
tinct curves corresponding to the three congruence
classes of d mod 3. Note a qualitative similarity to
Figure 1.

Theorem 3.2. If ξg(k) = 1, then

Modk(g, d) = Mod(g, d − k).

In particular,

Mod1(g, d) = Mod(g, d − 1) . (3–1)

Further, the generating function for Mod1(g, d) is

∞∑
d=1

Mod1(g, d)qd = qMg(q) =
q∏

k≥1(1 − qk)ξg(k)
.

(3–2)

Proof: Let Vd = Ad−k ⊕ Bk, where dimensions are in-
dicated by subscripts. Define φ(Vd) = Ad−k, which is
well defined because even if Vd has several k-dimensional
submodules, ξg(k) = 1 implies that they are all unitar-
ily equivalent. Note that φ : Rk(g, d) → R(g, d − k)
is one-to-one and onto, so it follows that Modk(g, d) =
Mod(g, d − k). Equation (3–1) is the special case k = 1
of this, and (3–1) implies (3–2).

Remark 3.3. Modk(g, d) < ξg(k)Mod(g, d − k) if ξg(k) >

1, so the assumption ξg(k) = 1 cannot be relaxed.

Remark 3.4. There is also a simple direct proof of (3–2):
Let t2(q) =

∏
k≥2(1 − qk)−ξg(k), which is the generat-

ing function for the number of d-dimensional modules
whose irreducible submodules have size at least 2. The
difference Mg(q) − t2(q) gives the number that contain
a singlet. However, t2(q) = (1 − q)Mg(q), which implies
(3–2).

Theorem 3.2 has several applications: We can com-
pute F1(g, d) from Mg(q) by power series expansion.
Moreover, if the coefficients of Mg(q) increase at an in-
creasing rate, then limd→∞ F1(g, d) = 1.

Corollary 3.5. If Conjecture 2.3 is true, then
limd→∞ F1(g, d) = 1.

Proof: Assume Conjecture 2.3. Then for d � 1, we have

logF1(g, d) ∼ log
(

d

d − 1

)
+ β[(d − 1)γ − dγ ]. (3–3)

Clearly log( d
d−1 ) → 0. One may see that

(d − 1)γ − dγ ≈ −γdγ−1 + O(dγ−2) → 0

for large d, since 0 < γ < 1.
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FIGURE 5. Plot of F1(su9, d). For d > 1000, the points
arrange themselves into three groups. The lower group
consists of points with d ≡ 1 (mod 3), while the middle
group has d ≡ 2 (mod 3), and the upper group has
d ≡ 0 (mod 3).

In fact, the proof shows more: if a weaker form of
Conjecture 2.3 holds with any value of the exponent κ

from (2–6), then limd→∞ F1(g, d) = 1.
Let us now discuss the special case g = sun, which has

many interesting features. We have strong evidence that
F1(g, d) → 1 as d increases, but interestingly, the rate of
approach depends strongly on the congruence class of d

mod n. For each congruence class k ∈ Z/nZ, it is visually
clear that the points

Γ(n)
k := {(d,F1(sun, d)) : d ≡ k (mod n)}

lie along a smooth curve γ
(n)
k (d) that approaches 1 as

d → ∞; see Figure 5. This approach is not monotonic; in
fact, numerics suggest that γ

(n)
k undergoes some form of

damped oscillation, and moreover, for sufficiently large
even n, the γk occur in helical pairs, where the name
“helical” is inspired by the geometry of Figure 6. The
helical pairs occur only for n ∈ 2Z; if n is odd, the graph
of F1(sun, d) will contain solitary oscillating curves, as in
Figure 5.

We have conjectured that F1(g, d) → 1 as d increases,
and empirically the convergence is quite rapid in some
cases. This has the unfortunate consequence that most
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FIGURE 6. Plot of F1(su16, d). In the center of the
plot, between 0.85 and 0.95, one can observe the heli-
cal pair of curves γ

(16)
15 and γ

(16)
7 .
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FIGURE 7. The plot shows − log (1 −F1(g, d)) as a
function of d for su16. The coordinate transformation
y → − log(1 − y) allows us to zoom in on the region
very near 1 while still showing the points below this
region. Points at 8 on the vertical axis are actually at
1−e−8 ≈ 0.9997. Every point is part of a helical pair.

of the structure of Figure 6 is hidden in the region
very close to 1. In order to see all points, some co-
ordinate transformation is needed. It is useful to ap-
ply the function − log(1 − x) to the data, thus plotting
− log (1 −F1(g, d)). For example, when this function
equals 10, the data point is at 1−e−10, so this coordinate
transformation enables us to see the intricate structure at
very small separation from 1. The resulting plot confirms
that for the examples studied where n is even, all points
lie in helical pairs. If n is odd, as shown in Figure 8, the
helical pairs do not form.

