
Noncollision Singularities: Do Four Bodies Suffice?
Joseph L. Gerver

CONTENTS

1. Introduction
2. The Model
3. Transfer of Angular Momentum
4. Transfer of Energy
5. What Can Go Wrong
References

2000 AMS Subject Classification: Primary 70F10;
Secondary 70F15, 70F16

Keywords: Noncollision singularities, four-body problem,
n-body problem

A heuristic model is presented for a solution of the planar New-
tonian four-body problem which has a noncollision singularity.

1. INTRODUCTION

Consider a system of n point bodies, Q1, . . . , Qn, in R
2

or R3 with Newtonian gravitational potential. Let mi,

ri(t), and vi(t) be the mass, position, and velocity, re-

spectively, of body i (1 ≤ i ≤ n) at time t, and let G be

the gravitational constant. The potential energy of the

system is −U , where

U =
i<j

Gmimj

|ri − rj | , (1—1)

and the equation of motion, for each i, is

mir
II
i (t) = ∇iU, (1—2)

where ∇iU is the gradient of U considered as a function
of ri alone, with the positions of the other bodies fixed.

If for some time t∗, limt→t∗ ri(t) and limt→t∗ vi(t) ex-
ist, and limt→t∗ |ri(t) − rj(t)| W= 0, for all i and j, then

a solution can be extended to an interval around t∗. If
not, then t∗ is a singularity. If

lim
t→t∗ ri(t) = lim

t→t∗ rj(t), (1—3)

then we say that there is a collision between bodies i

and j at t = t∗. Can there be a singularity without a
collision? For example, Poincaré suggested, ri(t) might

tend to infinity, or oscillate wildly (like sin 1
t ) as t→ t∗.

Although Poincaré never wrote anything about non-

collision singularities, Painlèvé gave him credit for be-

ing the first to ask this question. Painlèvé himself was

able to prove in 1897 that in a three-body system, every

singularity is a collision [Painlevé 97]. Whether noncol-

lision singularities exist for larger systems remained an

open question for almost one hundred years. Von Zeipel

showed in 1908 that the diameter of any system having

such a singularity would have to grow infinitely large [Von
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FIGURE 1.

Zeipel 08, McGehee 84], while Saari showed in 1972 that

the bodies would also have to oscillate wildly [Saari 72].

A few years later, Saari proved that in a four-body sys-

tem, noncollision singularities are unlikely, in the sense

that the set of initial conditions leading to these singu-

larities has measure zero [Saari 77]. It is still an open

question whether this set has measure zero when there

are five or more bodies. Meanwhile, in 1974, Mather

and McGehee showed that if the solution is allowed to

be continued through an infinite number of binary colli-

sions, then there exist noncollision singularities with four

bodies on the line [Mather and McGhee 75]. Finally, in

1988, Xia found an example of a true noncollision sin-

gularity, with no binary collisions, involving five bodies

in three-dimensional space [Xia 92], and soon afterwards,

Gerver found an example in the plane, involving a large,

but finite, number of bodies [Gerver 91].

It is still not known whether there exist true non-

collision singularities with four bodies, even in three-

dimensional space, nor is it known how many bodies are

required in the plane. In this paper, we suggest an answer

to both questions by presenting a model for a noncollision

singularity with four bodies in the plane. There are, of

course, many gaps that must be filled in before this model

becomes a proof of the existence of such singularities.

2. THE MODEL

As above, we let Q1, Q2, Q3, and Q4 be point masses

in the plane, with Newtonian potential. We take the

gravitational constant to be µ << 1, and we let m1 =

m2 = µ
−1 and m3 = m4 = 1.

Initially, Q3 is in an elliptical orbit about Q2. The

distance between Q1 and Q2 is much greater than the

semimajor axis of the orbit of Q3. Q1 and Q2 are moving

away from each other much more slowly (by a factor on

the order of µ) than the orbital velocity of Q3, while Q4
moves back and forth between Q1 and the orbiting pair

(Figure 1). The total energy and angular momentum of

the system are both zero.

Each time Q4 encounters the orbiting pair, it extracts

either energy or angular momentum. It alternates be-

tween extracting energy and angular momentum at suc-

cessive encounters, and whenever it extracts one, it leaves

the other essentially unchanged. When it extracts energy,

at every second encounter, Q4 increases its own velocity

by a sizable fraction. The distance between Q1 and Q2
also increases from one energy extracting encounter to

the next, but only by a factor of 1 + O(µ). Thus, the

time between successive energy extracting encounters de-

creases in geometric progression. After a finite time, Q4
will have traveled back and forth between Q1 and Q2 an

infinite number of times, and Q1 and Q2 will have moved

an infinite distance apart. At the same time, the orbit of

Q3 will have shrunk to zero, but there is no collision be-

tween Q2 and Q3, because both bodies escape to infinity.

Because m3 = m4, it is also possible to arrange things

so that at each encounter, Q3 and Q4 switch places. The

energy and angular momentum of the body orbiting Q2
still decrease in the same manner as before, but the iden-

tity of that body keeps alternating between Q3 and Q4.

