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We study rational maps of the real or complex projective plane
of degree two or more, concentrating on those that map a genus-
one curve onto itself, necessarily by an expanding map. We
describe relatively simple examples with a rich variety of in-
teresting dynamical behaviors that are perhaps familiar to the
applied dynamics community but not to specialists in several
complex variables. For example, we describe smooth attractors
with riddled or intermingled attracting basins, and we observe
“blowout” bifurcations when the transverse Lyapunov exponent
for the invariant curve changes sign. In the complex case, we
prove that the genus-one curve (a topological torus) can never
have a trapping neighborhood, yet it can have an attracting basin
of large measure (perhaps even of full measure). We also de-
scribe examples in which there appear to be attracting Herman
rings (topological cylinders mapped to themselves with irrational
rotation number) with open attracting basin. Section 8 provides
a more general discussion of Herman rings and Siegel disks for
arbitrary holomorphic maps of P

2(C), and the last section out-
lines open problems.

1. INTRODUCTION

In [Bonifant and Dabija 02], the authors constructed
many examples of rational maps f of the real or complex
projective plane of degree d ≥ 2 with a curve C = f(C) of
genus one as invariant subset. In most of the examples,
these rational maps are holomorphic (that is, everywhere
defined). We will make some use of general rational maps
that are allowed to have finitely many points of inde-
terminacy, but will usually concentrate on holomorphic
maps. The case of a curve of genus one is of particu-
lar interest, since examples of holomorphic or rational
self-maps with an invariant curve of genus zero are easy
to construct, while higher-genus examples cannot exist.
(See Remarks 1.5 and 2.2. Here the “genus” of a real
curve is defined to be the genus of its complexification.)
We will be primarily concerned with the case in which
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the invariant genus-one curve C is nonsingular, necessar-
ily of degree three. In this case we refer to C as an elliptic
curve.

The first seven sections of the present paper study the
extent to which such an invariant genus-one curve C ⊂
P

2 can be an “attractor.” We must distinguish several
possible degrees of attraction.

Definition 1.1. Let A = f(A) be a compact subset of
P2(C) or P2(R).

1. A will be called a measure-theoretic attractor if it
satisfies the following two conditions:

(a) A is a minimal-measure attracting set , that is,
its attracting basin (the union of all orbits that
converge to A) has positive measure, but no
closed proper subset has a basin of positive
measure.1

(b) It contains a dense orbit, and hence cannot be
expressed as the union of strictly smaller closed
invariant sets.

2. A will be called a trapped attractor if it satisfies the
following two conditions:

(a) A has a compact trapping neighborhood N such
that f(N) ⊂ N and A =

⋂
n f

◦n(N).

(b) A contains a dense orbit. (This property is
again required to ensure indecomposability.)

3. A will be called a global attractor if it is a measure-
theoretic attractor with the property that its at-
tracting basin has full measure in the ambient
space P

2.

In both the real and complex cases, we provide exam-
ples in which an elliptic curve C is a measure-theoretic
attractor. In fact, there are examples in which there are
two distinct smooth algebraic curves that are measure-
theoretic attractors and whose attracting basins are thor-
oughly intermingled, so that they have the same topo-
logical closure. We provide an example of a singular
real genus-one quartic that is a trapped attractor, but
we prove that a complex genus-one curve can never be

1See [Milnor 85], and compare the discussion of “Milnor attrac-
tors” in [Kaneko 02, Kaneko 03] or [Ashwin et al. 96]. For other
concepts of attractor, see Remark 5.8, as well as [Auslander et al.
64]. For interesting examples in the real case see [Alexander et al.
92, Kan 94, Maistrenko et al. 98, Ashwin et al. 96, Ott and Som-
merer 94, Ott et al. 93]; and for attractors in P2(C), see [Fornæss
and Sibony 01, Fornæss and Weickert 99, Jonsson and Weickert
00].

a trapped attractor. In fact, it seems likely that the
attracting basin of a complex genus-one curve cannot
have interior points, so that the set of points that are
not attracted to C must be everywhere dense. (Compare
Lemma 4.5, as well as Proposition 6.4.)

We describe examples in which it seems possible that
the genus-one curve is a global attractor, with attracting
basin of full measure. We also provide a family of exam-
ples in which there appears to be a pair of Herman rings
as attractor, with an open neighborhood as attracting
basin.

Definition 1.2. By a Herman ring for a rational map
f of P2(C) we mean a complex one-dimensional annulus
H that is holomorphically embedded in P2(C) and that
maps to itself by an irrational rotation under f or un-
der some iterate of f . Similarly, a Siegel disk will mean
a holomorphically embedded complex one-dimensional
open disk that maps to itself by an irrational rotation
under f or f◦k. Such a ring or disk is maximal if it
cannot be embedded in a larger Herman ring or Siegel
disk. (However, we will usually not assume maximality.)
We will be particularly interested in the case in which all
or part of such a ring or disk is transversally attracting.
(See Section 8.)

1.1 An Outline of the Following Sections

Section 2 describes some basic ideas: the transverse Lya-
punov exponent along an invariant genus-one curve is
a primary indicator of whether the curve is attracting.
Methods for actually computing this transverse expo-
nent will be described in Part 2, the sequel to this paper;
however, the conclusions of these computations are often
quoted below. Section 3 describes the very restrictive
class of rational maps with a first integral. These are
used in Section 4 to construct a three-parameter family
of more-interesting rational maps of degree four.

Section 5 studies eight explicit examples, with conjec-
tured descriptions based on numerical computation. In
the first three examples, randomly chosen orbits always
seem to converge to the Fermat curve x3 + y3 + z3 = 0,
both in the real case with ambient space P

2(R) and in
the complex case with ambient space P

2(C). This sug-
gests that the real or complex Fermat curve may be a
global attractor, with attracting basin of full measure.
(However, such experiments can never be decisive, since
other attractors with basins of extremely small measure
could easily be missed by our random samples.) Exam-
ple 5.5 suggests that a cycle of two Herman rings can be
a measure-theoretic attractor in P

2(C) (perhaps even a
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global attractor) for such a map with invariant genus-one
curve. In Example 5.6, there is an attracting fixed point
at the “north pole,” while the “equator” is an invariant
P

1 that forms a measure-theoretic attractor. In Example
5.7 a typical orbit seems to spend most of its time bounc-
ing between the three coordinate axes, but sometimes es-
caping briefly. This section concludes with examples of
lower-degree maps that have an invariant elliptic curve.
In particular, Example 5.10 describes a degree-3 map of
P2(C) that appears to have the Fermat curve as a global
attractor.

All of these conclusions are empirical, based on nu-
merical computation. However, Sections 6 and 7 provide
cases with explicit proofs. Example 6.2 considers ele-
mentary maps, which carry each line through a preferred
point �0 to a line through �0. It describes examples that
have three different attractors with thoroughly intermin-
gled basins, all of positive measure. (See [Alexander et
al. 92] for similar examples.) Two of these basins are
dense in the Julia set, while the third basin, which is ev-
erywhere dense, is equal to the Fatou set. Note that we
use these terms with their classical meanings:

Definition 1.3. The Fatou set is defined to be the largest
open set on which the sequence of iterates of f forms a
normal family; and the Julia set2 J is defined to be its
complement in P

2(C).

Theorem 7.2 provides examples of singular real quar-
tic curves of genus one that are trapped attractors under
suitable rational maps, while Theorem 7.4 shows that a
complex genus-one curve can never be a trapped attrac-
tor. (We don’t know whether nonsingular real curves can
be trapped attractors.) Section 8 provides a more general
discussion of Herman rings. The transverse Lyapunov ex-
ponent for a (complex one-dimensional) Herman ring or
Siegel disk in P

2(C) provides a strict criterion for attrac-
tion or repulsion. This exponent is no longer constant,
as it was in the case of a genus-one curve, but is rather a
convex piecewise linear function on the ring or disk, con-
stant on each invariant circle. We prove the persistence of
invariant circles in P

2(R) under suitable hypotheses, but
our results are not strong enough to prove the conjecture
that the associated Herman rings in P

2(C) are also per-

2Caution: Other possible definitions of Julia set are sometimes
used in the literature. Compare [Fornæss and Sibony 94, Fornæss
and Sibony 95b, Fornæss and Sibony 95a, Hubbard and Papadopol
94, Sibony 99], and see [Briend and Duval 01, Briend and Duval
99, Guedj 05] for related results.

sistent. Section 9 concludes the discussion by providing
a brief outline of open problems.

We will usually concentrate on the complex case, al-
though many of the figures will necessarily illustrate the
real case.

Remark 1.4. (Computation.) Numerical computations
are extremely delicate near the invariant curve C. Thus
it is essential to work with multiple-precision arithmetic;
even so, numerical simulation of the dynamics must be
understood as a hint of the true state of affairs, rather
than a definitive answer. One surprising aspect of these
maps is that in some cases orbits tend to spend quite a
bit of time extremely close to C even when the transverse
exponent is positive. (Compare Figures 5 and 10.) In a
similar situation, in [Maistrenko et al. 98, p. 2713], the
authors report that in the presence of a small positive
value of the transverse exponent,

. . . a trajectory may spend a very long time
in the neighborhood of the invariant subspace.
From time to time, the repulsive character of
the chaotic set manifests itself, and the trajec-
tory exhibits a burst in which it moves far away
from the invariant subspace, to be reinjected
again into the proximity of this subspace. . . .
[The] positive value of the Lyapunov exponent
applies over long periods of time. For shorter
time intervals, the net contribution. . . may be
negative, and the trajectory is attracted to the
chaotic set.

(Similar behavior was described in [Platt et al. 93].)

Remark 1.5. (Genus zero.) Some examples of holomor-
phic self-maps of P2 with attracting invariant curves of
genus zero are easy to construct. Thus, for the map

(x : y : z) �→ (x : y : z/2),

the line z = 0 is an attracting curve with the region
|z|2 < |x|2 + |y|2 as trapping neighborhood. Similarly, if
(x : y) �→ (f1(x, y) : f2(x, y)) is any rational map of P

1 of
degree d ≥ 2, then the line z = 0 is a trapped attracting
curve for the map (x : y : z) �→ (f1(x, y) : f2(x, y) :
zd). In particular, if we start with a map of P

1 that
has a dense orbit (for example, a Lattès map; compare
Remark 4.8), then we obtain a trapped attractor. (See
also Example 8.1.)
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2. RATIONAL MAPS AND THE TRANSVERSE
LYAPUNOV EXPONENT

Let f be a rational map of P
2 = P

2(C). We can write
f : P

2
�If → P

2, where

f(x : y : z) =
(
f1(x, y, z) : f2(x, y, z) : f3(x, y, z)

)
,

using homogeneous coordinates (x : y : z) (represent-
ing a point (x, y, z) ∈ C

3
�{(0, 0, 0)}, which is well de-

fined only up to multiplication by a nonzero constant).
Here f1, f2, f3 are to be homogeneous polynomials of the
same degree d = deg(f) ≥ 2 with no common factor,
and If , the indeterminacy set, is the finite set consisting
of all common zeros of f1, f2, f3. By definition, d is the
algebraic degree of f . Such a rational map f is called
holomorphic if If is vacuous, so that f is an everywhere-
defined map from P2 to itself. The topological degree of
f as a map from P2 to itself is then equal to d2, while
the algebraic number of fixed points is d2 + d+ 1. How-
ever, if If �= ∅, then there will be fewer fixed points (or
sometimes an entire curve of fixed points), and a generic
point will have fewer than d2 preimages.

Now consider an algebraic curve C ⊂ P
2, defined

by a homogeneous equation Φ(x, y, z) = 0, with degree
deg(C) = deg(Φ) ≥ 1. We will say that a rational map f
is well defined on C if the intersection C ∩If is empty, so
that f is defined and holomorphic throughout a neigh-
borhood of C. It then follows that the image C′ = f(C) is
itself an algebraic curve with deg(C′) ≥ 1. Furthermore,
the degree of the restriction f |C : C → C′ is determined
by the relation3

deg(f) deg(C) = deg(f |C) deg(C′) . (2–1)

Definition 2.1. An algebraic curve C ⊂ P
2 will be called

invariant under f if f is well defined on C and if f(C) = C.
It then follows from (2–1) that the degree of the restric-
tion f |C : C → C is precisely equal to deg(f), the degree
of the equations that define f .

On the other hand, if C contains points of indeter-
minacy, then these remarks break down. For example,
C�(If ∩ C) may consist entirely of fixed points, or may
map to a single point under f . In the case that If ∩ C
is nonempty but the image f

(C�(If ∩ C)
)

is contained
in C, the curve C will be called weakly f-invariant. If C

3Proof outline: A generic line L intersects C′ in deg(C′) distinct
points, none of which is a critical value of f |C . Each of these
has deg(f |C) preimages in C. On the other hand, by Bézout’s
theorem, the curve f−1(L) of degree deg(f) will intersect C in
deg(f) deg(C) points, counted with multiplicity. In fact, for generic
L, each of these intersections will be transverse, and it follows that
deg(f) deg(C) = deg(f |C) deg(C′), as required.

is smooth and weakly invariant, then f extends uniquely
to a holomorphic map from C to itself; but the degree on
C may be smaller than deg(f). (Compare Remarks 4.2
and 6.9 below.)

Remark 2.2. (Curves of higher genus.) As one conse-
quence of this discussion, it follows that a curve of genus
g ≥ 2 can never be invariant under a map of P2 of degree
d ≥ 2. For it follows from the Riemann–Hurwitz formula
(see, for example, [Milnor 06b]) that a curve of genus ≥ 2
does not admit any self-maps of degree ≥ 2.

Returning to the genus-one case, let D(n) = nD(1)
be the divisor class on C obtained by intersecting C with
a generic curve of degree n in P

2. A given holomorphic
map g : C → C of degree d > 0 extends to a rational map
of P

2 that is well defined on C if and only if

g∗D(1) = D(d) .

(See [Bonifant and Dabija 02, Section 2]. For a more
general result see [Fakhruddin 03].)

If d < deg(C), then this extension is unique; but if d ≥
deg(C), then there exists a 3

(
d−deg(C)+2

2

)
-dimensional

family of such extensions, since we can always replace the
associated homogeneous polynomial map F : C

3 → C
3

by F + ΦH, where Φ = 0 is the defining equation for C,
and where H : C

3 → C
3 is any homogeneous map with

deg(H) = d − deg(C). In this case, a generic extension
will be holomorphic (i.e., defined everywhere).

Any compact Riemann surface of genus one is confor-
mally isomorphic to some elliptic curve in P2, which is
uniquely determined up to a conformal automorphism of
P2. (Compare [Griffiths and Harris 94, p. 222].) Alter-
natively, it is conformally isomorphic to some flat torus
C/Ω, where Ω is a lattice that is uniquely determined up
to multiplication by a constant.

One particular virtue of curves of genus one is that the
holomorphic self-maps are very well understood. For any
genus-one curve C ⊂ P

2 there is a holomorphic immersion

υ : C/Ω → C

that is one-to-one except over finitely many singular
points in the case of a singular curve (with degree greater
than three) and is biholomorphic in the case of an elliptic
curve (of degree three). Any holomorphic self-map of C
lifts to a holomorphic self-map of C/Ω, which is neces-
sarily affine, t �→ at+ b.

It follows easily that the normalized Lebesgue measure
on C/Ω pushes forward to a canonical smooth probability
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measure λ on C that is invariant under every nonconstant
self-map. The derivative a of the affine map on C/Ω will
be called the multiplier of f on C. Note that the product
aΩ is a sublattice of finite index in Ω, and that |a|2 is
equal to the index of this sublattice. Equivalently, |a|2 is
the topological degree of f considered as a map from C to
itself. In particular, |a|2 is equal to the algebraic degree
d of f whenever C ⊂ P2 is invariant under the rational
map f . Since we always assume that d ≥ 2, it follows
that this canonical measure λ is ergodic.

In the case of a genus-one curve defined by equations
with real coefficients, the real curve

C(R) = C ∩ P
2(R)

has at most two connected components. If C(R) is
mapped into itself by a rational map f of P

2(R), then
at least one connected component, say C0(R), must map
onto itself under f or under f ◦ f . In this case we have
a uniformizing map R/Z → C0(R) such that f (or f ◦ f)
corresponds to a map on R/Z that is linear with con-
stant integer multiplier. Such an invariant component
C0(R) has a canonical invariant probability measure.

