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We present a computer-oriented method of producing pictures
of Bers embeddings of the Teichmüller space of once-punctured
tori. The coordinate plane is chosen in such a way that the ac-
cessory parameter is hidden in the relative position of the origin.
Our algorithm consists of two steps. For each point in the coordi-
nate plane, we first compute the corresponding monodromy rep-
resentation by numerical integration along certain loops. Then
we decide whether the representation is discrete by applying Jør-
gensen’s theory on the quasi-Fuchsian space of once-punctured
tori.

1. INTRODUCTION

Let Γ be a Fuchsian group acting on the unit disk D

uniformizing a Riemann surface, and B2(D,Γ) the com-
plex Banach space of holomorphic quadratic differentials
for Γ on D with finite norm. It is well known that the
Teichmüller space T (Γ) of Γ can be realized as a bounded
contractible open set in B2(D,Γ) through the Bers em-
bedding. Throughout the paper, the space T (Γ) is un-
derstood as the image of the Bers embedding.

In 1972, Bers wrote [Bers 72, page 278], with the no-
tation changed to conform with ours, “Unfortunately,
there is no known method to decide whether a given
φ ∈ B2(D,Γ) belongs to T (Γ). This is so even if
d = dimB2(D,Γ) < ∞. Even the case d = 1 is in-
tractable.”

In what follows, we will assume that the quotient Rie-
mann surface D/Γ is a once-punctured torus T so that the
Teichmüller space T (Γ) has complex dimension one. In
this case, two elements α, β ∈ Γ are called standard gen-
erators if the oriented intersection number i(α, β) in D/Γ
with respect to the orientation coming from the complex
structure of D is equal to +1.

In this paper, we provide an algorithm for produc-
ing the picture of T (Γ), or more generally, the “discrete-
ness locus” concerning the holonomy representations in
B2(D,Γ), present the pictures of T (Γ) in B2(D,Γ) for
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several Γ’s, and explain our algorithm for producing such
pictures. We then describe our experiments concerning
an open problem posed by C. McMullen [McMullen 96]
on the self-similarity of Bers slices.

To describe the idea of the algorithm, let us recall
some basic facts in Teichmüller theory. For every φ in
B2(D,Γ), there exists a locally univalent meromorphic
function fφ on D with {fφ, z} = φ(z), where {f, ·} is the
Schwarzian derivative of f . The function fφ is called a
developing map of φ and is unique up to postcomposition
by Möbius transformations. The homomorphism θφ :
Γ → PSL(2,C) defined by

fφ ◦ γ = θφ(γ) ◦ fφ, γ ∈ Γ,

is called the holonomy representation of Γ associated with
φ ∈ B2(D,Γ) and is unique up to Möbius conjugacy.
Note that this homomorphism θφ is type-preserving in
the sense that tr[θφ(α), θφ(β)] = −2 for any standard
generators α, β of Γ. We consider the set K(Γ), which
is defined as the set of all φ ∈ B2(D,Γ) for which θφ(Γ)
is discrete in PSL(2,C), i.e., θφ(Γ) is a Kleinian group.
Then T (Γ) is equal to the component of IntK(Γ) con-
taining the origin [Shiga 87]. The other components of
IntK(Γ) other than T (Γ) are called exotic. Already in
1969, Maskit [Maskit 69] pointed out the existence of ex-
otic components, and in recent years, many authors have
been studying the structure of the set K(Γ) (see, for in-
stance, [Shiga and Tanigawa 99], [Tanigawa 99], [Ito 00],
and [Miyachi 03]). Though Goldman [Goldman 87] suc-
ceeded in enumerating all the components of IntK(Γ)
in terms of integral measured foliations, the shape and
configuration of these components are still unclear.

We actually draw the picture of K(Γ) in B2(D,Γ) for
the given group Γ. The algorithm involves the following
two steps: For each element φ in B2(D,Γ) ∼= C:

Step 1. Compute the holonomy representation θφ.

Step 2. Decide whether the image θφ(Γ) is discrete in
PSL(2,C).

These steps will be described in the following sections.

Remark 1.1. The first and second named authors pro-
posed a different approach for drawing pictures of the
Bers embedding in [Komori and Sugawa 04]. One can
find a numerical method that enables us to present:

(i) the image of the holonomy representation corre-
sponding to a given cusp boundary point,

(ii) the generators of a Fuchsian group uniformizing a
given once-punctured torus,

(iii) values of the accessory parameter (see Section 2.2),
and

(iv) pictures of pleating loci.