3.2 Noiseless Subsystems

Let R : g → End(H) be a unitary representation of a
semisimple Lie algebra g on a Hilbert space H. In this
situation, the representation is completely reducible; let
us write

H =
( n1⊕

i=1

V
(i)
1

)
⊕ · · · ⊕

( nr⊕
j=1

V (j)
r

)
, (3–4)
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FIGURE 8. Plot of − log(1 − F1(su27, d)). The lowest
curve is d ≡ 26 (mod 27), the next is d ≡ 25, etc.
However, the congruence class does not always change
by one for neighboring curves!
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where each V
(j)
i is irreducible, and

V
(j)
i

∼= V
(�)
k ⇔ i = k,

where ∼= denotes isomorphism as g-modules. Possibly
conjugating R with a unitary matrix and fixing conve-
nient bases, we may assume that for each x ∈ g, and
for each j, R(x) is represented by the same matrix on
each of the nj isomorphic summands V

(1)
j , . . . , V

(nj)
j . If

this conjugation has been performed, we say that R is
repetitive.

Definition 3.6. A unitary representation R is said to ad-
mit a noiseless subsystem of size N if R is repetitive and
if N = MT (p(R)). In the notation of (3–4), this is the
statement that N =

∑r
j=1 nj , where �n is the multiplicity

vector of the multiset p(R), and r = |p(R)|.

The terminology of Definition 3.6 is borrowed from
quantum information theory; in that application, N

is the dimension of a vector space of quantum states
that will not decohere after interacting with a second
system when the interaction Hamiltonian is a special
type of Hamiltonian determined by R (see [Ritter 05b]
for details on the application of representation theory
to quantum information theory). The idea of noise-
less subsystems, introduced to quantum information
theory by Knill, Laflamme, and Viola [Knill et al. 00],
has had a profound impact. Experimental realiza-
tions were given in [Viola et al. 01, Fortunato et al. 03,
Lidar and Whaley 03], while further theoretical inves-
tigations include [Zanardi 01, Rasetti and Zanardi 00,
Ritter 05a].

The representation R lifts to a unique associative alge-
bra homomorphism R̃ of the universal enveloping algebra
Ug by the universal property

g i ��

R ����������� Ug

R̃
��

End(H)

(3–5)

The action of R̃ is simply to convert the tensor product to
matrix multiplication, i.e., R̃(x ⊗ y) = R(x) · R(y), etc.
The property discussed in Definition 3.6 is equivalent to
the statement that

A := R̃
(Ug

) ∼=
r⊕

i=1

End(Vi) ⊗ Ini
,

where Ini
denotes the ni × ni identity matrix.

Theorem 3.7. The number of g-modules in dimension d

that admit an N -dimensional noiseless subsystem is the
coefficient of tNqd in the power series

Ng, d(t, q) :=
∏
k≥1

(1 − tqk)−ξg(k) ∈ Z[t][[q]] .

3.3 The Distribution of Total Multiplicity

Given any bounded integer-valued invariant I(R) defined
for representations R with dim(R) = d, one can plot a
histogram for I(R), i.e., the statistical distribution of
the likelihood that a (uniformly distributed) random d-
dimensional module R has I(R) equal to each possible
value in its range.

Aside from its physical application to the theory of
quantum decoherence, the total multiplicity function pro-
vides a mathematically interesting integer-valued invari-
ant to probe the internal structure of the set of all d-
dimensional representations of a Lie algebra.

Let fn,d(N) denote the fraction of d-dimensional sun-
modules that admit an N -dimensional noiseless subsys-
tem. By theorem 3.7, one has

fn,d(N) =
Coeff(Ng, d(q), tNqd)

Mod(sun, d)
. (3–6)

Formula (3–6) allows one to plot the resulting his-
tograms. The results are illuminating.

First note from the definition of fd,n(N) that

d∑
N=1

fn,d(N) = 1,

since every representation is counted once. Therefore, we
may view fn,d as the probability distribution function for
a random variable, and if a smooth curve is drawn inter-
polating the points (N, fn,d(N)), then any such curve
must subtend unit area.

Figure 9 shows the exact values of f3,100(N) together
with a fit to the inverted beta statistical distribution, de-
fined by

f (α,β)(t) =
Γ(α + β)
Γ(α)Γ(β)

tα−1(t + 1)−α−β , (3–7)

where α, β > 0. Note that
∫ ∞
0

f (α,β)(x)dx = 1 and
f (α,β)(x) has a maximum at (α − 1)/(β + 1).

