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We provide an algorithm for determining whether two vectors
in the Leech lattice are equivalent under its isometry group, the
Conway group Co 0 of order∼ 8×1018. Our algorithm reduces
the test of equivalence to at most four tests under the subgroup
212:M24 and a test under this subgroup to at most 12 tests un-
der M24. We also give algorithms for testing equivalence under
these two subgroups. We describe our intended applications to
the symmetry groups of Lorentzian lattices and the enumeration
of lattices of dimension ∼ 24 with good properties such as hav-
ing small determinant. Our methods rely on and develop the
work of R. T. Curtis.

1. INTRODUCTION

The Leech lattice Λ is a lattice in 24-dimensional Eu-
clidean space with many remarkable properties, for us
the most important of which is that its isometry group
(modulo {±I}) is one of the sporadic finite simple groups.
The isometry group is called the Conway group Co 0, and
our purpose is to present an algorithm for a computer to
determine whether two given vectors of Λ are equivalent
under Co 0. The group is fairly large, of order > 8×1018,
so the obvious try-every-isometry algorithm is useless.
Instead, we use the geometry of Λ to build a faster algo-
rithm; along the way we build algorithms for the prob-
lem of equivalence of vectors in R24 under the subgroups
212:M24 and M24, where M24 is the Mathieu group per-
muting the 24 coordinates. One can implement and use
the algorithms without any deep familiarity with Co 0

and M24, although more background is needed for the
proofs of correctness and the bounds on performance.

The motivation for the algorithm is the problem of
extending results from [Vinberg 72, Vinberg and Kaplin-
skaja 78, Borcherds 87] on the isometry groups of the
unimodular Lorentzian lattices In,1 to the case n = 24.
The idea (following [Conway and Sloane 82, Borcherds
87]) is that Aut In,1 is best understood when embedded
in the isometry group of the even unimodular Lorentzian
lattice II25,1. This larger group has a particularly simple
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structure, discovered in [Conway 83]: its reflection sub-
group has a fundamental domain ∆ with one facet for
each element of Λ, and the group Co∞ of affine isome-
tries of Λ is the subgroup of Aut II25,1 preserving ∆.
This means that the equivalence problem of two points
in hyperbolic 25-space can be determined by applying
reflections to bring them into ∆ and then testing their
equivalence under Co∞. Since Co∞ = Λ:Co 0, this es-
sentially reduces to equivalence testing under Co 0.

Borcherds [Borcherds 88, Borcherds 84] used these
techniques involving II25,1 to enumerate the unimodu-
lar lattices in dimensions 24 and 25 and the bimodular
lattices of dimension 25. Similar calculations with Co∞
were used by [Conway et. al. 82] to enumerate the deep
holes of Λ (see [Borcherds 85] for an easier approach)
and by [Borcherds et. al. 88] to enumerate the shal-
low holes. All of these enumerations required extremely
lengthy hand computation and detailed familiarity with
Λ and Co 0. There is no reason to doubt these enumer-
ations, but our algorithm could be used to verify them.
Also, it might be useful for working with the fake mon-
ster lie algebra (see [Borcherds 90]), whose root lattice
is II25,1.

Background on Λ, M24, and certain of its sublattices,
called S-lattices, appears in Section 2. The algorithm for
Co 0 appears in Section 3 and relies essentially on a the-
orem of Curtis [Curtis 73]: every isometry between two
S-lattices extends to an isometry of Λ. Our algorithm
proceeds by constructing a tree of data, so the natural
worry is that branching in the tree could require an ex-
ponential amount of computation. In Section 4, we prove
that this is not a problem; regardless of the height of the
tree its width is bounded by 16. The algorithm reduces
a test of equivalence of two vectors either to an applica-
tion of Curtis’ theorem or to a few tests (at most four)
of equivalence under 212:M24, which is much easier to
deal with because it consists of signed permutations. In
Section 5, we show how to reduce a test of equivalence
under 212:M24 to at most 12 tests under M24, and, in
Section 6, we provide an algorithm for testing equiva-
lence under M24. Any other algorithms for 212:M24 and
M24 could be used as “subroutines” in place of ours when
testing equivalence under Co 0. Section 7 contains a few
remarks.

This paper is a development of part of my disserta-
tion [Allcock 96], and I am grateful to my “unofficial”
thesis advisor R. Borcherds for suggesting the problem.
The paper has been rewritten from scratch, and the re-
sults of Section 4 are completely new. The algorithm for
M24 is also new; the original one involved fewer special

cases but was much more intricate. The original preprint
received limited circulation under the title “Recognizing
Equivalence of Vectors in the Leech Lattice.”

2. NOTATION AND BACKGROUND

We use the ATLAS notation for groups [Conway et.
al. 85], so we say that a group has structure G.H if it
has a normal subgroup G, the quotient of which is H. If
we write G:H then the extension splits, and if we write
G·H then it does not. We write pn for the direct product
of n copies of the cyclic group of order p.

To describe M24, we follow [Conway 88]. Let Ω be a
fixed set of size 24, and consider 2Ω as a vector space over
the Galois field F2, addition being given by symmetric
difference. We often refer to a size n set as an n-ad, or
a monad, duad, triad, tetrad, etc. The Golay code C
is a subspace of 2Ω of dimension 12 and weight (= set
size) distribution 01875912257616759241. Elements of C
are called codewords or C-sets. The octads and 16-ads of
C are called special and the dodecads are called umbral;
every octad, dodecad, and 16-ad appearing in this paper
is special (respectively, umbral) unless otherwise noted,
so we will drop the qualifier except for emphasis. Every
pentad of Ω lies in a unique octad. A partition of Ω
into three special octads is called a trio (three octads).
Hand calculations involving C are best done using Curtis’
Miracle Octad Generator (MOG), which arranges the 24
points of Ω into a 4× 6 array, which falls into three 4× 2
bricks. Each brick is an octad and the set of all three is
called the standard trio. We refer to the leftmost MOG
column as the standard tetrad. See [Conway 88] for a
wealth of information about the MOG array. (Conway’s
MOG differs by a reflection from Curtis’ original array
[Curtis 76].)

The Mathieu group M24 is the group of permutations
of Ω that preserve C; it is simple of order 244, 823, 040
and acts 5-transitively on Ω. Therefore, the pointwise
stabilizers M23, M22, M21, M20, and M19 of a monad,
duad, triad, tetrad, and pentad are well defined up to
conjugacy. M24 is also transitive on octads and dodecads;
the stabilizer of a dodecad is M12, another of Mathieu’s
sporadic simple groups. M24 is also transitive on trios.

The Golay cocode C∗ is 2Ω/C, also of dimension 12.
Any element of C∗ has either a unique smallest represen-
tative in 2Ω (in which case this subset of Ω has size ≤ 3
and is usually identified with the element of C∗) or else
has six smallest representatives (in which case they form
a sextet, so named because the six representatives are
mutually disjoint tetrads). Every tetrad lies in a unique
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sextet. If the image in C∗ of a set X ⊆ Ω is a sextet, then
we say that X represents that sextet. We call a subset of
Ω small if it has size ≤ 4 and large otherwise. If X ⊆ Ω
does not represent a sextet, then the unique small set
to which X is congruent modulo C∗ is called the small
representative of X. By transitivity on tetrads, M24 is
transitive on sextets. We define the standard sextet to be
the sextet containing the standard tetrad; this consists of
the six MOG columns. The subgroup of M24 preserving
the standard sextet is called the sextet group and has
structure 26:3·S6 and order 138, 240.

A basic tool in our algorithm for M24 is reducing a set
X ⊆ Ω modulo C. By this, we mean finding a small set
to which X is congruent modulo C. When this set has
size ≤ 3, then it is uniquely determined and we denote it
by X̄, and when it has size 4, then X represents a sextet.
Computing a small representative is just a rephrasing
of the problem of finding a codeword nearest to X, for
which there are several algorithms in the literature, e.g.,
[Conway and Sloane 86, Vardy and Be’ery 91].

We equip R24 = RΩ with the inner product x · y =
1
8

∑
i∈Ω xiyi, and by the norm of x ∈ R24 we mean x2 =

x · x. The Leech lattice Λ is the set of vectors x with
integral coordinates xi satisfying

(i) the coordinates are all congruent modulo 2; write m
for their common congruence class;

(ii) the set of i for which xi takes any given value mod-
ulo 4 is a C-set;

(iii) the sum of the xi is congruent to 4m modulo 8.

One can check that Λ is an even unimodular lattice that
contains vectors of all even norms except 2. The type of
a lattice vector is half its norm. (This is not important,
but it is part of the vocabulary of Λ.) M24 acts on Λ by
permuting coordinates, and C acts by negation of coordi-
nates on C-sets. Together they generate a group 212:M24.
The full group of isometries of Λ is called Co 0 in honor
of Conway, who found additional symmetries (see below);
it has order 8, 315, 553, 613, 086, 720, 000 and, modulo its
center {±I}, it is a simple group. It acts transitively on
lattice vectors of each of the types 2, 3, and 4 (and 5 and
7 too, though we will not need this). A sublattice L of Λ
is called primitive if L = (L⊗Q) ∩ Λ.

A beautiful property of Λ is the simple structure of
its residue classes mod 2. Each class has a representative
of type 0, 2, 3, or 4; such vectors are called short. The
only congruences among short vectors are that each of
type 2 or 3 is congruent to its negative, and that vec-
tors of type 4 fall into sets of 48, called frames. Each

frame consists of 24 mutually orthogonal pairs of antipo-
dal vectors, for example, the standard frame consists of
the vectors (0, . . . , 0,±8, 0 . . . , 0), where the ±8 may oc-
cur in any position. Co 0 acts transitively on frames, and
the stabilizer of the standard frame is the group 212:M24

discussed above. We also refer to the element of Λ/2Λ
represented by the members of a frame as a frame.

If x ∈ Λ, then we write x̄ for the image of x in Λ/2Λ,
and when x̄ is not a frame, we write x̂ for a short repre-
sentative for x̄, which is well defined up to sign. If L is a
sublattice of Λ, then we write L̄ for its image in Λ/2Λ.

A basic tool in our Co 0 algorithm is reducing a vec-
tor x ∈ Λ modulo 2, by which we mean finding a short
vector s to which x is congruent modulo 2Λ. This can be
accomplished using an algorithm for decoding Λ, which
means finding a lattice point closest to any given element
of R24. Such algorithms appear in [Conway and Sloane
86, Vardy and Be’ery 93]. To find s, decode x/2 to obtain
λ ∈ Λ. By [Conway et. al. 82] (see also [Borcherds 85]),
every point of R24 lies within

√
2 of Λ, so (λ− x/2)2 ≤ 2

and s = x−2λ is short. If s2 < 8, then we know that s is
actually well defined up to sign, and ±s are the possibili-
ties for x̂. We wonder whether there is a faster algorithm
for reducing an element of Λ mod 2; the problem seems so
much more specialized than the general decoding prob-
lem that perhaps a more specialized algorithm could be
faster. The speed of decoding Λ is the main factor in the
speed of the Co 0 algorithm.

