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Let v be a Jordan curve in 82, considered as the ideal boundary
of H3. Under certain circumstances, it is known that for any

€ (—1,1), there is a disc of constant mean curvature ¢ embed-
ded in H? with v as its ideal boundary. Using analysis and nu-
merical experiments, we examine whether or not these surfaces
in fact foliate H?, and to what extent the known conditions on
the curve can be relaxed.

1. INTRODUCTION AND BACKGROUND

In the paper [Guan and Spruck 00], Guan and Spruck
consider surfaces of constant mean curvature (cmc) in
H?. They show that certain curves in the ideal bound-
ary S2_ of H? are spanned by embedded cmc discs for
a range of mean curvature values. This article examines
whether or not the surfaces obtained by Guan-Spruck ac-
tually constitute a foliation of H?. This is done by some-
what different methods than those employed in [Guan
and Spruck 00], and while an analytical proof is still in-
complete, the evidence is that

1. the surfaces of [Guan and Spruck 00] foliate H?,

2. a significantly wider class of curves admit such a
foliation, and

3. these foliations can be obtained as the steady-state
solution of a nonlinear degenerate parabolic flow.

To be more precise, let v denote a Jordan curve in
the complex plane, C. We think of the extended plane,
C, as the ideal boundary sphere S2_ of H? with a des-
ignated point (00). Guan and Spruck [Guan and Spruck
00] consider the case where ~ is smooth and star-shaped.
In particular, letting 0 € C be the center of the interior
star-shaped region determined by <, they demand that
v be a radial graph and that the tangent to v never be
radial. They show that for any H € (—1,1), there is a
cmc disc of mean curvature H spanning 7.

© A K Peters, Ltd.

1058-6458/2003 $0.50 per page
Experimental Mathematics 12:3, page 339



340  Experimental Mathematics, Vol. 12 (2003), No. 3

The technique of Guan-Spruck was to look at the
constant mean curvature graph equation in special co-
ordinates dictated by the hypothesis of star-shapedness.
They coordinatize H? by D x R, where the discs are the
rotationally symmetric geodesic planes separating 0 and
0o, and the lines are always orthogonal to these planes.
For any H € (—1,1), they show existence and uniqueness
of solutions within the family of graphs. (N.B. More re-
cently the existence and uniqueness of a prescribed mean
curvature graph has been established in this setting if
there is some € > 0 such that |H| < 1 — € [Nitsche 01].)

In this setting, for distinct values of H, an applica-
tion of the maximum principle tells us that the discs are
nonintersecting. One naturally imagines that the fam-
ily of surfaces arising as H takes on all different values,
actually foliates H®. The only difficulty might be gaps
between leaves.

We have numerically and graphically examined the
level sets for various star-shaped curves. Evidence sup-
ports intuition here: We see no gap between surfaces, and
it appears that we do indeed have a foliation. We have
extended this investigation to more complicated curves
and see similar phenomena—foliations by constant mean
curvature surfaces sharing an ideal boundary.

If + is taken to be a more general oriented Jordan
curve in S2_, it is reasonable to ask whether or not it is
the ideal boundary of an embedded cmec disc in H3. Let
S2 \v =0, UQ_, where Q is the interior of v with the
given orientation, and Q_ is the exterior. In [Velling 99],
the second author shows that one may properly consider
Q4 as simply connected discs of constant mean curvature
+1. And for the case where v is a Euclidian circle in
S2 , one sees that the spherical caps spanning v have
mean curvature between —1 and 1. Thus, we consider it
reasonable to ask for cme discs in H? only when —1 <
H <1

Our method is to consider a degenerate elliptic PDE,
the solution to which, at least where the gradient is non-
vanishing, has level sets of constant mean curvature. To
study solutions to this PDE, we consider a flow arising
from the corresponding degenerate parabolic PDE, for
which the steady state is a solution to our degenerate
elliptic equation.

The key to obtaining a foliation is to produce an ap-
propriate function on H? whose gradient is never vanish-
ing. Its level sets then, for topological reasons, form a
foliating family of discs.