Thus, the lim sup of |ri − rj | is infinity for every i W= j,
although the lim inf is zero, unless {i, j} = {1, 2}. In all
previous examples of noncollision singularities (McGehee

and Mather, Xia, and Gerver), lim |ri(t) − rj(t)| = 0

for some {i, j} as t approaches the singularity. In what
follows, we shall assume that the body orbiting Q2 is al-

ways Q3, and the body moving back and forth between

Q1 and Q2 is always Q4. But almost everything we say

also applies when Q3 and Q4 keep switching places.

Because Q3 is in an elliptical orbit, its energy is neg-

ative. The kinetic energy of Q1 and Q2 are neglible (on
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FIGURE 2.

the order of µ) compared to the energy of Q3, but since

the total energy is zero, Q4 must have a positive energy

which nearly cancels the negative energy of Q3. Thus, Q4
approaches Q2 along a hyperbolic orbit. The semimajor

axis of the hyperbola is negative, but it must have nearly

the same absolute value as the semimajor axis of the el-

lipse. Because the asymptotes of the hyperbola do not

cross at a particularly small angle, Q4 never gets much

closer than Q3 does to Q2. Even when Q3 and Q4 are at

comparable distances from Q2, their mutual attraction is

neglible, and they continue to adhere closely to their re-

spective conic sections. Only when Q3 and Q4 approach

each other much more closely than Q2 do their orbits

change significantly. Around the time of a near collision

between Q3 and Q4, their paths can be approximated by

hyperbolic orbits around their common center of grav-

ity. But when we compute the new orbits of Q3 and Q4
around Q2 after their near collision, we can approximate

the near collision by an actual elastic collision between

Q3 and Q4.

We model the encounter between Q4 and the orbiting

pair as follows: Q2 remains fixed at the origin, while Q3
travels around it in an elliptical orbit. Q4 approaches

from the left along a hyperbolic orbit, with the incoming

asymptote parallel to the x-axis. (We take Q1 to lie

on the x-axis at −∞.) We ignore the attractive force

between Q3 and Q4. The positive energy of Q4 exactly

cancels the negative energy of Q3. An elastic collision

occurs between Q3 and Q4 (Figure 2). The velocities of

these bodies after the collision are uniquely determined

by the fact that the collision is elastic (i.e., momentum

and kinetic energy are conserved), and by the fact that

Q4 must end up in a hyperbolic orbit approaching an

asymptote parallel to the x-axis, moving in the negative

x direction (Figure 3).

FIGURE 3.

In our approximate model, once we are given the initial

orbit of Q3, we are free to choose any point on that orbit

for the elastic collision. That means we must be free to

choose a hyperbolic orbit for Q4 which intersects the or-

bit of Q3 at the chosen point of collision, and we must be

free to choose a relative phase for Q3 and Q4 so that both

bodies arrive at the collision point at the same time. This

freedom is a reasonable feature of our model, because a

small change in the position of Q4 at the time of its en-

counter with Q1 will cause a small change in its direction

of motion afterwards, and in the limit as the x-coordinate

of Q1 goes to −∞, this small change in direction becomes
a large change in the y-intercept of the incoming asymp-

tote of the orbit of Q4 around Q2, without affecting the

direction of the asymptote, which remains parallel to the

x-axis. Likewise, a small change in the position of Q3
in its orbit at the time of one close encounter with Q4
will result in a small change in the semimajor axis of the

new orbit of Q3 after the encounter. This in turn affects

the number of revolutions of Q3 until its next encounter

with Q4, and thus results in a large change in the posi-

tion of Q3 at the next encounter. So by fine-tuning the

initial conditions, it ought to be possible to adjust the

y-coordinate of the incoming asymptote of Q4 and the

phase of Q3 at every future encounter between these two

bodies.

3. TRANSFER OF ANGULAR MOMENTUM

Returning to our approximate model, we suppose that

initially the orbit of Q3 has eccentricity ε0, where 0 <

ε0 <
1
2

√
2, that the angular momentum of Q3 is positive,
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so that Q3 travels counterclockwise around Q2, that the

major axis of the orbit coincides with the y-axis, and the

periapsis lies on the negative y-axis. We also assume,

without loss of generality, that the semimajor axis of the

orbit is 1.

Let ε1 = 1− ε20. Note that 1
2

√
2 < ε1 < 1 so that

ε0 < ε1. We will show that for a suitable choice of the

point of collision between Q3 and Q4, the orbit of Q3
after the collision will have eccentricity ε1, with negative

(clockwise) angular momentum. The major axis of the

new orbit will still coincide with the y-axis, with the pe-

riapsis at y < 0, and the semimajor axis will still be 1.

At this encounter, Q4 extracts angular momentum, but

no energy, from Q3.

We let the elastic collision occur at (X,Y ), where

X = −ε0ε1 (3—1)

and

Y = ε0 + ε1. (3—2)

This point is on both the old orbit of Q3,

x2

ε21
+ (y − ε0)2 = 1, (3—3)

and the new orbit,

x2

ε20
+ (y − ε1)2 = 1. (3—4)

Note that the old orbit has semiminor axis ε1, and ε1
is also the angular momentum of Q3 before the collision.