Curtis introduced the concept of an S-lattice in
[Curtis 73]; the idea is to consider sublattices L of Λ
none of whose elements represent frames and for which
there is no obvious enlargement. Precisely, L is an
S-lattice if no element of L represents a frame, and if for
each x ∈ L, L contains x̂ and (x− x̂)/2. The type of an
S-lattice is the formal symbol 2a3b, where a (respectively,
b) is the number of antipodal pairs of type 2 (respectively,
3) vectors in L. One has a + b + 1 = 2dimL, and Cur-
tis completely classified the S-lattices, finding 11 orbits
under Co 0. (He used a slightly different definition of
S-lattice, but his arguments work just as well for this
definition, which is from [Conway et. al. 85].) While we
do not need the classification, we remark that the largest
S-lattice, of type 227336, plays a major role in the perfor-
mance analysis in Section 4.

Also, two S-lattices of the same type are Co 0-
equivalent, so referring to an S-lattice by its type is un-
ambiguous (up to Co 0). Finally, the following theorem
is implicit in [Curtis 73] and stated explicitly in [Con-
way et. al. 85]. It is essential for the validity of our Co 0

algorithm.
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Theorem 2.1. Any isometry between two S-lattices ex-
tends to an isometry of Λ.

Our final prerequisite is a small tool used in the Co 0

algorithm; we will need to be able to find an element
of Co 0 carrying any given frame to the standard one.
It is enough to carry any given type 4 vector into the
standard frame. We need the extra automorphism η of
Λ discovered in [Conway 69]. We write ei for the vector
(0, . . . , 0, 1, 0, . . . , 0) with the 1 in the ith place; for each i
we write T (i) for the MOG column containing i and eT (i)

for the vector with coordinates equal to 1 on T (i) and 0
elsewhere. The isometry η is defined by first negating the
leftmost MOG column (the standard tetrad) and then
sending each ei to ei − 1

2eT (i).

Algorithm 2.2. Given v ∈ Λ of type 4, this algorithm
carries v to a member of the standard frame.

Step 1. 2 2 2 2 2 2̄ 2̄ 2̄ 4̄ 0 0 0
Step 2. 4 2 2 2 4 2̄ 2̄ 2̄ 5̄ 1̄ 1̄ 1̄
Step 3. 3 3 3 3 3 3̄ 3̄ 3̄ 6̄ 0 0 0
Step 4. 5 3 3 1 5 3̄ 3̄ 1̄ 6̄ 2 2 0
Step 5. 6 2 2 2 6 2 2̄ 2̄ 4̄ 0 4 4
Step 6. 4 4 4 4 4 4̄ 4̄ 4̄ 8̄ 0 0 0

By a step “AAAA BBBB CCCC” we mean the follow-
ing operation. Search for a tetrad on which the absolute
values of the coordinates of w are the numbers AAAA;
if no such tetrad is found, then proceed to the next step.
If one is found, then find σ ∈ 212:M24 such that the
coordinates of σ(w) on the standard tetrad are exactly
the numbers BBBB, replace w by η ◦ σ(w), whose co-
ordinates on the standard tetrad are then the numbers
CCCC, and then proceed to the next step. We have
written m for −m.

The proof is a straightforward examination of the list
of type 4 vectors in Λ [Conway and Sloane 88, page 133].
In order to use the algorithm, one must be able to find an
element of M24 carrying any given tetrad to the standard
one and be able to find an element of C that changes the
signs on the standard tetrad in any desired way. Both
tasks are accomplished with a few precomputed elements
of M24 and C.

3. ORBITS UNDER Co0

The idea of our algorithm for detecting equivalence of
v, w ∈ Λ under Co 0 is simple and best motivated by con-
sidering an example of how the algorithm might work.
Suppose for simplicity that neither v nor w lies in 2Λ.

If one represents a frame and the other does not, then
they are clearly inequivalent. If both represent frames
(say φ, ψ), then we find g, h ∈ Co 0 carrying φ and ψ to
the standard frame. It is easy to see that v and w are
Co 0-equivalent if and only if g(v) and h(w) are equiva-
lent under the stabilizer 212:M24 of the standard frame.
This is a reduction to a much smaller problem, since the
subgroup acts by signed permutations. If neither repre-
sents a frame, then v̂ and ŵ are well defined up to sign;
we suppose for this example that v̂ · v 	= 0 and ŵ ·w 	= 0,
which is usually the case. We choose v̂ and ŵ so that
v̂ · v and ŵ · w are positive. Then, v and w are Co 0-
equivalent if and only if the lattice spanned by v and v̂ is
Co 0-equivalent to that spanned by w and ŵ, by an isom-
etry carrying v to w and v̂ to ŵ. We can enlarge these
two lattices by adjoining the lattice vectors (v+ v̂)/2 and
(w + ŵ)/2 and then reducing these new vectors mod-
ulo 2. If we get frames, then we can reduce the problem
to 212:M24 as before; otherwise, we can enlarge our lat-
tices by adjoining the short representatives of (v + v̂)/2
and (w+ŵ)/2. We can repeat the process until either we
find frames or the lattices stop growing. In the former
case we reduce to 212:M24, and in the latter case we will
use the theorem of Curtis on S-lattices (Theorem 2.1) to
determine equivalence or inequivalence.

The main point of the example is that one should keep
track of sublattices of Λ, not just vectors. It also exhibits
various exceptional cases we must deal with, such as what
to do when reducing a vector mod 2 yields the 0 class or
a short vector orthogonal to v.

The basic object in our construction is what we call
a marked lattice, which is a nonempty ordered list of
linearly independent elements of Λ. The language re-
flects the idea that a marked lattice is a sublattice of
Λ equipped with a distinguished basis. Our algorithm
determines whether two given marked lattices are equiv-
alent under Co 0; this solves the equivalence problem for
nonzero v, v′ ∈ Λ, because we can apply the algorithm to
the one-dimensional marked lattices they span. Given a
marked lattice, we will iteratively construct new marked
lattices from it until this process halts and then study
the last ones constructed in order to obtain information
about L. This information is enough to determine the
Co 0-equivalence or -inequivalence of marked lattices.

We begin with the iterative step. Given a marked
lattice L with basis e1, . . . , en, we define �y =

∑
yiei

for all y ∈ {0, 1}n. These are a set of representatives
for L/2L, and we regard the ys as ordered under the
lexicographic order of {0, 1}n. Recall that for v ∈ Λ, we
write v̄ for the image of v in Λ/2Λ and when v̄ is not a
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frame, we write v̂ for a short representative of v, which
is well defined up to sign.

Algorithm 3.1. Given a marked lattice L, this algorithm
either (i) produces a frame φ, (ii) produces a marked lat-
tice M , (iii) produces a set {M±} of two marked lattices,
or (iv) terminates without producing anything.

Step 1. (Applies if there exists y with �̄y a frame.) Write
y for the first such, set φ equal to the frame �̄y,
and quit, yielding case (i).

Step 2. (Applies if there exists y 	= (0, . . . , 0) with �̄y =
0.) Write y for the first such, define i by the con-
dition that the first nonzero entry of y ∈ {0, 1}n
is the ith, define M as the marked lattice with
basis e1, . . . , ei−1, �y/2, ei+1, . . . , en, and quit, re-
sulting in case (ii).

Step 3. (Applies if there exists y with �̂y in neither L⊗Q
nor L⊥.) Write y for the first such, define s to be
whichever of ±�̂y has positive inner product with
the first of e1, . . . , en with which it has nonzero
inner product, define M to be the marked lat-
tice with basis e1, . . . , en, s, and quit, resulting
in case (ii).

Step 4. (Applies if there exists y 	= (0, . . . , 0) with �̂y ⊥
L.) Write y for the first such, define M± as the
marked lattices with bases e1, . . . , en,±�̂y, and
quit, resulting in case (iii).

Step 5. (Applies in all other cases.) Quit without pro-
ducing anything, resulting in case (iv).

There is nothing to prove except that our construc-
tions make sense. In Step 2, �y/2 lies in Λ because of
the hypothesis �̄y = 0, and the linear independence of
e1, . . . , ei−1, �y/2, ei+1, . . . , en follows from the fact that
their integral span contains ei. In Steps 3 and 4, �̂y is
determined up to sign—if �̄y were zero or a frame then
the algorithm would have stopped at Step 1 or 2. In
Step 3, one of ±�̂y is distinguished, but in Step 4 nei-
ther is—the two marked lattices M± must be treated
equally, and only the set of both of them together is
natural. (They are two different markings of the same
underlying lattice.) Finally, Step 5 does not really quit
without producing anything, because it produces a proof
that (L⊗Q) ∩ Λ is an S-lattice; see Lemma 3.4 below.

The output of the algorithm is natural in the sense
that if L and L′ are marked lattices and g ∈ Co 0 carries L

to L′, then L produces a frame φ if and only if L′ produces
a frame φ′, in which case g(φ) = φ′, and similarly for the
other cases. To see this, observe that every criterion and
construction in the algorithm uses only the geometry of
Λ and the given ordering of the basis e1, . . . , en.

A marked lattice that occurs in the output of the al-
gorithm applied to L is called a child of L. A descendant
of L is defined to be L itself, a child of L, or a child of
a child of L, and so on. We are abusing the usual mean-
ing of the word by regarding L as a descendant of itself.
We write ΩL for the set of childless descendants of L.
Since the construction of children is natural, we see by
induction that ΩL is also natural, in the sense that any
g ∈ Co 0 carries ΩL to Ωg(L).

Lemma 3.2 assures us that ΩL is finite and nonempty
and that it can be computed by repeatedly applying Al-
gorithm 3.1 to find the “family tree” of L. It may appear
that this computation of ΩL involves an exponential ex-
plosion, on account of the opportunity for Step 4 to in-
troduce branching into the tree. In fact, this does not
happen: in Section 4, we prove that |ΩL| ≤ 4 except
when L lies in an S-lattice, when |ΩL| is still bounded
by 16.

Lemma 3.2. A child of a marked lattice L strictly con-
tains L.

Proof: A child of L constructed by one of Steps 3 or 4
of Algorithm 3.1 is obtained by adjoining a new linearly
independent vector to the basis for L, so the assertion
is obvious. A child M of L constructed by Step 2 is
obtained by replacing ei by �y/2 in the basis (e1, . . . , en)
for L. Since �y = ei+

∑
j �=i yjej , we have ei = 2 ·(�y/2)−∑

j �=i yjej , so that M contains L. Also, �y/2 lies in M

but not in L—if it lay in L, then �y would represent
the zero element of L/2L, contrary to the assumption
y 	= (0, . . . , 0).

Next, we consider a childless descendant M of L. If
Algorithm 3.1 applied to M stops at Step 1, with output
the frame φ, then we say that M yields, or produces, or
determines φ. Lemma 3.4 asserts that if M determines
no frame then M lies in an S-lattice.