It is worth noting that the curves we have examined
are fairly simple, being for the most part quite symmet-
ric. We have tried more complicated curves, but run into

limitations imposed by time and computational feasibil-
ity. Thus we have opted, in the nonstar-shaped case, for
curves approximating annuli or exhibiting some spiraling.

2. MEAN CURVATURE OF LEVEL SETS

Here we derive by rather straightforward computation
the expression for the mean curvature of the level set of
a regular function on a Riemannian manifold furnished
with a conformally flat metric. In particular, let M de-
note such a manifold of dimension n + 1, with metric

ds* = p*(da} + dx} + -+ - + d2?).

We use VF and AF for the Euclidean gradient and
Laplacian of F. On M, the connection is given by

P~ (2p:0; — 32 pj0))

p~H(p;0; + pid;).

Vo, 0; =

(i #J)
Thus, if we have a function F' : M — R which is regu-
lar in a neighborhood of a point p € M with F(p) = cand
Fy(p) # 0, we derive an expression for the trace of the

second fundamental form of the level set of F' through p.
The unit normal v to the level set F' = ¢ at p is

,_ _VF
pIVE|’

Vo d; =

and the tangent space to the level set is spanned by the
n vectors

X; = —F;09 + Fy0;.

The metric on the level set is thus given by the n x n

matrix
F§+F12 Fi Fs F\ F3 F\F,
F\F, FO2 + F22 FyE5 K,
p2 . . .
F\F, 3+ F}

The determinant of this matrix is p>" F2""Y|VF|2, and
the inverse of the matrix is

1
PRINE]
F02+Ek;éo,1 Flc2 —F1 P —-F,
—-F\F, S+ 0. Fi - —-FR”F,
~F\F, F§ + Y hz0m i
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We also compute the connection on the tangent space
to the level set:

Vx, Xi V(—Fi80+Fo0;) (—FiOo + Fy0;)

(F3Fo; — FoFy;)00 + (FoFo; —

F;Fy0)0;
1

+;[(2Fi2po — FoFip;)0o

+(2F3 pi

—(F§ + F?) Y piok]
0

— FyFipo)0;

(i #j)

Vx,X; = (FiFoj — FoF;5)00 + (FoFo; — F;Fpo)0;

1
+;[(2FiFjPO — FyFipj — FoFjp;)0o
+(F5pj —

+(Epi —

F()Fjpo)ai

n
F()Fipo)aj - FZF] Z pkak].
0

From this, we see that the second fundamental form is
given as follows:

—(v,Vx, X;) = ﬁ[ﬂ%ﬂz — 2FyFi Fy,
+F2Fo + (F§ + F2) Y %
0
(i # 4)
-, Vx, X;) = |VF| ——[FgF;; — FyF;Fy; — FoFj Fy;

n
-l—FZ'FjFOO + FZFJ Z %Fk]
0

The mean curvature, H, is thus determined by nH
being the trace of the inverse of the level set metric times
the level set connection. This simplifies to

1

H=—
! pIVF|3[

IVF2AF + n|VF|2%ka — F,FjFy).

Special Case: In the case when M = H"*! with an upper
half-space model, so that its metric is

dad +dx} + - + dz?

2 b)
Lo

and so that p = -—, we have

nH =

IVF|3 IVF2AF — —|VF|2F0 — FiF;F;

3. THE PDE AND THE FLOW
3.1 The PDE

To obtain a foliation of H? by constant mean curvature
surfaces, we will try to obtain a regular function F :
H? — R with level sets yielding the desired surfaces.
Thus, using an upper half-space model with coordinates
(z0,%1,%2), we have the metric

da? + do? + dal

z3 '

As determined above, if F' is sufficiently smooth and p €
H? is regular, then the mean curvature of the level set
through p is

L 29| VFPAF — a0 FiF; Fy = 25| VE?.

=3 NaE

Thus, if A: R — R and F : H®> — R satisfying

1$0|VF|2AF — moFijFiFj —
2 |VF)?

2F|VE|?

~ A(F) =0,

where the expression A(F') is constant where F' is con-
stant, then the level sets of F' have constant mean cur-
vature. In particular, letting A be the identity function,
if p € H? is a regular point of F' and F satisfies

1 $0|VF|2AF - IoFZ‘jFZ‘Fj —
2 |VF|?