On the other hand, the present approach has the follow-
ing merits:

1. We do not have to calculate the accessory parameter
to get the picture.

2. We can draw the pictures of exotic components be-
sides the Bers slice.

Remark 1.2. Our definition of the (Bers embedded)
Teichmüller space is different from the standard one. In
the standard definition, our space T (Γ) is the Teichmüller
space of the surface D∗/Γ, the mirror image of D/Γ, where
D∗ is the exterior of the unit disk D.

2. HOLONOMY REPRESENTATION

In this section we will describe an algorithm that takes an
element φ of B2(D,Γ) as the input and returns a holon-
omy representation θφ as the output. To make our cal-
culation easier, we will work with a four-times-punctured
sphere. For a detailed exposition, see [Komori and Sug-
awa 04].

2.1 Commensurability Relations

Fix a pair of standard generators (α, β) of Γ. Then the
once-punctured torus T admits an intermediate covering
space, the complex plane C minus lattice points Lτ =
{m + nτ ;m,n ∈ Z}, so that α and β correspond to the
generators

z → z + 1, z → z + τ

for Lτ , where τ is a complex number with Im τ > 0.
We observe that the mapping z+Lτ �→ 2z+Lτ induces

an unbranched covering of the four-times-punctured
torus T̃ = (C − 1

2Lτ )/Lτ onto T. We now choose a
four-times-punctured sphere S = Ĉ − {0, 1,∞, λ} so
that T and S have the common covering space T̃ . Set
e1 = ℘(1/2), e2 = ℘(τ/2), e3 = ℘((1 + τ)/2), and

λ =
e3 − e2
e1 − e2

,

where ℘ is the Weierstrass ℘-function with period lattice
Lτ . Then a covering projection π of T̃ onto S is given by

π(z + Lτ ) =
℘(z) − e2
e1 − e2

.
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Note that λ = λ(τ) is known to be an elliptic modular
function.

The canonical projection D → D/Γ = T induces the
universal cover q̃ : D → T̃ . Let ΓS be the covering group
of the universal covering projection p = π ◦ q̃ of D onto
S. Note that we have B2(D,ΓS) = B2(D,Γ) (see [Komori
and Sugawa 04]).

Let B2(S) be the Banach space of (hyperbolically)
bounded holomorphic quadratic differentials on S. By
definition, the spaces B2(D,ΓS) and B2(S) are isomor-
phic via the pullback p∗ : B2(S) → B2(D,ΓS) defined by
p∗ψ = ψ ◦ p · (p′)2. The rational function

ψ0(z) =
1

z(z − 1)(z − λ)
(2–1)

gives a nontrivial bounded quadratic differential
ψ0(z)dz2, which forms a basis of the Banach space
B2(S) since dimB2(S) = 1. Therefore each element
φ ∈ B2(D,Γ) = B2(D,ΓS) can be written as φ = tφ0,

where t is a complex number and φ0 = p∗(ψ0).

2.2 The Monodromy of a Four-Times-Punctured Sphere

Now, for each φ = tφ0, consider the developing map fφ :
D → Ĉ. Our idea is to compute fφ on S instead of D.

For this purpose, we take the branch P of p−1 around
p(0) so that P (p(0)) = 0 and put g(z) := fφ(P (z)). Then
we have

{g, z} = {fφ, P (z)}(P ′(z))2 + {P, z} = tψ0(z) + {P, z}.
(2–2)

For {P, z} in (2–2) we use the next lemma:

Lemma 2.1. [Forsyth 02, Ch. X, p. 492] The Schwarzian
derivative of P is of the form

{P, z} =
1

2z2
+

(1 − λ)2

2(z − 1)2(z − λ)2
+

c(λ)
z(z − 1)(z − λ)

(2–3)
on S, where c(λ) is a constant determined by λ and called
the accessory parameter.

By the above lemma and (2–2), {g, z} is globally de-
fined on Ĉ − {0, 1,∞, λ}. Combining (2–1), (2–2), and
(2–3), the equation to solve is

2y′′+
(

1
2z2

+
(1 − λ)2

2(z − 1)2(z − λ)2
+

t′

z(z − 1)(z − λ)

)
y = 0,

(2–4)
where we have set t′ = t + c(λ). As is well known,
{y1/y0, z} = {g, z}. Hence, fϕ = M ◦ (y1/y0) ◦ p around
the origin for some Möbius transformation M.

