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We produce families of irreducible cyclic presentations of the
trivial group. These families comprehensively answer questions
about such presentations asked by Dunwoody and by Edjvet,
Hammond, and Thomas. Our theorems are purely theoretical,
but their derivation is based on practical computations. We ex-
plain how we chose the computations and how we deduced the
theorems.

1. INTRODUCTION

Edjvet, Hammond, and Thomas [Edjvet et al. 01] made
the following definitions: Let Fn denote the free group
on n (free) generators x0, . . . , xn−1 and let θ : Fn → Fn

be the automorphism for which xiθ = xi+1 (where
subscripts are taken modulo n). Following [Johnson
80], for (cyclically reduced) w ∈ Fn define Gn(w) =
Fn/N where N is the normal closure in Fn of the set
{w,wθ, . . . , wθn−1}. A group G is said to have a cyclic
presentation or to be cyclically presented if G ∼= Gn(w)
for some w and for some n.

The polynomial associated with the cyclic presentation
for Gn(w) is defined to be fw(t) =

∑n−1
i=0 ait

i where ai

is the exponent sum of xi in w. Set An(w) = Gn(w)ab.
It is shown in [Johnson 80] that the order of An(w) is
equal to the absolute value of the product

∏n−1
i=0 fw(ξi)

where ξi ranges over the set of complex n-th roots of unity
(with the convention that An(w) is infinite whenever the
product vanishes). Furthermore, An(w) is trivial if and
only if fw(t) is a unit in the ring Z[t]/(tn − 1).

A presentation for Gn(w) is irreducible if whenever
w involves only xi1 , . . . , xik

, where ij < ij+1, then
gcd(n, i2− i1, i3− i2, . . . , ik− ik−1) = 1. Otherwise, when
this greatest common divisor is not equal to 1, the group
Gn(w) decomposes into a free product of copies of Gm(ŵ)
where m divides n.

Edjvet, Hammond, and Thomas posed the following
two questions:
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Question 1.1. Is there an irreducible cyclic presentation
of the trivial group with more than five generators?

Question 1.2. Is there an example w where G5(w) is
trivial and fw(t) = ±ti?

One motivation for Edjvet, Hammond, and Thomas
was that any irreducible cyclic presentation of the triv-
ial group could be a possible counterexample to the
well-known Andrews-Curtis conjecture (see [Burns and
Macedońska 93] for a good group-theoretic survey of this
and see [Miasnikov 99], [Havas and Ramsay 03a], and
[Havas and Ramsay 03b] for computational approaches).
Edjvet, Hammond, and Thomas conducted a computer
search and as a result found the following examples of
irreducible cyclic presentations of the trivial group:

G4(x2x1x0x
−1
1 x−1

0 ) fw(t) = t2

G4(x2x
−1
1 x−1

3 x1x3) fw(t) = t2

G4(x3x2x1x
−1
0 x−1

1 x−1
2 x0) fw(t) = t3

G4(x3x
−1
0 x1x2x

−1
1 x−1

2 x0) fw(t) = t3

G4(x3x2x1x
−1
0 x−1

1 x0x
−1
2 ) fw(t) = t3

G4(x3x
−1
0 x1x2x

−1
1 x0x

−1
2 ) fw(t) = t3

G5(x−1
0 x−1

1 x3x2x1) fw(t) = −1 + t2 + t3

G5(x−1
0 x2x

−1
3 x0x4) fw(t) = t2 − t3 + t4

G5(x−1
0 x2x

−1
1 x3x1) fw(t) = −1 + t2 + t3

G5(x−1
0 x−1

2 x0x3x1) fw(t) = t − t2 + t3.

Dunwoody ([Johnson 76, page 191], [Dunwoody 95])
conjectured that if Gn(w) is trivial then fw(t) = ±ti. If
n = 2, 3, 4, or 6, then the only units in Z[t]/(tn − 1) are
cosets containing elements of the form ±ti. It follows that
the conjecture is true for these values of n. Edjvet, Ham-
mond, and Thomas, however, showed that the conjecture
is false for n = 5, but their investigation led them to pose
Questions 1.1 and 1.2 above. This already answered the
query in [Dunwoody 95] as to whether “there are any
non-trivial cyclic presentations of the trivial group for
n > 3.”