2F|VE|?

—F=0,(31)

then the mean curvature of the level set of F' through p
is precisely F'(p).

Our goal will be to find a function F : H? —
satisfying

1. F e C*(H?),

(_171)

2. F(x) = 1(-1) as x = Q4 (Q-) radially,
3. F is everywhere regular in H?, and
4. F satisfies the degenerate elliptic PDE (3-1) above.

We call this our Boundary Value Problem (BVP). Condi-
tions 3 and 4 tell us that, at least locally, the level sets of
F' determine a foliation by cmc surfaces. To deduce that
this foliation extends globally, we inject the topological
conditions mentioned in Section 1.

3.2 Topological Considerations
To put this to work, we need a couple of observations.
Suppose that F : H®> — (—1,1) is a solution to the

BVP. Then the gradient field is integrable, and the inte-
gral curves may all be parameterized to start at Q_ U~y
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and end at Q4 U~. The following lemmas indicate why
the level sets of F' are discs and foliate H?. The proofs
follow the fourth lemma.

Lemma 3.1. Fach value t € (—1,1) is achieved.

Lemma 3.2. For any t € (—1,1), F~1(t) has one path
component.

Lemma 3.3. If {x,}22, is a sequence in F~1(t) for some
t € (=1,1), all of its accumulation points are either in
F=L(t) or in v. If the sequence leaves compact sets of
F~1(t), then all accumulation points are in ~y. All points
of gamma can be so accessed.

Lemma 3.4. All of the level sets of F' are topological discs.

Proof of Lemmas 3.1-3.4: For any continuous path orig-
inating in and orthogonal to Q_ and terminating in and
orthogonal to Q4 , the intermediate value theorem gives
us that each t € (—1,1) is assumed by F somewhere
along the path.

Now suppose that for some ¢ € (—1,1) there was more
than one component to F~1(t). Take any path in H?
starting on one path component, terminating on another,
and transverse to F. (By standard position arguments
this is always possible.) Then F' assumes either a max-
imum or minimum, distinct from ¢, along this path. At
such a point, DF' vanishes.

For t € (—1,1), let {x,}°2, be a sequence in F~1(¢).
If this sequence has an accumulation point x € H?, then
F(x) = t. Any other accumulation point must be in S2 .
Condition 2 of BVP implies that such an accumulation
point can be in neither Q_ nor in Q4. Hence, any accu-
mulation point x ¢ H? must be in 7.

To see that all x € « are accessed as limits of some
sequence in F~1(¢), let {#+}5°, and {0}, be two
sequences of points in 24 and 2_, respectively, with x as
their limits. Let C,, be the hyperbolic geodesics from 6,;
to 6. Any sequence of points {x,} € {C,} necessarily
limits on x. We may take x, to be a point along C,
where F(x,) = t.

Finally, suppose that some level set of F is not a topo-
logical disc. Let C be a nontrivial simple closed curve in
F~1(t). Span C by a disc D. We may assume by standard
position theory that D is transverse to F. We obtain a
contradiction by noting that at an extremum of F, inte-
rior to D with value # ¢, we have DF = 0. 0

We deduce that the ability to solve the BVP gives us
F with level sets forming a foliation of H? by constant
mean curvature surfaces.

For the record, one may readily see that this is
the Euler-Lagrange equation for the energy functional

Jizs 1 Dul + %uz.

3.3 The Flow
To exhibit a solution to (3-1), we will consider the
parabolic flow given by the equation

_ 12o|VFPPAF — xoFy FiFy — 2F|VF]?
2 |VF)?

F, F.(3-2)

We seek a steady state solution F': R>o x H®> — R to
this PDE subject to the conditions that F' be nonsingular
in space and that it extends continuously to S% \ v =
0, UQ_ with Flg, =1and Flo_ = —-1.

For an appropriate choice of initial data, the above
scheme seems to converge nicely to a steady state so-
While the initial data may be chosen to have
singularities, the flow seems to rectify the singularities.
Thus, the putative steady-state solution appears to have
no singularities of derivative and thus has level sets foli-
ating H3.

lution.

