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Using fast algorithms, we compute the Iwasawa invariants of
Q(

√
f, ζp) in the range 1 < f < 200 and 3 ≤ p < 100, 000.

From these computational results, we obtain concrete informa-
tion on the higher K-groups of the ring of integers of Q(

√
f).

1. INTRODUCTION

Let χ be an even Dirichlet character of conductor f = fχ.
The generalized Bernoulli numbers Bk,χ are defined by

f∑
a=1

χ(a)teat

eft − 1
=
∞∑
k=0

Bk,χ
tk

k!
.

First, let us look back over the case of χ = χ0 the trivial
character. For k �= 1, Bk,χ0 is the kth Bernoulli number
Bk, and B1,χ0 = B1 + 1 = 1/2. A pair of integers (p, k)
is said to be an irregular pair if p is a prime, k is an even
integer satisfying 2 ≤ k ≤ p−3, and p divides the numer-
ator of Bk = Bk,χ0 . Irregular pairs have been computed
by Kummer, Vandiver, D.H. Lehmer, E. Lehmer, Self-
ridge, Nicol, Pollack, Johnson, Wada, Wagstaff, Tanner,
Ernvall, Metsänkylä, Buhler, Crandall, Sompolski, and
Shokrollahi. These computations were originally used to
verify Fermat’s Last Theorem. However, even after the
proof was completed by Wiles, these computations are
still important because they give us concrete knowledge
of the ideal class group of cyclotomic fields.

Let p be an odd prime number and An the p-part of
the ideal class group of Kn = Q(ζpn+1). Let ω = ωp be
the Teichmüller character Z/pZ → Zp such that ω(a) ≡
a mod p. We identify ∆ = Gal(K∞/Q∞) with (Z/pZ)×.
Let

eωk =
1
�∆

∑
δ∈∆

ωk(δ)δ−1

be the idempotent of the group ring Qp[∆]. Then we
have

An =
⊕
k:even

eωkAn ⊕
⊕

p−k:odd
eωp−kAn,
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where k is an even integer with 2 ≤ k ≤ p − 1. We
denote the even part (respectively odd part) by A+

n (re-
spectively A−n ). Let rp be the irregularity index, i.e., the
number of irregular pairs (p, k). For any prime number
p < 12, 000, 000, it has been verified that

A+
n = {0} and A−n � (Z/pn+1Z)rp for all n ≥ 0

(see [Buhler et al. 93] and [Buhler et al. 01]). The for-
mer statement is called Vandiver’s conjecture. We have a
naive explanation for the fact that we have not been able
to find any counterexample. If we follow the argument
of [Washington 97, pages 158–159], we can expect that
the number of exceptions to Vandiver’s conjecture for
x0 < p ≤ x1 is approximately (log log x1 − log log x0)/2,
and (log log 12, 000, 000−log log 37)/2 = 0.7536143467 . . .
is perhaps too small to find a counterexample. However,
many number theorists may doubt the above expected
number. As a matter of fact, we have to consider some
effects on ideal class groups from an upper bound for
the numerators of Bernoulli numbers, and from a lower
bound for discriminants (see [Washington 97, pages 221–
230]). If there is another strong bound, the actual num-
ber could be much less than the above number.

In this paper, following [Sumida-Takahashi 04], we
consider the χωk-part instead of the ωk-part, where
χ is an even quadratic Dirichlet character. We con-
sider quadratic characters, because their values, as well
as the trivial character, are included in Q. The first
main purpose of this paper is to effectively find “ex-
ceptional pairs” (p, χωk) in order to use them to dis-
cuss the expected number. Here, we call (p, χωk) an ex-
ceptional pair if and only if χωk(p) �= 1, χω1−k(p) �=
1, and one of the following conditions is satisfied:
νp(χωk) > 0, vp(Lp(1, χωk)) > 1, vp(Lp(0, χωk)) >

1, or λ̃p(χωk) > 1, where νp(χωk) is the χωk-part of
νp-invariant and vp is the p-adic valuation such that
vp(p) = 1 (see Section 3 for the details). We actually
computed the Iwasawa invariants of Q(

√
fχ, ζp) in the

range 1 < fχ < 200 and 3 ≤ p < 100, 000. From our
data, the actual number of exceptional pairs seems to be
near to the expected number in the range. On the other
hand, we could not find any exceptional pair for fχ = 5
and p < 2, 000, 000 nor for the trivial character.