The semiminor axis of the new orbit is ε0 and the angular

momentum of Q3 after the collision is −ε0. The energy
of Q3, both before and after the collision, is − 12 .
Let (vx, vy) and (ux, uy) be the velocity of Q3 imme-

diately before and after the collision, respectively. We

know, from the angular momentum and energy of the

old and new orbits, that

Xvy − Y vx = ε1, (3—5)

1

2
(v2x + v

2
y)− (X2 + Y 2)−1/2 = −1

2
, (3—6)

Xuy − Y ux = −ε0, (3—7)

and

1

2
(u2x + u

2
y)− (X2 + Y 2)−1/2 = −1

2
. (3—8)

The above equations, along with the fact that the major

axes of both orbits coincide with the y-axis (which tells

FIGURE 4.

us that Xvx + Y vy < 0 and Xux + Y uy > 0), uniquely

determine vx, vy, ux, and uy, viz.

vx =
−ε21

ε0ε1 + 1
, (3—9)

vy =
−ε0

ε0ε1 + 1
, (3—10)

ux =
ε20

ε0ε1 + 1
, (3—11)

and

uy =
ε1

ε0ε1 + 1
. (3—12)

We must find old and new hyperbolic orbits for Q4,

both with energy + 1
2 , with the incoming asymptote of

the old orbit and the outgoing asymptote of the new orbit

both parallel to the negative x-axis, such that both orbits

intersect the point (X,Y ) and the total momentum of Q3
and Q4 is the same before and after the collision.

Both hyperbolas will have semimajor axis −1, with
one focus at the origin, and one asymptote y = −p for
some real number p (Figure 4). Suppose the asymptotes

intersect at an angle of 2ψ. Let

x̃ = x cosψ + y sinψ (3—13)

and

ỹ = y cosψ − x sinψ + cscψ. (3—14)

Then the equation of the hyperbola is

ỹ2 − (x̃ tanψ)2 = 1 (3—15)

and p = cotψ (Figure 5).
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FIGURE 5.

Translating back to x and y coordinates, we have

(y cosψ−x sinψ+cscψ)2− (x sinψ+y sinψ tanψ)2 = 1,
(3—16)

or

y2(cos2 ψ − sin2 ψ tan2 ψ)− 2xy(sinψ cosψ
+ sin2 ψ tanψ) + 2y cotψ − 2x+ csc2 ψ = 1. (3—17)

A few trig identities yield

y2(1− tan2 ψ)− 2xy tanψ + 2y cotψ (3—18)

− 2x+ 1 + cot2 ψ = 1,
or

y2 1− 1

p2
− 2xy

p
+ 2yp− 2x+ p2 = 0. (3—19)

Multiplying by p2 and collecting like powers of p, we get

p4 + 2yp3 + (y2 − 2x)p2 − 2xyp− y2 = 0 (3—20)

or

(p2 + yp− x− r)(p2 + yp− x+ r) = 0, (3—21)

where r = x2 + y2.

Each factor on the left-hand side of (3—21) represents

one branch of the hyperbola. The first factor is the

branch closest to the focus at the origin, occupied by

Q2. This branch is the projection onto the xy-plane of

the intersection of the plane z = p2 − yp − x with the
half-cone z = r. The second factor is the branch closest

to the empty focus, the projection of the intersection of

the same plane with the half-cone z = −r. Q4 follows
the first branch, so if the orbit of Q4 is to intersect the

point (X,Y ), we must have

p2 + Y p−X −R = 0, (3—22)

where R =
√
X2 + Y 2. Thus, p = p1 or p2, where

p1 =
−Y + Y 2 + 4(X +R)

2
(3—23)

and

p2 =
−Y − Y 2 + 4(X +R)

2
. (3—24)

We choose y = −p1 to be the incoming asymptote of
the old orbit of Q4, and y = −p2 to be the outgoing
asymptote of the new orbit.

Let v̂x and v̂y be the x and y components of the ve-

locity of Q4 going into the collision, and let ûx and ûy
be the components of its velocity coming out. The angu-

lar momentum of Q4 is p1 before the collision and −p2
afterwards, while its energy is 1

2 both before and after.

Thus,

Xv̂y − Y v̂x = p1, (3—25)

1

2
v̂2x + v̂

2
y −R−1 =

1

2
, (3—26)

Xûy − Y ûx = −p2, (3—27)

and
1

2
û2x + û

2
y −R−1 =

1

2
. (3—28)

These constraints determine v̂x, v̂y, ûx, and ûy, once we

know the signs of Xv̂x + Y v̂y and Xûx + Y ûy. The fact

that the incoming asymptote of the old orbit and the

outgoing asymptote of the new orbit are parallel to the

x-axis constrains both signs to be positive. We conclude

that

v̂x = 1− Y

Rp1
, (3—29)

v̂y =
1

Rp1
, (3—30)

ûx = −1 + Y

Rp2
, (3—31)

and

ûy =
−1
Rp2

. (3—32)
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Indeed,

R = (ε0ε1)2 + (ε0 + ε1)2 = ε20ε
2
1 + ε20 + 2ε0ε1 + ε21

= ε20ε
2
1 + 2ε0ε1 + 1

= ε0ε1 + 1 = 1−X, (3—33)

so X +R = 1, p21 + Y p1 − 1 = 0, p1 = 1/p1 − Y , and

X
1

Rp1
− Y 1− Y

Rp1
=
X + Y 2

Rp1
− Y

=
−ε0ε1 + (ε0 + ε1)

2

Rp1
− Y

=
ε20 + ε0ε1 + ε21

Rp1
− Y

=
1+ ε0ε1
Rp1

− Y = 1

p1
− Y = p1.