Lemma 3.3. If the short representatives of the elements
of a d-dimensional frame-free subspace of Λ/2Λ lie in a
d-dimensional subspace of R24, then their integral span
is an S-lattice and is primitive in Λ.

Proof: Write M0 for the integral span of the short rep-
resentatives and note that (M0 ⊗Q) ∩ Λ = M̄0, since
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M̄0 has cardinality ≥ 2d and lies in (M0 ⊗Q) ∩ Λ,
which has cardinality ≤ 2d. Obviously, 0 ∈ M0. If
v ∈ (M0 ⊗ Q) ∩ Λ is nonzero, then v̂ lies in M0. Also,
(v − v̂)/2 ∈ (M0 ⊗Q) ∩ Λ has smaller norm than v if we
choose v̂ such that v · v̂ ≥ 0. By induction on the norm,
(v− v̂)/2 lies in M0, hence, v = v̂+ 2 · (v− v̂)/2 does too.
This proves that M0 is primitive, and it follows that it is
an S-lattice.

Lemma 3.4. Suppose M is a childless marked lattice. If it
determines a frame, then M does not lie in an S-lattice.
Otherwise, the short representatives for M̄ ⊆ Λ/2Λ span
an S-lattice that contains M , has the same rational span
as M , and is the smallest S-lattice containing M .

Proof: We write my for the standard representatives of
M/2M , just as we wrote �y for those of L/2L. If the
algorithm applied to M yields a frame, then some my

represents a frame. No member of any S-lattice can rep-
resent a frame, so M cannot lie in an S-lattice.

Now, suppose M is a childless marked lattice that de-
termines no frame. Since the algorithm does not halt at
Step 1, the m̂y are well defined up to sign. Since it does
not halt at Step 2, the map M/2M → Λ/2Λ is injective,
so that M and M̄ have the same dimension. Since the
algorithm does not halt at Step 3 or 4, all the m̂y lie in
the rational span of M ; we write M0 for the lattice they
generate. By Lemma 3.3, M0 is an S-lattice and is prim-
itive, so it contains M . Finally, any S-lattice containing
M must contain the short representatives for all elements
of M and hence must contain M0.

Next, we claim that either all the marked lattices
M ∈ ΩL yield frames (in which case we say that L ulti-
mately determines frames) or none of them do. By con-
sidering the vectors adjoined to L to obtain its children,
one sees that any S-lattice containing L also contains
the children. By induction, any S-lattice containing L

contains every descendant of L. By Lemma 3.4, if any
M ∈ ΩL determines a frame, then M does not lie in any
S-lattice. Therefore, L does not lie in an S-lattice, so no
member of ΩL lies in an S-lattice, so every member of ΩL
determines a frame.

If one marked lattice ultimately determines frames
and another does not, then they are not Co 0-equivalent.
We next give necessary and sufficient conditions for the
equivalence of two marked lattices that both ultimately
determine frames. (This is the generic case.) Then, we
will treat the case where neither does. If L = (e1, . . . , en)
is a marked lattice that ultimately determines frames,

let {φ1, . . . , φk} be the set of the frames determined by
the childless descendants of L. For each i = 1, . . . , k,
let gi be an element of Co 0 carrying φi to the standard
frame; these can be found with Algorithm 2.2. Then, let
ei,j = gi(ej) for j = 1, . . . , n. We use a similar notation
for a second marked lattice L′ of the same dimension n.

Theorem 3.5. With the notation above, L and L′ are
Co 0-equivalent if and only if there exist g ∈ 212:M24 and
i ∈ {1, . . . , k} such that g(e′1,j) = ei,j for all j = 1, . . . , n.

Proof: The “if” direction is trivial. For the other direc-
tion, suppose h ∈ Co 0 carries L′ to L; then, it carries
the frames ultimately determined by L′ to those ulti-
mately determined by L. In particular, h(φ′1) = φi for
some i = 1, . . . , k. Then, g = gi ◦ h ◦ (g′1)−1 carries
g′1(L′) = (e′1,1, . . . , e

′
1,n) to gi(L) = (ei,1, . . . , ei,n). It

also carries the standard frame to itself and hence lies in
212:M24.

Theorem 3.5 reduces a test of equivalence under Co 0

to k ≤ |ΩL| tests of equivalence under 212:M24, so the
main worry from a performance perspective is that ΩL
might be large. This turns out not to be a problem; in
Section 4, we show that |ΩL| ≤ 4 when L ultimately
determines frames.

Now, suppose L = (e1, . . . , en) is a marked lattice that
does not ultimately determine frames; in this case L lies
in an S-lattice. Suppose M = (f1, . . . , fd) is a childless
descendant with mod 2 classes m̄y, y ∈ {0, 1}d. For each
y 	= (0, . . . , 0), let m̂y be the unique short representative
of m̄y that has positive inner product with the first fi
with which it has nonzero inner product. (Existence of
such an fi follows from the condition m̂y ∈ M ⊗ Q; if
this fails then Step 3 or 4 of Algorithm 3.1 would have
produced at least one child of M .) Define

A(M,y, z) = m̂y · m̂z, for all y, z ∈ {0, 1}d,
B(M,y, i) = m̂y · ei, for all y ∈ {0, 1}d

and i ∈ {1, . . . , n}.

As M varies over ΩL, we obtain a family of arrays of
integers.

Theorem 3.6 shows that a straightforward comparison
of these arrays determines whether L is Co 0-equivalent
to another marked lattice L′ that lies in some S-lattice.
From a performance perspective, the main worry is that
the list of As might be immense. In fact, it can be immod-
estly large but not huge; because M lies in an S-lattice,
we have d ≤ 6.
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Theorem 3.6. Suppose L and L′ are marked lattices of
dimension n that lie in S-lattices, M ′ is a fixed childless
descendant of L′, of dimension say d′, and that notation
is otherwise as above. Then, L and L′ are Co 0-equivalent
if and only if there is a childless descendant M of L, of
dimension d = d′, such that

A(M,y, z) = A(M ′, y, z), for all y, z ∈ {0, 1}d
and

B(M,y, i) = B(M ′, y, i), for all i ∈ {1, . . . , n}
and y ∈ {0, 1}d.

Proof: If g ∈ Co 0 carries L′ to L, then it carries M ′

to some childless descendant M of L, and the naturality
of our constructions imply the stated equalities. On the
other hand, suppose these equalities hold for some child-
less descendant M of L. The first batch of equalities
implies that the map m̂′

y → m̂y defines an isometry from
the integer span M ′

0 of the m̂′
y to the integer span M0

of the m̂y. Since M ′
0 and M0 are S-lattices, Theorem 2.1

implies that this isometry between M ′
0 and M0 extends

to an isometry T of Λ. The second batch of equalities im-
plies that T carries e′1, . . . , e

′
n ∈M ′

0 to e1, . . . , en ∈M0.

4. ORBITS UNDER Co0: PERFORMANCE

Most of this section is devoted to proving the following
upper bound on the amount of branching in the family
tree of a marked lattice. This is very important, because
it rules out an exponential explosion in the computation.
However, this section is not needed for the correctness of
any of the algorithms in this paper.

Theorem 4.1. A marked lattice that ultimately determines
frames has at most four childless descendants. A marked
lattice that lies in an S-lattice has at most 16 childless
descendants.

The fact that we have a stronger bound in the first
case is good, because this is the generic case. More pre-
cisely, it is easy to estimate the number of lattice vectors
of norm ≤ N that lie in S-lattices. The dominant term
comes from the S-lattices of type 227336. Each is a scaled
copy of the dual of the E6 root lattice and has determi-
nant 35. Therefore, it contains ∼ V (6,

√
N)/35/2 vectors

of norm ≤ N , where V (d, r) is the volume of a radius-r
ball in Rd. Similarly, Λ contains ∼ V (24,

√
N)/1 vectors

of norm ≤ N . The stabilizer G of one of these S-lattices
is 2.(35.2).U4(2) by [Curtis 76, page 573], so they are

|Co 0|/|G| in number. Putting these data together shows
that a random lattice vector of norm ≤ N lies in an
S-lattice with probability

∼ |Co 0|
|G| ·

V (6,
√
N)

35/2

/
V (24,

√
N) =

22332557311213 · 23
π9
√

3
N−9 ∼ (5.67× 1013

)
N−9 .

For small N , this is a poor estimate because of the
S-lattices’ intersections; indeed, it does not drop below 1
until N = 34. However, it is easy to treat vectors of small
norm directly, with the following results; we denote orbits
of type ≤ 11 (i.e., N ≤ 22) using the notation of [Conway
69]. A vector of type 2 or 3 spans an S-lattice, and one
of type 4, 632, 842, or 1052 represents a frame. One of
type 822 is twice a type 2 vector. A vector of type 5, 622,
7, 832, 932, or 1033 has one childless descendant, which
appears after two generations and is an S-lattice of type
2231, 2330, 2132, 2231, 2033, or 2132, respectively. A vec-
tor of type 942, 1042, or 1143 has one childless descendant;
it appears after two generations and determines a frame.
The most complicated case is a vector of type 1152, which
has two childless descendants, both three-dimensional
S-lattices of type 2532. Considering the sizes of all these
orbits shows that a random vector of norm ≤ 22 lies in an
S-lattice with probability ∼ .092. This probability drops
off rapidly as N increases.

We will also obtain the following bound on the number
of generations in the family tree:

Theorem 4.2. Suppose v ∈ Λ− {0} and L0 ⊆ L1 ⊆ . . . ⊆
Ln are marked lattices, L0 being the span of v and Li a
child of Li−1 for i = 1, . . . , n. Then,

n ≤ log4(66v2) = log4 v
2 + 7.75... .

To prove Theorems 4.1 and 4.2 we will need the fol-
lowing definitions and notation. Λ/2Λ is equipped with
the quadratic form Q obtained by reducing vectors’ types
modulo 2. We will consider the restriction of Q to sub-
spaces of Λ/2Λ, so we need notation for quadratic forms
over F2. We write S (split) and A (anisotropic) for the
2-variable quadratic forms xy and x2 + xy + y2 and �

(square) and 0 (zero) for the 1-variable forms x2 and 0.
Any F2 quadratic form is a direct sum of copies of these
forms, and there are isomorphisms S⊕S ∼= A⊕A, S⊕� ∼=
A⊕�, and �⊕� ∼= �⊕ 0. Any F2 quadratic form q has
an associated bilinear form b(x, y) = q(x+y)−q(x)−q(y).
We write B for the bilinear form on Λ/2Λ, which is given
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by reducing lattice vectors’ inner products modulo 2. We
call a subspace isotropic if Q vanishes identically on it;
note that this is a stronger condition than the vanish-
ing of B. Vectors of Λ of types 2 and 3 are called 2-
vectors and 3-vectors, and we call their images in Λ/2Λ
“2-classes” and “3-classes.” If L is a sublattice of Λ,
then we call it reduced if L/2L → Λ/2Λ is injective; its
reduction is defined as (L⊗ Z[12 ]) ∩ Λ and is reduced.