Let F = Fχ be the real quadratic field associated to
χ and OF the ring of integers of F . By [Kahn 93] and
[Kolster et al. 96], there are relations between Quillen’s
K-groups Kn(OF ) and the Iwasawa modules for un-
ramified abelian p-extensions of ∪n≥0F (ζpn). The sec-
ond main purpose of this paper is to give concrete in-
formation on the higher K-groups of OF by using the

computational results. For example, we found that for
3 ≤ p < 100, 000, p divides the order of K68372(OQ(

√
8))

if and only if p = 34, 301 under the Quillen-Lichtenbaum
conjecture.

2. NOTATION AND CONJECTURES

In this section, we introduce some conjectures on higher
K-groups and Iwasawa modules.

Let F be a finite extension of Q. The following theo-
rems and conjecture are well known.

Theorem 2.1. (Quillen.) For all n ≥ 0, Kn(OF ) is a
finitely generated Z-module.

Theorem 2.2. (Borel.) For m ≥ 1,

rankZ(K2m−1(OF )) =

{
r1(F ) + r2(F ) if m is odd,
r2(F ) if m is even,

where r1(F ) is the number of real embeddings of F , and
r2(F ) is the number of pairs of complex embeddings of F .
Further,

K2m−2(OF ) is finite.

Conjecture 2.3. (The Quillen-Lichtenbaum Conjecture.)
The natural map (via p-adic Chern characters)

K2m−i(OF ) ⊗ Zp → Hi
ét(Spec(OF [1/p]),Zp(m))

is an isomorphism for all m ≥ 2, i = 1, 2, and any odd
prime number p, where A(m) is the mth Tate twist of a
Galois module A.

The surjectivity of p-adic Chern characters was proved
in [Soulé 79, Dwyer and Friedlander 85, Kurihara 92,
Kahn 93]. For p = 2, we need to modify the state-
ment. Voevodsky’s work on Milnor’s conjecture resolved
the conjecture for p = 2 (see [Voevodsky 03]). We simply
denote Hi

ét(Spec(OF [1/p]), A) by Hi(OF , A). Let K =
F (ζp) and denote by K∞ the cyclotomic Zp-extension
of K. Let G∞ = Gal(K∞/F ), ∆ = Gal(K∞/F∞), and
Γ = Gal(K∞/K). Then we haveG∞ = ∆×Γ. Let L∞ be
the maximal unramified abelian p-extension of K∞ and
L′∞ the maximal unramified abelian p-extension ofK∞ in
which every prime divisor lying above p splits completely.
Let X∞ = Gal(L∞/K∞) and X ′∞ = Gal(L′∞/K∞).
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Theorem 2.4. [Kolster et al. 96, Section 3, Section 4] For
m �= 0, we have

H1(OF ,Zp(m))tors � H0(OF ,Qp/Zp(m)).

For m �= 1, we have an exact sequence

0 → X ′∞(m− 1)G∞ → H2(OF ,Zp(m))

→
∏
v|p

H2(Fv,Zp(m))

→ H0(OF ,Qp/Zp(1 −m))∨

→ 0,

where A∨ = HomZp
(A,Qp/Zp).

It is not difficult to compute H0(OF ,Qp/Zp(m)) and
H2(Fv,Zp(m)) (see Section 4). Assume that the Quillen-
Lichtenbaum conjecture is true. Then, by Theorem 2.2
and Theorem 2.4, it is not difficult to determine the struc-
ture of K2m−1(OF ) as an abelian group. Further, by the
exact sequence in Theorem 2.4, we can obtain the order
of K2m−2(OF ) by using the order of X ′∞(m− 1)G∞ . Let
us consider the following case:

F is totally real and F ∩ Q(ζp) = Q.

For a Zp[∆]-module A and a character ωm of ∆ �
Gal(Q(ζp)/Q), we denote eωmA by A(m). Since

X ′∞(m− 1)G∞ � (X ′(1−m)
∞ ⊗ Zp(m− 1))Γ,

it is important to study the structure of X ′(1−m)
∞ as an

Iwasawa module. If m is even, X ′(1−m)
∞ has no non-

trivial finite submodule (see [Washington 97, page 290]).
Therefore, the order of the Γ-coinvariant quotient can
be obtained from the Iwasawa polynomial for X ′(1−m)

∞ .
By Iwasawa’s main conjecture, proved by [Mazur and
Wiles 84] and [Wiles 90], the polynomial is essentially
the p-adic L-function. Therefore, if F is abelian, it suf-
fices to compute the Kubota-Leopoldt p-adic L-function.
On the other hand, if m is odd, it seems to be more
difficult to study the structure of X ′(1−m)

∞ . In fact, the
following classical conjectures are still open.