We assert the following theorems which comprehen-
sively answer the questions of Dunwoody and of Edjvet,
Hammond, and Thomas.

Theorem 1.3. For each n ≥ 2 there exist infinitely many
irreducible cyclic presentations of the trivial group with
n generators.

Theorem 1.4. For each n ≥ 2 there exist infinitely many
irreducible cyclic presentations Gn(w) of the trivial group
with n generators and fw(t) = ±ti.

Theorem 1.5. For each n = 5k there exist infinitely many
irreducible cyclic presentations Gn(w) of the trivial group
with n generators and fw(t) �= ±ti.

The proofs of these theorems are simple corollaries of
our constructions in the next section.

2. FAMILIES OF IRREDUCIBLE PRESENTATIONS

Theorem 2.1. Each of the balanced presentations derived
from the following word w on km generators (where k > 1
and m ≥ 1) is irreducible and defines the trivial group:

w = x−1
1 (x0xmx2m . . . x(k−1)m)−1xmx2m . . . x(k−1)mx0.

Proof:

x0 = (xkm−1xm−1x2m−1 . . . x(k−1)m−1)−1

× xm−1x2m−1 . . . x(k−1)m−1xkm−1;

xm = (xm−1x2m−1 . . . x(k−1)m−1xkm−1)−1

× x2m−1 . . . x(k−1)m−1xkm−1xm−1;
...

x(k−1)m = (x(k−1)m−1xkm−1xm−1 . . . x(k−2)m−1)−1

× xkm−1xm−1x2m−1 . . . x(k−1)m−1.

Thus, x0xmx2m . . . x(k−1)m = ε and likewise
(xmx2m . . . x(k−1)mx0)−1 = ε. So x1 = ε and the group
is trivial.

It is easy to see that this can be proved using Andrews-
Curtis moves.

For k = 1, these presentations are the uninteresting m-
generator trivial presentations. For all other k, these are
irreducible cyclic presentations (mainly new). They all
have as cyclic associated polynomial fw(t) = ±ti. This
theorem leads to other constructions of irreducible cyclic
presentations. We merely present two corollaries.

Corollary 2.2. Let v = Πk−1
i=0 xim and let u = (vθm)−1.

Then each of the balanced presentations derived from the
word w = x−1

s u±1v∓1 on km generators (where k > 1,
m ≥ 1 and gcd(s,m) = 1) is irreducible and defines the
trivial group. In a similar way we can replace v by Πvj

for vj = vθij .

What this means is you can take any standard v from
the basic theorem and apply a power of the automor-
phism to it. Furthermore, you can multiply any v’s ob-
tained this way (constructing suitable u’s). The simplest
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example comes from raising a given v to any nonzero
power q, thus: w = x−1

s u±qv∓q. A more complicated ex-
ample on four generators is:

w = x−1
1 (x0x1x2x3)−1(x3x0x1x2)−2(x0x1x2x3)−1

× (x1x2x3x0)(x0x1x2x3)2(x1x2x3x0).

Before giving our next corollary, we define the compo-
sition of two cyclic presentations. This is based on a con-
struction in [Neumann 79] (see also [Havas and Ramsay
00]) for one particular cyclic presentation of the trivial
group.

Consider the groups Gn(w1) and Gn(w2). Define their
composition Gn(w1 ∗ w2) to be the cyclically presented
group where w1 ∗ w2 is obtained by replacing the gener-
ator i in w1 with the relator i of Gn(w2). Notice that
if Gn(w1) and Gn(w2) are trivial, then Gn(w1 ∗ w2) is
trivial with fw1∗w2(t) = fw1(t)fw2(t) mod (tn − 1).

For example, to take the composition of

G3(w) =〈x0, x1, x2 | x−1
1 (x0x1x2)−1(x1x2x0),

x−1
2 (x1x2x0)−1(x2x0x1),

x−1
0 (x2x0x1)−1(x0x1x2)〉

with itself, form G3(w ∗ w) where w ∗ w is obtained by
substituting

x1 = a−1
1 (a0a1a2)−1(a1a2a0),

x2 = a−1
2 (a1a2a0)−1(a2a0a1),

x0 = a−1
0 (a2a0a1)−1(a0a1a2)

into w. (That G3(w) is the trivial group is a consequence
of Theorem 2.1.)