3.4 Initial Data

Our initial data for the flow described above will be a
smooth function F(0,X) : H> — (—1,1) which extends
continuously to 1 on Q4 and —1 on Q_. Since the spaces
H? US2 \ v and D? x [—1,1], where D? represents the
open unit two-dimensional disc, are diffeomorphic, there
always exists such a regular function. The difficulty is in
presenting such. Thus, we opt instead for an easily pre-
sented choice of F(0, X) which may have singular points.
In particular, assuming v has measure 0, we consider the
harmonic extension to H? of the function which is 1 on
Q4 and —1on Q_.

The harmonic measure on H? of a set Q C S, as
seen from X = (xg,x1,%2) in an upper half-space model
is

ha(X) =

1 o 2
— . dai das. (3-3
77/9 (x%+(a1—m1)2+(a2—x2)2) a day. (3-3)

This is harmonic on H3. If  is not of null measure, then
hgq is everywhere > 0, and if (ay,as) is in the interior of
Q, then hq(X) — 1 as X — (a1,as), while if (a1, az) is
in the interior of the complement of Q, then ho(X) — 0
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as X — (a1,a2). We will take as our initial data the
function

F(0,X) = 2hq, — 1. (3-4)

4. LIMITATIONS

Not all Jordan curves v C S2, can be expected to sup-
port a foliation by cmc discs. In fact, Brian White has
argued [White 92] that in R?, for a Jordan curve + on
a convex body (an extreme curve), the curve is either
spanned by a unique, stable, minimal disc or else the col-
lection of all minimal surfaces spanning -y is contained in
a region (within the convex body) bounded by minimal
discs spanning . In the former case, we say that 7y is sta-
ble. White’s theorem holds in hyperbolic space as well,
and one may pass to Jordan curves at infinity [Velling
and White 02].

Now if smooth v C S%_ is not stable (there exist such),
consider the upper and lower minimal discs of the region
furnished by White. Call them ¥; and ¥,. They are
asymptotic at infinity as they are contained in the con-
vex hull of 7. In particular, let x € H? be arbitrary, and
consider the distance between ¥; and ¥, in the comple-
ment of B,(x). This — 0 as r — oco.

If there is a foliation of H? by cmc discs spanning -,
then at least one of ¥; and ¥, will not be contained in
the foliation. Assume without loss of generality that X,
is not a leaf of the foliation. Letting ¥y be the minimal
disc in the foliation, ¥, lies strictly on one side of X.
Again, without loss of generality, assume that 3, lies
in the component of H? \ ¥, foliated by ¥; (¢ < 0). By
compactness, there is a least ¢ for which ¥,NX; # (0. For
this to, ¥, and X, are tangent, with ¥, lying between
Yo and ¥4,. This contradicts the maximum principle.

A consequence of the Guan-Spruck result is that all
radial graphs in S%  are stable. We therefore restrict our
attention to stable curves at infinity.

5. THE NUMERICAL METHOD

We have chosen the level set method [Osher and Sethian
88] to compute the flow. The level set method has been
successfully used for many calculations related to geom-
etry and curvature flow, for example [Chopp 93, Chopp
and Sethian 93, Chopp 94, Angenent et al. 95, Chopp
et al. 99]. The level set method is normally associated
with the flow of a single interface usually represented by
the zero level set; however, in [Chopp 94], the level set
method was also used to compute a continuum of inter-
face flows simultaneously.

Each leaf in the foliation will be represented by an
isocontour of the function F. Translating (3-2) into a
level set method formulation, the speed ® of the leaf is
given by the right-hand side of (3-2):

_ 1$0|VF|2AF — moFijFiFj - 2F0|VF|Z _

P
2 |VF)?

F. (5-1)

Inserting (5-1) into the level set method formulation
gives an evolution equation for F' given by

F, = ®|VF|. (5-2)

Note that the steady state solutions of (5-2) are the same
as for (3-2), while the level set formulation offers a little
more stability in the numerical calculations.