Conjecture 2.5. (Vandiver’s Conjecture.) For F = Q

and any odd integer m, X ′(1−m)
∞ is trivial.

Conjecture 2.6. (Greenberg’s Conjecture.) For any to-
tally real number field F and any odd integer m, X ′(1−m)

∞
is finite.

So far we have not been able to find any counterexam-
ple to the conjectures. Conjecture 2.5 has been verified

for all p < 12, 000, 000. Conjecture 2.6 has mainly been
verified for real abelian fields with small discriminants
and some prime numbers p = 3, 5, 7, . . . by using cyclo-
tomic units and auxiliary prime numbers (see [Ichimura
and Sumida 96] and [Kraft and Schoof 95]). In [Sumida-
Takahashi 04], the author exploited a method to effec-
tively check the exact value of the p-part of the class
number by using Gauss sums and auxiliary prime num-
bers. We will give some numerical examples of the Iwa-
sawa invariants and the higher K-groups in the following
sections.

3. IWASAWA INVARIANTS OF Q(
√

fχ, ζp)

Let χ be an even quadratic Dirichlet character and p

an odd prime number. Set F = Fχ = Q(
√
fχ) and K =

Q(
√
fχ, ζp). We use the notation in the previous sections.

We set ∆′ = Gal(K∞/Q∞) and e′ψ = 1
�∆′

∑
δ∈∆′ ψ(δ)δ−1

for a Dirichlet character ψ of ∆′. For a Zp[∆′]-module
A, we denote e′ψA by Aψ. Let λp(ψ), µp(ψ), and νp(ψ)
(respectively λ′p(ψ), µ′p(ψ), and ν′p(ψ)) be the Iwasawa
invariants associated to Xψ

∞ (respectively X ′ψ∞), i.e.,

�Aψn = pλp(ψ)n+µp(ψ)pn+νp(ψ)

(respectively �A′ψn = pλ
′
p(ψ)n+µ′

p(ψ)pn+ν′
p(ψ))

for sufficiently large n. By Ferrero-Washington’s theo-
rem, we have µp(ψ) = µ′p(ψ) = 0 for all p and ψ.

Assume that ψ is even. The Iwasawa polynomial
gψ(T ) ∈ Zp[T ] for the p-adic L-function is defined as fol-
lows. Let Lp(s, ψ) be the p-adic L-function constructed
by [Kubota and Leopoldt 64]. Let f0 be the least common
multiple of fψ and p. By [Iwasawa 72, §6], there uniquely
exists Gψ(T ) ∈ Zp[[T ]] satisfying Gψ((1 + f0)1−s − 1) =
Lp(s, ψ) for all s ∈ Zp if ψ �= χ0. By [Ferrero and Wash-
ington 79], it was proved that p does not divide Gψ(T ).
Therefore, by the p-adic Weierstrass preparation theo-
rem, we can uniquely write Gψ(T ) = gψ(T )uψ(T ), where
gψ(T ) is a distinguished polynomial of Zp[T ] and uψ(T ) is
an invertible element of Zp[[T ]]. Let λ̃p(ψ) = deg gψ(T ).

Let k be an even integer with 2 ≤ k ≤ p − 3. Then
χωk is an even character. For a pair (p, χωk), we set the
following condition:

χωk(p) �= 1 and χω1−k(p) �= 1. (3–1)

If χωk(p) �= 1, we have λp(χωk) = λ′p(χω
k) and

νp(χωk) = ν′p(χω
k). In the range 1 < fχ < 200,

3 ≤ p < 100, 000 and even integers k with 2 ≤ k ≤ p− 3,
there are 13,631,032,822 pairs of (p, χωk) satisfying (3–1).
Among them, 288,086 pairs satisfy λ̃p(χωk) = 1, 53 pairs
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νp(χ) (fχ, p)

1 (8,31)(24,523)(33,29)(33,37)(37,7)(40,191)
(40,643)(41,7211)(57,59)(57,28927)(60,181)
(65,8831)(69,5)(73,41)(76,79)(85,3)(92,7)
(97,3331)(104,2683)(109,3)(109,5)(109,809)
(113,53)(113,20219)(124,157)(129,5419)
(136,37)(136,547)(136,4733)(140,23)
(140,577)(145,17)(145,37)(149,7)(156,5)
(156,7)(157,9613)(161,5)(165,199)(172,3)
(173,227)(181,3)(185,139)(185,2389)

2 (89,5)(69,17)

TABLE 1. The ν-invariants of real quadratic fields.