Now, suppose L is reduced and L̄ frame free. We write
L0 for the integer span of {v̂|v̄ ∈ L̄ and v̂ ∈ L⊗Q}. Al-
most all of our arguments refer to L0 rather than L itself.
If v̄ ∈ L̄ − {0} has v̂ ⊥ L, then we call v̄ an ambiguous
class and v̂ an ambiguous vector. The point of these defi-
nitions is that Algorithm 3.1 produces a child of L if some
v̄ ∈ L̄ has no representative in L0, and it produces two
children when every such class is ambiguous. The ambi-
guity is whether to extend L to a larger marked lattice
by adjoining v̂ or −v̂.

Lemma 4.3. Every seven-dimensional subspace of
Λ/2Λ contains a frame, as does every three-dimensional
isotropic subspace.

Proof: The first claim follows from the second, since any
F2-quadratic form of dimension ≥ 7 contains a three-
dimensional isotropic subspace. To prove the second
claim, choose short vectors e1, e2, and e3 representing
the members of a basis of the subspace and write L for
their integral span. If any ei has type 4, then we are
done. Otherwise, they all have type 2 (norm 4) and their
pairwise inner products are in {0,±2}. It is well known
that any family of norm 2 vectors having inner products
in {0,±1} spans a direct sum of An, Dn, and En root
lattices, so L is a scaled version of A3

1, A2 ⊕ A1, or A3.
Each of these root systems contains a pair of orthogonal
roots, so L contains a norm 8 (type 4) vector and L̄ con-
tains a frame.

Proof of Theorem 4.2: If a child of a marked lattice has
the same dimension, its determinant is that of its parent
divided by 4. If it has larger dimension, its determi-
nant is at most that of its parent multiplied by 6. By
Lemma 4.3, the latter can occur at most six times. The
theorem follows because L0 has determinant v2 and the
determinants of all the Li are integers.

The next three lemmas deal with special arrangements
of vectors and are difficult to motivate without first look-
ing at the proof of Lemma 4.8. We recommend jumping
straight to Lemma 4.7.

Lemma 4.4. Consider a two-dimensional subspace V of
Λ/2Λ with one class τ of type 2 and two classes θ1 and
θ2 of type 3. Then, either every pair among τ̂ , θ̂1, and
θ̂2 is orthogonal or no pair is.

Proof: By computing B|V from Q|V , we see that all inner
products among the three vectors are even. If τ̂ makes
a nonzero inner product with one of the θ̂, say θ̂1, then,
without loss of generality, we may take τ̂ · θ̂1 = 2 and
θ̂2 = θ̂1 − τ̂ . Direct computation shows that no two are
orthogonal. We have θ̂1 · θ̂2 	= ±2, because otherwise
τ = θ1−θ2 would be a frame, not a 2-class. If θ̂1 · θ̂2 	= 0,
then, without loss of generality, we have θ̂1 · θ̂2 = 4 and
τ̂ = θ̂1− θ̂2, and again direct computation shows that no
two are orthogonal.

Lemma 4.5. Suppose W is a three-dimensional frame-free
subspace of Λ/2Λ with Q|W ∼= � ⊕ 0 ⊕ 0. Then, the 2-
vectors representing the 2-classes of W span an S-lattice
S of type 2330. Writing θ1, . . . , θ4 for the 3-classes of V ,
if two of the θ̂i are orthogonal to S, then all of them are.
In this case, θ̂i ⊥ θ̂j for all i 	= j, and there is an S-lattice
of type 227336 containing S and all the θ̂i.

Proof: The span S of the 2-vectors is clearly an S-lattice
of the specified type, since they have nonzero even inner
products with each other. It will be convenient to name
the 2-classes τ1, τω, and τω̄, the subscripts denoting the
nonzero elements of the finite field F4; we may take τ̂1 +
τ̂ω + τ̂ω̄ = 0. By considering Q|W , one sees that all inner
products of representatives for elements of W are even.
The inner product of a 2-vector and a 3-vector in Λ lies
in {0,±1,±2,±3}. Therefore, if some θ̂i, say θ̂1, is not
in S⊥, then, without loss of generality, we may suppose
θ̂1 · τ̂1 = 0, θ̂1 · τ̂ω = 2, and θ̂1 · τ̂ω̄ = −2. Then, θ̂1 + τ̂ω̄ and
θ̂1 − τ̂ω, also 3-vectors, are also not in S⊥ and represent
two of the remaining 3-classes of W . We have proven
that if any of the θ̂i is nonorthogonal to S, then at least
three of them are, which is a restatement of our second
claim.

Now, suppose all the θ̂i lie in S⊥; we use new sub-
scripts, writing θ0, θ1, θω, and θω̄ for the 3-classes of
W . We may do this in such a way that the addition
table for W is τa + τb = τa+b, τa + θb = θa+b, and
θa + θb = τa+b. (For purposes of this notation, we take
τ0 = 0 ∈W .) The claim θ̂i · θ̂j = 0 for i 	= j follows from
Lemma 4.4, because θ̂i is orthogonal to θ̂i + θj = τ̂i+j .
All that remains is to construct the desired S-lattice. For
this we note that besides the τ̂a and θ̂b, Λ also con-
tains the 16 3-vectors (±θ̂0 ± θ̂1 ± θ̂ω ± θ̂ω̄)/2, since
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θ0 + θ1 + θω + θω̄ = 0 ∈ Λ/2Λ. Similarly, it contains the
48 2-vectors (±τ̂a± θ̂b± θ̂a+b)/2 with a, b ∈ F4 and a 	= 0,
the 24 3-vectors

(
±(τ̂a + τ̂b)± θ̂a ± θ̂b

)
/2 with a, b ∈

F4 −{0}, and the 24 3-vectors
(
±(τ̂a + τ̂b)± θ̂0 ± θ̂c

)
/2

where a, b, and c are the nonzero elements of F4 in any
order. We have exhibited a six-dimensional lattice with
54 2-vectors and 72 3-vectors, which is an S-lattice by
Lemma 3.3.

Lemma 4.6. Co 0 acts transitively on ordered triples
(u, v, w) of vectors in Λ satisfying u2 = v2 = 4, w2 = 6,
u · v = u · w = v · w = 2. The lattice K spanned by three
such vectors is primitive in Λ and has exactly one am-
biguous class x̄. The pointwise stabilizer of K exchanges
the two short representatives ±x̂, the lattice obtained ad-
joining them to K is not reduced, and its reduction rep-
resents a frame.

Proof: By [Curtis 73, page 562], we may take u =
(4,−4, 022) and w = (5, 123). The simultaneous stabi-
lizer of these vectors is the Higman-Sims group HS of
order 44, 352, 000, and one can enumerate the 2-vectors
having inner product 2 with each of u and w. There are
1, 100 of them, one of which is v = (4, 0,−4, 021). We will
prove transitivity on the 1, 100 by showing that the sta-
bilizer G of v in HS has order |HS|/1100. (It obviously
has at least this order.)

We write K for the lattice spanned by u, v, and w. G
preserves each of w = (5, 1, 1, 121), w − u = (1, 5, 1, 121),
and w − v = (1, 1, 5, 121), so it preserves their sum, say
x = (7, 7, 7, 321) = (3, 3, 3, (−1)21) + 2(2, 2, 2, 221). The
3-vector x̂ = (33,−121) is orthogonal to K, so x̄ is an
ambiguous class. No other class of K̄ is ambiguous be-
cause we have seen that K contains u, v, u−v, w, w−u,
and w − v.

The stabilizer Gx̂ of x̂ fixes (224), which represents
the standard frame. Therefore, Gx̂ ⊆ 212:M24, and it
is easy to see that Gx̂ = M21, of order 20, 160. Since
|M21| = |HS|/2200, and every element of G fixes or
negates x̂, we have |G| ≤ |HS|/1100. This gives |G| =
|HS|/1100, proving the claimed transitivity. We also see
[G : Gx̂] = 2, so some element of G negates x̂. The four-
dimensional lattice spanned by K and x̂ is not reduced
since we have already seen that its reduction contains
(224), which represents the standard frame.

To prove the primitivity, compute the determinant of
K, which is 56. Since the only square dividing 56 is 4,
any three-dimensional enlargement of K contains K of
index 2. No such enlargement exists in Λ because K is
reduced.

Lemma 4.7. Suppose L is a marked lattice with two chil-
dren. Then,

(a) L̄ is frame-free;

(b) L is reduced;

(c) for all � ∈ L, �̂ either lies in L0 or is ambiguous;

(d) L̄ contains an ambiguous class;

(e) L̄ contains no isotropic 3-space;

(f) the only elements of L̄ that can be ambiguous are
those in ker(B|L̄);

(g) if L0 contains a 2-vector, then it contains the short
representatives of all the 2-classes of L̄;

(h) if L0 contains no 2-vectors, then any two indepen-
dent 3-vectors in L0 have inner product 0 or ±3, and
L0 is a scaled copy of a direct sum of An, Dn, and
En root lattices.

Proof: (a), (b), and (c) hold because Algorithm 3.1 ap-
plied to L does not stop at any of its first three steps. We
have (d), because Step 4 of that algorithm does apply to
L. Because of Lemma 4.3, (a) implies (e). If �̄ ∈ L̄ does
not lie in ker(B|L̄), then �̂ has odd inner product with
some element of L, so (c) implies �̂ ∈ L0. This proves
(f). If v̂ is a 2-vector of L0 and w̄ ∈ L̄ is an ambigu-
ous 2-class, then ŵ ⊥ v̂, so that ŵ + v̂ has type 4 and L̄

contains a frame, contradicting (a). This proves (g).
Now, we prove the first part of (h). If v, w ∈ L0 are

independent 3-vectors, then their inner product is 0, ±1,
±2, ±3, or ±4, so it suffices to rule out the cases v ·w = 1,
2, or 4. In the last case, v−w is a 2-vector of L0, contrary
to hypothesis. In the case v · w = 2, v − w has type 4,
contrary to (a). Now, we show that v · w = 1 leads to
a contradiction; since Co 0 acts transitively on pairs of
3-vectors with inner product 1, the following claims can
be verified by checking a single example. The sum v+w

has type 5, and the two possibilities for v̂ + w are ±u,
where u has type 3 and makes inner product 1 with each
of v and w. Therefore, u ∈ L0 by (f). Now, u+ v +w ∈
2Λ, and we write x for (u+ v+w)/2, which lies in L0 by
(b). Then, x − u, x − v, and x − w are 2-vectors of L0,
contrary to hypothesis. The second part of (h) follows
from the first by mimicking the argument for Lemma 4.3.

Lemma 4.8. Suppose L is a marked lattice of dimension d
that has two children. Then one of the following holds:
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(i) d ≤ 2;

(ii) L lies in an S-lattice;

(iii) L0 is a copy of the three-dimensional lattice K of
Lemma 4.6 and contains L; or

(iv) d = 3 and dimL0 ≤ 1.