2.1 The Transverse Lyapunov Exponent

Let C be an elliptic curve, invariant under the ratio-
nal map f . We will describe an associated real number
that is conjectured to be negative if and only if C is a
measure-theoretic attractor. To fix ideas we will concen-
trate on the complex case, but constructions in the real
case are completely analogous. The notation TP2|C will
be used for the complex 2-plane bundle of vectors tan-
gent to P2(C) at points of the submanifold C, and the
abbreviated notation T�C will be used for the “trans-
verse” complex line bundle over C having the quotient
vector space

T�(C, p) = T (P2, p)/T (C, p)

as typical fiber. In other words, there is a short exact
sequence 0 → TC → TP

2|C → T�C → 0 of complex
vector bundles over C.

It is sometimes convenient to refer to T�C as the “nor-
mal bundle” of C, although that designation isn’t strictly
correct. If f : P2 → P2 with f(C) ⊂ C, then f induces
linear maps

f ′�(p) : T�(C, p) → T�(C, f(p)), (2–2)

and these linear maps collectively form a fiberwise linear
self-map f ′� : T�C → T�C.

Now choose a metric on this complex normal bundle.
That is, choose a norm ‖�v ‖� on each quotient vector
space T�C that depends continuously on �v, vanishes only
on zero vectors, and satisfies ‖t�v ‖� = |t|‖�v ‖�. Then the
linear map f ′� of (2–2) has an operator norm

‖f ′�(p)‖ = ‖f ′��v ‖�/‖�v ‖�,

which is well defined and satisfies the chain rule. Here
�v can be any nonzero vector in the fiber T�(C, p) over p.
By definition, the transverse Lyapunov exponent along
the invariant elliptic curve C is equal to the rate of expo-
nential growth

LyapC = lim
k→∞

(1/k) log ‖(f◦k)′�(p)‖

for almost every choice of initial point p ∈ C. By the
Birkhoff ergodic theorem, this coincides with the average
value

LyapC(f) =
∫
C

log ‖f ′�(p)‖dλ(p).

Using the fact that the measure λ is invariant under f ,
it is not hard to check directly that this average value is
independent of the choice of metric.

Thus a negative value of LyapC means that under iter-
ation of f , almost any point that is “infinitesimally close”
to C will converge to C. A key role in this case is played
by the stable sets of the various points p ∈ C. By defini-
tion, the stable set of p is the union of all connected sets
containing p for which the diameter of the nth forward
image tends to zero as n tends to ∞.

Many such stable sets are smooth curves. With a
little imagination, some of these are clearly visible in
Figures 3–6, 10, 11, 13, and 14. It is natural to ex-
pect that negative values of LyapC will imply that C
is a measure-theoretic attractor.4 On the other hand,
if LyapC > 0, then almost any “infinitesimally close”
point will be pushed away from C. It seems natural to
conjecture that positive values of LyapC should imply
that the attracting basin of C has measure zero. How-
ever, this seems like a difficult question. (Compare Re-
mark 6.8.) The term blowout bifurcation has been in-
troduced in [Ott and Sommerer 94] for a transition in
which a transverse Lyapunov exponent crosses through
zero. (Compare [Maistrenko et al. 98] or [Ashwin et al.
98].)

4A sketch of a proof is given in [Alexander et al. 92], using a
version of Pesin theory to construct stable manifolds. However, the
details are difficult because of the presence of varieties of critical
points for our maps. We will not try to provide a proof in this
paper, except in one very special case (Theorem 6.3 below).
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3. MAPS WITH FIRST INTEGRAL

By definition, a first integral for a dynamical system
is a nonconstant function that is constant on each or-
bit. In particular, by a first integral for a rational map
f : P2�If → P2 we will mean a nonconstant rational
function η : P2�Iη → P1 with values in the projective
line that satisfies

η
(
f(x : y : z)

)
= η(x : y : z)

whenever both sides are defined. Identifying P
1 with the

Riemann sphere Ĉ = C ∪ {∞}, we can write

η(x : y : z) = Φ(x, y, z)/Ψ(x, y, z) ∈ Ĉ,

where Φ and Ψ are homogeneous polynomials of the same
degree without common factor. Equivalently, the loci
{η = constant} form a pencil of algebraic curves

αΦ(x, y, z) + βΨ(x, y, z) = 0 (3–1)

that are weakly invariant under f (Definition 2.1). In-
tuitively, these weakly invariant curves yield a somewhat
singular “foliation” of the projective plane. The curves
in this pencil intersect only in the finite set Iη consist-
ing of common zeros of Φ and Ψ. (Note that a point
can be contained in two such weakly invariant curves
only if it is either periodic or a point of indeterminacy
for f .) We will be interested in maps with a pencil
of weakly invariant elliptic curves. Such maps are ex-
ceedingly special. For example, we have the following
lemma.
Lemma 3.1. (Maps with first integral.) Let f be a rational
map with first integral such that a generic point of P

2 is
contained in an elliptic curve that is mapped to itself with
degree d ≥ 2. Then:

(i) There are no dense orbits, since every orbit is con-
tained in a weakly invariant curve.

(ii) Periodic points, repelling along this curve, are ev-
erywhere dense. Hence the Fatou set is empty.

(iii) For most values of n there are infinitely many fixed
points of f◦n, with at least one in each weakly in-
variant curve. Hence there must be an entire alge-
braic curve of such points.

(iv) The indeterminacy set If is necessarily nonempty
(even after a finite number of blowups of P

2(C)).

Proof: The last statement follows because there are in-
finitely many points of fixed period n. (Note also that a

generic point has only d preimages, all lying in the weakly
invariant curve that passes through it, rather than the d2

preimages it would have in the holomorphic case.) The
other statements are easily verified.

Here is a class of examples that generalize a construc-
tion due to A. Desboves in 1886 (see [Desboves 86]). For
any smooth cubic curve C ⊂ P2, there is a canonical map
f : C → C called the tangent process , constructed as fol-
lows. For any point p ∈ C, let Lp ⊂ P

2 be the unique line
tangent to C at p. Then the image f(p) is defined by the
equation

Lp ∩ C = {p} ∪ {f(p)}.
This is closely related to the standard additive group
law on C. In fact, if we choose the parametrization υ :
C/Ω → C of Section 2, so that υ(0) is one of the nine flex
points of C, then three distinct points tj of C/Ω will have
sum t1 + t2 + t3 equal to zero if and only if the images
υ(tj) ∈ C are collinear. In our case, since there is a double
intersection at p, we obtain the equation 2t1 + t3 = 0 or
t1 �→ t3 = −2t1. Thus f has multiplier −2 and degree 4.

Now start with two distinct cubic curves in P2, de-
scribed by homogeneous equations Φ(x, y, z) = 0 and
Ψ(x, y, z) = 0. Then there is an entire one-parameter
family of such curves, given by (3–1), that fill out the
projective plane. In fact, any point of P2 that is not a
common zero of Φ and Ψ belongs to a unique curve

Φ/Ψ = constant = −β/α ∈ Ĉ.

If a generic curve in our one-parameter family is
smooth, then a generic point p ∈ P

2 belongs to a unique
smooth curve Cp in the family. Applying the tangent pro-
cess at p, we obtain a well-defined image point f(p) ∈ Cp.
Since p is generic, this extends to a uniquely defined ra-
tional map of P2 that carries each curve of our family
into itself.

Let us specialize to the classical example given by
O. Hesse in 1884 (see [Hesse 44]), with Φ(x, y, z) =
x3 + y3 + z3 and Ψ(x, y, z) = 3xyz. (Compare [Artebani
and Dolgachev 06]. Here the factor 3 has been inserted
for later convenience.) The corresponding foliation of the
real projective plane P

2(R) by the curves of (3–1) is il-
lustrated in Figure 1. This foliation has three kinds of
singularities, all clearly visible in the figure:

(a) There are three singularities for which two of the
three coordinates x, y, z are zero. These all lie in the
real plane P

2(R) ⊂ P
2(C).

(b) There are three singularities in the real plane (or nine
in the complex plane) for which all of these curves
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FIGURE 1. Hesse “foliation” of the real projective
plane by the pencil of elliptic curves Φ/Ψ = κ ∈ Ĉ,
where Φ = x3 + y3 + z3 and Ψ = 3xyz. Here P

2(R) is
represented as a unit 2-sphere with antipodal points
identified. These real curves intersect only at their
three common inflection points, which look dark in
the figure. In the limiting case as κ → ∞, the curve
Φ = κΨ degenerates to the union xyz = 0 of the
three coordinate lines, which intersect at the points
(−1, 0, 0), (0, 1, 0), and (0, 0, 1) respectively near the
left, top, and center of the figure.

intersect at common flex points. Each of these lies
along just one of the three coordinate axes.

(c) There is one real singularity (or nine complex singu-
larities) for which x3 = y3 = z3, represented by the
center in the upper right of Figure 1.

According to Desboves, the tangent processes for these
various curves Φ/Ψ = κ fit together to yield a well-
defined rational map f0 : P

2
�If0 → P

2 given by the
formula

f0(x : y : z) =
(
x(y3 − z3) : y(z3 − x3) : z(x3 − y3)

)
.

(3–2)
The indeterminacy set If0 for this classical Desboves map
consists of the twelve points of types (a) and (c), as listed
above. This particular example has the advantage (as
compared with an arbitrary choice for Φ and Ψ) that
most of the curves in our one-parameter family are non-
singular and contain no points of indeterminacy. The
only exceptions are the curves Φ = κΨ with κ3 = 1,
which are singular at points of indeterminacy of type
(c), and the degenerate case Ψ = 0 (corresponding to
κ = ∞ ∈ Ĉ) with singular indeterminacy points of type

(a). The foliation singularities of type (b), where all of
the curves intersect, are all fixed points at which the value
f0(p) = p is well defined.

For further examples of rational maps of P
2 with first

integral, see Example 5.10 and Remark 6.9.

4. THE DESBOVES FAMILY

Let Φ(x, y, z) be the homogeneous polynomial x3 + y3 +
z3. The Fermat curve F is defined as the locus of zeros
Φ(x, y, z) = 0 in the projective plane P

2. (Here we can
work either over the real numbers or over the complex
numbers.) Most of the examples in Section 5 will belong
to a family of fourth-degree rational maps of P

2 that carry
this Fermat curve into itself, as introduced in [Bonifant
and Dabija 02, Section 6.3]. We will call these Desboves
maps, since they arise from a simple perturbation of the
classical Desboves map f0 of (3–2). Evidently f0 lifts to
a homogeneous polynomial map

F0(x, y, z) =
(
x(y3 − z3) , y(z3 − x3) , z(x3 − y3)

)
from C

3 to itself. Geometrically, f0 is defined by the
property that the line from p to f0(p) is tangent to the el-
liptic curve (x3+y3+z3)/3xyz = κ, which passes through
the point p. Its set of fixed points on each smooth curve
in our family coincides with the intersection

x3 + y3 + z3 = 3xyz = 0,

and can also be identified with the set of points of in-
flection on any one of these curves, or as the set of
points where all of these curves intersect. This map f0

is not everywhere defined: it has a twelve-point set of
points of indeterminacy as described at the end of Sec-
tion 3. However, for any specified curve Φκ(x, y, z) =
x3 + y3 + z3 − 3κxyz = 0 in our family, if we replace F0

by the sum

FL(x, y, z) = F0(x, y, z) + L(x, y, z)Φκ(x, y, z),

where L is any linear map from C
3 to itself, then we

obtain a new map fL of P
2(C) that coincides with f0

on the particular curve Φκ(x, y, z) = 0. For a generic
choice of L, the resulting map fL of P

2(C) is well defined
everywhere.

To simplify the discussion, we will restrict attention
to the case κ = 0, taking

Φ(x, y, z) = Φ0(x, y, z) = x3 + y3 + z3,

and we will take a linear map L that is described by a
diagonal matrix,

L(x, y, z) = (ax, by, cz).
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Definition 4.1. (Desboves maps.) The resulting 3-
parameter family of maps of the real or complex pro-
jective plane will be called the family of Desboves maps.
These maps f = fa,b,c are given by the formula

f(x : y : z) = (4–1)(
x(y3 − z3 + aΦ) : y(z3 − x3 + bΦ) : z(x3 − y3 + cΦ)

)
,

where a, b, c are the parameters. Each such f maps the
Fermat curve F , defined by the equation Φ(x, y, z) = 0,
into itself. Furthermore, each f maps each of the coordi-
nate lines x = 0, y = 0, z = 0 into itself.

For special values of the parameters, the map f may
have points of indeterminacy (but never on the curve).
However, for a generic choice of parameters, f is every-
where defined. More explicitly, it is not hard to see that
f is an everywhere-defined holomorphic map from P

2 to
itself if and only if we avoid a union of seven hyperplanes
in the space C

3 of parameters, defined by the equation

abc(a+ b+ c)(a+ 1 − b)(b+ 1 − c)(c+ 1 − a) = 0.

Remark 4.2. (Fixed points.) Generically, each complex
Desboves map has 21 distinct fixed points (nine with
xyz �= 0, nine on the Fermat curve with just one of the
coordinates equal to zero, and three with two of the co-
ordinates equal to zero). However, there are two kinds of
exception:

(i) If the product abc (a+ b+ c) is zero, then one or
more of the fixed points will be replaced by an in-
determinacy point.

(ii) If one or more of the differences b−a, c−b, a−c, is
equal to +1, then there is not only an indeterminacy
point but also an entire line of fixed points.

In any case, there are exactly nine fixed points on the
complex Fermat curve F , forming the intersection of F
with the locus xyz = 0. Consider, for example, the three
points (0 : 3

√−1 : 1) obtained by intersecting the curve
F with the invariant line x = 0. If we introduce the
coordinate Y = y/z ∈ Ĉ on this line, then the restriction
of the map f to this line is a rational map given by the
formula

Y �→ Y
b Y 3 + (b+ 1)
(c− 1)Y 3 + c

,

with fixed points at Y = 0, at Y = ∞, and at the three
points Y 3 = −1. A brief computation shows that the
derivatives of this one-variable map at these five fixed
points are respectively

(b+ 1)/c, (c− 1)/b, 3(c− b) − 2 , (4–2)

where the last, corresponding to intersections of x = 0
with the Fermat curve, is counted three times. (Some-
thing very exceptional occurs in the special case c = b+1:
all five derivatives are +1, and in fact, every point on the
line x = 0 is fixed under f .) Similarly, permuting the co-
ordinates cyclically, we obtain corresponding formulas for
the invariant lines y = 0 and z = 0.

Remark 4.3. (The attracting basin.) According to [Boni-
fant and Dabija 02, Theorem 5.4], if C = f(C) is any
invariant elliptic curve, then the set of iterated preim-
ages of any point of C is everywhere dense in the Julia
set J(f). (Observe that since C is elliptic, the set of
preimages of any point of C is everywhere dense in C. It
follows easily that the closure of the set of all preimages
of a point in C does not depend on which point we start
with.)

It seems likely that the following further statement is
true:

Conjecture 4.4. The entire attracting basin B(C) of an
invariant elliptic curve C consisting of all points whose
forward orbits converge to C is contained in the Julia set
J(f). Since iterated preimages of points in C are certainly
in B(C), this implies that the closure B(C) is precisely
equal to J(f).

An immediate consequence would be the following.
(For a special case, see Proposition 6.4.)

Lemma 4.5. (No interior points?) If Conjecture 4.4 is
true, then for any rational map fa,b,c in the Desboves
family, the attracting basin B(F) has no interior points.
In other words, the complementary set P

2(C)�B(F),
consisting of points that are not attracted to F , is ev-
erywhere dense in P

2(C).

Proof: We must show that every point of B = B(F) can
be approximated arbitrarily closely by points outside of
B. Assuming the conjecture, it suffices to prove that ev-
ery point of the Julia set J(fa,b,c) can be approximated
by points outside of B. Since the average of the differ-
ences c− b, b− a, and a− c is zero, it follows from (4–2)
that the average of the transverse derivatives at the fixed
points of f in F is −2. Hence at least one of these fixed
points is strictly repelling.

Suppose, for example, that the points (0 : 3
√−1 : 1)

are repelling within the line x = 0. Then the intersection
of the basin B with this line consists of only countably
many iterated preimages of these points. Therefore there
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are points (0 : y : z) arbitrarily close to (0 : −1 : 1) that
are not in this basin. Since every point of J(fa,b,c) can
be approximated by iterated preimages of (0 : −1 : 1), it
can also be approximated by iterated preimages of such
points (0 : y : z), as required.

On the other hand, some of these fixed points on F
may be attracting in the transverse direction. For exam-
ple, if |3(c−b)−2| < 1, then each of the three fixed points
where F intersects the line x = 0 is a saddle, repelling
along the Fermat curve, but attracting along this line,
which intersects it transversally. The stable manifold for
such a saddle point can be identified with its immediate
attracting basin within the line x = 0. It is not hard to
check that this stable manifold is contained in the Julia
set. Hence its iterated preimages must be dense in the
Julia set.