We now describe how to compute the monodromy. Let
γS be an element of ΓS . We start with the pair (y0, y1) of
fundamental solutions of (2–4) determined by the initial
conditions

y0(z0) = 1, y′0(z0) = 0,

and
y1(z0) = 0, y′1(z0) = 1,

at a fixed point z0 in S. Then we continue them ana-
lytically along a closed path in S corresponding to γS .
Returning to the starting point, we arrive at a new pair
of solutions (Y0, Y1). However, these new solutions must
be linear combinations of the original solutions. Thus we
have

Y0 = Dy0 + Cy1, Y1 = By0 +Ay1,

for some complex numbers A, B, C, and D. We define

θ̃ψ(γS) =
(
A B
C D

)
∈ SL(2,C)

for each γS ∈ ΓS . We note that by the monodromy the-
orem, the matrix is independent of the particular choice
of the path corresponding to γS .

Since fφ ◦ γS corresponds to

Y1

Y0
=
A(y1/y0) +B

C(y1/y0) +D
,

we obtain the following lemma.

Lemma 2.2. The monodromies θφ and θ̃ψ are essentially
the same. More precisely, on Γ ∩ ΓS, θφ is equal to
the PSL(2,C) representation induced by θ̃ψ up to Möbius
conjugacy.

So we can calculate θφ on S by means of (2–4). The
reader can find a reason why the holonomy representation
of ΓS takes the values in SL(2,C) in [Komori and Sugawa
04, Remark 4.1].

2.3 Markov Triples

Though α and β are in Γ, they are not in ΓS , on which θ̃ψ
is defined. In other words, α and β do not correspond to
the closed paths in S. So we need a little more calculation
to end this section.

Let A and B be the matrices in SL(2,C) such that
±A = θφ(α) and ±B = θφ(β) in PSL(2,C). Set x = trA,
y = trB, and z = trAB. The triple (x, y, z) is well de-
fined up to changing the signs of any two entries. It
determines θφ up to conjugacy in PSL(2,C). In the next
section, this holonomy is represented using Jørgensen’s
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normalization and denoted by θx,y,z. Since our ho-
momorphism is type-preserving, the well-known trace
identity 2 + tr[X,Y ] = (trX)2 + (trY )2 + (trXY )2 −
trX trY trXY implies the relation

x2 + y2 + z2 = xyz. (2–5)

Conversely, given any triple (x, y, z) satisfying (2–5), we
can reconstruct the image of the group Γ up to conjugacy.
We call such a triple of complex numbers a Markov triple.

Thus it suffices to compute x and y. Again by the
trace identity trX trY = trXY + trXY −1, we have

x =
√

tr θ̃ψ(α2) + 2, y =
√

tr θ̃ψ(β2) + 2. (2–6)

Now we can calculate θ̃ψ(α2) and θ̃ψ(β2) by solving equa-
tion (2–4) because α2 and β2 are in ΓS .

Let us summarize the algorithm in this section. The
inputs are λ ∈ C to specify Γ and t ∈ C to specify φ ∈
B2(D,Γ). We solve equation (2–4) numerically to get
θ̃ψ(α2) and θ̃ψ(β2). Using equation (2–6) and equation
(2–5), we calculate and return the Markov triple.

2.4 Technical Remarks

The simple loops in S separating {0, 1} from {∞, λ}
and separating {0, λ} from {1,∞} have two intersec-
tion points and correspond to α2 and β2, respectively,
with suitably chosen orientations. Practically, we choose
polygonal curves with a common endpoint as such loops.
For each oriented line segment of such curves, we solve
the differential equation (2–4) numerically and find the
transition matrix of it along the segment. Then the or-
dered products of the transition matrices corresponding
to the polygonal curves are representatives of α2 and β2

in SL(2,C) (see [Komori and Sugawa 04] for details).
Here, we may think of a value of the parameter t′ as
being given in (2–4) instead of t, so that we do not care
about the value of the accessory parameter c(λ).

3. JØRGENSEN’S THEORY TO DECIDE
DISCRETENESS

The input of the algorithm of this section is a Markov
triple and the output is the answer “discrete,” “indis-
crete,” or “undecided.”