λ̃p(χωk) = 2, and two pairs λ̃p(χωk) = 3. By the method
of [Ichimura and Sumida 96], we verified Greenberg’s con-
jecture, i.e., λp(χωk) = 0 for each of them. Moreover, we
checked that νp(χωk) ≤ 2. In the above range, 38 pairs
do not satisfy (3–1). For these cases, we checked that
λ̃p(χωk) = 0 if χωk(p) = 1, and that λ̃p(χωk) = 1 if
χω1−k(p) = 1, which implies that νp(χωk) = 0. Further,
by computation of the p-units of real quadratic fields
Q(

√
fχ), we verified that λp(χ) = λ′p(χ) = ν′p(χ) = 0

for all fχ and p in the above range. All pairs (fχ, p)
with νp(χ) > 0 are given in Table 1 (see [Fukuda and
Komatsu 86] and [Fukuda and Taya 95]).

Proposition 3.1. λp(Q(
√
fχ, ζp + ζ−1

p )) = 0 for all 1 <

fχ < 200 and 3 ≤ p < 100, 000.

Let us call a pair of integers (p, k) a χ-irregular pair if p
is a prime, k is an even integer satisfying 2 ≤ k ≤ p−3, p
divides a0(χωk) = Lp(1, χωk) (or b0(χωk) = Lp(0, χωk)),
and (p, χωk) satisfies (3–1). Further, we define the χ-
irregularity index rp(χ) by

rp(χ) = �{(p, k)|(p, k) is a χ-irregular pair}.
We call a prime number p χ-irregular if rp(χ) > 0. Let
mp(χ) be the number of even integers k with 2 ≤ k ≤ p−3
such that (p, χωk) satisfies (3–1). We define

nr =
∑

(χ,p) s.t. rp(χ)=r

1

and

n′r =
∑
χ,p

mp(χ)Cr

(
1
p

)r (
p− 1
p

)mp(χ)−r
,

where χ runs over all even quadratic characters with
1 < fχ < 200, and p runs over all prime numbers with
3 ≤ p < 100, 000. The distribution of the indices of χ-
irregularity is given in Table 2. The actual numbers nr

r nr n′
r the density the density’

0 348574 349090.14 0.60579423 0.60669125
1 174919 174464.73 0.30399548 0.30320601
2 43596 43583.01 0.07576642 0.07574384
3 7293 7257.27 0.01267466 0.01261257
4 942 906.2 0.00163712 0.00157492
5 73 90.51 0.00012686 0.00015730
6 3 7.53 0.00000521 0.00001309
7 0 0.53 0.00000000 0.00000093

TABLE 2. The χ-irregularity index density.

seem to be near the expected numbers n′r (see [Washing-
ton 97, page 63]).

In Tables 3–6, we extended the tables of [Sumida-
Takahashi 04] to all primes below 100, 000.

In Figures 1–2, we compare the actual number of ex-
ceptional pairs with the expected number in the range
200 < p < 100, 000.

On the other hand, we found the following fact:

Proposition 3.2. For fχ = 5 and p < 2, 000, 000, there is
no exceptional pair, that is, for any pair (p, χωk) which
satisfies (3–1),

νp(χωk) = 0,

vp(a0(χωk)) = vp(b0(χωk))

= λ̃p(χωk)

≤ 1.

From our data, the actual number seems to be near
the expected number. Even for large p, it might be possi-
ble that the actual number is near the expected number.
Therefore, it is not very strange that we have not been
able to find any exceptional pair for χ = χ0, especially
any counterexample to Vandiver’s conjecture.

4. HIGHER K-GROUPS OF THE RING OF INTEGERS
OF Q(

√
fχ)

In order to compute the orders of the étale cohomology
groups, we prepare some notation. For an odd integer
m, we write the Iwasawa polynomial gχω1−m(T ) for the
p-adic L-function Lp(s, χω1−m) in the form

gχω1−m(T ) =
λ̃(χω1−m)∏

i=1

(T − αχω1−m,i), αχω1−m,i ∈ Qp.