Proof: It suffices to assume d ≥ 3 and show that one of
(ii), (iii), and (iv) applies. We will refer to the assertions
of Lemma 4.7 simply by their letter. By (b), dim L̄ = d.
By (e), L̄ contains no isotropic 3-space. By (d) and (f),
ker(B|L̄) 	= 0. One can enumerate the F2 quadratic forms
satisfying these conditions, with the result that one of
following holds:
d = 5 and Q|L̄ ∼= S ⊕A⊕ 0 or S ⊕ S ⊕�;
d = 4 and Q|L̄ ∼= S ⊕�⊕ 0 or A⊕ 0⊕ 0;
d = 3 and Q|L̄ ∼= S ⊕�, S ⊕ 0, A⊕ 0, or �⊕ 0⊕ 0.
For cases S⊕A⊕0 and S⊕0, L0 contains a 2-vector by

(f); since the nonzero element of ker(B|L̄) is a 2-class, its
short representatives lie in L0 by (g). But then there are
no ambiguous classes, contrary to (d). We now treat the
remaining cases one by one, splitting the last case into
two parts. To prove that L lies in an S-lattice, it suffices
to prove that L0 does and that dimL0 = dimL, because
then L lies in the rational span of an S-lattice. Since
S-lattices are primitive (their images in Λ/2Λ satisfy the
hypotheses of Lemma 3.3), L lies in the S-lattice itself. In
all cases except �⊕0⊕0, the equality dimL0 = dimL is
automatic because the elements of L̄− ker(B|L̄) span L̄.

Case S ⊕ S ⊕ �. We will show that L0 lies in an
S-lattice of type 227336. Only the 3-class in ker(B|L̄)
is ambiguous, so L0 contains 2-vectors representing the
15 2-classes of L̄. These classes may be identified with
the 15 duads from {1, . . . , 6} in such a way that classes
have even inner product if and only if the corresponding
duads are disjoint. In this notation, if i, j, k, l, m, and
n are 1, . . . , 6 in any order, then ij, kl, and mn lie in a
two-dimensional isotropic subspace. (The fact that such
a labeling is possible stems from the fact that S6 is the
isometry group of S⊕S⊕�.) The isotropic subspace con-
taining 12, 34, and 56 lifts to an S-lattice of type 2330;
we choose lifts 1̂2, 3̂4, and 5̂6 summing to 0. Every other
duad is disjoint from one of these three and meets the
other two, and we choose the short representative îj of
ij which makes inner product −2 with whichever one of
1̂2, 3̂4, and 5̂6 it has even inner product with.

We have now chosen representatives for all the 2-
classes of L̄, and we claim that any two with even inner

product have inner product −2. If 1̂3·2̂4 = 2, then 1̂3−2̂4
and 5̂6 would be orthogonal 2-vectors and L̄ would con-
tain a frame. If 1̂3 · 4̂5 = 2, then 1̂3− 4̂5 and 5̂6 would be
orthogonal 2-vectors and L̄ would contain a frame. Up
to symmetry of our notation, these are the only cases to
check, so the claim is proven.

Next, we claim that any pair of our vectors with odd
inner product have inner product 1. If i, j, k, �, m,
and n are 1, . . . , 6 in any order then îj + k̂� + m̂n = 0,
îk ·m̂n = −2, and îk · îj and îk · k̂l lie in {±1}. Therefore,
îk · îj = 1 for any distinct i, j, and k, proving the claim.

We have proven that the configuration of the 2-
vectors is uniquely determined. That is, we may choose
coordinates on L0 ⊗ R such that 1̂2 is the vector
1√
3
(2, 2,−1,−1,−1,−1) and similarly for the other îj,

with the 2s appearing in the ith and jth positions. (We
refer to the standard metric on R6 and note that all our
vectors have coordinate sum zero.) Therefore, L0 con-
tains the vectors αi = 1√

3
(1, . . . , 1,−5, 1, . . . , 1), with the

−5 in the ith position. Since these have even inner prod-
uct with all the ĵk, all represent the ambiguous class
of L̄, say v̄. This class has type 3 and v̂ is orthogonal
to L0, so we may suppose v̂ = (1, . . . , 1) in our coordi-
nates. Since αi ≡ v̂ modulo 2Λ, Λ contains the six vectors
ai = (αi + v̂)/2 and also the six vectors bi = (αi − v̂)/2.
The ai and bi have type 2. Adjoining them to the îj

yields the configuration of 27 2-vectors spanning Cur-
tis’ S-lattice 227336. We have proven that L0 lies in this
S-lattice.

Case S⊕�⊕0. We will show that L0 lies in an S-lattice
227336. By (f), L0 contains short representatives for the
classes not in ker(B|L̄); since one of these is a 2-class,
(g) implies that L0 also contains a short representative
a for the unique 2-class in ker(B|L̄). There are six other
2-classes in L̄, which fall into three pairs, each pair sum-
ming to ā. Since each pairs trivially with ā under B, we
may choose short representatives having inner product 2
with a. Consideration of B|L̄ shows that vectors of differ-
ent pairs have inner product ±1. A contradiction arises if
any of these inner products is −1, so all are +1. It follows
that our seven vectors may be taken to be a = (2, 0, 0, 0),
(1,±√3, 0, 0), (1, 0,±√3, 0), and (1, 0, 0,±√3). A sim-
ple argument shows that every point in their real span
lies at distance < 2 of their integral span S. (The key is
that S contains an A3 lattice orthogonal to a, scaled to
have minimal norm 6; this scaled A3 has covering radius√

3 by [Conway and Sloane 88, page 112].) This implies
that S is primitive in Λ, since Λ has minimal norm 4.
Therefore, L0 = S. No 3-vector in S represents θ1 or
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θ2, so θ̂1 and θ̂2 lie in L⊥. Now, we can use Lemma 4.5;
consider the three-dimensional subspace of L̄ containing
a, θ1, θ2, and any other 2-class. By Lemma 4.5, the short
representatives for this subspace span a six-dimensional
lattice that lies in (hence, rationally spans) the rational
span of L0, θ̂1, and θ̂2. Also, this 6-space meets Λ in an
S-lattice 227336, so L0 lies in the S-lattice.

Case A⊕0⊕0. We will show that L0 lies in an S-lattice
227336. By (f), L0 contains the short representatives
for the 12 elements of L̄ − ker(B|L̄), all of type 3. If
L0 contained the short representative for any element of
ker(B|L̄), then it would contain all of them by (g), so no
class would be ambiguous, contrary to (d). Therefore, L0

contains no 2-vectors. By (h), the 3-vectors of L0 form a
(scaled) root system of dimension ≤ 4. Since there are 24
roots, it can only be of type D4. This D4 is of course
orthogonal to the the S-lattice 2330 spanned by the short
representatives of ker(B|L̄), and Lemma 4.5 implies that
some S-lattice 227336 contains both this S-lattice and the
D4. In particular, it contains L0.

Case S ⊕ �. We will show that L0 lies in an S-lattice
2936. There is only one ambiguous class, which has
type 3. Considering Q|L̄, we see that L0 contains three
linearly independent 2-vectors, any two having odd inner
product. After negating one of them, we may suppose
that either all their inner products are 1 or that two
are 1 and the third is −1. In the latter case, the three
vectors form the configuration of figure I.8 of [Curtis 73],
and Curtis shows that the three vectors span an S-lattice
2334. This would mean that no class is ambiguous, con-
trary to (d). Therefore, all the inner products are 1, and
the vectors form the configuration of Curtis’ figure I.7. In
this case, Curtis shows that L0 lies in a four-dimensional
S-lattice 2936.

Case A⊕ 0. We will show that L0 lies in an S-lattice of
type 227336. By (f), only the 2-class could be ambiguous,
so L0 contains 12 short representatives of the six 3-classes
of L̄. Also, L0 does not contain any 2-vectors, for oth-
erwise no class of L̄ would be ambiguous. By (h), the
3-vectors form a (scaled) root system of dimension ≤ 3;
since there are 12 roots, it must have type A3. We choose
coordinates using the standard inner product on R4, with
a12 = (

√
3,−√3, 0, 0) and similarly for aij (i, j = 1, . . . , 4

with i 	= j), the
√

3 appearing in the ith place and the
−√3 appearing in the jth. We write b for a 2-vector
representing the 2-class of L̄, which is of course orthog-
onal to the 3-vectors. In our coordinates we may take
b = (1, 1, 1, 1). If i, j, k, and � are 1, 2, 3, and 4, in any
order, then aij + ak� has even type. Since it is too short

to lie in 2Λ, it is congruent modulo 2Λ to b, so Λ contains
the vectors (aij+ak�+b)/2. Consider the vectors a13, a24,
b, and b′ = (a12 + a34 + b)/2. Since a13 + a24 ≡ b, their
images in Λ/2Λ span a three-dimensional space. Since
a13 and a24 are orthogonal to the S-lattice 2330 spanned
by b and b′, Lemma 4.5 implies that all four vectors lie
in an S-lattice 227336. Therefore, L0 lies in this S-lattice.

Case �⊕ 0⊕ 0, with L0 containing a 2-vector. We will
show that one of Cases (ii) and (iii) applies. By (g),
L0 contains the short representatives for all three 2-
classes of L̄; together these span an S-lattice 2330, say
S. By Lemma 4.5, either all the short representatives
of the 3-classes are orthogonal to S or only one is. In
the second case, L0 contains a triple of vectors as in
Lemma 4.6, hence it contains a copy of the lattice K

treated there. Since K is primitive, it equals L0, and
since dimL0 = dimL, K contains L. We have proven
that (iii) applies. Now, we treat the case in which all
short representatives of the 3-classes are orthogonal to S.
By Lemma 4.5, representatives â1, . . . , â4 for the four
3-classes are mutually orthogonal; we write V for their
real span and note that V ∩ Λ also contains the vectors
(±â1± â2± â3± â4)/2. Now, L contains a vector z with
z̄ = a1, and we claim that z has nonzero projection into
V . If z ⊥ V , then the vectors (â1 + â2 + â3 + â4)/2 and
(â1 + z)/2 of Λ have nonintegral inner product, which is
impossible. Since the projection of z is nonzero, some âi
is not in L⊥ and, therefore, lies in L0. Then, L0 has di-
mension 3 and, hence, the same rational span as L. Then,
the usual argument applies: since L0 lies in an S-lattice,
so does L. We note for use in the proof of Theorem 4.1
that L0 is the orthogonal direct sum of S with the span
of a 3-vector.