The general idea is to try to construct a Ford funda-
mental region of the given Markov triple. If the image of
the corresponding holonomy representation is indiscrete,
the term “Ford fundamental region” does not make sense
and our process of constructing it will fail. Then we will
search for evidence of its indiscreteness.

This algorithm is based on Jørgensen’s theory of once-
punctured tori [Jørgensen 03]. An exposition of this the-
ory with proofs is in preparation [Akiyoshi et al., to ap-
pear]. This algorithm may not halt in finite time for some
inputs. For example, if H3/θx,y,z(Γ) is geometrically in-
finite or a Z-covering space of a punctured torus bundle
over the circle, our algorithm will not stop in finite time.
In practice, we will stop our calculation at a certain time
and give the answer “undecided.”

3.1 Notation

Let T be a once-punctured torus. We fix standard gen-
erators α, β of the fundamental group of T . Let θ be a
type-preserving PSL(2,C) homomorphism of π1(T ). By
taking a lift to SL(2,C), θ can be specified by the Markov
triple x = tr θ(α), y = tr θ(αβ), and z = tr θ(β) up to
conjugation in PSL(2,C). The Markov triple is then well
defined up to simultaneous change of signs in a pair of
elements in the triple. We denote this representation
by θx,y,z.

Recall that a slope in T is the isotopy class of an
essential simple closed curve on T . By choosing a ba-
sis of H1(T ; Z), a slope is represented by a number in
Q ∪ {1/0 = ∞}. To fix our notation, we choose α

and β as the basis so that the slope of α and β are
1/0 and 0/1 respectively. For a slope q ∈ Q ∪ {1/0},
set Sq = {g ∈ π1(T ) | slope of g = q}. Note that
α ∈ S1/0, β ∈ S0/1, and αβ ∈ S1/1. We identify the
set of slopes as a subset of ∂H2. Two rational numbers
p/q and r/s are Farey neighbors if |ps− qr| = 1. By join-
ing all pairs of Farey neighbors by geodesics, we get the
Farey tessellation of H2 by ideal triangles. Note that the
slopes of α, β, and αβ form an ideal triangle of the above
tessellation. By taking the dual graph of this triangula-
tion, we have a trivalent graph Σ properly embedded in
H2. With each vertex v in Σ we can associate a subset
Sv of π1(T ) by

Sv = Sq1 ∪ Sq2 ∪ Sq3 ,
where slopes q1, q2, q3 ∈ Q ∪ {∞} are the ideal vertices
of the triangle in the Farey tessellation that is dual to v.
Set Iv = {isometric hemisphere of g | g ∈ Sv}.

Jørgensen’s theory of punctured tori claims that if the
image of the holonomy representation θx,y,z is discrete,
then there is a path P in Σ that depends on (x, y, z)
such that the boundary of the Ford region is given by⋃
v∈P Iv. After the Jørgensen normalization, which will

be introduced in Section 3.2, we can define an “upward”
and a “downward” direction in P . We will say that some
vertex v′ ∈ P is the upper (lower) neighbor of v ∈ P
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if v′ is adjacent to v and the direction from v to v′ is
upward (downward). We will also use terms like “upper
endpoint” and “lower endpoint” of P for the endpoints
of P .

In the next subsection, we recall Jørgensen’s descrip-
tion. It describes the Ford region for a given discrete
representation θx,y,z(Γ) with v0 ∈ P , where v0 ∈ Σ is the
dual of 1/0, 0/1, and 1/1. After this subsection, we will
describe our algorithm.

3.2 Jørgensen’s Description of the Ford Region

The Ford region of θx,y,z is defined (if the image of θx,y,z
is discrete) to be the set of points lying above the iso-
metric hemispheres of all elements in θx,y,z(Γ) not fixing
∞. Recall that the isometric hemisphere I(A) for A =(
a b
c d

) ∈ SL(2,C) with A(∞) 	= ∞ is the hemisphere in
H3 with radius 1/|c| centered at −d/c ∈ C = ∂H3−{∞}.
In order to obtain a fundamental region for θx,y,z(Γ), we
have to take the intersection of this Ford region with
some fundamental region for the stabilizer of ∞.

Now let (x, y, z) be a Markov triple. We can recon-
struct θx,y,z using Jørgensen’s normalization [Jørgensen
03]:

θx,y,z(α) =
1
x

(
xy − z y/x
xy z

)
, (3–1)

θx,y,z(β) =
1
x

(
xz − y −z/x
−xz y

)
.