The attraction within this stable manifold will be par-
ticularly strong if c−b = 2

3 , so that the transverse deriva-
tive 3(c−b)−2 is zero, or in other words, so that the asso-
ciated fixed point is transversally superattracting. Simi-
larly, the transverse derivative at the three points where
y = 0 (or where z = 0) is zero if and only if a− c = 2

3 (or
respectively b− a = 2

3 ).

Definition 4.6. (The two-thirds family.) We will say that
f belongs to the two-thirds family if two of the three
differences b−a, c− b, and a− c are equal to 2

3 , or equiv-
alently, if two-thirds of the fixed points on the Fermat
curve are transversally superattracting. (There are nine
such fixed points in the complex case and three in the
real case.) The average of the values of the transverse
derivative at these fixed points is always −2, so if two
out of the three values are zero, then it follows that the
remaining value is −6, rather strongly repelling. To fix
ideas, let us suppose that

(a, b, c) =
(
b− 2

3
, b, b+

2
3

)
,

so that the transverse derivative is zero when x = 0 or
z = 0, and −6 when y = 0. The associated transverse
Lyapunov exponent, plotted as a function of b, is shown
in Figure 2. In the real case, this transverse exponent is
negative (that is, attracting) if and only if |b| < 0.901 . . . ,
while in the complex case it is negative if and only if
b < 0.274 . . . . See Part 2 of this paper for such com-
putations. (It seems empirically that the real Fermat
curve is strictly “more attracting” than the correspond-
ing complex Fermat curve except in a few isolated cases.
However, we do not have any explanation for this phe-
nomenon.)

FIGURE 2. Graph of the transverse exponents along
the real and complex Fermat curves as functions
of the middle parameter b for the “two-thirds fam-
ily” of Definition 4.6, with Desboves parameters(
b − 2

3
, b, b + 2

3

)
. The lower graph represents the

real case, with a transverse exponent that is strictly
smaller (more attracting). In both cases the function
is even, with a sharp minimum at b = ± 1

9
. The box en-

closes the region −1 ≤ b ≤ 1 with −2.1 ≤ LyapF ≤ 1.

Remark 4.7. (Symmetries.) We conclude this section with
some technical remarks. If we permute the three param-
eters (a, b, c) cyclically, then clearly we obtain a new map
fb,c,a that is holomorphically conjugate to fa,b,c. We
can generalize this construction very slightly by allow-
ing odd permutations also, but changing signs. If S3

is the symmetric group consisting of all permutations
i �→ σi of the three symbols {1, 2, 3}, then S3 acts as
a group of rotations of R

3 or C
3 as follows: For each

σ ∈ S3, consider the sign-corrected permutation of coordi-
nates σ̂(z1, z2, z3) = sgn(σ)

(
zσ1 , zσ2 , zσ3

)
. Then a brief

computation shows that the homogeneous map Fa,b,c of
R

3 or C
3 is linearly conjugate to the map

F
σ̂(a,b,c)

= σ̂ ◦ Fa,b,c ◦ σ̂−1.

It follows that the associated map fa,b,c of the projective
plane is holomorphically conjugate to the map f

σ̂(a,b,c)
.

One can check that these are the only holomorphic conju-
gacies between Desboves maps (for example, by making
use of the eigenvalues of the first derivative of f at the
21 fixed points).
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In the complex case, note also that each Desboves map
f commutes with a finite group G ∼= Z/3 × Z/3 of sym-
metries of the projective plane. In fact, f ◦ g = g ◦ f for
each g in the group G consisting of all automorphisms

g(x : y : z) = (αx : βy : z) with α3 = β3 = 1.

Remark 4.8. (A closely related map.) It is sometimes
convenient to eliminate these last symmetries by passing
to the quotient space P

2/G, which is isomorphic to P
2

itself but with coordinates (x3 : y3 : z3). If we introduce
variables ξ = x3, η = y3, ζ = z3, and set ϕ = ξ + η + ζ,
then the map (x : y : z) �→ (ξ : η : ζ) transforms the Fer-
mat curve F to a line ϕ = 0. Under this transformation,
the Desboves map (4–1) is semiconjugate to a different
rational map

(ξ : η : ζ)

�→
(
ξ(η − ζ + aϕ)3 : η(ζ − ξ + bϕ)3 : ζ(ξ − η + cϕ)3)

)
,

also of degree four. Evidently this new map carries the
line ϕ = 0 into itself by a Lattès map, that is, the image
of a rigid torus map under a holomorphic semiconjugacy.
(Compare [Milnor 06a].)

5. EMPIRICAL EXAMPLES

This section will provide empirical discussions of six ex-
amples from the Desboves family of degree-four maps, as
described in Section 4, plus two examples of lower-degree
maps. (Our first example has points of indeterminacy;
however, nearby holomorphic maps exhibit very similar
behavior.) Four of the six examples from the Desboves
family belong to the “two-thirds” subfamily of Defini-
tion 4.6.

Note 5.1. (Pictorial conventions.) Each of the color
pictures that follow shows the real projective plane rep-
resented as a unit 2-sphere with antipodal points identi-
fied, oriented as in Figure 1. Thus the x-axis, pointing to
the right, and the y-axis, pointing almost vertically, are
close to the plane of the paper, while the z-axis points
up out of the paper. (Because of this choice of orien-
tation, we will sometimes refer to the coordinate point
(0 : 1 : 0) near the top of the picture as the north pole.)
The Fermat curve x3 +y3 +z3 = 0 is traced out in white.

In Figures 3 and 4, other points are colored from red
to blue according as their orbits converge more rapidly
or more slowly toward this Fermat curve, and subsequent
figures use various modifications of this scheme. As an

example, in Figure 3 the equator y = 0 shows up as a
blue circle, since orbits in the invariant line y = 0 cannot
converge to F ; hence orbits near this line cannot converge
rapidly to F .

In the complex case, we cannot illustrate the map di-
rectly. However, the graphs to the right of Figures 3,
4, 5, 6, 10, and 11 describe one more-or-less-typical ran-
domly chosen orbit for the associated complex map. Here
each orbit point (x : y : z) has been normalized so that
|x|2 + |y|2 + |z|2 = 1. The horizontal coordinate measures
the number of iterations, while the vertical coordinates
in each of the four stacked graphs represent respectively
|x|2, |y|2, |z|2, and |Φ(x, y, z)|.

Example 5.2. (The Fermat curve as a global attractor?) If
we choose Desboves parameters

(
b− 2

3 , b, b+ 2
3

)
with |b|

small, then the transverse Lyapunov exponent is negative
in both the real and complex cases. Numerical computa-
tion suggests that nearly all orbits actually converge to
the Fermat curve (perhaps even all but a set of measure
zero?).

As an example, consider the case (a, b, c) =
(− 2

3 , 0,
2
3

)
.

Using the Gnu multiple-precision arithmetic package,
and starting with several thousand randomly chosen
points in the real or complex projective plane, we found
that all orbits land on the curve, to the specified accu-
racy, within a few hundred iterations. Of course, even if
we could work with infinite-precision arithmetic, such a
computation could not prove that a given orbit converges
to the curve, and also could not rule out the possibility
of other attractors with extremely small basins.

In fact, it seems possible that periodic attractors with
high period and small basin exist for a dense open set
of parameter values. This case b = 0 is rather special in
one way, since the map f−2/3,0,2/3 has points of indeter-
minacy, namely those points where (x3 : y3 : z3) is equal
to either (1 : 7 : 1) or (0 : 1 : 0).

However, the behavior for small nonzero values of b
seems qualitatively similar. In fact, according to Figure
2, which graphs the real and complex transverse Lya-
punov exponents, the most attracting case within the
two-thirds family occurs for b = ± 1

9 , which we discuss
next.

Example 5.3. (An even stronger attractor.) The case
b = ± 1

9 yields an even more strongly attracting Fer-
mat curve, as illustrated in Figure 3. The transverse
derivative has a simple zero at the point (−1, 1, 0)/

√
2,

to the upper left of the figure, and a double zero at the
point (0,−1, 1)/

√
2, near the bottom. A numerical search
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suggests that this is the most attracting example within
the real or complex Desboves family, in the sense that
the transverse exponent takes its most negative value of
−2.0404 . . . for the real map and −0.6801 . . . for the com-
plex map. Certainly these are the extreme values for real
parameters within the two-thirds family, as graphed in
Figure 2.

Example 5.4. (Another global attractor?) If we take
Desboves coordinates

(
1
3 , 0,− 1

3

)
, then again the Fermat

curve seems to attract nearly all orbits. Compare Figure
4. Here the transverse derivative has a double zero at
the fixed point (−1 : 0 : 1) in the middle of the large red
region. It is a curious fact that the transverse exponents
in this case are precisely the same as those for Example
5.2, namely −1.456 . . . for the real map and −0.549 . . .
for the complex map.

Example 5.5. (A cycle of Herman rings?) Now sup-
pose that we choose Desboves parameters in the two-
thirds family, with (a, b, c) equal to (− 1

5 ,
7

15 ,
17
15 ). Here

the transverse exponent is −0.509 . . . for the real map,
but +0.402 . . . for the complex map. Thus we can expect
the Fermat curve to be an attractor in the real case, but
not in the complex case. The left half of Figure 5 illus-
trates the dynamics in the real case. Numerical compu-
tation suggests that some 83% of the orbits converge to
the Fermat curve, while the remaining 17% converge to a
pair of small circles. The attractive basin for this pair of
circles is conjecturally a dense open subset of P2(R). The
map f = fa,b,c carries each of these circles to the other,
reversing orientation, while f ◦ f carries each circle to
itself with rotation number ±0.18587 . . . .

Of course, such a phenomenon can be expected to be
highly sensitive to small changes in the parameters—we
cannot really distinguish between a rotation circle with
irrational rotation number and one with a rational rota-
tion number that has very large denominator (although
the latter would necessarily contain a periodic orbit).

In the complex case, the Fermat curve is no longer an
attractor. In fact, almost all orbits seem eventually to
land near this cycle of circles and then to behave just
like an orbit on a pair of nearby circles with the same
rotation number. This suggests that most orbits con-
verge to a cycle of two Herman rings in P

2(C), with the
pair of real circles as their central circles. A completely
equivalent conjecture would be that these circles are real
analytic, or that they are contained in the Fatou set. (For
a more detailed discussion of Herman rings in P2(C), see
Section 8.)

Again we must be cautious, since such a phenomenon
must be highly sensitive to perturbations; but the empir-
ical evidence certainly suggests the existence of a cycle of
two Fatou components that could only be the immediate
basins for attracting Herman rings.5 (The convergence
is very slow, and there may be other much more chaotic
attractors.)

These attracting circles persist under small perturba-
tions of the parameters. (Compare Theorem 8.12.) A
plot of the rotation number for these circles as a func-
tion of the parameter c, keeping a and b fixed, is shown
in Figure 7. If these circles remain real analytic, un-
der suitable conditions on the rotation number, then we
would have a cycle of two Herman rings for many nearby
maps. It seems empirically that this is true, but we have
been unable to prove it. (Compare Remark 8.14.)

Example 5.6. (The line z = 0 as a measure-theoretic
attractor?) See Figure 6. For the parameter values
(a, b, c) = (−1.4,−0.8, 1.4), the Lyapunov exponent turns
out to be strictly positive, equal to 0.247 . . . in the real
case and to 0.352 . . . in the complex case. The invariant
Fermat curve does not seem to play any significant dy-
namical role in this case. On the other hand, the equator
y = 0 seems to be at least a measure-theoretic attractor,
and there is also an attracting fixed point at the north
pole (0 : 1 : 0). In fact, many randomly chosen real or
complex orbits converge to the north pole (0 : 1 : 0), but
even more seem to converge to the equator.

Example 5.7. (A composite statistical attractor?) For the
real or complex map with Desboves parameters

(
1
3 , 1,

5
3

)
,

as illustrated in Figure 10 for the real case, typical orbits
seem to spend a great deal of time quite close to the
Fermat curve F even though the transverse exponent is
strictly positive, equal to 0.081 . . . in the real case and to
1.032 . . . in the complex case. This curve by itself is only
a “transient attractor,” since nearby orbits often seem
to be attracted but eventually get kicked away from it.
However, the union

A = {x = 0} ∪ {y = 0} ∪ {z = 0} ∪ F ,

or in other words, the variety xyzΦ(x, y, z) = 0, does
seem to behave like an attractor, at least in a statistical

5These conjectured Herman rings cannot extend to Siegel disks.
For if there were such an extension, then this disk together with
its complex conjugate would yield an immersed curve C of genus
zero, mapped to itself by an irrational rotation, so that degf |C = 1.
Such a curve would be algebraic by Chow’s theorem [Chow 49]; but
this situation is impossible by the discussion in Definition 2.1.
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FIGURE 3. (See Example 5.3.) On the left: dynamics on the real projective plane for the Desboves map in the two-thirds
family with parameters (a, b, c) = (− 5

9
, 1

9
, 7

9
). The sphere is oriented as in Figure 1. On the right: plot of |x|2, |y|2,

|z|2, and |Φ| as functions of the number of iterations for a typical randomly chosen complex orbit. Here each orbit point
(x : y : z) has been normalized so that |x|2 + |y|2 + |z|2 = 1. In this run, it took 23 iterations to come close enough to the
Fermat curve so that |Φ| appears to be zero on the graph.

FIGURE 4. (See Example 5.4.) For the map with Desboves parameters ( 1
3
, 0,− 1

3
), the Fermat curve again seems to

attract all or nearly all orbits in both the real and complex cases.
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FIGURE 5. (See Example 5.5.) Dynamics for the parameters (− 1
5
, 7

15
, 17

15
). Left: In the real case there are two attractors.

The basin of the Fermat curve is colored as in Figures 3, 4. However, the two small white circles also form an attractor.
The corresponding basin is shown in dark gray. Right: A typical randomly chosen orbit for the complex map. This orbit
often comes very close to the Fermat curve during the first four thousand iterations but then seems to converge to a cycle
of two Herman rings.

FIGURE 6. (See Example 5.6.) Plots for the map with Desboves parameters (−1.4 , −.8 , 1.4). Here the coloring is as
in the previous figures except that it describes convergence to the “equator” y = 0, rather than to the invariant Fermat
curve. For this map, the “north pole” (0 : 1 : 0) also attracts many orbits.
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1.12 1.13 1.14

.17

.18

.19

.20

FIGURE 7. An empirical plot of the rotation number for the pair of attracting circles in P
2(R) as a function of the

parameter c in Example 5.5, keeping a and b fixed. Presumably, for each rational value for the rotation number there
corresponds an entire plateau of c values for which the pair of circles contains an attracting periodic orbit. Only the
plateaus of height 1

5
and 1

6
are visible in this figure; but with higher resolution, tiny blips at height 3

16
and 2

11
would also

be visible. As c decreases past 1.12, the attracting circles shrink to points, while as c increases past 1.144, they expand
until they break up upon hitting the boundary of their attracting basin. It is conjectured that whenever the rotation
number is Diophantine, the corresponding pair of circles in P

2(R) are contained in a pair of Herman rings in P
2(C).

sense. (Compare Remark 5.8.) Typical orbits seem to
spend most of the time extremely close to this variety.

However, they do not stay in any one of its four irre-
ducible components, but sometimes jump from one com-
ponent to another. Furthermore, it seems likely that typ-
ical orbits will escape completely from a neighborhood of
this variety, very infrequently but infinitely often.

Here is a more detailed description, as illustrated in
Figure 8. To fix ideas, we will refer to the real case; but
the complex case is not essentially different. A randomly
chosen orbit seems to spend most of the time either wan-
dering chaotically very close to the Fermat curve or else
remaining almost stationary, very close to one of the four
saddle fixed points (the black dots in Figure 8).

However, such an orbit does not seem to stay close to
any one of the four components of this variety forever.
For example, it is likely to escape from the neighborhood
of the Fermat curve F when it comes very close to the
strongly repelling point F ∩ {y = 0}, which is circled in
Figure 8. It will then shadow the coordinate line y = 0,
jumping quickly to a small neighborhood of the saddle
point x = y = 0 and then slowly coming closer to this
point for thousands of iterates. Again it must eventu-

ally escape, now shadowing the line x = 0 and jumping
quickly either toward the saddle point F ∩ {x = 0} or
toward the saddle point x = z = 0.

FIGURE 8. Schematic diagram illustrating Example 5.7.
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In either case it again spends a long time approaching
this saddle point, but then escapes. In the first case, it
is now very close to the Fermat curve and shadows it for
a long time with a highly chaotic orbit before starting
the cycle again. In the second case, in which it escapes
near the saddle point x = z = 0, it then shadows the line
z = 0 as it quickly converges toward the saddle point
F ∩ {z = 0}, where it again remains for a long time
before repeating the cycle.