(3—34)

Likewise,

Y 2 + 1 = ε20 + 2ε0ε1 + ε21 + 1 = 2ε0ε1 + 2 = 2R, (3—35)

so

1− Y

Rp1

2
+

1

Rp1

2 − 2

R
= 1− 2Y

Rp1
+
Y 2 + 1

R2p21
− 2

R

= 1− 2Y

Rp1
+

2R

R2p21
− 2

R

= 1− 2Y

Rp1
+

2

Rp21
− 2

R

= 1− 2

Rp21
(p21 + Y p1 − 1)

= 1, (3—36)

and in a similar manner, we can show that the constraints

involving ûx and ûy are satisfied.

We now need only show that momentum is conserved

during the collision between Q3 and Q4. That is, we

must show that vx+ v̂x = ux+ ûx and vy+ v̂y = uy+ ûy.

Indeed,

ux − vx = ε20 + ε21
ε0ε1 + 1

=
1

R
, (3—37)

and since

1

p1
+
1

p2
=
p1 + p2
p1p2

=
−Y

1
4 [Y

2 − (Y 2 + 4)] = Y, (3—38)

we have

v̂x − ûx = 2− Y

Rp1
− Y

Rp2
= 2− Y

2

R
=
2R − Y 2
R

=
1

R
,

(3—39)

while

uy − vy = ε0 + ε1
ε0ε1 + 1

=
Y

R
(3—40)

and

v̂y − ûy = 1

Rp1
+

1

Rp2
=
Y

R
. (3—41)

4. TRANSFER OF ENERGY

We next examine the second collision, in which Q4 ex-

tracts energy from Q3, but no angular momentum is ex-

changed. This time, the orbit of Q3 before the collision

has eccentricity ε1 and semimajor axis 1, and the orbit

afterwards has eccentricity ε0 and semimajor axis ε
2
0/ε

2
1.

Both orbits have negative angular momentum and major

axes coinciding with the y-axis, but before the collision,

the periapsis is on the negative y-axis, and afterwards, it

is on the positive side (Figure 6). The equation of the

old orbit is
x2

ε20
+ (y − ε1)2 = 1 (4—1)

and that of the new orbit is

ε21
ε40
x2 +

ε21
ε20
y + ε0

2
= 1. (4—2)

Note that Q3 has angular momentum −ε0 both before
and after the collision, but its energy decreases from −12
to −ε21/2ε20.
This time, the collision occurs at (X̃, Ỹ ), where

X̃ = ε20 (4—3)

FIGURE 6.
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and

Ỹ = 0. (4—4)

Again we let vx and vy be the x and y components of the

velocity of Q3 before the collision, and let ux and uy be

the components of the velocity afterwards. We have

X̃vy − Ỹ vx = −ε0, (4—5)

1

2
(v2x + v

2
y)− (X̃2 + Ỹ 2)−1/2 = −1

2
, (4—6)

X̃uy − Ỹ ux = −ε0, (4—7)

and

1

2
(u2x + u

2
y)− (X̃2 + Ỹ 2)−1/2 = − ε21

2ε22
, (4—8)

while X̃vx + Ỹ vy < 0 and X̃ux + Ỹ uy > 0. These con-

straints uniquely determine the velocity of Q3 before and

after the collision:

vx = −ε1
ε0
, (4—9)

vy = − 1
ε0
, (4—10)

ux = 1, (4—11)

and

uy = − 1
ε0
. (4—12)

The orbit of Q4 before and after the collision is eas-

ily determined. Beforehand, we can still approximate

the energy of Q4 as
1
2 , because Q4 transfers a negligible

amount of energy (on the order of µ) to Q1 between its

two encounters with Q3. Thus, the incoming asymptote

of Q4 should be y = −p, where p satisfies

p2 + Ỹ p− X̃ − R̃ = 0, (4—13)

with R̃ = X̃2 + Ỹ 2 = ε20. Hence, p = ±
√
2ε0. We let

p =
√
2ε0, so that the incoming asymptote is y = −

√
2ε0,

and the angular momentum of Q4 before the collision

is
√
2ε0. Letting v̂x and v̂y be the components of the

velocity of Q4 going into the collision, we have

X̃v̂y − Ỹ v̂x = p (4—14)

and
1

2
(v̂2x + v̂

2
y)− R̃−1 =

1

2
, (4—15)

or

ε20v̂y =
√
2ε0 (4—16)

and
1

2
(v̂2x + v̂

2
y)− ε−20 =

1

2
. (4—17)

Thus

v̂y =

√
2

ε0
(4—18)

and

v̂x = 1. (4—19)

Note that the solution v̂x = −1 is ruled out by the condi-
tion that the incoming asymptote of the orbit be parallel

to the x-axis.