Conjecture 3.8. For all n ≥ 2, ∃D such that fn,d is well
approximated by the inverted beta function (3–7) for all
d > D. The accuracy of this approximation increases as
d is increased with n fixed.
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0.06
f3,100

f α , β t t 1 1 t

116.907, 6.09105

FIGURE 9. Points represent exact computations of
f3,100(N), the fraction of su3-representations in di-
mension d = 100 that admit an N -dimensional noise-
less subsystem. The points are fitted to an inverted
beta distribution (3–7) with α ∼ 116.907 and β ∼
6.091.

Since the distribution fn,d is not mathematically
known to take the form (3–7), it is of interest to de-
termine how close the agreement is. It is important that
the points in Figure 9 represent computations of exact
values. One possible measure of accuracy is the average
deviation of the model from the “data,” divided by the
total integral of the data (which is normalized to unity
in this case):

∆f :=
1
d

d∑
i=1

|yi − f(xi)|.

For the example of Figure 9, ∆f = 5.2× 10−4, providing
numerical evidence in favor of Conjecture 3.8.

It is of obvious interest to check that fn,d(x) has the
functional form (3–7) for n > 3. We have verified this
up to at least n = 10, though one may have to increase
d in order to force the points (x, fn,d(x)) to approximate

100 200 300 400 500 600
N

0.002

0.004

0.006

0.008
f10,1000

144.238, 1.63825

FIGURE 10. Points represent exact computations of
f10,1000(N), the fraction of su10-representations in di-
mension d = 1000 that admit an N -dimensional noise-
less subsystem. The points are fitted to an inverted
beta distribution (3–7).

a smooth curve. The relevant points and their approxi-
mating curves are shown in Figures 9 and 10.

4. CONCLUSIONS AND OUTLOOK

The classification of all real and complex simple Lie al-
gebras was complete as of Cartan’s famous 1914 paper
[Cartan 14]; it is refreshing to find a situation in which
these well-understood algebras still hold some mysteries.

We considered the following questions for unitary rep-
resentations of a semisimple Lie algebra g. How many
representations exist, up to equivalence, for fixed dimen-
sion d? How does the number of representations grow
with d? Suppose that we reduce each representation into
irreducibles. What fraction of d-dimensional g-modules
contain a one-dimensional submodule? What is the sta-
tistical distribution function that describes the frequen-
cies of integer-valued invariants of the reduction (such as
the total multiplicity)?

One appreciates how difficult these questions are by
noting that in the case of the simplest nontrivial Lie
algebra g = su2, the questions posed above reduce to
highly nontrivial questions about integer partitions. In
particular, in the n = 2 case, the “how many?” ques-
tion is solved by the Hardy–Ramanujan–Rademacher ex-
plicit formula (see [Andrews 98] for an exposition). The
questions for other Lie algebras are certainly of equal
or greater difficulty, and they have not been solved ex-
plicitly. Even the d � 1 asymptotics (the Hardy–
Ramanujan approximation to the Rademacher formula)
are not known for g 
= su2. For this problem, we offer
Conjecture 2.3 and much supporting numerical evidence.

There is a generating function Mg(q) given by (2–3)
for the exact number of g-modules in dimension d. How-
ever, this generating function is given in terms of ξg(d),
which for most algebras is itself quite a complicated func-
tion. Nonetheless, ξg(d) can be calculated exactly by
computers for d up to a few million using Algorithm 5.3,
which counts Young tableaux. Using Mg(q), we were
able to plot some of the aforementioned statistics. The
statistic F1(sun, d) (the fraction of representations con-
taining a singlet) has a particularly interesting structure,
with the behavior depending strongly on the congruence
class of d mod n. Each congruence class gives a smooth
curve, and these curves form helical pairs when n is even.

In our view, the main open problem is to prove Con-
jecture 2.3, the “Hardy–Ramanujan formula for Lie al-
gebras.” Conjecture 2.3 was verified by the author for
g = sun for all n ≤ 50 and d ≤ 2 × 104. A proof of
Conjecture 2.3 would follow by standard techniques if
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one had good analytic control over ξg(d), since the latter
is the only place where the particular Lie algebra enters
the generating function. Ultimately, however, Conjecture
2.3 is only an asymptotic formula, and will never explain
the helical pairs seen in Figures 6 and 7, since in the
region where the generalized Hardy–Ramanujan formula
applies, the helical structure is already suppressed.

The second main open problem suggested here is the
validity of Conjecture 3.8, which has been verified for
n ≤ 10 in Figures 9 and 10. If Conjecture 3.8 is false, it
would be intriguing to know why the agreement observed
is so good. It would also be interesting to understand the
location of the maximum of fn,d.