Remark 5.8. (Statistical attractors.) Such examples have
led authors such as those of [Gorodetski and Ilashenko 96]
and [Ashwin et al. 98] to suggest modified definitions of
attractor, emphasizing not the omega-limit set of a typi-
cal orbit, but rather its asymptotic probability distribu-
tion. As a typical example, think of a dynamical system
in the plane in which orbits spiral out toward a limit cy-
cle Γ that consists of a homoclinic loop, beginning and
ending at a fixed point p. Then the unique “measure-
theoretic attracting set” for the region inside the loop
is the entire loop Γ. No orbit starting inside actually
converges to the point p. However, every orbit start-
ing inside the loop spends most of its time apparently
converging to p, with a statistically insignificant (but in-
finite) collection of exceptional times. Thus Gorodetski
and Ilyashenko, or Ashwin, Aston, and Nicol, describe
this point p as a “statistical attractor.” Here is a more
formal definition, which makes sense in any smooth com-
pact manifold (provided with a metric for convenience).
By definition, an orbit {xn} converges toward a compact
set A if the distance d(xn, A) tend to zero as n→ ∞.

Definition 5.9. The orbit x0 �→ x1 �→ · · · converges sta-
tistically toward A if the time average of distances tends
to zero:6

1
n

(
d(x0, A) + d(x1, A) + · · · + d(xn−1, A)

) → 0

as n→ ∞.

Thus occasional orbit points are allowed to wander
away from A, as long as most of them converge. Now
given a preferred measure on the ambient space, we can
describe A as a (minimal) statistical attractor if the union
of orbits that converge statistically to A has positive mea-
sure, and if no smaller compact set has this property. In
particular, in Example 5.7, we conjecture that the Fermat

6Since the ambient space is compact, an equivalent condi-
tion is that every point q �∈ A has a neighborhood U such that

(1/n)
(
χU (x0) + χU (x1) + · · · + χU (xn−1)

)
→ 0 as n → ∞, where

χU : P2 → {0, 1} is the characteristic function of U .

FIGURE 9. A plot of 200 iterations with a random
start for the degree-three map of Example 5.10, taking
parameters (a, b, c) = (0, γ,−1)/2.

curve, together with the two isolated points where x = 0
and yz = 0, forms a statistical attractor (and perhaps
even a “global” one, statistically attracting everything
outside of a set of measure zero).

Example 5.10. (A family of degree-three maps.) In the
case of a map of degree three (or indeed for any degree
that is not a perfect square), the multiplier on an invari-
ant elliptic curve cannot be a real number. Hence we can
consider only the complex case; we cannot describe both
the map and the invariant curve by equations with real
coefficients.

Here is one explicit family of complex degree-three
maps that send the Fermat curve F into itself [Bonifant
and Dabija 02, p. 17]. As in Section 4, we start with a
rather degenerate self-map of P2. Let

H0(x, y, z) =
(
xyz, y3 − γz3, z3 − γy3

)
,

where γ is the cube root of unity (−1+i
√

3)/2 and where
3 = 3(γ2 − γ). (For example,  = 1 − γ or  = i

√
3.)

Then the associated map

h0(x : y : z) =
(
xyz : y3 − γz3 : z3 − γy3

)
of projective space has a first integral Φ/Ψ, where
Φ(x, y, z) = x3 + y3 + z3 and Ψ(x, y, z) = x3. In fact,
a brief computation shows that

Φ(H0(x, y, z))/Φ(x, y, z) = Ψ(H0(x, y, z))/Ψ(x, y, z)

= 3y3z3 ,
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and it follows immediately that the rational function Φ/Ψ
is invariant under h0. In particular, the Fermat curve
defined by Φ = 0 is h0-invariant. However, in contrast to
the Desboves case of Section 4, the various elliptic curves
Φ/Ψ = constant ∈ C�{1} are all mutually isomorphic.
(A similar example will be described in Remark 6.9.) The
map h0 has just one point of indeterminacy, namely (1 :
0 : 0), and this point is not on F .

Like all maps of P2 with first integral, h0 is not very
interesting as a dynamical system (see Lemma 3.1), but
it does embed in a family of more-interesting maps. Con-
sider the 3-parameter family of homogeneous polynomi-
als

H = Ha,b,c = H0 + (a, b, c)Φ.

Each of the associated maps ha,b,c of the projective plane
carries the Fermat curve F to itself with degree three and
multiplier γ. There is only one fixed point of ha,b,c on
F , namely (0 : −1 : 1).

First consider the one-complex-parameter subfamily
of degree-three maps satisfying the conditions

a = b+ γc = 0,

with x = 0 as invariant line. (The use of these spe-
cial parameters simplifies the computation of the trans-
verse Lyapunov exponent.) When b = γ/2, the trans-
verse Lyapunov exponent takes its most negative value of
−1.647918. Thus F appears to be more strongly attract-
ing under this map than under any of the complex Des-
boves maps, where the most negative transverse exponent
was −0.6801 . . . . (See Example 5.3; such computations
will be explained in Part 2 of this paper.) In Figure 9, we
illustrate the extraordinary attracting properties of the
Fermat curve for this map. Most randomly chosen points
seemed to hit the Fermat curve, up to the resolution of
the graph, after only six or so iterations. (Compare with
the right-hand sides of Figures 3, 4, and 11.)

It is also interesting to consider the subfamily consist-
ing of maps ha,0,0 with b = c = 0. These are “elementary
maps” (Definition 6.1). For this particular elementary
family, we suspect on the basis of computer experiments
that the transverse exponent is always nonnegative, so
that the Fermat curve is never an attractor.

Example 5.11. (The degree-two case.) According to
[Bonifant and Dabija 02, Proposition 6.6], up to holomor-
phic conjugacy, there are exactly 20 distinct examples of
holomorphic self-maps of P

2(C) of algebraic degree two
with an invariant elliptic curve (or 10 distinct examples
up to complex conjugacy). See Example 6.9 of their pa-
per for a detailed study of one of these degree-two maps.

(We have not tried to study the other cases.) In this
example, with multiplier equal to i

√
2, there are five at-

tracting cycles, with common basin boundary equal to
the Julia set. Four of these are attracting fixed points,
and the fifth is an attracting period-2 orbit. Empirically,
randomly chosen orbits for this example always seem to
converge to one of these five cycles.

6. INTERMINGLED BASINS

Finally, we come to examples in which we can provide
complete proofs.

Definition 6.1. A rational self-map f of P2 with deg(f) >
1 is called elementary with center �0 if it leaves invariant
the pencil of lines passing through �0, i.e., every line
through �0 maps to a line through �0.

Elementary maps are easier to analyze than more-
general rational maps, since we can separate the variables
to simplify the discussion.

Example 6.2. (Elementary Desboves maps.) In particular,
consider a Desboves map f = fa,b,c as in formula (4–1)
of Section 4, where the parameters a, b, c satisfy a = −1
and c = 1. Then the image f(x : y : z) = (x′ : y′ : z′)
satisfies

x′ = x(−x3 − 2z3) and z′ = z(2x3 + z3).

It follows that each line (x : z) = constant through the
coordinate point �0 = (0 : 1 : 0) maps to another line
(x′ : z′) = constant′ through �0. If we set X = x/z and
X ′ = x′/z′, then the correspondence

f̂ : X �→ X ′ = −X X3 + 2
2X3 + 1

(6–1)

does not depend on the choice of b. This rational map
(6–1) is described as a Lattès map, since it is the image
of a rigid map on the torus F ∼= C/Ω under the semicon-
jugacy (x : y : z) �→ (x : z) of degree three. (In fact, f̂
is conformally conjugate to the Lattès map described in
Remark 4.8.) It has an ergodic invariant measure that
is smooth except at its critical values, the cube roots of
−1. Over the real numbers, f̂ is a covering map from the
circle P

1(R) to itself with topological degree −2.

Over either the real or complex numbers, if we think
of P

2
�{�0} as a (real or complex) line bundle over the
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FIGURE 10. (See Example 5.7.) On the left: Corresponding figure for the real Desboves map with parameters ( 1
3
, 1, 5

3
),

again describing convergence to (or at least coming close to) the Fermat curve. On the right: One randomly chosen orbit
for the complex map through 10000 iterations.

FIGURE 11. (See Remark 6.6.) Plots for the “elementary map” with parameters (a, b, c) =
(
−1, 1

3
, 1

)
. In this case, every

great circle through the north pole (0 : 1 : 0) maps to a great circle through the north pole. There are three attractors:
the Fermat curve F , the equator {y = 0}, and the north pole, each marked in white. The corresponding attracting basins
are colored red, blue, and gray respectively. (However, the closely intermingled blue and red yield a purple effect.) The
graphs on the right show an orbit that nearly converges to {y = 0} but then escapes toward F .
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FIGURE 12. On the left: plot of the transverse Lyapunov exponent along the Fermat curve as a function of the parameter
b for the elementary family of Example 6.2, with Desboves parameters (−1, b, 1). On the right: corresponding plot for
the transverse exponent along the line y = 0. In both cases, the graph for the complex map lies above the graph for the
real map.

projective line P
1 with projection Π : (x : y : z) �→ (x : z),

then we have the commutative diagram

P
2
�{�0} f→ P

2
�{�0}

Π ↓ Π ↓
P1 f̂→ P1

where f carries each fiber into a fiber by a polynomial
map, with coefficients that vary with the fiber. As an
example, for the two invariant fibers x = 0 and z = 0, we
get the maps

(0 : y : 1) �→ (0 : by4 + (1 + b)y : 1),

(−1 : y : 0) �→ (−1 : by4 + (1 − b)y : 0),

respectively. If we exclude the degenerate case b = 0
(compare Remark 6.9), then these polynomial maps all
have degree four. Furthermore, the center point �0 =
(0 : 1 : 0) is superattracting, and serves as the point at
infinity for each one. In the real case, these polynomial
maps are all unimodal, while in the complex case they
all have 120◦ rotational symmetry.

Since the rational map f̂ of the base space has no at-
tracting cycles, it follows that an elementary map with in-
variant elliptic curve can have no attracting cycles other
than its center point.

In the special case of an elementary map, we can give a
relatively easy proof that a negative transverse exponent
for any invariant elliptic curve implies that this curve is
a measure-theoretic attractor. Furthermore, in the case
of an elementary Desboves map f we get a surprising

bonus: The invariant line {y = 0} is also carried into it-

self, and the resulting self-map is conjugate to the Lattès

map of (6–1). Hence it also has a canonical ergodic in-

variant measure and a well-defined transverse Lyapunov

exponent.

According to Figure 12, for real values of b, both of
these transverse exponents are strictly negative, provided
that |b| is fairly small and nonzero; hence the following
theorem will imply that both the Fermat curve and the
line {y = 0} are measure attractors. For example, this is
the case for the elementary Desboves map with parameter
b = 1

3 , corresponding to a minimum point in the left-hand
diagram of Figure 12. (Compare Figure 11.)

Theorem 6.3. (Basins of positive measure.) Let f be a
real or complex elementary map with an invariant ellip-
tic curve C. If the transverse Lyapunov exponent LyapC
is strictly negative, then the attracting basin B(C), con-
sisting of points whose orbit converges to C, has strictly
positive measure. In fact, any neighborhood of a point of
C intersects B(C) in a set of positive measure.

Similarly, if such an f has an invariant line L not
passing through the center, with strictly negative trans-
verse exponent, then the attracting basin for this line
has positive measure and intersects any neighborhood of
a point of this line in a set of positive measure.

In the complex case we can give a much more precise
picture. (As usual, define the Fatou and Julia sets as in
Definition 1.3.) If p is any point of an invariant elliptic
curve, then according to [Bonifant and Dabija 02, Theo-
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rem 5.4 and Proposition 6.16], the iterated preimages of
p are everywhere dense in the Julia set (see Remark 4.3),
and furthermore, we have the following proposition.

Proposition 6.4. (The Fatou set is a dense open basin.) If
f is a complex elementary map with an invariant elliptic
curve, and if the center �0 is not a point of indetermi-
nacy, then �0 is a superattracting fixed point whose basin
coincides with the Fatou set. This basin is connected and
everywhere dense in P

2. Furthermore, if U is a small
neighborhood of a point of the Julia set, then the union
of the forward images of U is the entire space P

2
�{�0}.

Proof: A proof can be found in [Bonifant and Dabija 02,
p. 18].

In particular, the conjectured Lemma 4.5 is true in
this case: the attracting basin for the elliptic curve has
no interior points. Similarly, if there is an invariant line
L disjoint from the center �0, then the attracting basin
of L cannot have any interior point. It also follows that
f is topologically transitive on the Julia set. This means
that the orbit of a “generic” point of the Julia set J is
everywhere dense in J . Such a generic point of J cannot
belong to any of the attracting basins B(C), B(L), B(�0).

Corollary 6.5. (Intermingled basins.) If a complex ele-
mentary map has both an invariant line L that does not
pass through its center and an invariant elliptic curve
C, then the two topological closures B(C) and B(L) are
both precisely equal to the Julia set. Furthermore, if the
transverse Lyapunov exponent for C (or for L) is nega-
tive, then every neighborhood U of a point of the Julia set
intersects B(C) (or respectively B(L)) in a set of positive
Lebesgue measure.

Remark 6.6. (Three basins.) In the case that the trans-
verse exponents LyapC(f) and LyapL(f) are both nega-
tive, it follows that the basins for these two attractors are
intimately intermingled. For the real Desboves map illus-
trated in Figure 11, a very rough estimate suggests that
about 66% of the points in P

2 are attracted to the center
(0 : 1 : 0), about 17% to the line {y = 0}, and about
17% to the Fermat curve. For the associated complex
mapping, the figures are 81%, 13%, and 6%. (However,
the computation is highly sensitive, and these estimates
may well be quite inaccurate.) It may be conjectured
that every point outside of a set of measure zero lies in
the union of these three attracting basins.

Remark 6.7. (Terminology.) Such exotic behavior has
been studied extensively, particularly in the applied dy-
namics literature. The term “riddled basin” was intro-
duced in [Alexander et al. 92] to indicate an attracting
basin whose complement intersects every disk in a set of
positive measure. The authors define two basins to be
intermingled if every disk that intersects one basin in a
set of positive measure also intersects the other basin in
a set of positive measure. For a particularly clear exam-
ple, see [Kan 94]. Such examples of intermingled basins
seem to be known only in cases in which the attractors
themselves are quite smooth. We don’t know whether
there can be two fractal attractors whose basins have the
same closure.

Proof of Theorem 6.3: Without loss of generality, we
may assume that the center �0 of the real or complex
elementary map f is (0 : 1 : 0) �∈ If . Furthermore, if
there is an invariant line not passing through this center,
we may assume that it is the line {y = 0}, as in Figure
11. (Since we assume that there is an invariant elliptic
curve C, it follows that any invariant line not passing
through the center is mapped to itself by a Lattès map,
with an absolutely continuous invariant measure, so that
the transverse Lyapunov exponent is well defined.)

Each fiber (x : z) = constant of the fibration Π(x : y :
z) = (x : z) can be provided with a flat metric

|dy|√|dx|2 + |dz|2 , (6–2)

which gives rise to a norm ‖�v ‖t for vectors tangent to
the fiber. Let

‖f ′t(p)‖ = ‖f ′�v ‖t/‖�v ‖t

be the norm of the partial derivative along the fiber,
where �v can be any nonzero vector tangent to the fiber at
p. (Note that any vector tangent to its fiber must map
to a vector tangent to the image fiber.) This norm is
well defined, depending only on the base point p of �v. At
points of the curve C, we want to compare ‖�v ‖t with the
semidefinite norm ‖�v ‖�, which is obtained by first pro-
jecting �v to the quotient vector space T (P2, p)/T (C, p)
and then using a positive definite norm in this quotient
space.

Note that most fibers intersect the degree-three curve
C transversally in three distinct points. There is only a
finite number of exceptional fibers that intersect tangen-
tially. Therefore, the ratio ‖�v ‖�/‖�v ‖t ≥ 0 is a continu-
ous function on C that vanishes only at these points of
tangency.
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Furthermore, the logarithm (p) of this ratio has only
logarithmic singularities, and hence is an integrable func-
tion on C. Since the measure dλ is f -invariant, it follows
that the difference∫

C
log ‖f ′�‖dλ−

∫
C

log ‖f ′t‖ dλ =
∫
C
 ◦ fdλ−

∫
C
 dλ

is zero. In other words, the average value
∫
C log ‖f ′t‖ dλ

coincides with the transverse exponent LyapC of Sec-
tion 2.