After the collision, the energy of Q4 is −ε21/2ε20, so the
semimajor axis of the hyperbolic orbit of Q4 is −ε20/ε21
and the speed of Q4 at infinity is ε1/ε0. We can normalize

the semimajor axis to −1 if we replace x and y by xε21/ε20
and yε21/ε

2
0, respectively. If the outgoing asymptote is

yε21/ε
2
0 = −p, then p must satisfy

p2 + Ỹ pε21/ε
2
0 − X̃ε21/ε20 − R̃ε21/ε20 = 0, (4—20)

where again Ỹ = 0 and X̃ = R̃ = ε20. Thus, p = ±
√
2ε1.

This time, we choose p = −√2ε1, so the outgoing as-
ymptote is yε21/ε

2
0 =
√
2ε1, or y =

√
2ε20/ε1, and the an-

gular momentum of Q4 is still (
√
2ε20/ε1)(ε1/ε0) =

√
2ε0.

Therefore, if ûx and ûy are the components of the velocity

of Q4 immediately after the collision, we have

ε20ûy =
√
2ε0 (4—21)

and
1

2
(û2x + û

2
y)−

1

ε20
=

ε21
2ε20

. (4—22)

Thus,

ûy =

√
2

ε0
(4—23)

and

ûx = −ε1
ε0
. (4—24)

(The outgoing asymptote of the new orbit of Q4 is par-

allel to the x-axis, so ûx must be negative.)

Because the total energy of Q3 and Q4 is zero both be-

fore and after the collision, we need only show that mo-

mentum is conserved to prove that the collision is elastic.

We have

ux − vx = 1+ ε1
ε0
= v̂x − ûx (4—25)

and

uy − vy = 0 = v̂y − ûy. (4—26)

After the second encounter of Q4 with Q3, the orbit

of Q3 has the same eccentricity ε0 that it had before the

first encounter, but the orbit is smaller by a factor of

ε21/ε
2
0 and has been reflected around the x axis. We can

therefore arrange for Q4 to have another encounter with



194 Experimental Mathematics, Vol. 12 (2003), No. 2

Q3 after a roundtrip to Q1, in which the phase of Q3 is

the same as at the first encounter (but reflected about

the x axis), so that Q4 again extracts angular momen-

tum, but no energy, from Q3, and this can be followed by

a fourth encounter in which Q4 extracts energy from Q3,

but no angular momentum. After this fourth encounter,

the orbit of Q3 is once again reflected about the x-axis,

back to the same side where it started, but smaller by

a factor of ε41/ε
4
0. The process can be continued indefi-

nitely, with the orbit of Q3 shrinking by the same factor

of ε21/ε
2
0 at every second encounter with Q4. The en-

ergy of Q4 increases by a factor of ε
2
1/ε

2
0 at each such

encounter, and it only loses O(µ) when it swings around

Q1, so its velocity during the trip between Q1 and Q2
(except when it is close to Q1 or Q2, and its potential

energy is comparable to its kinetic energy) increases by a

factor of nearly ε1/ε0, which is greater than 1. Because

the distance between Q1 and Q2 increases only slightly,

by a factor of 1 + O(µ), during each roundtrip of Q4,

the time required for each double roundtrip decreases in

geometric progression, by a factor only slightly greater

than ε0/ε1; this factor is strictly less than 1, provided

we choose ε0 not too close to
1
2

√
2. That means an infi-

nite number of roundtrips occur in a finite time. During

each roundtrip, a small fraction of the energy of Q4 is

transferred to the outward motion of Q1 and Q2 away

from each other (with Q3 dragged along by Q2), so after

an infinite number of roundtrips, Q1 and Q2 will have

moved an infinite distance apart along the x-axis. Thus,

a noncollision singularity occurs after a finite time.

5. WHAT CAN GO WRONG

Several things could go wrong with this scenario, and we

must check that none of them happen.

Before an angular momentum extracting encounter

between Q3 and Q4, the former travels along an ellipse

and the latter along a hyperbola. The encounter occurs

when the two bodies pass close to the point of intersec-

tion of the ellipse and hyperbola at the same time. But

the ellipse and hyperbola intersect at two points, and

both bodies pass the wrong point before approaching the

correct one (Figure 7). We must check that if the rela-

tive phases of Q3 and Q4 are such that they approach

the right point of intersection at the same time, then

they do not also approach the wrong point at the same

time. In other words, we need to prove that Q3 and

Q4 do not both require the same time to move between

the two points of intersection. It is straightforward to

FIGURE 7.

demostrate this numerically for any given ε0. For ex-

ample, when ε0 =
1
2 , the right point of intersection is

(X,Y ) = (−14
√
3, 12 +

1
2

√
3) = (−.433, 1.366) and the

wrong point is (−.480,−.332). Q3 requires 4.226 units of
time to move from the wrong point to the right point, and

Q4 requires only .995 units of time. It seems to be true

in general that Q3 requires more time than Q4, although

it is not clear how to prove this for arbitrary ε0.