Case �⊕0⊕0, with L0 containing no 2-vectors. Clearly,
either (iv) holds or else L0 contains two linearly indepen-
dent short vectors; we will show that under the latter
condition, L lies in an S-lattice 227336. We write b0 and
b1 for two 3-classes with short representatives in L0. We
write a1, aω, aω̄, bω, and bω̄ for the other elements of
L̄, using the notation in the proof of Lemma 4.5. We
choose short representatives â1, âω, and âω̄ summing to
zero. Since b̂0 and b̂1 are orthogonal to the â, Lemma 4.5
implies that b̂ω and b̂ω̄ are also orthogonal to the â, that
the b̂ are all mutually orthogonal, and that the rational
span of all the â and b̂ meets Λ in an S-lattice 227336. We
write V for the real span of b̂ω, b̂ω̄, and the â. Now, L
contains some z with z̄ = bω; we claim that z has nonzero
projection to V—otherwise, the vectors (z + b̂ω)/2 and
(â1 + b̂ω + b̂ω̄)/2 of Λ would have nonintegral inner prod-
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uct. Therefore, one of â1, âω, âω̄, b̂ω, and b̂ω̄ is not in L⊥,
hence lies in L0. Since L0 contains no 2-vectors, either
b̂ω or b̂ω̄ lies in L0. Then, L0 has the same dimension
as L; since L0 lies in an S-lattice, L does too. For use
in the proof of Theorem 4.1, we note that L0 is spanned
by three mutually orthogonal 3-vectors, since no other
element of L̄0 has its short representative in L0 ⊗Q.

Proof of Theorem 4.1:

Frames case. Suppose a marked lattice T does not lie
in any S-lattice and has more than four childless descen-
dants. Then, it has a descendant U with two children,
one of which, say V , has a descendant W with two chil-
dren, and one of which, say X, has a descendant Y with
two children. Since T does not lie in any S-lattice, nei-
ther does any descendant. Lemma 4.8 implies dimY ≤ 3,
and since we have

1 ≤ dimT ≤ dimU < dimV ≤ dimW

< dimX ≤ dimY ≤ 3 ,

it follows that

dimT = dimU = 1,

dimV = dimW = 2,

dimX = dimY = 3.

Since V is obtained from U (and X from W ) by adjoining
a short vector, Y contains two linearly independent short
vectors. In particular, dimY0 > 1, so by Lemma 4.8, Y0

is a copy of K and contains Y . Now, U has a single basis
vector, say a, and V has basis (a, b) with a ≡ b modulo
2Λ and a ⊥ b. Then, W is the reduction of V , and Y

is obtained by adjoining a short vector c that is orthog-
onal to both a and b. We have deduced that there is a
vector a ∈ K that is orthogonal to two mutually orthog-
onal short vectors of K and congruent to one of them
modulo 2Λ (hence modulo 2K). Now, such a exists and
is unique up to isometry of K and multiplication by an
odd number. To see this, one considers the short vec-
tors of K, all of which are enumerated in the proof of
Lemma 4.6, and finds all orthogonal pairs of such vec-
tors. Then, one checks that AutK acts transitively on
such pairs, so, without loss of generality, we may suppose
our pair is u − v and w in the notation of that lemma.
Then, a must be an odd multiple of the generator of their
orthogonal complement in K, which is (−14, 14, 14, 221).
We have shown that if any element of Λ ultimately deter-
mines frames and has more than 4 childless descendants
then this one does. An explicit calculation yields only 4,

which proves (the frames case of) the theorem and also
the optimality of the upper bound 4.

S-lattice case. If a marked lattice L lies in an S-lattice
and has more than 16 childless descendants, then the
family tree must branch five times. Since S-lattices have
dimension at most 6, we deduce the existence of marked
lattices Li of dimension i for each i = 1, . . . , 5, each with
two children, L1 a descendant of L, and each other Li
a descendant of Li−1. We consider L3; by the argument
for Lemma 4.8, one of the following is true:

(i) Q|L̄ ∼= S ⊕ � and L3 lies in a four-dimensional
S-lattice;

(ii) Q|L̄ ∼= A ⊕ 0 and L3,0 is a copy of the A3 lattice,
scaled to have minimal norm 6;

(iii) Q|L̄ ∼= �⊕ 0⊕ 0 and L3,0 is spanned by an S-lattice
M of type 2330 and a 3-vector orthogonal to M ;

(iv) Q|L̄ ∼= � ⊕ 0 ⊕ 0 and L3,0 is spanned by three mu-
tually orthogonal 3-vectors.

Case (i) clearly cannot arise. In each Case (ii)–(iv), the
argument for the frames case shows that L3,0 contains
orthogonal short vectors b and c such that L1 is spanned
by a vector v in 〈b, c〉⊥ ⊆ L3,0, with v ≡ b or c modulo
2Λ. In each case, {b, c} is unique up to isometry of L3,0,
and L1 is spanned by an odd multiple of the generator a
of their orthogonal complement in L3,0, which is easy to
find. In Cases (ii) and (iv), a is congruent to neither b
nor c. In Case (iii), a is a vector of type 622, which has
only one childless descendant.

Theorem 4.1 is the best possible because the following
considerations construct a marked lattice with 16 child-
less descendants. Let E be an S-lattice 227336 and L3 the
orthogonal complement in E of three mutually orthogo-
nal 3-vectors e1, e2, and e3. (Aut(E) acts transitively
on ordered 4-tuples of mutually orthogonal 3-vectors in
E, so there are no choices to make.) Then, all but three
classes of L̄3 have short representatives in L3, and these
three classes have representatives e1, e2, and e3. Adjoin-
ing one of the ei and reducing yields a lattice L4, with all
but two classes of L̄4 having short representatives in L4.
These two classes are represented by the two remaining
ei. Adjoining and reducing again yields L5, and every
class of L̄5 has a short representative in L5 except one,
represented by the last of the ei. Adjoining and reducing
one last time yields E. It is easy to find a vector in L3

with two children and L3 among its descendants. Such a
vector has 16 childless descendants.
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5. ORBITS UNDER 212:M24

To test the equivalence of vectors under 212:M24, we re-
duce the problem to several tests under M24. Recall that
the normal subgroup 212 of 212:M24 is a copy of C acting
on R24 by negating signs on C-sets.

Theorem 5.1. Suppose v, w ∈ R24, V (respectively, W )
is the set of vectors in C · v (respectively, C · w) with
fewest possible negative coordinates, and w′ ∈W . Then,
v and w are 212:M24-equivalent if and only if w′ is M24-
equivalent to some element of V .

The proof is trivial, and the factor determining per-
formance is clearly the size of V ; in fact, |V | ≤ 12 in all
cases. To verify this, we used the enumeration [Conway
and Sloane 88, page 284] of M24-orbits of subsets X of Ω.
For each X, we considered the subgroup of {±1}X ob-
tained by restricting C-sets to X and found all its coset
representatives in {±1}X with the fewest possible −1s.
We also verified |V | ≤ 12 by using an implementation of
our original M24 algorithm to enumerate M24-orbits of
vectors having all coordinates in {0,±1}. For each such
vector, we computed V by the method given below. The
extreme case |V | = 12 occurs only when V has support
an umbral dodecad and oddly many negative coordinates,
or when V has support a 13-ad containing an umbral do-
decad and has oddly many negative coordinates on the
dodecad. The next-worst case gives |V | = 8.

To use Theorem 5.1, we need to be able to find V and
W . We may do this by applying one of the Golay de-
coding algorithms in [Conway and Sloane 86] or [Vardy
and Be’ery 91]. These are “soft” decoding algorithms,
which means that they view C as a subset of R24, with a
C-set γ corresponding to the vector with coordinates −1
on γ and +1 elsewhere. Given a vector of R24, these al-
gorithms return a C-set with maximal inner product with
that vector. Given v, we define the vector v0 whose ith
coordinate is the sign (0, +1, or −1) of the ith coordinate
of v. After applying the Golay decoder to v0 to obtain
a codeword γ, set v′ = γ · v. A little thought verifies
that v′ has the fewest negative coordinates of any ele-
ment of C ·v. The Golay decoders of [Conway and Sloane
86, Vardy and Be’ery 91] proceed by computing the inner
products of codewords with a given vector and returning
a codeword with the largest inner product. (The clev-
erness of these algorithms lies in doing this with as few
computations as possible.) We may run a modified ver-
sion of the decoder, which returns every codeword with
maximal inner product. Denoting this set of codewords
by C, we have V = C · v.

If the support S ⊆ Ω of v is disjoint from some code-
words, then finding V this way is inefficient, because C
will be larger (possibly much larger) than V . This is
only a problem when S is not very big, and such cases
may be handled by the following shortcut, which works
when |S| < 12. Let γ be a codeword nearest S. If γ
is not an octad or does not lie in S, then V consists of
just one vector, with all coordinates positive. If γ is an
octad lying in S and v has an even number of negative
coordinates on γ, then again V contains a single vector,
with all coordinates positive. If γ is an octad lying in S

and v has an odd number of negative coordinates on γ,
then V contains eight vectors, each with all coordinates
positive except for one of the eight points of γ, which is
negative.

6. ORBITS UNDER M24

The problem of equivalence of vectors v, w ∈ R24 un-
der M24 is not really a question about vectors in R24.
Namely, we write Cv = (c1, . . . , ck) where c1 < · · · < ck
are the distinct values taken by the coordinates of v, Pi
for the subset of Ω where the coordinates of v equal
ci, and Pv for the corresponding (ordered) partition
(P1, . . . , Pk) of Ω. Then, v and w are M24-equivalent
if and only if Cv = Cw and Pv is M24-equivalent to Pw.
Therefore, we restrict ourselves to the problem of equiva-
lence of ordered partitions P and P ′ of Ω. All partitions
in our analysis are ordered, so we will suppress the quali-
fier except for emphasis. The idea is to search for sextets
by reducing members of P and P ′ modulo C and by sev-
eral other means. Our procedure will almost always find
a sextet, reducing the equivalence problem to the sextet
group 26:3·S6 of order only 138, 240. Of course, we also
treat the special case where no sextets are found. We do
not provide an algorithm for the sextet group; various
combinations of brute force and cleverness are possible.