5. APPENDIX: THE NUMBER OF IRREDUCIBLE
sun-MODULES FOR GENERAL n

We describe how to efficiently compute the function
ξg(d). For g = su3, a closed-form expression is possible,
and so we discuss that case first, before giving a method
for general sun.

5.1 The su3 Case

Young diagrams for su3 are characterized by row lengths
n1, n2 with n1 ≥ 0 and 0 ≤ n2 ≤ n1. The fundamental
representation is λ = (1, 0), while the adjoint is λ =
(2, 1). The representations (n1, n2) and (n1, n1 − n2) are
conjugate to each other and have the same dimension.
Representations of the form (2n, n) are self-conjugate.

The dimension given by the Weyl character formula
[Fulton and Harris 91] is then

dim(n1, n2) =
1
2
(n1 + 2)(n2 + 1)(n1 − n2 + 1)

=
xy(x − y)

2
,

where x = n1 + 2, and y = n2 + 1.
We now compute the total number Nd of irreducible

representations of su3 with dimension less than d, by
finding, for each fixed n1, the number of n2 that satisfy
dim(n1, n2) ≤ d, and then summing over n1. Expressing
the sum in terms of x = n1 + 2 gives simpler notation.
We give the result as Theorem 5.1, omitting the lengthy
but straightforward proof. For a real number γ ∈ R, we
let �γ� denote the greatest integer less than or equal to
γ. Similarly, �γ� denotes the least integer greater than
or equal to γ.

Theorem 5.1. Let Nd denote the total number of irre-
ducible representations of su3 with dimension less than d.

Then Nd is given exactly by the finite sum

Nd =
1
2
ld(ld−1)−

ld∑
x=kd+1

(�y+(x)�−�y−(x)�+1), (5–1)

where kd := �2 3
√

d�, ld := � 1
2 (1 +

√
1 + 8d)�, and

y±(x) =
x − 2

2
± 1

2

(
x2 − 8d

x

)1/2

.

Corollary 5.2. The exact number ξsu3(d) of irreducible
representations in dimension d is given by

ξsu3(d) = Nd+ 1
2
− Nd− 1

2
. (5–2)

For determining the number of irreducible representa-
tions of dimension d, equations (5–1) and (5–2) provide a
radical computational speedup over the naive algorithm
of enumerating all possible Young diagrams and com-
puting the dimension of each. These equations may be
implemented with an optimized program in languages de-
signed for numerical computation.

5.2 The Case of General n ≥ 3.

Let us now discuss the computation for general n ≥ 3.
Let λ = (n1, n2, . . . , n�) denote a Young tableau with
ni boxes in the ith row. Let dim(λ) denote the di-
mension of the sun-representation corresponding to this
tableau, as computed from the Weyl character formula
(see [Fulton and Harris 91]).

The number ξsun
(d) of irreducible sun-modules in di-

mension d equals the number of (n1, . . . , n�) ∈ N
� that

satisfy the proper inequalities for a Young tableau,

n1 ≥ n2 ≥ · · · ,

and that lie on the affine variety in R
� defined by

dim(λ) = d.

While closed-form expressions for dim(λ) are not known,
we will give one simple, if somewhat naive, computer
algorithm to calculate ξsu(n)(d). While improvements on
this algorithm are possible, in the intended application it
performed well, and the speed bottleneck lies elsewhere.

Algorithm 5.3.

1. Iterate the following from n1 = 1 to ∞ until a return
statement is reached.
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2. Let Sn1 denote the (finite) set of Young tableaux for
sun with n1 boxes in the first row. Let

Ξn1(d) :=
∣∣ {λ ∈ Sn1 : dim(λ) = d} ∣∣ ,

where |A| denotes the cardinality of a set A.

3. If minλ∈Sn1
dim(λ) > d, then return the value

ξsu(n)(d) =
k∑

i=1

Ξi(d).

An implementation of Algorithm 5.3 gave the values
of D(sun) listed in Section 2.1.

ACKNOWLEDGMENTS

I am very grateful to the journal referee for very helpful com-
ments that dramatically improved the paper. I gratefully
acknowledge helpful discussions with Lisa Carbone, Noam
Elkies, and Gregg Zuckerman. I am indebted to Cameron
Freer, Arthur Gaer, and the Harvard Mathematics Depart-
ment for an account on a cluster of fast machines, where
the computations involving large values of n and d were per-
formed.

REFERENCES

[Andrews 98] G. E. Andrews. The Theory of Partitions,
Cambridge Mathematical Library. Cambridge: Cambridge
University Press, 1998.

[Cartan 14] E. Cartan. “Les groupes réels simples finis et con-
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