After an angular momentum extracting encounter be-

tween Q3 and Q4, the new orbits of the two bodies do

not cross again. Likewise, the orbits do not cross before

an energy extracting encounter, because v̂y/v̂x > vy/vx
(Figure 8). The orbits do cross after an energy ex-

tracting encounter, provided ε0 <
1
3

√
3 (that is, when

ûy/ûx > uy/ux), but once again, Q3 takes much longer

than Q4 to traverse its arc (Figure 9). So in both cases,

the two bodies do not interfere with each other before

FIGURE 8.
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FIGURE 9.

their encounter, and they make a clean getaway after-

wards.

Next, we must check that none of the bodies have an

actual binary collision before the noncollision singularity.

Any such collision would have to involve Q4, because Q1
never gets close to Q2 or Q3, and these last two can-

not collide with each other because Q3 is always in an

elliptical orbit around Q2 with eccentricity ε0 or ε1.

It is easy to check that Q4 never collides with Q2. We

need only check the four hyperbolic orbits of Q4 around

Q2, namely before and after an angular momentum ex-

tracting encounter with Q3, and before and after an en-

ergy extracting encounter. Specifically, we must calculate

the asymptote parallel to the x-axis for each of the four

hyperbolas. These are, respectively, y = 1
2 (Y−

√
Y 2 + 4),

where Y = ε0 + ε1, y =
1
2 (Y +

√
Y 2 + 4), y = −√2ε0,

and y =
√
2ε20/ε1. In no case is the asymptote y = 0, so

there is no collision with Q2.

To see that Q4 does not collide with Q3, we must look

at the velocities of both bodies going into and coming

out of both the angular momentum and energy extract-

ing encounters. Although we approximated each such

encounter by an elastic collision, Q3 and Q4 actually

travel in close hyperbolic orbits around their center of

gravity during these encounters. A true binary collision

between these bodies can occur only if the hyperbolas are

degenerate. That is, the velocity of each body after the

encounter, in the center of mass coordinate system of the

two bodies, must be in the direction opposite the veloc-

ity of that body before the encounter. In other words, it

would require that

ux − ux + ûx
2

= − vx − vx + v̂x
2

(5—1)

and

uy − uy + ûy
2

= − vy − vy + v̂y
2

(5—2)

or, equivalently, vx+ux = v̂x+ ûx and vy+uy = v̂y+ ûy.

At the angular momentum extracting encounter, we have

vx + ux =
ε20 − ε21
ε0ε1 + 1

=
−Y
R
(ε1 − ε0), (5—3)

vy + uy =
ε1 − ε0
ε0ε1 + 1

=
1

R
(ε1 − ε0), (5—4)

v̂x + ûx =
Y

Rp2
− Y

Rp1
=
Y

R

p1 − p2
p1p2

=
−Y
R

Y 2 + 4,

(5—5)

and

v̂y + ûy =
1

Rp1
− 1

Rp2
=
1

R
Y 2 + 4. (5—6)

Thus, a collision can occur only if ε1 − ε0 =
√
Y 2 + 4 =√

2ε0ε1 + 5. Squaring both sides, we see that this implies

1 − 2ε0ε1 = 2ε0ε1 + 5, or ε0ε1 + 1 = R = 0, so no

collision occurs during the angular momentum extracting

encounter. At the energy extracting encounter, we find

that indeed

vx + ux = 1− ε1
ε0
= v̂x + ûx, (5—7)

but

vy + uy = − 2
ε0

(5—8)

and

v̂y + ûy =
2
√
2

ε0
, (5—9)

so again there is no collision between Q3 and Q4.

The one remaining possibility is a collision between

Q4 and Q1. Each time Q4 passes close to Q1, it gets

sent back toward Q2 and Q3. Thus, the velocity of Q4 is

rotated by very nearly 180 degrees during its encounter

with Q1, and the two bodies come close to a binary col-

lision. We must show that the rotation is never exactly

180 degrees in the center of mass coordinate system of

the two bodies.

We first look at the path of Q4 in a Q2-centered sys-

tem. We must consider two cases: In the first case, Q4
encounters Q1 after extracting angular momentum from

Q3 and before extracting energy. In the second case,

Q4 encounters Q1 after extracting energy from Q3 and

before extracting angular momentum. After extracting

angular momentum, Q4 moves toward the left along a

path asymptotic to the line y = 1
2 (ε0+ ε1+

√
2ε0ε1 + 5).

When it heads back toward Q2 to extract energy, Q4
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FIGURE 10.

moves along a path asymptotic to the line y = −√2ε0.
Of course, the two lines cannot really be parallel. They

must converge slightly and intersect near Q1 (Figure 10).

Because Q4 has different y-coordinates right after ex-

tracting angular momentum and right before extracting

energy, its velocity coming out of its encounter with Q1
cannot be exactly in the opposite direction from its ve-

locity going into the encounter. Likewise, right after ex-

tracting energy from Q3, Q4 is on a path asymptotic

to y =
√
2ε1, if we normalize the x and y coordinates

so that the semimajor axis of the orbit of Q3 is 1 (Fig-

ure 11). Right before the following angular momentum

extracting encounter, the path of Q4 is asymptotic to

y = 1
2 (−ε0 − ε1 +

√
2ε0ε1 + 5) <

√
2ε1. (Recall that this

angular momentum extracting encounter, after normal-

ization, is the reflection about the x-axis of the previous

angular momentum extracting encounter.) Again, the y-

coordinates are different, so the direction of Q4 is not

exactly reversed during its encounter with Q1.