Suppose P is an ordered partition of Ω. If some mem-
ber P of P represents a sextet, then testing the M24-
equivalence of P with some other ordered partition P ′

can be reduced to the sextet group (see Theorem 6.6 be-
low). Otherwise, the unique small representative P̄ of
P modulo C will typically cut the members of P non-
trivially, so that P determines a finer partition, whose
members may themselves be reduced modulo C, and so
on. We will try to refine P as much as possible in this
manner, interrupting the refinement process if a sextet
appears at any point. To make this precise, suppose
P = (P1, . . . , Pn) is an ordered partition and X a sub-
set of Ω. We say that X refines P if X is not a union
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• 3.3.3.3.3.3.3.3 5.1.2.6.10 6.1.1.8.8 8.13.1.1.1
• 9.3.3.3.3.3 ◦ 5.1.1.1.6.10 6.2.10.3.3 8.14.2
• 10.2.3.3.3.3 • 5.3.8.3.3.2 ◦ 6.2.13.3 8.14.1.1
• 12.3.3.3.3 5.3.8.8 6.2.15.1 8.15.1
• 13.3.3.3.2 5.2.1.8.8 6.1.1.15.1 8.15.1

16.3.3.2 5.1.1.1.8.8 6.2.16 • 9.3.9.3
21.3 • 5.3.13.3 6.1.1.16 ◦ 9.3.10.2
21.2.1 5.3.14.2 7.1.7.1.7.1 9.3.12
21.1.1.1 5.3.16 7.1.7.1.8 9.2.1.12
22.2 5.2.1.16 7.1.8.8 9.1.1.1.12
22.1.1 5.1.1.1.16 7.1.14.2 10.2.11.1
23.1 6.2.6.10 7.1.14.1.1 10.1.1.11.1
24 6.1.1.6.10 7.1.15.1 10.2.12
• 5.3.5.3.3.3.2 6.2.6.9.1 7.1.16 10.1.1.12
• 5.3.5.3.5.3 ◦ 6.1.1.6.9.1 8.8.8 11.1.11.1
• 5.3.5.3.6.2 6.2.7.1.8 • 8.8.3.3.2 11.1.12
• 5.3.5.3.8 6.1.1.7.1.8 8.13.3 12.12
• 5.3.6.2.8 6.2.8.8 8.13.38.13.2.1

TABLE 1. Possible shapes of refined partitions; see Lemma 6.2. Each underline means that the union of the underlined
sets is a codeword. A bullet • indicates that a partition of that shape determines a sextet in Algorithm 6.3, and a circle
◦ indicates that partitions of that shape are treated by one of the special cases of Theorem 6.7. Partitions of other listed
shapes are treated by the general case of Theorem 6.7.

of members of P. In this case, suppose Pi1 , . . . , Pim
(i1 < · · · < im) are the members of P that meet X

but do not lie in it; we define the refinement of P by X
to be

(Q1, . . . , Qn, Pi1 ∩X, . . . , Pim ∩X) ,

where Qj = Pj − X for j ∈ {i1, . . . , im} and Qj = Pj
otherwise. We say that P is refined if no member of P
represents a sextet and no member’s small representative
refines P.

Algorithm 6.1. (Refinement.) This algorithm accepts an
ordered partition P of Ω and returns either a sextet S or
a refined partition R of Ω; in the latter case, we call R
the refinement of P.

Step 1. Set R = P.

Step 2. If any member of R represents a sextet, set S to
be the sextet represented by the first such mem-
ber, and quit.

Step 3. If any member of R of size 5 or more has small
representative that refinesR, replaceR by its re-
finement by R̄, where R is the first such member,
and go back to Step 2.

Step 4. Quit, returning R.

Proof: The algorithm terminates because each repetition
of Step 3 increases the number of members of R, of which
there may be at most 24. All we must show is that R
is refined when defined. If R is defined, the algorithm
reaches Step 4, so neither Step 2 nor 3 applies to R.
Since Step 2 does not apply, no member ofR represents a
sextet, so, in particular, no member ofR has size 4. Since
Step 3 does not apply, no member of R of size > 4 has
a small representative that refines R. Since any member
of R of size < 4 is its own small representative, R is
refined.

Because our criteria and constructions refer only to C
and the ordering of P, the sextet is natural when defined,
in the sense that if the algorithm applied to P produces a
sextet S and g ∈M24, then the algorithm applied to g(P)
produces the sextet g(S). Similarly, if P has refinement
R and g ∈M24, then g(P) has refinement g(R). Refined
partitions are rather special:

Lemma 6.2. Suppose R is a refined ordered partition of
Ω. Then, either some tetrad is a union of members of
R or else R has one of the 71 shapes listed in Table 1.
(A line beneath some of the listed sets indicates that their
union is a codeword.)

Proof: The proof is an uninspiring slog through many
cases. We assume throughout that no tetrad is a union
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of members of R. What gets the enumeration off the
ground is that a member R of R of size ≥ 5 is disjoint
from its small representative—otherwise, R̄ would refine
R. This means that the only sets that can appear in R
are monads, duads, triads, and sets of the form

(a Golay codeword)− (0, 1, 2, or 3 of its points).

Also, if R is a member of R, then R̄ refines R if and only
if the codeword R+R̄ refines R. Table 1 was obtained by
first enumerating those partitions with no large sets, then
those with exactly one large set, then those containing
a pentad and at least one other large set, then those
containing a hexad and at least one other large set, but
no pentad, and so on.

As an example of the argument, we enumerate the
partitions containing exactly one pentad p and also some
other large set. If there is a hexad h, then the octads Op
and Oh containing p and h meet in 0, 2, or 4 points, be-
cause they are C-sets. The last case is impossible, because
then p and h would overlap. If they are disjoint, then R
has shape 5.(3).6.(2).(8), where (n) indicates some parti-
tion of n points. If the (3) is not a triad or the (2) is not a
duad, then some tetrad would be a union of members of
R; therefore, R has shape 5.3.6.2.(8). By hypothesis, the
(8) contains no pentad, and it cannot contain a monad,
duad, or tetrad. Therefore, the (8) is a single octad, so
R has shape 5.3.6.2.8, which appears in the table.

We summarize and continue this argument in a com-
pact notation.

5.6.(13) and Op ∩ Oh = ∅ ⇒ 5.(3).6.(2).(8) ⇒
5.3.6.2.(8) ⇒ 5.3.6.2.8.

5.6.(13) and |Op ∩ Oh| = 2 ⇒ 5.1.(2).6.(10) ⇒
5.1.(2).6.10, so both 5.1.2.6.10 and 5.1.1.1.6.10 ap-
pear in the table.

5.7.(12) and no 6s ⇒ 5.(3).7.1.(8) ⇒ tetrad.

5.8.(11) and no 6s or 7s ⇒ 5.(3).8.(8) ⇒ 5.(3).8.8
or 5.(3).8.3.3.2; in the latter case, we must have
5.3.8.3.3.2.

5.9.(10) and no 6s, 7s, or 8s ⇒ Op meets the 9-ad’s
dodecad in 2, 4, or 6 points; only the first case is pos-
sible. Therefore, we have 5.1.(2).1.9.(6) ⇒ tetrad.

5.10.(9) and no 6s through 9s ⇒ 5.1.2.10.(6) ⇒
tetrad.

5.N .(19 − N) for N = 11 or 12 ⇒ a contradiction,
since Op would meet the N -ad’s dodecad in at least
two points, hence refine R.

5.N .(19 − N) for N = 13, . . . , 16 ⇒ the N -ad’s 16-
ad meets Op in 0, 4, 6, or 8 points; only the first is
possible without refining R. Therefore, we have one
of 5.(3).13.(3), 5.(3).14.(2), 5.(3).15.1, and 5.(3).16.
All cases except those with tetrads appear in the
table.

If R contains a pentad, then it cannot contain a set
larger than a 16-ad, for else Op would meet this set
and hence refine R.

Algorithm 6.3. (Sextet search.) Suppose P is an ordered
partition of Ω. This algorithm returns either a sextet S
or else the refinement R of P exists and the algorithm
returns it.

Step 1. Apply Algorithm 6.1 (refinement), obtaining ei-
ther a sextet (in which case we set S to be this
sextet and quit) or the refinement R of P.

Step 2. (Applies if some tetrad is the union of members
of R.) Set S to be the sextet containing the first
such tetrad and quit. See below for the meaning
of “first.”

Step 3. (Applies if R has three triads.) Let t1, t2, and
t3 be the first three triads, in order. If t1 ∪ t2
represents a sextet, then set S to be this sextet
and quit. Otherwise, if t2∪t3 represents a sextet,
then set S to be this sextet and quit. Otherwise,
the octads containing t1∪t2 and t2∪t3 meet in a
tetrad; set S to be the corresponding sextet and
quit.

Step 4. (Applies if R has shape 2.32.52.6, 32.52.8,
32.5.13, or 32.92.) Write t1 and t2 for the two
triads, in order. If t1 ∪ t2 represents a sextet,
then set S to be this sextet and quit. Otherwise,
the octad containing t1∪t2 meets the first pentad
of R (or the first nonad in case of shape 32.92)
in one point, which with t1 forms a tetrad; set S
to be the corresponding sextet and quit.

Step 5. (Applies if R has shape 2.3.5.6.8.) The octad
containing the union of the duad and triad meets
the pentad in a single point, which with the triad
forms a tetrad; set S to be the corresponding
sextet and quit.

Step 6. (Applies if R has shape 2.32.82.) Let t be the
first triad, O the union of the small sets, and
T the trio consisting of O and the two octads
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of R; set S to be the sextet determined by the
containments t ⊆ O ∈ T (see Lemma 6.4 below)
and quit.

Step 7. (Applies in all other cases.) Quit, returning R.

Beyond the fact that the constructions make sense,
there is nothing to prove. For Step 2, we need a notion
of the first tetrad T that is a union of members of R.
Here is one possibility. If R contains a tetrad, then T is
the first such (with respect to the ordering of R). If R
contains a triad and a monad, then T is the union of the
first triad and first monad. If R contains two duads, T
is the union of the first two. If R contains a duad and
two monads, T is the union of the duad and the first two
monads. Otherwise, R contains four monads and T is
the union of the first four.

For Step 3, we must show that the octads containing
t1 ∪ t2 and t2 ∪ t3 meet in four points (when such octads
exist); this is because they meet in at least three (both
contain t2) but cannot coincide (else t1 ∪ t2 ∪ t3 would
lie in an octad). For Step 4, under the condition that
t1 ∪ t2 does not represent a sextet, we claim that the
octad O containing it meets each pentad (or nonad in
the case of shape 32.92) once. For the case 2.32.52.6,
the sets assemble into C-sets as 5.3.5.3.6.2, according to
Table 1. Then, it is clear that O meets each octad 5.3 in
at least three points, hence exactly four, and, therefore,
meets each pentad once.

The same argument applies essentially verbatim for
the case of shapes 32.52.8 and 32.5.13. For the case 32.92,
R has shape 9.3.9.3 by Table 1, and O meets each do-
decad 9.3 in at least three points, hence exactly four. The
argument for Step 5, with shape 5.3.6.2.8, is the same.
For Step 6, we note that R has shape 8.8.3.3.2 by Ta-
ble 1, so O and the two octads are special, and we apply
the following lemma:

Lemma 6.4. If t is a triad, O a special octad, and T

a trio, with t ⊆ O ∈ T , then there are octads O′ ∈ C
meeting O in exactly four points, including those of t,
and disjoint from one of the other octads of T . All such
octads O′ meet O in the same tetrad.

Proof: M24 acts transitively on trios, the stabilizer of a
trio acts transitively on its octads, and the stabilizer of a
trio and one of its octads acts 3-transitively on the octad.
Therefore, it suffices to verify the claim for one particular
inclusion t ⊆ O ∈ T . If we take T to be the standard
trio, then the “Turyn” description of C in [Conway and

Sloane 88, Chapter 11, Section 12] makes this obvious.
(The tetrad is the unique tetrad containing t that lies in
the “line code.”)

Remark 6.5. Finding τ algorithmically is easy; simply
transform T to the standard trio in such a way that t is
carried into one of the MOG columns. Then, τ is just
that column and the sextet is the standard one. Perform-
ing this operation requires finding a suitable permutation
in M24, which is easy using a few precomputed permuta-
tions. Also, such a permutation will be needed anyway
in Theorem 6.6 below.