The discretization of (5-2) is done using straightfor-
ward central difference approximations throughout as in
[Chopp and Sethian 93]. The function F' is initialized
by numerically evaluating (3-3). The grid points lo-
cated at (0,1, z2) are computed to be =1, and are left
fixed throughout the computation. However, this dis-
crete data on the boundary zo = 0 leads to some grid
dependency of the curve . While this can be improved
with greater mesh refinement, it cannot be completely
removed without resorting to a conforming unstructured
mesh and greater computational complexity. Nonethe-
less, we found that a regular mesh, and allowing for some
slight perturbations in 7, would still produce good ap-
proximations for the equilibrium solutions for which we
are searching. In order to resolve the large gradients in
F for small zy near 7, we used a more resolved mesh in
the 21 and 2 dimensions than in the z¢ dimension.

We used this code to study many boundary curves;
a few examples of the calculations are presented in Sec-
tion 6.

6. EXAMPLES
6.1 The Star-Shaped Case

In the case where 2, is a star-shaped plane domain, we

present what we consider to be strong evidence that an

everywhere regular solution of (3-2) exists as a limit of

the flow, starting from our harmonic initial conditions.
First we note the following.

Observation 6.1. When € is star-shaped, the harmonic
initial data is an everywhere regular function.

(When Q4 is star-shaped about 0, the derivative
at (xo,r1,7z2) in the upper half-space in direction
(zo,21,%2) is not zero.)
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Level = -0.80 Level = -0.60 Level = -0.40
Level = -0.20 Level = 0.0 Level = 0.20
Level = 0.40 Level = 0.60 Level = 0.80

FIGURE 1. Various level sets of equilibrium solution F' for 7 a square.
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)
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Level = -0.80 Level = -0.60 Level = -0.40

d
D

R
Level = -0.20 Level = 0.0 Level = 0.20
Level = 0.40 Level = 0.60 Level = 0.80

FIGURE 2. Various level sets of equilibrium solution F for v a hexagon.
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Level = -0.40

Level = -0.80

Level = -0.20

Level = 0.40

Level = -0.60

D

Level = 0.0

D

Level = 0.60

~

Level = 0.20
Level = 0.80

FIGURE 3. Various level sets of equilibrium solution F for v in (6-1).

I

Level = 0.2000

Level = 0.3500

O

Level = 0.4000

FIGURE 4. Different level surfaces for the initial data of a notched annulus.

We present here several examples for star-shaped
curves 7. First, we show the case where v is convex—a
square and a hexagon. Figure 1 shows the equilibrium so-
lution for when 7 is a square; Figure 2 shows the solution
for the case when 7 is a hexagon.

Next, a nonconvex, star-shaped curve v was used as
an example. Here, v is written in (r, 8) polar coordinates
as

y = (1 + %cos(40),0> . (6-1)

The equilibrium solution for this curve is shown in
Figure 3.

6.2 The Nonstar-Shaped Case

Note that the above level sets all consist of a foliation
of discs from the initial data until equilibrium. In the
following example, we consider the case where the initial
data does not consist of a family of discs, rather where,
at least initially, not all spanning surfaces have the same
topology. In this case, we considered an annulus with a
notch taken out.

We note that if the notch is sufficiently narrow, no
Mobius transformation of such a region will be star-
shaped. Hence, we have a fairly simple example where
no isometry of H? will reduce our analysis to the above
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(a) (b) ()

Level = 0.404 Level = 0.404 Level = 0.404
(d) (e) (f)
Level = 0.404 Level = 0.404 Level = 0.404

FIGURE 5. Change in topology of prescribed level for a notched annulus. Time steps are (a) t=0, (b) t=0.05, (c) t=0.1,
(d) t=0.15, (e) t=0.2, (f) t=0.5.

OO

Level = -0.800 Level = -0.300 Level = 0.200
Level = 0.300 Level = 0.350 Level = 0.390
Ve ,

Level = 0.400 Level = 0.600 Level = 0.900

FIGURE 6. Various leafs of the equilibrium F for a notched annulus.
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Notched Annulus

Min Norm Grad

L L 1
0 2000 4000 6000

1 L 1 1
8000 10000 12000 14000 16000

time step

FIGURE 7. Plot of min |V F| versus time for notched annulus (0.55).