We let
x(p, χ,m− 1) = min {A, B} .
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fχ p k fχ p k fχ p k fχ p k

8 34301 114 12 701 542 21 199 150 33 53 30
37 43 32 53 1033 564 56 55621 9294 69 19 14
85 3697 3086 88 71 26 101 5333 2770 104 19 14
113 43 32 113 3373 1602 124 197 126 124 239 48
129 67 28 140 4751 120 141 5431 4826 149 43 32
149 71 16 149 229 182 156 50051 4582 157 401 56
161 101 22 168 37 22 172 73 10 173 7 4
173 43 32 173 101 42 177 17 6∗ 181 71 52
181 6991 1628 185 827 354 188 1621 168 193 62791 57100
197 521 372

TABLE 3. νp(χωk) = 1 (2 for the ∗-marked case).

fχ p k fχ p k fχ p k fχ p k

8 59 36 17 61 32 21 149 128 21 10169 7388
28 977 828 33 59 42 37 1091 812 40 12101 318
41 7 4 41 283 102 44 787 148 53 7 2
53 1879 1158 57 2161 758 61 17 4 61 1747 1270
76 191 84 88 35099 24446 89 41 10 92 181 124
97 17 4 105 769 524 105 1453 162 120 2749 2196
124 41 30 124 26227 13770 140 107 74 149 797 140
149 2767 2178 152 17 12 152 25453 15704 156 66877 48258
168 43 10 173 13 4 177 31 24 184 373 72
193 7873 1886

TABLE 4. vp(a0(χωk)) = 2.

fχ p k fχ p k fχ p k fχ p k

8 2221 1600 13 109 6 17 1319 88 28 223 126
33 31 24 33 1777 1184 41 19 12 41 421 126
60 19 14 61 7481 3516 73 11 2 73 1487 808
76 1451 418 76 4283 3484 89 23369 9986 97 367 26
97 13613 13022 109 41 32 133 1061 446 136 449 284
152 41 2 152 4027 3108 156 4637 2280 156 38891 9454
157 8221 582 165 29 26 165 89 66 165 1229 48
172 11 4 172 1487 900 177 337 74 177 58787 20838
184 1171 464 185 167 68 188 89 76

TABLE 5. vp(b0(χωk)) = 2.

fχ p k fχ p k fχ p k fχ p k

8 1151 842 8 27791 11840 21 11 4 21 60637 16528
24 29 4 24 181 84 29 569 64 37 5 2
37 89 66 37 3251 1094 40 257 232 44 653 448
53 193 14 56 1663 616 60 1277 582 60 1481 986
65 18121 3044 92 5 2 97 271 94 104 19 14
104 7919 4386 105 373 340 109 131 100 109 293 132
109 373 128 124 733 58 124 2111 1480 124 22091 15370
129 23 4 133 911 196 136 71 20 137 17 8
140 23 10 140 367 292 141 113 108 141 5939 2938
145 43 28 145 61 58 145 167 128 145 4157 3528
149 5 2 149 509 426 161 2389 646 161 64879 57186
165 11 2 165 23 6∗ 165 71089 24840 172 13 10
172 47 38 173 7 4 177 157 48 181 223 26
181 82007 51630 185 17 10∗ 185 17 6

TABLE 6. λ̃(χωk) = 2 (3 for the ∗-marked cases).
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where

A = νp(χω1−m)

B = vp


λ̃(χω1−m)∏

i=1

(
1 − (1 + f0)m−1(αχω1−m,i + 1)

)

For an even integer m, let α∗χωm,i = f0−αχωm,i

1+αχωm,i
,

g∗χωm(T ) =
∏λ̃(χωm)
i=1 (T − α∗χωm,i), and

x∗(p, χ,m− 1) =

vp


λ̃(χωm)∏

i=1

(
1 − (1 + f0)m−1(α∗χωm,i + 1)

) .

Further, for an integer m, we define the following sets of
prime numbers

S1(χ,m− 1) =




p :
p− 1

2
|(m− 1),

(p− 1) � (m− 1),

χω
p−1
2 (p) = 1,

χω
p−1
2 �= χ0



,

S2(χ,m− 1) = {p : (p− 1)|(m− 1) and χ(p) = 1}.
We set

y(p, χ,m− 1) =



vp(m− 1) + 1 if p ∈ S1(χ,m− 1)

∪S2(χ,m− 1),
0 otherwise.