For any p and q belonging to the same fiber, let
δ(q, p) ≥ 0 be the distance of q from p, using the flat
metric of (6–2) on this fiber. Then

δ(f(q), f(p)) = ‖f ′t(p)‖δ(q, p) + o(δ(q, p))

as δ(q, p) tends to 0. This estimate holds uniformly
throughout a neighborhood of C. Hence, given any ε > 0,
we can choose δ0 such that

δ(f(q), f(p)) ≤ (‖f ′t(p)‖ + ε
)
δ(q, p) (6–3)

when p ∈ C and δ(q, p) < δ0 with Π(p) = Π(q).
Choose ε small enough that∫

C
log

(‖f ′t(p)‖ + ε
)
dλ(p) < 0. (6–4)

Let p0 �→ p1 �→ · · · be the orbit of an arbitrary initial
point p0 ∈ C under f . By the Birkhoff ergodic theorem,
the averages

1
n

(
log(‖f ′t(p0)‖ + ε) + log(‖f ′t(p1)‖ + ε) + · · ·

+ log(‖f ′t(pn−1)‖ + ε)
)

converge to the integral of (6–4) for almost all p0 ∈ C.
In particular, for almost all p0 it follows that the num-

ber

log
(‖f ′t(p0)‖ + ε

)
+ log

(‖f ′t(p1)‖ + ε
)

+ · · ·
+ log

(‖f ′t(pn−1)‖ + ε
)

is negative for large n. Thus the n-fold product(‖f ′t(p0)‖ + ε
) · · · (‖f ′t(pn−1)‖ + ε

)
is less than one for large n, but equal to one by definition
for n = 0. It follows that the maximum

M(p0) = max
n≥0

((‖f ′t(p0)‖ + ε
)(‖f ′t(p1)‖ + ε

) × · · ·

× (‖f ′t(pn−1)‖ + ε
)) ≥ 1

is well defined, measurable, and finite almost everywhere.
If δ(q, p0) ≤ δ0/M(p0), then it follows from the inequality
of (6–3) that δ

(
f◦n(q), f◦n(p0)

) ≤ δ0 for all n, and also
that this distance converges to zero as n→ ∞.

Now let S be the set of positive measure consist-
ing of all q with δ(q, p) ≤ δ0/M(p) for some p ∈ C
with Π(p) = Π(q). (Here δ0/∞ = 0 by definition.)
Then for all q ∈ S it follows that the orbit of q con-
verges to C. Evidently, S intersects every neighbor-
hood of a point of C in a set of positive measure. The
proof for the basin of the line y = 0 is completely
analogous.

Remark 6.8. (What about positive transverse exponent?)
Conversely, it seems natural to conjecture that the basin
of C has measure zero whenever the transverse Lyapunov
exponent is positive. One might guess that this could
be proved simply by reversing the inequalities in the ar-
gument above, but this doesn’t work. The problem is
that log

(‖f ′t‖ − ε
)

is not a meaningful approximation to
log ‖f ′t‖, since ‖f ′t‖ must sometimes be smaller than any
given ε. In fact, almost every orbit near C must pass ar-
bitrarily close to the critical locus of f . But whenever p
is very close to the critical locus, there is a real possibility
that f(p) will be much closer to C than would have been
predicted from the differential inequality.

It seems unlikely that this effect could be strong
enough to make C a measure-theoretic attractor in some
cases in which the transverse Lyapunov exponent is pos-
itive, but we don’t know how to rule out this possibility.
(Compare Remark 1.4.)

Proof of Corollary 6.5: It follows immediately from
Proposition 6.4 that the basins of C and L are contained
in the Julia set. On the other hand, if p ∈ C ∩ L, then
the iterated preimages of p are contained in both basins,
and are dense in J . (Compare Remark 4.3.) Therefore,
the closure of either basin is equal to J .

If the open set U intersects the Julia set, then it con-
tains an iterated preimage of p. Since f is an open
mapping, it follows that some forward image f◦n(U) is
an open neighborhood of p. If C (or L) has negative
transverse exponent, then by Theorem 6.3, the image
f◦n(U) intersects the corresponding basin in a set of pos-
itive measure. Choosing a regular value of f◦n that is a
point of density for this intersection, and choosing a point
q ∈ U that maps to this regular value, it follows easily
that any neighborhood of q intersects the corresponding
basin in a set of positive measure.
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Remark 6.9. (The special case b = 0.) The above dis-
cussion of elementary Desboves maps f = f−1,b,1 always
assumed that the parameter b is nonzero. For the case
b = 0, we have a much simpler situation. The center
(0 : 1 : 0) then becomes a point of indeterminacy. If
we think of each fiber V as a one-dimensional complex
vector space, taking V ∩ L to be its zero vector, then
each fiber maps linearly to a fiber. In fact, it is not
hard to see that f is well defined as a holomorphic map
from the complement P2�{(0 : 1 : 0)} onto itself, and
that this complement is “foliated” by f -invariant curves
x3 + ky3 + z3 = 0, which are isomorphic to the Fermat
curve for k ∈ C�{0}. (In particular, the map f = f−1,0,1

has a first integral. Compare Lemma 3.1.) These invari-
ant curves intersect only in the finite set F ∩ L.

7. TRAPPED ATTRACTORS: EXISTENCE
AND NONEXISTENCE

The first half of this section will provide explicit examples
of everywhere-defined rational maps of P

2(R) that have
a smoothly immersed real curve of genus one as trapped
attractor (Definition 1.1). The second half will prove that
a complex curve of genus one can never be a trapped
attractor.

Example 7.1. (A singular real quartic of genus one as
trapped attractor.) This last example will study the case
of a singular real quartic. As in [Bonifant and Dabija 02,
Section 8.6], consider the Cassini quartic curve C with
homogeneous equation Φ(x, y, z) = 0, where7

Φ(x, y, z) = Φκ(x, y, z) = x2y2−(x2 +y2)z2 +κz4 (7–1)

depends on a single parameter κ �= 0, 1. Over the com-
plex numbers, this is a rational curve with nodes at the
two points (1 : 0 : 0) and (0 : 1 : 0). That is, the
uniformizing map C/Ω → C ⊂ P

2(C) has transverse self-
intersections at these two points. Define a one-parameter
family of homogeneous polynomial maps from C

3 to it-
self by the formula F (x, y, z) = Fa(x, y, z) = (X,Y,Z),
where

X = −2xy(x2 + y2 − 2κz2),

Y = y4 − x4, (7–2)

Z = −aΦ(x, y, z) + 2xy(x2 − y2).

7This expression yields curves that are equivalent, under a com-
plex linear change of coordinates, to quartic curves introduced in
1680 by the French–Italian astronomer Giovanni Domenico Cassini,
in connection with planetary orbits.

According to [Bonifant and Dabija 02], the curve C
is invariant under the induced rational map f = fa :
P

2 → P
2. It is not hard to check that the singular point

(0 : 1 : 0) ∈ C (the “north pole” in Figures 13 and 14)
is a saddle fixed point of fa, with eigenvalues −2 and 0,
and that the point (0 : 0 : 1) (near the center of these
figures) is a superattracting fixed point whenever a �= 0.

If the parameters κ and a are real, then the cor-
responding real curve C(R) = C ∩ P2(R) is connected
when κ < 0, but has two connected components when
κ > 0. These maps are illustrated in Figures 13 and 14
for the case κ = 1

8 > 0, with C(R) in black. Here the
smaller component (which is nonsingular) maps to the
larger invariant component C0(R) (which has two singu-
lar points). Both branches of C0(R) through the singular
point (1 : 0 : 0) map to just one of the two branches
through the fixed point (0 : 1 : 0), while both branches
through (0 : 1 : 0) map to the other branch through
(0 : 1 : 0). (All four branches lie within a single immersed
circle that crosses itself twice within the nonorientable
manifold P

2(R).) Note the identities

F (−x,−y, z) = F (x, y, z)

and
F ◦2(−y, x, z) = F ◦2(x, y, z) ,

which imply that the Julia set of fa has a 90◦ rotational
symmetry, clearly visible in Figures 13 and 14. We will
prove the following result.

Theorem 7.2. (A trapped attractor.) If 0 < |κ| < 1
4 and if

a is sufficiently small, then the invariant curve C0(R) is
a trapped attractor for the map fa on the real projective
plane that is induced by (7–2).

Proof: Let (X,Y,Z) = F (x, y, z). The quotient

ΦF (x, y, z) =
Φ(X,Y,Z)
Φ(x, y, z)

is a polynomial of degree 12 in x, y, z, depending on the
parameter a. In general, this polynomial seems rather
complicated, but in the special case a = 0, computation
shows that it takes the simple form

ΦF (x, y, z) = 16κx2y2(x2 − y2)4. (7–3)

As a convenient measure of the distance of a point of P2

from the curve Φ = 0 we take the ratio

r(x : y : z) =
|Φ(x, y, z)|
(x2 + y2)2

,
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FIGURE 13. (See Example 7.1.) The Cassini quartic with parameter k = 1
8
, shown in black, consists of an outer circle

C0(R) with two self-intersections and a much smaller inner circle C1(R). Here the warmer colors describe convergence
toward C0(R) for the rational map f1 with parameter a = 1. The blue region is the basin of a superattracting fixed point
at (0 : 0 : 1), while the gray region is the basin of another attracting fixed point directly above it at (0 : 1 : 2).

FIGURE 14. Corresponding picture for the same Cassini quartic with k = 1
8
, but using the map with parameter a = 2

5
.
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with Φ as in (7–1). This ratio is well defined and finite
except at the value r(0 : 0 : 1) = +∞, and it vanishes
only on the Cassini curve.

We want to prove an inequality of the form

r(X : Y : Z) ≤ λr(x : y : z) (7–4)

whenever r(x : y : z) is sufficiently small, where λ < 1 is
constant. To do this, we consider the ratio

rf (x, y, z) =
r(X : Y : Z)
r(x : y : z)

=
∣∣∣∣Φ(X,Y,Z)

Φ(x, y, z)

∣∣∣∣ (x2 + y2)2

(X2 + Y 2)2
.

In the special case a = 0, using the identity (7–3) and
the inequality

X2 + Y 2 ≥ Y 2 = (y4 − x4)2 = (x2 + y2)2(x2 − y2)2 ,

together with |2xy| ≤ x2 + y2, we see that

r(X : Y : Z)
r(x : y : z)

≤
∣∣∣∣Φ(X,Y,Z)

Φ(x, y, z)

∣∣∣∣ (x2 + y2)2

(x2 + y2)4(x2 − y2)4

=
16|κ|x2y2

(x2 + y2)2
≤ 4|κ|.

If 0 < |κ| < 1
4 , then we can choose λ such that 4|κ| <

λ < 1. If N is any compact subset of P
2(R)�{(0 : 0 :

1)}, then for any a that is sufficiently close to zero, it
follows by continuity that the required inequality (7–4)
holds uniformly throughout N . Thus all orbits of fa in
N converge uniformly to the subset C(R). In the case
that there are two components, the image fa(C(R)) is
necessarily equal to the component C0(R) ⊂ C(R) that
contains the fixed point (0 : 1 : 0), and it follows that all
orbits in N converge uniformly to C0(R).

Remark 7.3. (The case a = 0.) In the limiting case
a = 0, there is no superattracting point, and in fact,
(0 : 0 : 1) becomes a point of indeterminacy. It follows
easily from the argument above that the basin of C0(R)
under this limiting map f0 is the entire domain of defi-
nition P

2(R)�{(0 : 0 : 1)}, provided that 0 < |κ| < 1
4 .

The complex case is quite different, since a complex
genus-one curve can never be a trapped attractor. The
proof will occupy the rest of this section.

Theorem 7.4. (No complex trapping.) Let C ⊂ P
2 =

P
2(C) be a genus-one curve and let N be a neighborhood

of C. Then there cannot exist any holomorphic map f :
N → N mapping C onto itself such that

⋂
n f

◦n(N) = C.

We first carry out the argument for an elliptic curve
(necessarily of degree three), and then show how to mod-
ify the proof for a singular genus-one curve (necessarily
of degree greater than three). The proof for a smooth C
will be based on the following construction.

Definition 7.5. Let Nε be the ε-neighborhood consisting
of all points with distance less than ε from C, using the
standard Fubini–Study metric8 on P2. If C is smooth and
ε is sufficiently small, then Nε is the total space of a real
analytic fibration Π : Nε → C, where Π(p) is defined to
be the point q ∈ C that is closest to p. Furthermore,
although this projection map Π is not holomorphic, each
fiber Fq = Π−1(q) is a holomorphically embedded com-
plex disk that is contained in the complex line orthogonal
to C at q.

Lemma 7.6. (Curves in a neighborhood.) With C ⊂ Nε as
above, any nonconstant holomorphic map ϕ : C1 → Nε

from an elliptic curve into Nε must be an immersion,
and must intersect each fiber Fq transversally, so that
the composition Π ◦ ϕ is a real analytic immersion of C1

onto C of positive degree.

In other words, C1 is a (real analytic) k-fold covering
surface of C, where k ≥ 1 is the degree of Π ◦ ϕ.

Proof of Lemma 7.6: Suppose to the contrary that there
exists a critical point for the composition Π ◦ϕ : C1 → C.
It will be convenient to rotate the coordinates for P2 as
follows. Using (x, y) as an abbreviation for the point
with coordinates (x : y : 1), we may assume that the
critical value in C ⊂ P

2 has coordinates (0, 0) and that
the tangent line to C at this critical value has equation
y = 0. The fiber through this point is then a disk in the
line x = 0. Choose a parametrization t �→ (

x(t), y(t)
)

for C such that x(0) = y(0) = 0, y′(0) = 0, and choose
a parametrization s �→ (

x1(s), y1(s)
)

for ϕ(C1) such that
the critical point in C1 is

(
x1(0), y1(0)

)
= (0, y0), lying

in the fiber x = 0. Now expand the function x1(s) as a
power series

x1(s) = csn + (higher-order terms) ,

with c �= 0. Here n ≥ 2, since otherwise ϕ(C1) would
cross the fiber x = 0 transversally.

8In terms of homogeneous coordinates (x0 : x1 : · · · : xn)
normalized so that

∑
|xk|2 = 1, this metric takes the form

dt2 =
∑

|dxk|2 − |
∑

xk dxk)|2. With this normalization, the
Riemannian distance 0 ≤ θ ≤ π/2 between two points (x : y : z)
and (u : v : w) of P2 can be computed by the formula cos(θ) =
|xu + yv + zw|.



408 Experimental Mathematics, Vol. 16 (2007), No. 4

Using coordinates (x, y) for Nε near the point (0, 0)
and using the parameter t for C, we can think of the
real analytic projection Π : Nε → C as a correspondence
(x, y) �→ t = t̂(x, y). Setting y = y0 + η, we can write the
power series expansion for t̂(x, y) at the point (0, y0) =(
x1(0), y1(0)

)
as

t̂(x, y0 + η) = x
(
a1 + (a2x+ a3x+ a4η + a5η) + · · · )

+ x
(
b1 + (b2x+ b3x+ b4η + b5η) + · · · ),

where the dots stand for terms of degree ≥ 2 in x, x,
η, and η, and where the aj and bj are complex numbers
with |a1| > |b1|, since the projection from (x, y0) to its
image in C must preserve orientation for x near 0. (Here
we can assume that b2 = a3.) Therefore the composition
s �→ (x1(s), y1(s)) �→ t̂ has power series

t̂ = a1c s
n + b1cs

n + (higher-order terms) .

This proves that the composition Π ◦ ϕ : C1 → C has
an isolated critical point of local degree n ≥ 2 (and hence
multiplicity n − 1 ≥ 1) at the point s = 0. Thus every
critical point is isolated, and it follows that Π ◦ ϕ is a
branched covering, with only finitely many critical points.

Although Π ◦ ϕ is not actually holomorphic, it be-
haves topologically just like a holomorphic map, so that
we can apply the Riemann–Hurwitz theorem. (Compare
Remark 2.2.) Thus the Euler characteristic χ(C1) is equal
to kχ(C) − ν, where k is the degree of Π ◦ ϕ and where
ν is the number of critical points counted with multiplic-
ity. Since χ(C1) = χ(C) = 0, this proves that ν = 0, as
required.

In particular, it follows easily that the composition
Π ◦ ϕ : C1 → C is quasiconformal.

Definition 7.7. The complex dilatation of a C1-smooth
map z �→ g(z) is the ratio

µg(z) =
∂g/∂z

∂g/∂z
∈ C ∪∞ .

Such a map is quasiconformal9 if and only if |µg| <
constant < 1. (This absolute value is sometimes known
as the “small dilatation” of g, while the ratio

K(z) =
1 + |µg|
1 − |µg| ≥ 1

is called the dilatation.)

9For general quasiconformal maps that need not be C1-smooth,
see [Ahlfors 66] or [Krushkal′ 79].

Now consider an infinite sequence of holomorphic im-
mersions ϕj : Cj → Nε, where each Cj is a compact Rie-
mann surface of genus one.