We say that P determines a sextet S if S is the output
of Algorithm 6.3 applied to P. All the constructions of
the algorithm are natural in the sense that they use only
the ordering on R and the structure of C. Therefore,
if g ∈ M24 and P determines the sextet S, then g(P)
determines the sextet g(S). On the other hand, if P
does not determine a sextet, then neither does g(P), and
g carries the refinement of P to that of g(P). Given
ordered partitions P and P ′ of Ω, if one determines a
sextet and the other does not, then they are not M24-
equivalent. If both determine sextets, then whether they
are M24-equivalent is determined by Theorem 6.6, and if
neither does, then it is determined by Theorem 6.7.

Theorem 6.6. Suppose P and P ′ are ordered partitions of
Ω that determine sextets S and S′, and let g, g′ ∈ M24

carry S and S′ to the standard sextet. Then, P and
P ′ are M24-equivalent if and only if g(P) and g′(P ′)
are equivalent under the sextet group 26:3·S6 of order
138, 240.

Proof: The “if” part is trivial. For the converse, suppose
h ∈M24 carries P to P ′, so that it carries S to S′. Then,
g′ ◦h◦g−1 carries g(P) to g′(P ′); it also carries the stan-
dard sextet to itself, so it lies in the sextet group. (This
is essentially the argument we used for Theorem 3.5.)

Finding the permutations g and g′ needed to apply
Theorem 6.6 is easy: we can just refer to tables of coset
representatives for M23 in M24, M22 in M23, M21 in M22,
and M20 in M21.

Theorem 6.7. Suppose P and P ′ are ordered partitions
of Ω that do not determine sextets, and let R and R′ be
their refinements. If R and R′ are not S24-equivalent,
then P and P ′ are not M24-equivalent. If R and R′ are
S24-equivalent, then we have the following cases:
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1. (Applies if both R and R′ have shape 13.5.6.10 or
both have shape 13.62.9.) The octad containing the
first hexad of R contains two of the monads and the
remaining monad is the first, second, or third monad
of R; define n = 1, 2, or 3 in these cases, and define
n′ similarly using R′ in place of R. Then, P and P ′

are M24-equivalent if and only if n = n′.

2. (Applies if both R and R′ have shape 2.3.6.13.) Let
h be the hexad of R and O the octad containing the
duad and triad, and similarly for h′ and O′. Then,
P and P ′ are M24-equivalent if and only if |h∩O| =
|h′ ∩ O′|.

3. (Applies if both R and R′ have shape 2.3.9.10.) Let
n be the nonad of R and O the octad containing the
duad and triad, and similarly for n′ and O′. Then,
P and P ′ are M24-equivalent if and only if |n∩O| =
|n′ ∩ O′|.

4. (Applies in all other cases.) P and P ′ are M24-
equivalent.

Proof: Since P and P ′ are M24-equivalent if and only if
R and R′ are, we may, without loss of generality, replace
P and P ′ by R and R′ throughout; then, the first claim
is obvious. In Cases (1)–(3), the criteria used to conclude
inequivalence involve only the orderings onR andR′ and
the structure of C, so any conclusion of inequivalence is
justified. We now treat Cases (1)–(4) individually, prov-
ing that any conclusion of equivalence is justified.

For the case 13.5.6.10, both R and R′ have shape
5.1.1.1.6.10 and n = n′. Write D (respectively, D′) for
the dodecad 5.1.6 of R (respectively, R′). By hypoth-
esis, D (respectively, D′) contains the nth monad of R
(respectively, R′). Since M24 is transitive on dodecads,
we may suppose D′ = D. Since the stabilizer M12 of D
is 5-transitive on its complement, we may suppose that
for i 	= n, the ith monad of R coincides with that of
R′; write δ for the duad consisting of these two monads.
Now, only two octads of C meet Ω−D exactly in δ, one
of which meets D in the hexad of R and one of which
(possibly the same one) meets D in the hexad of R′. The
pointwise stabilizer of δ in M12 is M10, which contains
a permutation exchanging these two octads, so we may
suppose the hexads of R and R′ coincide. Finally, the
setwise stabilizer of this hexad in M10 is A6, acting tran-
sitively on the remaining six points of D. Therefore, we
may suppose that the nth monad of R coincides with
that of R′, i.e., R′ = R.

For the case 13.62.9, both R and R′ have shape
6.1.1.6.1.9 and the argument is the same except that the
last step is replaced by A6, acting transitivity on the
decad.

For the case 2.3.6.13, both R and R′ have shape
6.2.13.3. The essential fact is the following: the group
24:S6 that simultaneously stabilizes a special octad O
and a duad δ contained in it acts with two orbits on tri-
ads t in the complementary 16-ad. These orbits are dis-
tinguished by whether the octad containing t ∪ δ meets
O in two or four points.

For the case 2.3.9.10, both R and R′ have shape
9.3.10.2, and the essential fact is the following: the group
M10.2 that simultaneously stabilizes a dodecad D and a
duad δ in it acts with two orbits on triads in the com-
plementary dodecad. These orbits are distinguished by
whether the octad containing t∪δ meets D in two or four
points.

Now we treat all other cases. The common shape of
R and R′ is not one of those marked with a bullet • in
Table 1, because otherwise they would have determined
sextets in Algorithm 6.3. The shapes marked with circles
◦ are those we have just treated. For all remaining shapes
in the table, M24 acts transitively on ordered partitions
having that shape and forming C-sets in the indicated
way. The analysis is easier than the cases above and uses
the following facts. M24 acts 5-transitively on Ω and
transitively on octads, dodecads and trios. The octad
stabilizer acts on the octad as A8 and acts (3 + 2)- and
(1+3)-transitively on the octad and its complement. The
trio group permutes the three octads of the trio as S3,
and the subgroup preserving each of them acts (3+1+0)-
and (2 + 1 + 1)-transitively on the octads in any order.
The stabilizer M12 of a dodecad D acts (5+0)-, (2+1)- ,
(1 + 2)-, and (0 + 5)-transitively on D and its comple-
ment. The setwise stabilizer of a duad δ not meeting D
is a subgroup M10.2; this group contains a permutation
preserving each of the two octads that meet Ω − D ex-
actly in δ, say O and O′, and swapping the points of δ. It
also contains a permutation swapping O and O′ and pre-
serving each point of δ. The subgroup preserving each
point of δ and each of the two octads is A6, acting in
the natural way on each of the hexads O − δ and O′ − δ
and transitively on the 10-ad Ω− (D ∪ δ). Most of these
assertions appear explicitly in [Conway and Sloane 88,
Chapter 10], and the rest implicitly.

7. REMARKS

We close with a few remarks, first on equivalence test-
ing under the infinite group Co∞ = Λ:Co 0 and then on
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possible analogues of our algorithm for the complex and
quaternionic versions of Λ.

Since we developed these algorithms in order to sort
negative-norm elements of II25,1 into orbits, we offer here
a sketch of how to do this. Following the line of reason-
ing in the introduction reduces this to the problem of
determining equivalence of vectors in Λ⊗Q under Co∞.
Borcherds ([Borcherds 95] has implemented an algorithm
to quickly find all lattice vectors lying within a given dis-
tance of a given v ∈ Λ⊗Q. Coupling this with a decoder
for Λ, we may find the set Nv of all nearest neighbors
to v. Then, given v, w ∈ Λ ⊗ Q and w′ ∈ Nw, v and w

are Co∞-equivalent if and only if w − w′ and v − v′ are
Co 0-equivalent for some v′ ∈ Nv. Of course, w −w′ and
v−v′ are in Λ⊗Q not Λ, but after scaling we may apply
our Co 0-algorithm. This reduces the test under Co∞ to
at most |Nv| tests under Co 0.

Happily, we never need to worry about Nv having size
larger than 25, because of the following considerations.
The diagram ∆v of v is defined as the graph whose ver-
tices are the elements of Nv; two are unjoined (respec-
tively, joined, doubly joined) if their difference has type
2 (respectively, 3, 4). See [Conway et. al. 82] for more
information about these diagrams. ∆v is always the dis-
joint union of spherical and affine Dynkin diagrams of
types an, dn, en, An, Dn, and En and hence is a very sim-
ple combinatorial object. It is also true that |Nv| ≤ 48,
and if |Nv| > 25, then v is a deep hole of Λ and its orbit
under Co∞ is completely determined by the combinato-
rial type of ∆v. This means that a test for equivalence
under Co∞ may be reduced to 25 tests for equivalence
under Co 0. We will usually be able to do even better
than this by using some feature of ∆. For example, sup-
pose v and w are shallow holes, each with diagram of type
a17d7a1. Then, any transformation carrying w to v must
carry the branch point w′ of ∆w to the branch point v′ of
∆v. Therefore, v and w are Co∞-equivalent if and only
if v − v′ and w − w′ are Co 0-equivalent, so only a single
equivalence test is required. There are two orbits of shal-
low holes with this diagram (see [Borcherds et. al. 88]),
so we cannot determine equivalence by simply inspecting
∆v and ∆w.

An extension of our ideas in a different direction con-
cerns the complex and quaternionic versions of Λ, whose
automorphism groups are 6·Suz and 2G2(4), where Suz
is Suzuki’s sporadic finite simple group. The complex
Leech lattice (see [Wilson 83]) is a lattice over Z[ω = 3

√
1],

whose underlying real lattice is Λ, scaled to have min-
imal norm 6. It has 312 congruence classes modulo
θ = ω − ω̄ =

√−3, and these have minimal represen-

tatives of norm ≤ 9. The only congruences modulo θ

among these vectors are that each norm 6 vector is con-
gruent to its multiples by powers of ω and that the norm 9
vectors fall into classes (frames) of 36 vectors, any two of
which are orthogonal or proportional by ω±1. The stabi-
lizer of a frame is 35:M11 (M11 being the Mathieu group
of order 7,920). In a manner similar to 212:M24, M11

acts by permuting 12 complex coordinates, and 35 acts
by multiplying the coordinates by various scalars. If one
proved an analogue of Curtis’ theorem on S-lattices, then
one could devise an algorithm for equivalence of vectors
in the complex Leech lattice under 6.Suz. If such an ana-
logue is true, then its proof should be easier than that of
Curtis’ original theorem.

The quaternionic Leech lattice (see [Wilson 82]) has
an even simpler structure: modulo 1 + i, every vector is
congruent to either 0 or a minimal vector. The minimal
vectors fall into 4,095 classes (again called frames), each
consisting of 48 vectors, any two of which are either pro-
portional by an element of {±1,±i,±j,±k} or orthogo-
nal. The stabilizer of a frame is the group 26.(22×A5).2
of order 30, 720, and so an analogue of the Co 0 algo-
rithm is obvious: supposing that 1 + i divides neither v
nor w, reduce v and w modulo 1 + i, carry each of the
resulting frames to the standard one, and then check for
equivalence under the group stabilizing the frame. The
reader should note that each of Wilson’s frames [Wilson
82] contains three of ours, with 3 · 48 = 144 vectors, and
has slightly larger stabilizer.
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