Proposition 4.1. Let χ be an even quadratic Dirichlet
character, p an odd prime number, and F = Fχ. For an
even integer m, if (p, χωm) satisfies (3–1), then

�X ′∞(m− 1)χG∞ = px
∗(p,χ,m−1). (4–1)

For an odd integer m, assume that X ′χω
1−m

∞ is finite. If
(p, χω1−m) satisfies (3–1) and if gχω1−m(T ) is an Eisen-
stein polynomial or of degree one, then

�X ′∞(m− 1)χG∞ = px(p,χ,m−1). (4–2)

Further, for an integer m, we have

�
∏
v|pH

2(Fv,Zp(m))χ

�H0(OF ,Qp/Zp(1 −m))χ
= py(p,χ,m−1). (4–3)

Proof: We first set some notation. Let γ be the topo-
logical generator of Γ such that ζγf0pn = ζ1+f0

f0pn for all

n ≥ 0. As usual, we can identify the completed group
ring Zp[[Γ]] with the formal power series ring Λ = Zp[[T ]]
by γ = 1 + T . For a finitely generated torsion Λ-module
A, we define the Iwasawa polynomial charΛ(A) to be the
characteristic polynomial of the action T on A⊗Qp (see
[Washington 97, Section 13]). By (3–1) and [Mazur and
Wiles 84], charΛ(X ′χω

1−m

) = g∗χωm(T ). Since

X ′∞(m− 1)χ∆ � X ′χω
1−m

∞ ⊗ Zp(m− 1),

we have

charΛ(X ′∞(m− 1)χ∆) =
λ̃(χωm)∏
i=1

(T + 1 − (1 + f0)m−1(α∗χωm,i + 1)).

Since X ′∞(m−1)χ∆ has no nontrivial finite Λ-submodule,
the order of the Γ-coinvariant quotient is obtained
from the constant term of the characteristic polynomial:
vp(�A/Aγ−1) = vp(�A/TA) = vp(charΛ(A)|T=0). Hence,
we obtain Equation (4–1).

Let M∞ be the maximal abelian p-extension of
K∞ unramified outside p. Set Y∞ = Gal(M∞/K∞)
and D∞ = Gal(M∞/L′∞). By definition, X ′∞ =
Y∞/D∞. By (3–1) and [Mazur and Wiles 84], we have
charΛ(Y χω

1−m

∞ ) = gχω1−m(T ). Hence,

charΛ(Y∞(m− 1)χ∆) =
λ̃(χω1−m)∏

i=1

(T + 1 − (1 + f0)m−1(αχω1−m,i + 1)).

Since Y∞(m− 1)χ∆ has no nontrivial finite Λ-submodule,
by the assumption on gχω1−m(T ), we can completely dis-
tinguish any Λ-submodules of Y∞(m − 1)χ∆ by their in-
dices. Hence, Dχω1−m

∞ is the submodule of Y χω
1−m

∞ of
index pνp(χω1−m). Therefore, Equation (4–2) follows.

Set z =
√

(−1)
p−1
2 p. Then, Q(z) (respectively

Q(z
√
f)) is associated to η = ω

p−1
2 (respectively χη).

In order to prove Equation (4–3), we first calculate
h2,v = �H2(Fv,Zp(m)). By local duality, we have h2,v =
�H0(Fv,Qp/Zp(1 − m)) = �H0(Fv,Qp/Zp(m − 1)). If
z �∈ Fv, that is, χη(p) �= 1, we have

h2,v =
{
pvp(m−1)+1 if (p− 1)|(m− 1),
1 otherwise.

If z ∈ Fv, that is, χη(p) = 1, we have

h2,v =
{
pvp(m−1)+1 if p−1

2 |(m− 1),
1 otherwise.
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Similarly, we can calculate h0 = �H0(OF ,Qp/Zp(1 −
m)) = �H0(OF ,Qp/Zp(m − 1)). If z �∈ F , that is,
χη �= χ0, we have

h0 =
{
pvp(m−1)+1 if (p− 1)|(m− 1),
1 otherwise.

If z ∈ F , that is, χη = χ0, we have

h0 =
{
pvp(m−1)+1 if p−1

2 |(m− 1),
1 otherwise.