Lemma 7.8. (Converging quasiconformal maps.) If the
successive images ϕj(Cj) converge to C in the Hausdorff
topology (or in other words, if the distance of each point
of ϕj(Cj) from C converges uniformly to zero), then the
complex dilatation of the quasiconformal map Π ◦ ϕj :
Cj → C converges uniformly to zero as j → ∞.

The proof of Lemma 7.8 will be based on the follow-
ing preliminary statement, which is needed in order to
control first derivatives.

Lemma 7.9. (Converging tangent spaces.) With the ϕj

as in Lemma 7.8, consider a sequence of points ϕj(pj) ∈
ϕj(Cj) converging to a point q ∈ C. Then the tangent
space to ϕj(Cj) at ϕj(pj) converges to the tangent space
to C at q. Furthermore, this convergence is uniform as
we vary the points pj and q.

Proof: In fact, the argument will show that each branch
of the curve ϕj(Cj) converges holomorphically to C
throughout a neighborhood of q. As in the proof of
Lemma 7.6, we can choose coordinates (x, y) such that
(0, 0) corresponds to the point q and such that the line
y = 0 is tangent to C at q. Then the curve C is locally
the graph of a holomorphic function y = ψ0(x).

We can fiber a neighborhood of (0, 0) by a local projec-
tion into C, mapping each (x, y) to the point Π0(x, y) =(
x, ψ0(x)

) ∈ C. For any immersion ϕj : Cj → P2 with im-
age in a small neighborhood of C, we claim that the image
of ϕj crosses the line x = 0 transversally near (0, 0).

To prove this, we must smoothly interpolate between
the projection Π : Nε → C of Lemma 7.6, which is defined
everywhere near C, and the projection Π0, which is well
behaved only near (0, 0). Using such a modified projec-
tion, which coincides with Π outside of a neighborhood
of (0, 0) and which coincides with Π0 within a smaller
neighborhood, the proof proceeds just as before.

Any branch of one of these approximating curves
ϕj(Cj) near (0, 0) can be described locally as the graph of
a holomorphic function y = ψj(x). Choosing a sequence
of such branches that converge uniformly to ψ0, it follows
from a theorem of Weierstrass that every iterated deriva-
tive dkψj(x)/dxk converges uniformly to dkψ0(x)/dxk

throughout a slightly smaller neighborhood, as required.
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Proof of Lemma 7.8: With coordinates (x, y) as above,
let t �→ (

x(t), y(t)
)

be a local parametrization of the curve
C with x(0) = y(0) = 0, y′(0) = 0. It will be convenient
to construct new local holomorphic coordinates (u, v) by
the formula

(x, y) =
(
x(u), y(u) + v

)
.

In these new coordinates, the curve C has equation v = 0.
The projection Π is then represented by a real analytic
map (u, v) �→ t̂(u, v), where t̂(u, 0) = u, so that ∂t̂/∂u =
1 and ∂t̂/∂u = 0 when v = 0. For j large, we can choose
s = u as parameter for the nearby curve ϕj(Cj), so that
the parametrization takes the form s �→ (

uj(s), vj(s)
)

with uj(s) = s. For the composition s �→ t̂(s, vj(s)), it
follows that

∂t̂

∂s
=
∂t̂

∂u
+
∂t̂

∂v
dvj/ds ,

where ∂t̂/∂u tends to zero as vj → 0 by the remarks
above, and where dvj/ds tends to zero as vj → 0 by
Lemma 7.9. It follows easily that the complex dilatation

µΠ◦ϕ =
∂t̂/∂s

∂t̂/∂s

tends to zero as j → ∞, as required.

Proof of Theorem 7.4 for an embedded curve: The proof
will be based on the fact that any elliptic curve C ⊂ P2(C)
can be approximated arbitrarily closely by other elliptic
curves that are not conformally isomorphic to it. For
example, after a linear change of coordinates, any such C
is defined by an equation of the form x3+y3+z3 = 3κxyz,
and by varying the parameter κ we can then find nearby
curves that are not conformally isomorphic to C.

Now assume that C is a trapped attractor. Let Nε be
a tubular neighborhood, as in Lemma 7.6. Then we can
choose a trapping neighborhood Ntrap ⊂ Nε and then a
smaller tubular neighborhood Nδ such that

C ⊂ Nδ ⊂ Ntrap ⊂ Nε .

We will then construct a sequence of real analytic retrac-
tions gm : Nδ → C of the form

gm = f−m ◦ Π ◦ f◦m .

More precisely, since f−m is not uniquely defined, we will
construct gm : N → C such that

f◦m ◦ gm = Π ◦ f◦m ,

with gm equal to the identity map on C. (Compare Figure
15. Here Π : Nε → C is again the orthogonal projection
that carries each p ∈ Nε to the closest point of C.)

FIGURE 15. Construction of the retraction gm from Nδ to C.

To do this, let us first pass to the universal covering
spaces C̃ ⊂ Ñδ ⊂ Ñε. (Since C ∼= C/Ω, it follows that
C̃ ∼= C.) Then f and Π lift to smooth maps

C̃ ⊂ Ñδ
f̃−→ Ñε

Π̃−→ C̃ ,

where we can choose the lift so that Π̃ reduces to the
identity map on C̃.

Since f̃ is a linear map of C̃ ∼= C, it follows that f̃−1

is well defined. Therefore the map

g̃m = f̃−m ◦ Π̃ ◦ f̃◦m : Ñδ → C̃

is well defined, and it reduces to the identity map on C̃.
Finally, since g̃m commutes with the group of deck

transformations10 of Ñδ over Nδ, it follows that g̃m gives
rise to a corresponding retraction gm : Nδ → C.

Let C′ ⊂ Nδ be a smoothly embedded elliptic curve
that is not conformally equivalent to C. Then it follows
using Lemma 7.6 that each gm maps C′ diffeomorphically
onto C. Furthermore, since the successive images f◦m(C′)
must converge to C, it follows from Lemma 7.8 that the
complex dilatation of the immersion Π ◦ f◦m : C′ → C
tends to zero as h → ∞. Since f◦m is locally biholo-
morphic on both C′ and C, this implies that the complex
dilatation of gm : C′ → C also tends to zero as h→ ∞.

Thus, to complete the proof of Theorem 7.4, we need
only note the following well-known statement from Teich-
müller theory.

Lemma 7.10. (A conformal isomorphism criterion.) Sup-
pose that there exist quasiconformal homeomorphisms
from the elliptic curve C1 to C2 with complex dilatation

10On the other hand, the lifted map f̃ does not commute with
deck transformations. In fact, if G is the group of deck trans-
formations, then f induces an embedding f∗ : G → G, with

f̃(σp̃) = f∗(σ)f̃(p̃) for each σ ∈ G.
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arbitrarily close to zero. Then C1 must be conformally
isomorphic to C2.

Proof: This is an immediate consequence of compactness
of the space of quasiconformal homeomorphisms with
bounded complex dilatation. On a more elementary level,
if C1

∼= C/Ω1 and C2
∼= C/Ω2, where Ω1 and Ω2 are uni-

modular lattices, then the optimal quasiconformal map
in any homotopy class is given by a real linear map cor-
responding to a linear transformation L ∈ SL(2,R) with
L(Ω1) = Ω2. (Compare [Krushkal′ 79, p. 101].) Such a
linear transformation has complex dilatation zero only if
L is a rotation. Similarly, if a sequence of elements of
SL(2,R) has complex dilatation converging to zero, then
some subsequence must converge to a rotation, and the
conclusion of Lemma 7.10 follows easily.

This completes the proof of Theorem 7.4 for the case
of an embedded curve.

Proof in the singular case: Now consider a genus-one
curve C ⊂ P2(C) with singular points (necessarily of de-
gree four or more). Thus the uniformizing map ι : C/Ω →
C must have either critical points or self-intersections or
both. As usual, assume that C is invariant under a ra-
tional self-map f of P2. We will first prove the following
preliminary statement.

Lemma 7.11. (The branches fold together.) If C is a
trapped attractor under some rational map f of P

2, then
the uniformizing map ι : C/Ω → C is necessarily an im-
mersion. In particular, C cannot have any cusps. Fur-
thermore, some iterate f◦n must map all of the branches
of C through any singular point p into a single branch
through f◦n(p).

Proof: Recall that the map f restricted to C lifts to a lin-
ear map, which we will denote by f �, from C/Ω to itself.
First suppose that the uniformizing map ι has critical
points in C/Ω. Since there can be only finitely many,
and since the lifted map f � must send critical points to
critical points, it follows that there must be a periodic
critical point. Thus replacing f and f � by some iter-
ate, we may assume that there is a fixed critical point.
In terms of suitable local coordinates around this point
and its image in P2, the map ι will have a power series
expansion of the form

t �→ (
x(t), y(t)

)
= (tm + · · · , tn + · · · )

with m > n ≥ 2. Let λ be the multiplier of f �. Then
the equation ι(λ t) = f

(
ι(t)

)
implies that the eigenvalues

of the derivative f ′ at the critical value are λm and λn.
Since |λ| > 1, it follows that this critical value is a re-
pelling fixed point for f , which contradicts the hypothesis
that C has a trapping neighborhood.

Now suppose that we could find two branches through
ι(t1) = ι(t2) = p that map to distinct branches under all
iterates of f . Since there are only finitely many singular
points, these images must eventually cycle periodically.
Thus, after replacing f by an iterate, we could find two
distinct branches through some singular point q that both
map to themselves. Since f � has multiplier λ, it would
follow easily that the eigenvalues of f ′ at q have the form
λ and λm, where m ≥ 1 is the intersection number be-
tween these two branches. Again this shows that q is a
repelling point, contradicting the hypothesis that C has
a trapping neighborhood.

7.1 The Pulled-Back Neighborhood

For any small ε > 0 we can “pull back” the ε-
neighborhood Nε = Nε(C) under the immersion ι to con-
struct a formal neighborhood of N �

ε ⊃ C/Ω. For each
t ∈ C/Ω, let Dε(t, ι) ⊂ P

2 be the open unit disk in the
line normal to ι(C/Ω) at ι(t), and let

N �
ε = N �

ε (ι) ⊂ (C/Ω) × P
2

be the set of all pairs (t, p) ∈ C/Ω×P
2 with t ∈ C/Ω and

p ∈ Dε(t, ι). Then N �
ε is a real analytic manifold, and

the projection Π�(t, p) = t is a real analytic fibration of
N �

ε over C/Ω. Furthermore, if ε is sufficiently small, then
the projection ι̃(t, p) = p will be a local diffeomorphism
from N �

ε onto the open neighborhood Nε ⊂ P2. Using
this local diffeomorphism ι̃, we can pull back the complex
structure and make N �

ε into a complex manifold.

For the next lemma, we assume that f has been re-
placed by a suitable iterate f◦n, satisfying the conditions
of Lemma 7.11.

Lemma 7.12. (Lifting the trapping neighborhood.) If the
singular curve C is a trapped attractor under some ratio-
nal map f of P

2 that folds branches together as in Lemma
7.11, then f lifts to a holomorphic map f � from a neigh-
borhood of C/Ω in N �

ε into N �
ε , with C/Ω as trapped at-

tractor.

Proof: Given a pulled-back neighborhood N �
ε = N �

ε (ι) as
above, by the uniform continuity of f on the compact
set N ε(C), we can choose δ < ε such that any curve of
length < δ in Nε(C) maps to a curve of length less than
ε in P

2. We can then form the neighborhood N �
δ (ι) ⊂
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N �
ε (ι) of C/Ω, with image C ⊂ Nδ(C) ⊂ Nε(C), and with

f(Nδ) ⊂ Nε. We may also assume that δ is small enough
that the projection that sends each point of Nδ to the
closest point of C is uniquely defined, except within the
ε-neighborhood of a branch point.

Now let T ⊂ Nδ be a trapping neighborhood for C
and let T � be the full preimage of T in N �

ε . Then a lifted
map f � : T � → T � can be constructed as follows. For
each point (t, p) ∈ T � ⊂ N �

ε we can drop a perpendicular
of length less than δ from p to some point q ∈ C. The
image under f will then be a curve of length less than
ε joining f(p) to f(q) ∈ C. Deforming this curve to a
minimal geodesic from f(p) that meets C orthogonally,
say at q̂ = ι(t̂), it follows that (t̂, f(p)) ∈ T �, and we will
set f �(t, p) = (t̂, f(p)).

This construction does not appear to be well defined
in the neighborhood of a singular point, since there may
be perpendiculars of length less than δ from p to points
on two or more branches of C. However, by hypothesis
these branches all map to a single branch of C, so that
the minimal geodesic from f(p) to that branch of C is
unique.

Finally, we must show that the intersection A� of the
iterated forward images of T � is equal to C/Ω. Clearly,
the projection from T � onto T maps A� onto C. Therefore
A� is contained in the preimage of C in T �, which consists
of C, together with preimages of the ε-neighborhoods of
the various branch points. (If ι(t1) = · · · = ι(tk), then
there are k − 1 extra preimage branches through each
of the points t1, . . . , tk.) But f � maps each of these ex-
tra branches back to C/Ω, so the attractor A� is pre-
cisely C/Ω.

The proof of Theorem 7.4 now proceeds just as in Lem-
mas 7.6 through 7.10 above. However, to carry out the
argument in this new context, we must show that there
are nearby curves that are not conformally isomorphic
to C/Ω. In fact, we will prove the following, which will
complete the proof.

Lemma 7.13. (Deforming immersed curves.) Consider
a Riemann surface of genus one of the form C/Ω, and
let FΩ : C/Ω → P

2 be an immersion. Then for any
small deformation Ωt of the lattice Ω, we can construct
a corresponding deformation FΩt

of the immersion FΩ.

Proof: Let P̂
2 be the projective plane blown up at the

three coordinate points (1 : 0 : 0), (0 : 1 : 0), and
(0 : 0 : 1). The following two statements are easily veri-
fied.

1. Any holomorphic immersion of a Riemann surface
into P

2 lifts uniquely to an immersion into P̂
2, and

any immersion into P̂
2 projects to a map into P

2

that is an immersion, except possibly over the three
coordinate points.

(The qualification is necessary, since, for example,
the nonimmersion t �→ (t3 : t2 : 1) from P

1 into P
2

lifts to an immersion into P̂
2.)

2. We can construct a smooth embedding of P̂
2 as

a hypersurface in P
1 × P

1 × P
1 by sending each

(x : y : z) ∈ P̂
2 to the triple (f, g, h), where f = x/y,

g = y/z, h = z/x, with product fgh = 1.

The blowup guarantees, for example, that x/y makes
sense, even at the point (0 : 0 : 1). Interpreted in terms
of local coordinates for P

1, the equation fgh = 1 is well
behaved, even when one or two of these functions take
the value ∞. For example, near a point where h = ∞
but f and g are finite, we use h−1 as local coordinate, so
that the equation takes the form h−1 = fg.

Thus to immerse a Riemann surface S into P
2 we need

only find three holomorphic functions f, g, h from S to
P

1 that yield an immersion of S into P
1 × P

1 × P
1 and

that have product equal to 1, taking care that nothing
goes wrong over the three coordinate points. (The maps
f, g, h need not have the same degree. For example, the
functions f(t) = g(t) = t, h(t) = 1/t2 from P

1 to P
1 yield

the smooth quadratic variety xz = y2.)
As noted above, FΩ lifts to an embedding t �→(

f(t), g(t), h(t)
)

of C/Ω into the subset P̂
2 ⊂ P

1×P
1×P

1.
Furthermore, each of the functions f and g can be ex-
pressed as a rational function of the Weierstrass func-
tion ℘Ω(t) and its derivative ℘′

Ω(t). Choosing some ex-
plicit expressions for these rational functions and setting
h = 1/(fg), it follows that the map t �→ (

f(t), g(t), h(t)
)

deforms smoothly as we modify the lattice Ω. Evidently
the requirement that this map project to an immersion
into P

2 will remain satisfied for all sufficiently small de-
formations.

Lemma 7.13 having been proved, the proof of Theorem
7.4 is complete.

8. HERMAN RINGS IN P
2

In Example 5.5 we presented empirical evidence for the
existence of a cycle of two attracting Herman rings for
a substantial collection of complex Desboves maps with
real coefficients. This section will explore what we can
say more generally about Herman rings and Siegel disks
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in P
2(C). (Compare Definition 1.2.) Note first that it is

easy to construct special examples.