(a) Level = 0.3185

(b) Level = 0.3190

(c) Level = 0.3185

(d) Level = 0.3190

FIGURE 8. Cutaway view of resolving topology: (a) t = 1.4, leaf 0.3185, (b) t = 1.4, leaf 0.319, (c) ¢t = 1.5, leaf 0.3185,

(d) t = 1.5, leaf 0.319.

situation. Furthermore, when the notch is sufficiently
narrow, our initial data is such that the topology of level
sets changes as one progresses from —1 to 1. Figure 4
illustrates the different topological type level surfaces.
Of particular interest is the resolution of topology.
The initial conditions include level sets which are not
of disc type, and the evolution resolves this, yielding a
steady-state foliation in which all level sets are discs. To
illustrate this, we show the evolution of a critical leaf in

the foliation for the notched annulus in Figure 5. Ini-
tially, this surface has genus 1, but the hole is filled in
the course of the evolution. (We call this “resolution of
topology.”) The final equilibrium foliation is illustrated
in Figure 6.

One important question to be studied from this ex-
ample is the behavior of [VF| > 0 during the evolution.
On this point, the numerical evidence suggests that |V F|
has zeroes while the topology is being resolved, but once
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-9 I 1 1 I

0 0.2 0.4 0.6 0.8

1.2 1.4 1.6 1.8 2

FIGURE 9. Plot of min |V F| versus time for notched annulus (0.4).

(a) Level = -0.2000

el

(a) Level = 0.3000

ki

(b) Level = 0.000

(b) Level = 0.8000

FIGURE 10. Views of final Peano curve solution: (a) leaf —0.2, (b) leaf 0, (c) leaf 0.3, (d) leaf 0.8.

the topology is resolved, |V F| begins to increase rapidly.
A plot of min|VF| for the notched annulus is shown
in Figure 7 where the minimum is taken over the set
{(z,y,2) : /22 +y?> < R,z > €}.

If the notch is made smaller, the time required to re-
solve the topology gets longer. The notched annulus in

Figures 5-7 had a notch width of 0.55, and the topology
was resolved around ¢ = 0.15. If the notch is reduced
to 0.4, the topology was not resolved until £ = 1.55, an
increase by a factor of ten. Narrowing the notch further
renders the calculation computationally too expensive.
A cutaway view of the surface as it finally resolves the
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Y

(a) Level = 0.3000

9

(b) Level = 0.3100

(c) Level = 0.3200

O

(d) Level = 0.3800

©

Level = 0.3000

<

Level = 0.3100

Level = 0.3200

O

Level = 0.3800

FIGURE 11. Views of final spiral curve solution: (a) leaf 0.3, (b) leaf 0.31, (c) leaf 0.32, (d) leaf 0.38.

topology is shown in Figure 8. Again, min |V F| becomes
very small until the topology is resolved, at which point
it begins to climb monotonically (Figure 9).

Other nonstar-shaped examples are shown in Fig-
ures 10 and 11. In Figure 10, v is a simple Peano curve.
In this case, the initial data is a foliation by disks, and
no topology change takes place during the evolution.

In Figure 11, v is the boundary of a thin spiral. In this
case, the initial data has a similar topological structure
to the notched annulus case. The evolution resolves this
topology so that the final solution is again a foliation by
cmc disks.

7. CONCLUSION

We have provided numerical evidence that H? can be fo-
liated by cmc discs that share the common Jordan curve
boundary v in S%2. The assumption that the region Q,
bounded by 7 be star-shaped, as in [Guan and Spruck
00], is likely not necessary.

We illustrated this exam-
ple of a notched curve vy  which
cannot be made star-shaped by any Mobius trans-
formation of S2 , yet a cmc foliation by discs is still
observed.

claim with an

annulus
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The foliation is computed through a level set evolu-
tion equation with initial data that closely resembles the
desired foliation by cmc discs. However, the initial data
need not be a foliation by discs. During the evolution,
some topology changes may occur which transform all
leaves into discs as it converges to the final foliation.

The numerical techniques employed for the simula-
tions used the level set method, a well-established nu-
merical method for tracking moving interfaces. It has
been widely used for applications in computational dif-
ferential geometry with success.

While the results presented here do not prove our more
general belief that cmc discs sharing an ideal boundary
curve v foliate H? for stable v, the numerical evidence
supports it.
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