(I) If χη = χ0, then χ(p) = 0 �= 1 and χη(p) = 1. Hence,
we have h2,v = h0.
(II) If χη �= χ0 and χ(p) = 1, then χη(p) = 0 �= 1. Hence,
we have h2,v1h2,v2 = 12 and h0 = 1 if (p−1) � (m−1). If
(p − 1)|(m − 1), we have h2,v1h2,v2 = (pvp(m−1)+1)2 and
h0 = pvp(m−1)+1. Since χ(p) = 1 implies χη �= χ0, such
a prime number p is included in S2(χ,m− 1).
(III) If χη �= χ0, χ(p) �= 1, and χη(p) �= 1, then we have
h2,v = h0.
(IV) If χη �= χ0, χ(p) �= 1, and χη(p) = 1, then we
have h2,v = h0 unless p−1

2 |(m− 1) and (p− 1) � (m− 1).
If p−1

2 |(m − 1) and (p − 1) � (m − 1), we have h2,v =
pvp(m−1)+1 and h0 = 1. Since χη(p) = 1 implies χ(p) =
0 �= 1, such a prime number p is included in S1(χ,m−1).
Hence, we obtain Equation (4–3).

For a positive integer m and a prime number p,
we denote by K2m−2(OF )(p) the p-Sylow subgroup of
K2m−2(OF ). Here we set

K ′2m−2(OF ) =
⊕

3≤p<100,000

K2m−2(OF )(p),

X ′(χ,m− 1) =
∏

3≤p<100,000

�X ′∞(m− 1)χG∞ , and

Y ′i (χ,m− 1) =∏
p∈Si(χ,m), 3≤p<100,000

�
∏
v|pH

2(Fv,Zp(m))χ

�H0(OF ,Qp/Zp(1 −m))χ
.

Then, by Theorem 2.4 and the surjectivity of p-adic
Chern characters, we have

�K ′2m−2(OF )χ

is divided by

X ′(χ,m− 1) · Y ′1(χ,m− 1) · Y ′2(χ,m− 1).

For an even integer m and a prime number p which
divides the numerator of Bm,χ, we can compute

vp(X ′(χ,m − 1)) from the zeros of the Iwasawa poly-
nomial by Proposition 4.1. In fact, we can easily obtain
a lot of examples of (χ,m) with X ′(χ,m − 1) > 1. On
the other hand, for an odd integer m, it is more diffi-
cult to obtain examples of (χ,m) with X ′(χ,m− 1) > 1.
Since Vandiver’s conjecture is true for all p < 12, 000, 000,
X ′∞(m− 1)χ

0

G∞ is trivial for any odd integer m. Further,
we have �H2(Qp,Zp(m)) = �H0(Qp,Qp/Zp(1 − m)) =
�H0(Z,Qp/Zp(1−m)). By Theorem 2.4, Proposition 4.1,
and our computational result, we obtain such examples
in Table 7.

We have Y ′1(χ, 2m′) = 1 for all the cases in Table 7. If
the Quillen-Lichtenbaum conjecture is true, there is no
other factor of �K ′4m′(OQ(

√
fχ)

): for example,

K96(OQ(
√

21)) ⊇ K ′96(OQ(
√

21)) � Z/(5 · 17 · 199Z).

In [Soulé 03], an explicit huge bound is given for the
order of K4m′(OF ). However, it would be impossible to
compute x(p, χ, 2m′) by our method up to the bound.
Therefore it is possible that �K4m′(OF ) is divisible by a
prime number larger than 100,000.

5. ALGORITHMS FOR COMPUTING
ARITHMETIC ELEMENTS

In order to make the tables in the previous sections, we
computed the following arithmetic elements:
(I) the generalized Bernoulli numbers modulo p, i.e.,∑p−3
k=0Bk,χt

k/k! mod p,
(II)n the Iwasawa polynomial gχωk(T ) mod pn+1,
(III)n the special cyclotomic unit cYn(T )

n modulo a prime
ideal Ln, and
(IV)n the Gauss sum g0(L0) modulo a prime ideal L∗0,
where L0 = NKn/K0Ln.

By (I), we obtain χ-irregular pairs (p, k). By (II)n, we
obtain information on the p-adic L-function Lp(s, χωk).
By Mazur-Wiles’ theorem, if (p, χωk) satisfies (3–1),
�A′n

χωk

= �(En/Cn)(p)χω
k

, where En is the group of
units of Kn, and Cn is the group of cyclotomic units
of Kn. Since X ′∞

χωk

= lim←A′n
χωk

, we obtain infor-
mation on the Iwasawa invariants λp(χωk) and νp(χωk)
from �(En/Cn)(p)χω

k

. By [Sumida-Takahashi 04, Theo-
rem 1], using (III)n and (IV)n, we can compute the order
of �(En/Cn)(p)χω

k

without directly computing En (see
[Schoof 03]).