Then we can check that

θx,y,z(αβ) =
(
x −1/x
x 0

)
, (3–2)

θx,y,z(K) =
( −1 −2

0 −1

)
,

where K = [α, β]. The isometric hemispheres of α, αβ,
and β are centered at −z/xy, 0, and y/zx with radii
1/y, 1/x, and 1/z respectively. It is easy to see that the
isometric hemispheres of α−1, (αβ)−1, and β−1K−1 are
the translated images of the above three hemispheres by
z �→ z + 1. Since θx,y,z(Γ) contains the action θx,y,z(K)
of translation z �→ z + 2, we have a bi-infinite sequence
of translated images of the above three isometric hemi-
spheres with symmetry of translation by one. Thus, we
have a sequence of isometric hemispheres

. . . , I−4 = I(α−1K), I−3 = I((αβ)−1K),

I−2 = I(β−1), I−1 = I(α), I0 = I(αβ),

I1 = I(β), I2 = I(α−1), I3 = I((αβ)−1),

I4 = I(β−1K−1), I5 = I(αK−1), . . . .

FIGURE 1. Isometric hemispheres.

See Figure 1. Note that In+3 =
√
θx,y,z(K)(In) for

any n ∈ Z, where
√
θx,y,z(K) is the translation z �→ z+1.

The group elements that correspond to I3n, I3n+1, and
I3n+2 belong to Sαβ , Sβ , and Sα respectively. Set I1/1 :=
{I3n}n∈Z, I0/1 := {I3n+1}n∈Z, I1/0 := {I3n+2}n∈Z. As
a set, {In}n∈Z is equal to Iv0 . We denote by Lv0 the
polyline of infinite length given by connecting the centers
of In and In+1 for each n ∈ Z.

Since we made the assumption v0 ∈ P at the
end of Section 3.1, the following assertions follow from
Jørgensen’s theory:

(C1) Consecutive isometric hemispheres intersect with
each other.

(C2) The polyline Lv0 has no self-intersection.

So we have two sequences of subarcs of ∂In ⊂ C: the
upper boundary sequence UBS and the lower boundary
sequence LBS. See Figure 1.

For UBS and LBS, the set of subarcs can be divided
into three groups: those that come from I1/0, from I0/1,
and from I1/1. Let us consider UBS. We have three cases:

FIGURE 2. Case (S1).

FIGURE 3. Case (S2).

FIGURE 4. Case (S3).



56 Experimental Mathematics, Vol. 15 (2006), No. 1

FIGURE 5. Markov triple (x, y, z) = (2.536 − 1.115i, 2.616 − 0.645i, 2.203 + 0.660i). Left: Farey diagram and its
dual graph Σ. Right: isometric hemispheres in upper-half-space model. (a) v0: starting point (dual of �01∞) (b)
v1: the upper neighbor of v0, top endpoint since it is of (S1) for UBS. (c) v2: lower neighbor of v0, lower endpoint
since it is of (S1) for LBS. v2v0v1: Jørgensen’s path. We conclude that θ(x,y,z) is discrete.

(S1) All the groups of subarcs I1/0, I0/1, and I1/1 appear
in the sequence (Figure 2).

(S2) Only two groups of subarcs appear in the sequence
and one group, say I1/0, does not (Figure 3).

(S3) Only one group, say I0/1, appears in the sequence
(Figure 4).

The method to find the upper neighbor and decide
whether it is an upper endpoint is as follows: in case (S1),
v0 is the upper endpoint and there is no upper neighbor
vertex for v0. Next, suppose that UBS is of case (S2),
and for the Farey triangle �q1q2q3 that is dual to v0, only
the slope q1 does not appear in UBS. There is a unique
Farey triangle �q2q3q4 that is adjacent to �q1q2q3 along
the geodesic connecting q2 and q3, and let v′ be the dual
vertex of it. Then v′ is the upper neighbor of v0. In the

case of (S3), there are two possible choices for the upper
neighbor; the choice is given in [Wada].