We can now give a second corollary.

Corollary 2.3. The composition of cyclic presentations
of trivial groups gives new cyclic presentations of trivial
groups. If at least one of the components is irreducible,
the composition is irreducible.

We now comment on the proofs of Theorems 1.3–1.5
and some consequences.

Theorem 1.3 follows from Corollary 2.2 above. Fur-
ther infinite collections of irreducible cyclic presentations
of the trivial group on n generators can be constructed
by applying the composition construction. The examples
produced by Corollary 2.2, and also presentations from
application of the composition construction to those ex-
amples, all have polynomial ±ti, so Theorem 1.4 follows.

One family of positive answers to Question 1.2 (of
Edjvet, Hammond, and Thomas) comes from choosing

n = 5 in our Theorem 1.4. Alternatively, we note that it
can also be answered by applying the composition con-
struction to the first two groups G5(x−1

0 x−1
1 x3x2x1) and

G5(x−1
0 x2x

−1
3 x0x4) in their list, since (−1 + t2 + t3)(t2 −

t3 + t4) ≡ t3 mod (t5 − 1).
Theorem 1.5 follows by noting that we can take

G5(x−1
0 x−1

1 x3x2x1) with polynomial fw(t) = −1+ t2 + t3

and construct from it G5k(x−1
0 x−1

k x3kx2kxk). This group
has polynomial fw(t) = −1+t2k +t3k and is reducible for
k > 1. Taking the composition of this group with a 5k-
generator group given by the construction of Theorem 2.1
gives an example of a 5k-generator irreducible cyclically
presented group with polynomial �= ±ti. Repeated com-
position yields an infinite number of such groups.

As far as the Andrews-Curtis conjecture is concerned,
our constructions will not produce counterexamples. The
presentations constructed in Theorem 2.1 satisfy the con-
jecture. Furthermore, applying composition to two pre-
sentations which satisfy the conjecture leads to a pre-
sentation satisfying the conjecture; Miasnikov [Miasnikov
99, Section 6] proves this.

3. DERIVATION OF OUR CONSTRUCTION

Edjvet, Hammond, and Thomas chose to do a computer
search for suitable presentations of the split extension
Hn(w) of Gn(w) by the cyclic group of order n, which
has a presentation

Hn(w) = 〈x, t | tn, w(x, t)〉.

The size of the search space is exponential in the length
of w(x, t), and they restricted themselves to lengths up
to 15.

We observed that by looking at the groups Gn(w)
themselves we could investigate alternative search spaces,
this time with sizes exponential in the length of w. Note
that the length of w is significantly less than the length
of w(x, t), which makes our search space more tractable.

Thus, we wrote a program in GAP [GAP4 03] which
enumerated inequivalent words w. Our definition of
equivalence was designed to eliminate words that gener-
ated groups easily determined to have presentations that
could be transformed into presentations otherwise con-
sidered. For each such word w, we first tested whether
the corresponding group Gn(w) was perfect—a very fast
test that eliminated most words from further study. For
perfect groups Gn(w), we tried to determine the group
order using coset enumeration. Since at least some of the
enumerations figured to be difficult, we used the ACE
package [Havas et al. 03] in GAP.
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Since nothing was known for six generators, we started
by considering words w of odd length for six generators.
Our very first run on presentations of length five pro-
duced a collection of presentations for the trivial group,
some of which were reducible, but also some irreducible
ones, including equivalents of w = x−1

1 (x0x3)−1x3x0.

From this one example, which is an instance of Theo-
rem 2.1, we were able to deduce the pattern which led to
that theorem.

The reason that Edjvet, Hammond, and Thomas did
not find this presentation is that it was outside their
search space. The length of w(x, t) is 17, the first possi-
ble length outside of their range; however, the length of
w is only five, comfortably within our range.

Subsequently, we found other instances of Theorem 2.1
for various numbers of generators and lengths. We have
not found any other new presentations of interest. We
did produce equivalents of the presentations found by
Edjvet, Hammond, and Thomas and we also found vari-
ous reducible presentations. Note that the four-generator
presentations produced by them are instances of our The-
orem 2.1 or Corollary 2.2; however, their five-generator
presentations are different.
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