Here we briefly explain some effective algorithms for
computing the above elements. For simplicity, we assume
that p does not divide f = fχ.
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4m′ fχ X ′(χ, 2m′) Y ′
2 (χ, 2m′) 4m′ fχ X ′(χ, 2m′) Y ′

2 (χ, 2m′)
68372 8 34301 1 316 12 701 1

96 21 199 5·17 44 33 53 1
20 37 43 3·11 936 53 1033 7·132·37

92652 56 55621 43·6619·15443 8 69 19 5
1220 85 3697 3 88 88 71 3
5124 101 5333 43·367 8 104 19 5
20 113 43 11 3540 113 3373 7·11·31
140 124 197 3·11 380 124 239 3·11
76 129 67 1 9260 140 4751 1

1208 141 5431 5 20 149 43 1
108 149 71 7·19 92 149 229 47

90936 156 50051 5·7·19 688 157 401 3·173
156 161 101 1 28 168 37 1
124 172 73 3 4 173 7 1
20 173 43 1 116 173 101 1
20 177 17 11 36 181 71 33

10724 181 6991 3 944 185 827 1
2904 188 1621 23·67·727 11380 193 62791 3
296 197 521 1

TABLE 7. Factors of �K′
4m′(OQ(

√
fχ)

) with X ′(χ, 2m′) > 1.

(I) We first compute the inversion of power series (eft−
1)/t modulo (p, tp−2) by the method of [Knuth 81, Sec-
tion 4.7], in which we use the Fast Fourier Transform
(FFT) algorithm (see [Knuth 81, Section 4.3.3]). Next,
we compute the approximated polynomial

∑f
a=1 χ(a)eat

modulo (p, tp−2). Finally, we multiply the two polyno-
mials by using the FFT algorithm again.
(II)n By [Washington 97, Theorem 5.11], we have

−Lp(1, χωk) ≡ −Lp(1 − k, χωk)

= (1 − χωkω−k(p)pk−1)
Bk,χωkω−k

k

= (1 − χ(p)pk−1)
Bk,χ
k

≡ Bk,χ
k

mod p.

Therefore, from the result of (I), we can obtain indices
k such that p divides Lp(1, χωk) = gχωk(0)uχωk(0). In
order to effectively compute gχωk(T ) mod pn+1, we use
the following Theorem 5.1.

Theorem 5.1. [Washington 97, Section 5.2] We have the
formula

Lp(s, χωk) =
1
f0

1
s− 1

f0∑
a=1, p�a

χωk(a)〈a〉1−s

×
∞∑
j=0

(
1 − s
j

)
(Bj)

(
f0
a

)j
,

where 〈a〉 = aω−1(a).

(III)n By using the Iwasawa polynomial
gχωk(T ) mod pn+1, we define a polynomial Yn(T ) ∈ Z[T ]
(see [Ichimura and Sumida 96]). Then we can study the
difference between the group of global units and that
of cyclotomic units from the information on the special
cyclotomic unit c

Yn(T )
n mod Ln for some prime ideals

Ln of Kn of degree one. From this information we can
obtain an upper bound for the order of the p-part of the
ideal class group by Mazur-Wiles’ theorem. For details,
see [Sumida-Takahashi 04, Section 2].
(IV)n We can make certain that the computation (III)n
gives the exact value of the order by studying the Gauss
sums g0(L0) mod L∗0 for some prime ideals L∗0 of K0.
In order to effectively compute g0(L0) mod L∗0, we use
the FFT algorithm once again. For details, see [Sumida-
Takahashi 04, Section 3].

Thirty personal computers were used for the compu-
tations in Section 3. The programs were written in UBA-
SIC and C, in which the GNU MP library was included
in order to multiply polynomials of large degree. For ex-
ample, for p = 55, 621 and fχ = 56, the calculations took
about (I) 7, (II)1 30, (III)0 7, (III)1 7.4× 105, and (IV)0
4.8×102 seconds on one PC (CPU: Pentium IV, 2.6-GHz,
RAM: 1GB).
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