For LBS and lower neighbor, the rule is the same.
For example, Figure 5 (a) depicts the case in which

both UBS and LBS of v0 are of case (S2). The left-hand
figure is the Farey diagram, and its dual graph Σ. The
right-hand figure is a picture of isometric hemispheres
Iv0 . Note that I(α) does not belong to UBS, and the
slope of α is 1/0. In this case, v1, which is the dual
to the Farey triangle 0/1, 1/1, and 1/2, is the upper
neighbor of v0. See Figure 5 (b).

Since UBS of v1 is of case (S1), it is the upper end-
point.

If we carry out the same process for the downward
direction, we reach the vertex v2 in Figure 5 (c), which
turns out to be the lower endpoint. In this case, we
conclude that the Jørgensen path P is v1v0v2.
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3.3 The Algorithm

In this subsection we discuss the algorithm. Here we do
not assume that v0 ∈ P . We also consider a condition for
indiscreteness not mentioned in the previous subsection.

Starting from v0, we search Σ for Jørgensen’s path.
If we arrive at a new vertex in Σ, we get a new slope
q ∈ Q ∪ {1/0}. Then we check the Shimizu–Leutbecher
lemma below for the elements of Sq, and say “indiscrete”
and stop the calculation if the condition is satisfied.

Lemma 3.1. (Shimizu-Leutbecher.) Suppose that a sub-
group Γ of SL(2,C) contains ( 1 1

0 1 ). If there exists an
element

(
a b
c d

) ∈ Γ with 0 < |c| < 1, then Γ is indiscrete.

Since the radius of the isometric hemisphere for
(
a b
c d

)
is 1/|c|, it follows that, in our setting, if there exists an
isometric hemisphere of radius greater than 1, then the
group is indiscrete.

After starting from v0, our first task is to search for
a vertex that satisfies the condition (C1). For v ∈ Σ,
where v = dual of �q1q2q3, a simple calculation shows
that (C1) is equivalent to the triangle inequality for
|τ(q1)|, |τ(q2)|, and |τ(q3)|, where τ(q) := tr g with
g ∈ Sq. So if v fails to satisfy (C1), one real number,
say |τ(q1)|, is too large. Then we move to the adjacent
vertex v′, which is the dual to the Farey triangle of q2,
q3 and the new slope; i.e., we discard the slope q1. We
repeat this process to find a vertex that satisfies (C1).

We remark that we don’t know whether this process
always terminates in finite time. In our implementation
of the algorithm, we fix a large number, and if the number
of iterations exceeds this limit, we give up our calcula-
tion trying to construct the Ford region and search for
evidence of its indiscreteness.

Now suppose that we have found a vertex with (C1)
satisfied. Next, we keep moving to the upper neighbor
defined by the rule in the previous subsection until we
must stop at some vertex v. Here we have the same
remark as in the previous paragraph. We don’t know
whether this process always terminates in finite time. We
fix a large number, and when the number of iterations
exceeds this limit, we stop the process and search for
evidence of its indiscreteness. We call this vertex v an
uppermost vertex, and we have two cases for v:

(U1) We stop because of case (S1).

(U2) We stop because v fails to satisfy (C2). (In this
case, UBS and LBS are not well defined because
we have used the condition (C2) to define UBS and
LBS.)

FIGURE 6. Case (U1). Suppose that during the process, we
have moved upward in Σ from va to vb, which turns out to
be an uppermost vertex. Case (U1-1) For vb, va is the lower
neighbor. Case (U1-2) For vb, vc is the lower neighbor. (The
direction of the arrows is from lower vertex to upper vertex.)

For later purposes, we define two subcases in case
(U1). See Figure 6:

(U1-1) The lower neighbor vertex of v is where we come
from.

(U1-2) The lower neighbor vertex of v is not where we
come from.

We define the notions (D1), (D2), (D1-1), and (D1-2)
for LBS in the same way. In the case (U1), we change
our direction and start moving to the lower neighbor. In
the case (U2), we move to a neighbor by the rule we
established heuristically and consider this direction as
“lower” and start moving to the lower neighbor.