Example 8.1. (Rings contained in a complex line.) Let
(z0 : z1) �→

(
p(z0, z1) : q(z0, z1)

)
be any degree-d rational

map of P
1(C) that possesses a Herman ring. (For the

existence of such rings, see Remark 8.11, and see for ex-
ample [Shishikura 87].) Let r(z0, z1, z2) be any nonzero
homogeneous polynomial of degree d− 1. Then the map

f(z0 : z1 : z2) =
(
p(z0, z1) : q(z0, z1) : z2r(z0, z1, z2)

)
of P

2(C) clearly has a Herman ring H that lies in the
invariant line z2 = 0. We can measure the extent
to which this ring is attracting or repelling by using
ρ(z0 : z1 : z2)= |z2|/

√|z0|2 + |z1|2 as a measure of dis-
tance from the line z2 = 0. If the ratio

ρ(f(z0 : z1 : z2))
ρ(z0 : z1 : z2)

= |r|
√

|z0|2 + |z1|2
|p|2 + |q|2

is less than 1 everywhere on H, then this ring will be
locally uniformly attracting, while if it is greater than 1
everywhere on H, then it will be locally uniformly re-
pelling.

Thus we can always obtain an attracting H simply by
multiplying any given r(z0, z1, z2) by a constant that is
close to zero. Similarly, if r(z0 : z1 : 0) is bounded away
from zero throughout H, then we can obtain a repelling
H by multiplying r(z0, z1, z2) by a large constant. In the
first case, note that H will be contained in the Fatou
set, while in the second case it will be contained in the
Julia set. By choosing r(z0, z1, z2) more carefully, we can
also find examples in which part of the ring is attracting
and part is repelling. (Compare Lemmas 8.5 and 8.8.)
The situation for attracting or repelling Siegel disks is
completely analogous.

Example 8.2. (The Ueda construction.) Here is a quite
different procedure, which yields a rich variety of dy-
namic behaviors. (Compare [Ueda 93] and [Fornæss 96,
p. 13].) Recall that the n-fold symmetric product of P

1 =
P

1(C) with itself, that is, the quotient (P1 ×· · ·×P
1)/Sn

of the n-fold product by the symmetric group Sn of per-
mutations of the n coordinates, can be naturally identi-
fied with P

n = P
n(C). (This is proved by assigning to

each homogeneous polynomial in two complex variables
its collection of roots in P

1.) Hence any rational map g

of P
1 gives rise to an everywhere-defined rational map

(g × · · · × g)/Sn of P
n. In particular, it gives rise to a

map11 f = (g × g)/S2 of P
2. Now if U1 and U2 are dis-

joint invariant Fatou components in P
1, then the product

U1×U2 ⊂ P
1×P

1 can be identified with its image, which
is an invariant Fatou component in P

2. As examples:

• If U1 = H is a Herman ring in P
1, and U2 = B is the

basin of an attracting fixed point, then H ×B is the
basin of an attracting Herman ring in P

2. Similarly,
if S is a Siegel disk, then S × B is the basin of an
attracting Siegel disk.

• Furthermore, if H is a Herman ring in P1, and p is
an arbitrary fixed point for the map g of P

1, then
H×{p} is a Herman ring for f . Since g has infinitely
many repelling fixed points, it follows that f has
infinitely many repelling Herman rings. Similarly,
if g has a Siegel disk, then f has infinitely many
repelling Siegel disks.

• If H and H ′ are disjoint Herman rings and S, S′ are
disjoint Siegel disks, then H×H ′, H×S, and S×S′

are three rotation domains in P
2 with quite distinct

topologies. (Compare the discussion of recurrent Fa-
tou components in [Fornæss and Sibony 95a].)

• We can also give an example of a singular Siegel disk
in P2. (Compare [Bedford and Smillie 91, p. 677].)
Let S and S′ be Siegel disks with rotation numbers
pθ and qθ, where p, q > 1 are relatively prime. In
other words, suppose that we can choose parameters
z and w for these disks such that z maps to e2πipθz

and w maps to e2πiqθw under g. Then the locus zq =
wp in S×S′ is an invariant Siegel disk, embedded in
this Siegel rotation domain, with a cusp singularity
at the origin.

Remark 8.3. The construction described above can even
be used to construct a Herman ring (or Siegel disk) in
the real projective plane: Simply start with a rational
map of P

1(C) with real coefficients that has two com-
plex conjugate Herman rings (or Siegel disks), carry out
the construction as described above, and then intersect
with P

2(R).

8.1 The Transverse Lyapunov Exponent of a
Ring or Disk

For any f -invariant Herman ring or Siegel disk, the trans-
verse Lyapunov exponent is defined much as in the case

11More explicitly, if g(x : y) =
(
p(x, y) : q(x, y)

)
, then the map

f = (g × g)/S2 can be described by the formula f(x1x2 : x1y2 +
y1x2 : y1y2) = (p1p2 : p1q2 + q1p2 : q1q2), where pj = p(xj , yj)
and qj = q(xj , yj).
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of an f -invariant elliptic curve, and this exponent is de-
cisive as a test for attraction or repulsion. However, the
transverse exponent for a ring or disk is no longer a con-
stant, but is rather a real-valued function, constant on
each invariant circle. Furthermore, it is piecewise linear
and convex in terms of suitably chosen coordinates. To
fix ideas, we will concentrate on the Herman ring case.

To begin the discussion, note that for any Herman ring
H ⊂ P2(C) (and more generally for any annulus) there
is a conformal embedding t : H → C/Z that maps H
isomorphically onto a cylinder of the form h0 < �(t) < h1

in C/Z. (This embedding is unique up to a translation
or change of sign t �→ ±t + constant.) We will call t a
canonical parameter on H. The difference h1 − h0 > 0 is
called the modulus of H.

Lemma 8.4. (Holomorphic tubular neighborhoods.) Let
Γh ⊂ H ⊂ P

2 be the invariant circle �(t) = h contained
in a Herman ring in the complex projective plane. Then
we can parametrize some neighborhood N = N(Γh) in P

2

by holomorphic coordinates (t, u), where u ranges over a
neighborhood of zero in C, and t ranges over a neighbor-
hood of the circle �(t) = h in C/Z. Furthermore, these
coordinates can be chosen such that t is the canonical pa-
rameter on N ∩H and such that u is identically zero on
this intersection.

Proof: In the dual projective space consisting of all
lines in P2, those lines that intersect Γh form a real 3-
dimensional subset. Hence we can choose a line that
misses Γh. After rotating the coordinates (x : y : z), we
may assume that this is the line z = 0. In other words,
setting X = x/z, Y = y/z, we can introduce the affine
coordinates (X : Y : 1) = (x : y : z) throughout some
neighborhood of Γh.

Let X = X(t), Y = Y (t) be the canonical
parametrization of H throughout this neighborhood.
Then the space of all unit vectors in C

2 that are
multiples of the tangent vector

(
Ẋ(t), Ẏ (t)

)
for some(

X(t), Y (t)
) ∈ Γh has real dimension 2. Hence we can

choose a fixed unit vector �V ∈ C
2 that is not tangent to

H at any point of Γh. The required coordinates (t, u) are
now defined by the formula

(t, u) �→ (
X(t), Y (t)

)
+ u �V

for all (t, u) ∈ (C/Z) × C with both |�(t) − h| and |u|
sufficiently small.

The map f , expressed in terms of these tubular coor-
dinates in a neighborhood of Γh, has the form (t, u) �→

(T,U), where (t, 0) maps to (t+α, 0) for some irrational
rotation number α. Evidently we can identify the trans-
verse derivative along H0 with the partial derivative

∂U

∂u

(
t, 0) .

The transverse Lyapunov exponent is then defined as the
horizontal average

Lyap(t) =
∫ 1

0

log
∣∣∣∣∂U∂u (t+ τ)

∣∣∣∣ dτ ,
where we integrate over the interval 0 ≤ τ ≤ 1. If there
are no zeros of ∂U/∂u in the strip h0 < �(t) < h1, u = 0,
then Lyap(t) is an average of harmonic functions, and
hence is harmonic. Since this harmonic function is con-
stant on horizontal lines, it must be a linear function of
the imaginary part �(t). (We will sharpen this state-
ment in Lemma 8.8.) The dynamical implications of this
Lyapunov exponent can be described as follows.

Lemma 8.5. (Attraction or repulsion.) If Lyap(t) is nega-
tive along the invariant circle Γh ⊂ H, then a neighbor-
hood of Γh in the Herman ring H is uniformly attracting
in the transverse direction, and hence is contained in the
Fatou set of f . On the other hand, if Lyap(t) is positive,
then Γh is contained in the Julia set.

Remark 8.6. In the intermediate case in which Lyap(t)
is identically zero near Γh, we do not have enough in-
formation to decide. In fact, using Ueda’s construction
(Example 8.2), we can find examples illustrating both
possibilities. We can choose f such that a neighbor-
hood of H, with its dynamics, is isomorphic to (Herman
ring)× (Siegel disk) and hence belongs to the Fatou set.
On the other hand, we can choose f such that H corre-
sponds to (Herman ring)× (parabolic point), and hence
belongs to the Julia set.

Proof of Lemma 8.5: Recall that the map f restricted to
the ring H has the form t �→ t + α, where the rotation
number α is real and irrational. To simplify the notation,
let us translate the canonical parameter t so that it takes
real values (modulo one) on our invariant circle (so that
h = 0). Following Hermann Weyl, for any continuous
function g : R/Z → C, the successive averages

Ang(t) =
1
n

∑
0≤j<n

g(t+ jα)

converge uniformly to the integral
∫

R/Z
g(t) dt.
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To prove this statement, note that it is easily verified
in the special case that g(t) is a trigonometric polyno-
mial of the form

∑
|k|≤N ake

2πikt. But any continuous g
can be uniformly approximated by such a trigonometric
polynomial. (This follows, for example, from the Stone–
Weierstrass theorem.) The conclusion follows.

First suppose that the transverse derivative ∂U
∂u (t, 0)

has no zeros on R/Z, so that the function t �→ g(t) =
log

∣∣∂U
∂u (t, 0)

∣∣ is finite-valued near R/Z. If the average
Lyap(0) of g on R/Z is strictly positive (or strictly neg-
ative), then we can choose an integer n > 0 such that
Ang(t) is strictly positive (or negative) and bounded
away from zero on R/Z, and hence throughout some
neighborhood of R/Z in C/Z. Now consider an orbit
(t0, u0) �→ (t1, u1) �→ · · · �→ (tn, un) near the given circle
Γ0. Note that

lim
u0→0

un

u0
=
∂un

∂u0

(
t0, 0) =

∏
0≤j<n

∂uj+1

∂uj

(
t0 + jα, 0)

= exp
(
nAng(t)

)
.

Taking the log absolute value of both sides, if Ang(t) <
log(c) < 0 on R/Z, then |∂un/∂u0| < cn < 1 when
u0 = 0, and it follows easily that |un| ≤ cn|u0| uniformly
throughout a neighborhood of our invariant circle. This
proves that some neighborhood H0 in H is uniformly at-
tracted to Γ0.

Similarly, if Ang(t) > log(c) > 0, then a neighbor-
hood is uniformly repelled, so that Γ0 is contained in the
Julia set.

Now suppose that the holomorphic function t �→
∂U
∂u (t, 0) has zeros along the real axis. If Lyap(0) <

0, then we can replace g(t) by the truncated function
gν(t) = max{g(t), ν}, where ν is some negative real con-
stant. If ν is sufficiently negative, then the integral∫ 1

0
gν(t) dt will still be negative. Hence we can choose

n such that Ang(t) ≤ Angν(t) < log(c) < 0, and it again
follows that a neighborhood H0 of Γ0 is uniformly at-
tracting.

In the case Lyap(0) > 0, we cannot assert that a neigh-
borhood is uniformly repelling when it contains zeros of
∂U/∂u. However, such zeros are necessarily isolated. It
is not hard to check that the function t �→ Lyap(�(t)) is
continuous, and hence is positive throughout a neighbor-
hood. Since the Julia set of f is closed, we can at least
conclude that Γ0 is contained in the Julia set.

Remark 8.7. Although a Herman ring may attract an
open neighborhood, it is conjectured that its closure H
can never be a trapped attractor. If H can be extended

to a larger Herman ring H ′, then this statement is com-
pletely clear, since nearby points of H ′ cannot be at-
tracted to H. However, the case of a maximal Herman
ring, with boundary ∂H necessarily contained in the Ju-
lia set, requires further study. The situation for Siegel
disks is completely analogous.

Lemma 8.8. (Piecewise linearity.) Let H ⊂ P2 be a
Herman ring with canonical parameter t ∈ C/Z, where
h0 < �(t) < h1. Then the function Lyap : (h0, h1) → R

is convex and piecewise linear, with a jump in derivative
at h if and only if the transverse derivative ∂U/∂u has
a zero on the circle �(t) = h. In fact, the change in
derivative at h is equal to 2π times the number of zeros
of ∂U/∂u on this circle, counted with multiplicity.

In particular, if there are points in H where the Lya-
punov exponent is strictly negative, then it follows that
they form a connected subring Hattr ⊂ H.

Proof of Lemma 8.8: We will adapt a classical argu-
ment due to Jensen. (See, for example, [Milnor 06b,
Appendix A].) It will be convenient to use the abbrevi-
ated notation ϕ(t) = ∂U/∂u for the transverse derivative
evaluated at (t, 0), and ϕ′(t) for its derivative. If ϕ has
no zeros on the circle �(t) = h, then we can compute the
derivative of the transverse Lyapunov exponent by dif-
ferentiating under the integral sign. Setting t = τ + ih,
we have

∂

∂h
log |ϕ(t)| =

∂

∂h
�(

logϕ(t)
)

= �
(d logϕ(t)

dt

∂t

∂h

)
= �

(ϕ′

ϕ
i
)

and therefore

Lyap′(h) =
d

dh

∫ 1

0

log |ϕ(τ + ih)| dτ = �
∫ 1

0

i
ϕ′

ϕ
dτ ,

where ϕ′ and ϕ are evaluated at t = τ + ih for 0 ≤ τ ≤ 1
with h constant. Briefly, we can write

Lyap′(h) = �
∫

[0,1]×{h}
i
dϕ

ϕ
.

Given two numbers h0 < h1 such that ϕ has no zeros
at height h0 or h1, we can now compute the difference
Lyap′(h1)−Lyap′(h0) as follows. Translating the param-
eter t horizontally if necessary, we may assume also that
ϕ has no zeros on the vertical line �(t) = 0. Let R be
the rectangle consisting of all t ∈ C with 0 ≤ �(t) ≤ 1
and h0 ≤ �(t) ≤ h1. Integrating in the positive direction
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around the boundary of R, since the integrals around the
left and right sides cancel out, we obtain

Lyap′(h0) − Lyap′(h1) = �
∮

∂R

i
dϕ

ϕ
.

But the integral
∮

∂R
dϕ/ϕ is equal to 2πiN(R), where

N(R) is the number of zeros of ϕ in R, so this equation
reduces to Lyap′(h1)−Lyap′(h0) = 2πN(R). This proves
Lemma 8.8.

Remark 8.9. (Siegel disks and punctured Siegel disks.)
Let D�{0} be the open set consisting of all z ∈ C with
0 < |z| < 1. By a punctured Siegel disk we mean a holo-
morphic embedding of D�{0} as an f -invariant subset
of P

2, mapped to itself by an irrational rotation.12 The
argument above shows that the transverse Lyapunov ex-
ponent of such a punctured disk can be expressed as a
convex piecewise linear function of log(r), where r = |z|.
Furthermore, since this transverse exponent is bounded
from above, it must have the form Lyap = a log(r)+b for
small r, with a ≥ 0. In particular, the set of points with
Lyap < 0 (if there are any) must be a punctured subdisk,
corresponding to the set of z with 0 < |z| < constant.

In the case of a full Siegel disk with no puncture, we
can supplement this discussion with the explicit formula

dLyap
d log(r)

= N(Dr) ≥ 0 ,

where N(Dr) is the number of zeros of the transverse
derivative, counted with multiplicity, in the disk of ra-
dius r. This is essentially just a statement of Jensen’s
original computation. (See, for example, [Milnor 06b,
p. 219].)

8.2 Herman Rings for Maps with Real Coefficients

Most known examples of Herman rings have been spe-
cially constructed. The surprise in Example 5.5 was to
find an apparent example that appeared out of the blue,
with no obvious reason to expect it. The set of complex
rational maps of specified degree with a Herman ring
presumably has measure zero, so that a randomly cho-
sen example will never have a Herman ring. However,
if we consider rational maps with real coefficients, then
the situation is different, and the discussion in Example
5.5 suggests that the set of real parameters that give rise
to a complex Herman ring should have positive Lebesgue
measure.

12One example of a punctured Siegel disk that cannot be ex-
tended to a full smoothly embedded disk is described in Example
8.2 above. We don’t know whether more-exotic examples exist.