However, we have been considering the velocity of Q4
relative to Q2. What counts is the velocity of Q4 relative

to Q1. If Q1 should have a small y-component to its

velocity, on the order of the y-component of the velocity

of Q4, then it could still happen that the velocity of Q4
relative to Q1 does exactly reverse its direction during

the encounter between Q4 and Q1, in which case the

encounter would be a binary collision.

We can rule out this possibility because the total angu-

lar momentum of the system is zero. Recall that Q3 and

Q4 have mass 1, while Q1 and Q2 have mass µ
−1 >> 1.

We normalize the time and distance scales so that the

semimajor axis of the orbit of Q3 is 1, and the mean ve-

locity of Q3 in its orbit is 1. Then the energy of Q3 is

approximately − 12 . Since the kinetic energy of Q1 and
Q2 are much less than 1 (on the order of µ), and the

FIGURE 11.

total energy of the system is zero, the energy of Q4 is

approximately 1
2 , and the velocity of Q4 (except when it

is close to Q1 or Q2) is approximately 1. The energy of

Q1 and Q2 remains on the order of µ times the energy of

Q4, because each time Q4 encounters Q1 or the orbiting

pair, it transfers to them approximately 2 units momen-

tum. Therefore, the velocity of Q1 and the orbiting pair

away from each other both increase by about 2µ times

the velocity of Q4 at each encounter. But since the ve-

locity of Q4 increases by a factor of ε1/ε0 > 1 at every

second encounter with the orbiting pair, the velocity of

Q1 and the orbiting pair away from each other is of the

same order as the change in this velocity. That is, the

velocity of Q1 and the orbiting pair is on the order of µ

times the velocity of Q4, and the kinetic energy of Q1
and the orbiting pair is on the order of µ−1µ2 = µ times
the energy of Q4.

Let χ be the distance between Q1 and Q2 (in units of

the semimajor axis of the orbit of Q3). Now the angular

momentum of Q2 and Q3 about their center of mass is

on the order of 1 (it goes from ε1 to −ε0 to −ε1 to ε0 and
back to ε1 in our normalized units). Likewise, when Q4
is midway between Q1 and Q2, the angular momentum

of Q4 about the center of mass of all four bodies is on the

order of 1 (it is ± 1
4 (ε0 + ε1)± 1

4

√
2ε0ε1 + 5 or ±

√
2ε0 in

normalized units). That means the angular momentum

of Q1 and the orbiting pair about the center of mass of

all four bodies must be on the order of 1, so that the total

angular momentum of the system is zero. Since Q1 and

the orbiting pair are both about 1
2χ distance units, in

the negative and positive x directions, respectively, from

their center of mass, both must have momentum with a

y-component on the order of χ−1, and velocity with a
y-component on the order of µχ−1. The y-component of
the velocity of Q4, however, must be on the order of χ

−1,
because in the time it takes Q4 to make a roundtrip from

Q2 to Q1 and back, namely 2χ, the y-coordinate of the

position of Q4 must change by something on the order of

1 (indeed, by either
√
2ε0 +

1
2 (ε0 + ε1 +

√
2ε0ε1 + 5) or√

2ε1+
1
2 (ε0+ε1−

√
2ε0ε1 + 5) times the semimajor axis).

Since µχ−1 << χ−1, the y-component of the velocity of
Q1 is much smaller than the y-component of the veloc-

ity of Q4 (specifically, the average of the y-components

of the velocity of Q4 before and after its encounter with

Q1). Thus, our conclusion still holds, even if we measure

the velocity of Q4 relative to Q1. The angle between the

velocity of Q4 before and after its encounter with Q1 dif-

fers from π by something on the order of χ−1, so the orbit
of Q4 near Q1 is a true hyperbola, not a degenerate one,

with asymptotes intersecting at an angle on the order of
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χ−1, close to but certainly not equal to zero, and there
is no collision between Q4 and Q1.

Next, we must check that by varying the phase of Q3
at its encounter with Q4, we can vary the amount of en-

ergy transferred to Q4. Increasing the energy transferred

has the effect of increasing the velocity of Q4, and also

increasing, by the same factor, the mean velocity of Q3
over its entire orbit. But the orbit shrinks, so that Q3
makes more revolutions in the time that Q4 travels to Q1
and back. A small change, on the order of χ−1, in the
phase of Q3 at one encounter, would therefore result in a

large change, on the order of 1, in the phase of Q3 at its

next encounter with Q4. It is this mechanism that en-

ables us to simultaneously select the approximate phase

of Q3 at an infinite number of future encounters.

As we did earlier, we let µ tend to zero so that we

can model the encounters as elastic collisions between

Q3 and Q4, and we assume that the incoming asymptote

of the orbit of Q4 before the encounter, and the outgoing

asymptote after the encounter are in the negative x di-

rection. But we do not assume that the encounter occurs

at (X,Y ), where X and Y are functions of the initial ec-

centricity ε0 as defined in (3—1) and (3—2). Instead, we

allow Q3 to be anywhere in its orbit at the time of the

encounter. That means ε1, the eccentricity of the orbit

after the encounter, is not necessarily equal to 1− ε20,
and the length and direction of the major axis of the orbit

are not necessarily unchanged by the encounter. Rather,

all three orbital parameters are functions of the phase

of Q3 in its orbit at the time of the encounter (and also

functions of ε0).