The rule is as follows: Suppose that the uppermost
vertex v that violates the condition (C2) is the dual of
�q1q2q3, and a part of the polyline Lv is given by con-
necting the centers of the isometric hemispheres I(q1),
I(q2), I(q3), K ′I(q1), where K ′ is the translation z �→
z + 1, in this order. Suppose also that the segment con-
necting I(q1) and I(q2) intersects the segment connecting
I(q3), K ′I(q1). There is a unique Farey triangle �q1q2q4
that is adjacent to �q1q2q3 along the geodesic connecting
q1 and q2. Also, there is a unique Farey triangle �q1q3q5

FIGURE 7. An example of the whole process. In Σ, starting
from v0, we search for a vertex with (C1) satisfied. Then we
go upward until we reach a vertex at (U1) or (U2), say (U1-
2). Then we go downward until (D1) or (D2), say (D1-1).
We continue this alternating process of visiting vertices until
we can find the Jørgensen path as illustrated with heavy
arrows or until some isometric hemisphere corresponding to
the vertex that we visit violates the Shimizu–Leutbecher
condition.



58 Experimental Mathematics, Vol. 15 (2006), No. 1

which is adjacent to �q1q2q3 along the geodesic connect-
ing q1 and q3. These two triangles are our candidates for
the lower neighbor. If the vertex dual of �q2q3q4 is the
vertex we come from in this upward/downward process,
we choose the vertex dual of �q1q3q5 as the lower neigh-
bor. If the vertex dual of �q1q3q5 is the vertex we come
from, we choose the vertex dual of �q2q3q4 as the lower
neighbor.

In both these cases we keep moving in the direction
of the lower neighbor vertex in Σ. For the lowermost
vertex, we have the same cases (D1-1), (D1-2), and (D2)
as above and again change our direction to move upward.
We continue this process for upper and lower directions
alternately.

If we can find a path P in Σ such that one end vU is
of case (U1-1) and the other end vL is of (D1-1) and we
can go from vU to vL by going downward and from vL to
vU by going upward, then this is the Jørgensen path P .
(See Figure 7.)

In this case, the conditions for the Poincaré funda-
mental polygon theorem are satisfied, and the output of
our algorithm is “discrete.” For a detailed discussion of
Jørgensen’s theory, see [Akiyoshi et al., to appear].

4. PICTURES

In the following pages we present several pictures pro-
duced by our method.

In Figure 8, λ = 1
2 , and the corresponding once-

punctured torus T is the square torus with one point
removed. It is known that the accessory parameter c

(
1
2

)
is equal to 1

2 , and we take the center and the range to be
1
2 and ± 1

4 respectively. In the discreteness locus, a color
is given according to the length of Jørgensen’s path P

mentioned in the previous section.

FIGURE 8. λ = 1
2
, center= 1

2
, range= ± 1

4
.

FIGURE 9. λ = 1
2
, center= 1

2
, range= ±8.

FIGURE 10. λ = 1
2

+
√

3
2

i, center= 1
2

+ 1

2
√

3
i, range= ± 1

4
.

Figure 9 is a blowup of Figure 8. Many exotic compo-
nents appear in this picture.

For Figure 10, λ = 1
2 +

√
3

2 i and T is a once-punctured
torus with hexagonal symmetry. For the range of the
parameter t+ c(λ), the center is 1

2 + 1
2
√

3
i and the range

FIGURE 11. λ = 1
2

+
√

3
2

i, center= 1
2

+ 1

2
√

3
i, range= ±8.
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is ± 1
4 . Note that to get the picture, we do not have to

compute the exact value of the accessory parameter c(λ)
because it is hidden in the relative position of the origin.
Figure 11 is a blowup of Figure 10.

5. AN EXPERIMENT: SELF-SIMILARITY
OF A BERS SLICE

In [McMullen 96, p. 178], McMullen asked, “Is the
boundary of a Bers slice self-similar?” and carried out a
computer experiment for a Maskit slice instead of a Bers
slice. His pictures of a part of a Maskit boundary and its
blowups suggest an affirmative answer for a Maskit slice.
Motivated by his work, we have produced Figures 12, 13,
and 14.

FIGURE 12. center = 0.569645+0.136675i, range=±0.0192.

Figure 12 depicts a part of the Bers slice of a square
torus (λ = 1

2 ). Figures 13 and 14 are the blowups around
the limit point 0.569645 . . .+ 0.136675 . . . i. Our conclu-
sion is that this part of the boundary appears to have
self-similarity around that point with scale factor about

FIGURE 13. center = 0.569645 + 0.136675 i, range=±0.004.

FIGURE 14. center = 0.569645 + 0.136675 i,
range=±0.000833.

4.8. That point also appears in [Sugawa 02] as the far-
thest boundary point of the Teichmüller space of the
once-punctured square torus from the origin and an ob-
servation was made there about the scale factor.
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