Let f be a rational map of P
2 with real coefficients,

and suppose that there exists an embedded f -invariant
circle Γ ⊂ P

2(R) with irrational rotation number. If Γ
is smooth of class C2, then according to Denjoy’s the-
orem, the restriction f |Γ is topologically conjugate to
a circle rotation. In particular, there is a canonical f -
invariant probability measure dµ with support equal to
the entire circle. The transverse Lyapunov exponent of
Γ in P2(R) is then well defined. Just as in the proof of
Lemma 8.5, a positive Lyapunov exponent implies that
Γ is uniformly repelling, and similarly, a negative expo-
nent implies that Γ is uniformly attracting and hence is
a trapped attractor.

In the real analytic case we can complexify the circle
Γ to obtain the following.

Lemma 8.10. (From circle to ring.) Let f be a rational
map of P

2(R). If Γ is a real analytic f-invariant circle
with Diophantine rotation number, then the associated
map from P

2(C) to itself possesses a Herman ring H ⊃ Γ.
Furthermore, the transverse Lyapunov exponent of Γ in
P

2(R) is identical to the transverse Lyapunov exponent
of H along Γ.

If we exclude the special case that the transverse ex-
ponent is exactly zero, then it follows that Γ is repelling
(or attracting) in the real projective plane if and only if
a neighborhood of Γ in H is repelling (or attracting) in
the complex projective plane.

Remark 8.11. (The one-dimensional case.) It is interest-
ing to compare the situation in one variable. For any
odd number d ≥ 3, the set of degree-d rational maps
that carry the real projective line P

1(R) diffeomorphi-
cally onto itself is open, and all possible rotation num-
bers are realized. If such a map has Diophantine rotation
number, then a similar argument shows that the corre-
sponding rational map of P

1(C) contains a Herman ring.

Proof of Lemma 8.10: By a theorem of Herman, as
sharpened by Yoccoz (see [Yoccoz 02]), any orientation-
preserving real analytic diffeomorphism of a circle with
Diophantine rotation number α is real analytically conju-
gate to the rigid rotation t �→ t+α(modZ) of the standard
circle R/Z. That is, there is a real analytic diffeomor-
phism h : R/Z → Γ ⊂ P

2(R) such that f(h(t)) = h(t+α).
Since h is real analytic, it extends to a complex an-

alytic diffeomorphism from a neighborhood of R/Z in
the cylinder C/Z into the complex projective plane.
The image of this extended map on some neighborhood
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{t mod Z : |�(t)| < ε} is the required Herman ring
H ⊂ P

2(C). Evidently the translation t �→ t + α on
this neighborhood is conjugate to the rational map f on
H. Further details are straightforward, since any norm
on the normal bundle of H in P

2(C) will restrict to a
norm on the normal bundle of Γ in P

2(R).

Now consider a C∞ smoothly embedded circle Γ0 in a
real 2-dimensional manifold M . Let M

f0−→ M be a C∞

smooth map that restricts to an irrational rotation on
Γ0 and that has negative transverse exponent on Γ0. As
noted above, an argument similar to the proof of Lemma
8.5 shows that Γ0 is a trapped attractor. Let N ⊂M be
a trapping neighborhood, with f0(N) ⊂ interior(N).

Theorem 8.12. (Persistence of invariant circles.) In this
situation, for any C∞ map fτ that is close enough to f0

in the C1 topology, the intersection

Γτ =
⋂
n

f◦n
τ (N)

of the iterated forward images of N under fτ will be a
topological circle, and fτ will map this circle homeomor-
phically onto itself with a rotation number ρτ that varies
continuously with τ . Furthermore, for any finite k, if fτ

is C1 sufficiently close to f0, then Γτ will be Ck smooth.

Here we can expect the continuous function τ �→ ρτ to
have an interval of constancy whenever ρτ takes a ratio-
nal value. In fact, a generic map fτ with ρτ = p/q will
have an attracting period-q orbit contained in Γτ . In this
case, Γτ cannot contain any dense orbit. Evidently such
an attracting orbit will be stable under perturbation.

Proof of Theorem 8.12: If a neighborhood of Γ0 is
orientable, then we can choose local coordinates (t, u)
throughout some neighborhood of Γ0, with t ∈ R/Z and
with |u| < ε, so that Γ0 is given by the equation u = 0,
and so that the map f0, in these coordinates, has the
form

(t, u) �→ (T,U), where (t, 0) �→ (t+ ρ0, 0) ,

and where the rotation number ρ0 is an irrational con-
stant. Thus T = t + ρ0 and U = 0 when u = 0. (In the
nonorientable case, we can first pass to the 2-fold ori-
entable covering of a neighborhood and then choose such
coordinates.) Evidently ∂T/∂t = 1 and ∂U/∂t = 0 along
the circle u = 0. Furthermore, since the transverse expo-
nent is negative, after replacing f0 by some high iterate,
we may assume that |∂U/∂u| < c when u = 0, for some
constant c < 1.

After a carefully chosen change of coordinate, replac-
ing (t, u) by (t̂, û), we will show that the correspond-
ing map (t̂, û) �→ (T̂ , Û) satisfies the additional condition
that ∂T̂ /∂û = 0 when û = 0. Let t̂ = t + ψ(t)u, û = u,

and correspondingly, T̂ = T +ψ(T )U , Û = U , where the
auxiliary function ψ will be chosen below.

Along the line u = U = 0, we then have

dT̂ =
∂T̂

∂t̂
dt̂+

∂T̂

∂û
dû =

∂T̂

∂t̂

(
dt+ ψ(t)du

)
+
∂T̂

∂û
du ,

but also

dT̂ = dT + ψ(T )dU = dt+
∂T

∂u
du+ ψ(T )

∂U

∂u
du .

Combining these two equations with the required identity
∂T̂ /∂û = 0, we obtain

ψ(t) =
∂T

∂u
(t, 0) + ψ(t+ ρ0)

∂U

∂u
(t, 0) .

This difference equation can be solved by setting

ψ(t) = s0 + r0s1 + r0r1s2 + · · · ,
where

sn =
∂T

∂u
(t+ nρ0, 0) and rn =

∂U

∂u
(t+ nρ0, 0) .

Since this series evidently converges uniformly, we obtain
the required change of coordinates.

Henceforth, we will leave off the hats and simply as-
sume that we have chosen coordinates such that (t, u) �→
(T,U) with

∂T/∂t = 1, ∂U/∂t = 0,

∂T/∂u = 0, |∂U/∂u| < c

along the circle u = U = 0.
Next, given any 0 < η < 1, we can choose a trapping

neighborhood N = {(t, u); |u| ≤ b0} for Γ0 that is small
enough so that the inequalities

|∂tT − 1| < η, |∂uT | < η,

|∂tU | < η, |∂uU | < c, (8–1)

are valid throughout this neighborhood (using an abbre-
viated notation for partial derivatives). We can then
choose fτ close enough to f0 that fτ (N) ⊂ interior(N),
so that these inequalities (8–1) remain true for the map
fτ (t, u) = (T,U).

Now consider a curve t �→ u(t) with slope v(t) =
du/dt. Setting fτ

(
t, u(t)

)
= (T,U), we have

d T
(
t, u(t)

)
dt

=
∂T

∂t
+
du

dt

∂T

∂u
,
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or briefly,
DtT =

(
∂t + v∂u)T ,

and similarly DtU =
(
∂t + v∂u)U . Given some upper

bound b1 for |v| = |du/dt|, we can estimate that

DtT > 1 − η − b1η and |DtU | < η + b1c ,

and hence ∣∣∣∣dUdT
∣∣∣∣ =

|DtU |
DtT

<
η + b1c

1 − η − b1η
.

If η is sufficiently small, then this upper bound will be
strictly less than b1. More precisely, if

0 < η <
b1(1 − c)

1 + b1 + b2
1

,

then a brief computation shows that DtT > 0 and that
(η + b1c)/(1 − η − b1η) < b1. It will then follow that
the image curve is the graph of a well-defined function
U = U(T ), and furthermore that the slope of this image
curve is bounded by the same constant,

|dU/dT | < b1 .

It follows inductively that each iterated forward image of
the initial curve will again be a well-defined curve with
|slope| < b1.

As trapping neighborhood N we can choose a union
of horizontal circles u = û with −b0 ≤ û ≤ b0. Then
each iterated image f◦n

τ (N) ⊂ N will be a corresponding
union of a continuum of curves of the form un = un(t)
with |dun/dt| ≤ b1. If u−n (t) is the infimum of this collec-
tion of curves and u+

n (t) is the supremum, then it follows
easily that the nth forward image of N is given by

f◦n
τ (N) = {(t, u) : u−n (t) ≤ u ≤ u+

n (t)}.

Here both the upper and lower boundary curves satisfy
a Lipschitz condition

|u±n (t1) − u±n (t0)| ≤ b1|t1 − t0|.

On the other hand, it follows from (8–1) that the Jaco-
bian determinant of fτ within N is bounded by

|Jacobian| < (1 + η)c+ η2 ,

and we may assume that this upper bound is strictly less
than one. Hence the areas of these successive images
shrink to zero. Thus

∫ 1

0

(
u+

n (t) − u−n (t)
)
dt tends to zero

as n → ∞. It follows easily that the upper and lower

bounding curves tend to a common Lipschitz limit. This
proves that the attracting set

Γτ =
⋂
n≥0

f◦n
τ (N)

is itself the graph of a function t �→ limn→∞ u±n (t) that
is continuous (and in fact Lipschitz with Lipschitz con-
stant b1).

Note that the rotation number ρτ of such a contin-
uously varying family of monotone circle maps depends
continuously on the parameter τ . (See [de Melo and van
Strien 93, p. 33].)

To prove that this attracting curve is C1 smooth, we
must estimate second derivatives. It will be convenient
to set

Dt,t = ∂2
t + 2v∂t∂u + v2∂2

u + (dv/dt)∂u,

so that

d2U

dt2
= Dt,tU and

d2T

dt2
= Dt,tT .

Since dU/dT = DtU/DtT , it follows that

d2U

dT 2
=

d

dT

DtU

DtT
=
Dt(DtU/DtT )

DtT

=
(Dt,tU)(DtT ) − (Dt,tT )(DtU)

(DtT )3
.

Separating out the dv/dt = d2u/dt2 terms, we can
write this as

d2U

dT 2
= A2 +B2

d2u

dt2
, (8–2)

where A2 is uniformly bounded and where

B2 =
(∂uU)(DtT ) − (∂uT )(DtU)

(DtT )3
,

so that

|B2| < c (1 − η − b1η) + η(η + b1c)
(1 − η − b1η)3

.

Evidently, if η is small enough, then |B2| < constant < 1.
Now choose a constant b2 > |A2|/(1 − |B2|). Then if
|d2u/dt2| < b2, it follows that

|d2U/dT 2| < |A2| + |B2|b2 < b2 .

Thus with these choices, the successive forward images
of Γ0 will be curves un = un(t) that converge uniformly
to a limit, with both |dun/dt| and |d2un/dt

2| uniformly
bounded.
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Now we can continue inductively. By successively dif-
ferentiating the formula (8–2), we obtain formulas of the
form

dkU

dT k
= Ak +Bk

dku

dtk
,

where Ak depends not only on the iterated partial deriva-
tives of T (t, u) and U(t, u) but also on the derivatives
du/dt with  < k, and where

Bk+1 =
Bk

DtT
<

Bk

1 − η − b1η
.

Thus, choosing η small enough that Bk < constant < 1,
we can find a suitable upper bound bk for |dku/dtk| that
is preserved when we replace a curve Γ by fτ (Γ). Thus,
given any finite k, we can choose η small enough that the
iterated forward images of a curve u = u(t) that satisfies
the inequalities ∣∣∣∣du

dt

∣∣∣∣ ≤ b for all  ≤ k

will be a curve that satisfies these same inequalities.
To complete the proof of Theorem 8.12, we need the

following lemma.

Lemma 8.13. (A derivative inequality.) If a C2 smooth
function x = x(t) on the real line satisfies uniform in-
equalities |x(t)| < α and |d2x/dt2| < β, then it follows
that ∣∣∣∣dxdt

∣∣∣∣ < √
2αβ .

Proof: Suppose, for example, that the first derivative
x′ = dx/dt satisfied x′(0) ≥ √

2ρ0β with x(0) ≥ 0. Using
the lower bound x′′(t) > −β and integrating twice, we
see that

x′(t) >
√

2αβ − βt and x(t) >
√

2αβt− βt2/2

for t > 0. In particular, substituting t0 =
√

2α/β, it
would follow that x(t0) > α, thus contradicting the hy-
pothesis. Other cases can be handled similarly.

We can now complete the proof of Theorem 8.12.
Again let un = un(t) be the nth forward image of Γ0

under fτ . As m and n tend to infinity, the differ-
ence un(t) − um(t) tends to zero, while the difference
u′′n(t) − u′′m(t) remains uniformly bounded. Thus it fol-
lows from Lemma 8.13 that the difference u′n(t) − u′m(t)
converges uniformly to zero.

Similarly, since differences of higher derivatives remain
uniformly bounded, it follows inductively that differences

of higher derivatives converge to zero. Thus, for any
specified k < ∞, it follows that the limit curve Γτ is
Ck smooth whenever τ is sufficiently close to zero. This
completes the proof.

Remark 8.14. Note that the argument above does not
produce a C∞ curve, since we need to impose tighter and
tighter restrictions on fτ in order to get successive higher
derivatives. The argument certainly does not produce a
real analytic curve, which is what we would need in order
to show that Γτ is contained in a Herman ring. We have
no idea how to prove real analyticity, even assuming that
the rotation number ρτ is Diophantine.13

9. OPEN PROBLEMS

The results of this note leave a number of conjectures
and open questions. Here is a brief list.

Conjecture 9.1. For any f-invariant elliptic curve C ⊂
P

2(C), the basin of attraction, consisting of all points
whose orbits converge to C, is contained in the Julia set
of f .

Intuitive proof: Otherwise the basin would have to con-
tain an open set U such that every sequence of iterates of
f on U contains a subsequence converging to a constant
c ∈ C. This looks very unlikely, given the fact that f is
highly expanding in directions tangent to C.)

The following two conjectures are closely related.
Compare the discussion in Remark 4.3.

Conjecture 9.2. Such an attracting basin cannot contain
any nonvacuous open set. In other words, the set of all
points not attracted to C is always everywhere dense.

Conjecture 9.3. Every invariant complex elliptic curve
contains a repelling periodic point.

In all examples known to us there is a repelling fixed
point.

Conjecture 9.4. In the space of complex Desboves maps
with real coefficients, there is a subset of positive measure

13In order to illustrate the difficulty of understanding simple
closed curves, it is interesting to compare the boundaries of Siegel
disks for rational maps of P1. These are simple closed curves in
all known cases. They can never be real analytic, but in the non-
Diophantine case they can be C∞ smooth. (Compare [Avila et al.
04].) In the Diophantine case, such a boundary necessarily contains
a critical point, and hence cannot be smooth. (See [Ghys 84].)
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consisting of maps that have a cycle of attracting Herman
rings.

(Compare Section 8 and Example 5.5.)

There are also many questions about which we have
no idea what to guess.

• To what extent are maps with an attracting periodic
orbit common in the space of all degree-d maps pre-
serving a given elliptic curve? For example, do they
form a dense open set?

• Can an invariant elliptic curve be a global attrac-
tor, with an attracting basin of full measure? We
have constructed a number of examples in which this
seems to be true empirically; but how can one ex-
clude the possibility of other attractors with basins
of very small measure?

• Can a smooth real elliptic curve be a trapped attrac-
tor?

• What can one say about the dynamics when the el-
liptic curve has positive transverse Lyapunov expo-
nent? Could such a map have an absolutely con-
tinuous invariant measure? Is it true that an ellip-
tic curve can never be a measure-theoretic attractor
when its transverse exponent is positive? (Compare
Remarks 1.4 and 6.8.)

• What other kinds of attractor can occur for a ra-
tional map with invariant elliptic curve? Can there
be fractal attractors? Can there be a set of dense
orbits of positive measure, or even of full measure?
Can the Julia set have positive measure?
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[Ghys 84] É. Ghys. “Transformations holomorphes au voisi-
nage d’une courbe de Jordan” C. R. Acad. Sci. Paris Sér.
I Math. 298 (1984), 385–388.

[Gorodetski and Ilashenko 96] A. Gorodetski and Y. Ilya-
shenko. “Minimal and Strange Attractors.” Int. J. Bifur-
cations and Chaos 6 (1996), 1177–1183.

[Griffiths and Harris 94] P. Griffiths and H. Harris. Princi-
ples of Algebraic Geometry. New York: Wiley, 1994.

[Guedj 05] V. Guedj. “Ergodic Properties of Rational Map-
pings with Large Topological Degree.” Ann. of Math. 161
(2005), 1589–1607.
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