Let φ0 be the phase of Q3 at an angular momentum

extracting encounter with Q4, let φ1 be the phase of Q3
at the following energy extracting encounter, let s1 be

the semimajor axis of the orbit of Q3 between the two

encounters, and let s2 be the semimajor axis after the

second encounter. We take s0, the semimajor axis be-

fore the first encounter, to be 1. If we hold ε0 fixed at
1
2 and vary φ0, then numerical calculations reveal that

ds1/dφ0 = −1.85 when φ0 = π − arctan(2 + 2
3

√
3), this

being the phase of Q3 at (X,Y ). If, on the other hand,

we hold ε1 fixed at
1
2

√
3 and s1 fixed at 1 while we vary

φ1, then ds2/dφ1 = .38 when φ1 = 0. Since neither deriv-

ative is zero, we can indeed control the phase of Q3 at

each encounter, at least when ε0 =
1
2 .

Finally, we need a method for making small adjust-

ments to the eccentricity and angle of periapsis of the

orbit of Q3. In our approximate model for the encoun-

ters between Q3 and Q4, we assumed an elastic collision

between these bodies, rather than a close approach along

hyperbolic orbits. We also neglected the small gravita-

tional attraction between Q3 and Q4 when they are not

close to each other, and we neglected the gravitational

field of Q1. Finally, we assumed that the encounter be-

tween Q3 and Q4 occurred at precisely the correct phase

of Q3, but in fact this phase can only be controlled ap-

proximately at each encounter, because small changes

must be made in the phase in order to control the phase

at the next encounter. As a result of all these factors, the

eccentricity of the orbit of Q3 will not precisely alternate

between ε0 and ε1, and the major axis of the orbit will

not always be exactly perpendicular to the line through

Q1 and Q2. Indeed, after a large number of encounters,

the orbit might drift so far from its ideal parameters that

we cannot continue.

To avoid this possibility, we must show that whenever

the eccentricity and angle of periapsis drift too far, they

can be nudged back by slightly changing the phase of

Q3 at the time of its encounter with Q4. Once again,

we fix the eccentricity at ε0 =
1
2 , and the angle of peri-

apsis at θ0 = −π
2 (that is, the major axis of the ellipse

is perpendicular to the line through Q1 and Q2, while

Q3, which has positive angular momentum, is moving

toward periapsis when it crosses the line between Q1 and

Q2) shortly before an angular momentum extracting en-

counter. As usual, we approximate the encounter by an

elastic collision. By varying the phase φ0 of Q3 at the

time of the encounter, we vary both ε1 and θ1, the eccen-

tricity and angle of periapsis of the orbit, respectively,

after the encounter. The orbit doesn’t change again un-

til the following energy extracting encounter. Suppose

we independently vary the phase φ1 of Q3 at the time

of the energy extracting encounter, and we let ε2 and θ2
be the eccentricity and angle of periapsis, respectively, of

the orbit of Q3 afterwards. Then we can think of ε2 and

θ2 as functions of two variables φ0 and φ1. (Note that ε1
is equal to 1− ε20 if φ0 = π−arctan[ε−10 +(1−ε20)−1/2],
in which case ε2 = ε0 if φ1 = 0, but in general ε1 and ε2
have other values.) Numerical calculations reveal that

∂ε2
∂φ0

= 1.81, (5—10)

∂θ2
∂φ0

= −2.92, (5—11)

∂ε2
∂φ1

= −.16, (5—12)

and
∂θ2
∂φ1

= 0, (5—13)
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when φ0 = π − arctan(2 + 2
3

√
3) and φ1 = 0. Since the

matrix
1.81 −2.92
−.16 0.

(5—14)

is nonsingular, we can always bring ε and θ back into line

by making small adjustments to φ at two successive en-

counters of Q3 and Q4. For example, suppose we want to

ensure that ε is always within δ of 12 or
1
2

√
3 (depending

on whether the last encounter extracted energy or angu-

lar momentum) and θ is always within δ of π2 . For fixed

δ, we can choose µ small enough that ε and θ stay within

these intervals for an arbitarily large number of encoun-

ters. When they come close to drifting out of their in-

tervals, we can recenter them by making adjustments to

φ at two successive encounters. These adjustments will

be on the order of δ, so they will not interfere with our

ability to control future values of φ, for which we need to

make much smaller adjustments, on the order of χ−1.
We remark that s, the semimajor axis of the orbit of

Q3, will also tend to drift away from its nominal value

of ε2n0 /(1 − ε20)
n after 2n encounters. But there is no

need to adjust s. Because the total energy of the system

is zero, the energies of all bodies remain in proportion.

As long as s shrinks in geometric progression with every

energy extracting encounter (that is, as long as s2n+2/s2n
is bounded from above for all n by a constant strictly

lessthan 1), there will be an infinite number of encounters

in a finite time, and hence a noncollision singularity.
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