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For odd v � 5, Schmerl and Spiegel have proved that the1-additive sequence (2; v) has precisely two even terms and,

consequently, is regular. For 5 � v � 1 mod 4, we prove,

using a different approach, that the 1-additive sequence (4; v)
has precisely three even terms. The proof draws upon the

periodicity properties of a certain ternary quadratic recurrence.

Unlike the case of (2; v), the regularity of (4; v) can be cap-

tured by expressions in closed form. For example, its period

can be written as an exponential sum of binary digit sums.

Therefore the asymptotic density �(v) of (4; v) tends to 0 asv !1, but is misbehaved in the sense thatlim infv!1v�1mod4 �v2�2�log2 3�(v) = 14 ;lim supv!1v�1mod4 �v2�2�log2 3�(v) > 0:27164:
This is proved using techniques adapted from Harborth and

Stolarsky.

1. INTRODUCTIONBeginning with two positive integers u < v, Ulam[1964] de�ned the 1-additive sequence (u; v) as(u; v) = a1; a2; a3; : : :where a1 = u, a2 = v and an, for n � 3, is the leastinteger exceeding an�1 and possessing a unique rep-resentation of the form ai + aj, for i < j.These sequences have been studied by, amongothers, Queneau [1972] and Finch [1991; 1992a;1992b]. Many 1-additive sequences appear to be-have quite erratically. For example, all the se-quences (1; v) for any v > 1, as well as the sequence(2; 3), defy any simple characterization.
c
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In [Finch 1992a] it was conjectured that the se-quence (2; v), for odd v � 5, has precisely two eventerms. Schmerl and Spiegel [1994] and, indepen-dently, Shirri� (private communication, 1993) haveproved this conjecture. It then follows that (2; v) isregular in the sense that the sequence of successivedi�erences a2 � a1, a3 � a2, : : : is eventually peri-odic. As a corollary, (2; v) has positive asymptoticdensity.The following conjecture [Finch 1992b, Conj. 3]is based on empirical evidence obtained by com-puting several thousand terms of the relevant se-quences directly according to the de�nition (see ta-bles in [Finch 1992b]).
Conjecture 1.1. Assume v � 5 is odd .
(a) If v 6= 2m�1 for any m � 3, the sequence (4; v)has precisely three even terms: 4, 2v + 4, and4v + 4.
(b) When v = 2m� 1 for some m � 3, the sequence(4; v) has precisely four even terms: 4, 2v + 4,4v + 4, and 2(2v2 + v � 2).A general proof of this conjecture, analogous tothose of Schmerl and Spiegel or Shirri�, has notbeen found. However, we o�er in Section 4 a proof

in the case v � 1 mod 4. This is possible onlybecause of the periodicity properties of a certainternary quadratic recurrence (Section 3). In Sec-tion 5 we derive a formula for the asymptotic den-sity of (4; v), for v � 1 mod 4. Section 6 concludeswith several related questions that remain open.
2. PRELIMINARIESAssume that v � 5 is odd. Table 1 lists all termsof the sequence (4; v) up to 4v + 8, from which itfollows that (4; v) has at least three even terms.There are four cases, depending on the residue ofv modulo 8. Notice, in particular, that the onlyeven terms � 4v + 8 are 4, 2v + 4, and 4v + 4.For non-negative h and l, let z(h; l) be the bi-nomial coe�cient �h+ll � modulo 2. For h < 0 orl < 0, let z(h; l) = 0. Then:
Lemma 2.1. (a) For h; l � 0, we have z(h; l) = 1if and only if the bitwise \and" of the binaryrepresentations of h and l is zero [Long 1981].
(b) A recursive de�nition of z is given byz(2i; 2j) = z(i; j);z(2i; 2j + 1) = z(i; j); z(2i+ 1; 2j) = z(i; j);z(2i+ 1; 2j + 1) = 0;5 mod 8 1 mod 8 3 mod 8 7 mod 84; 4; 4; 4;fv + 4jg(v+3)=40 ; fv + 4jg(v+3)=40 ; fv + 4jg(v+1)=40 ; fv + 4jg(v+1)=40 ;2v + 4; 2v + 4; 2v + 4; 2v + 4;f2v + 7 + 4jg(v�5)=40 ; f2v + 7 + 4jg(v�5)=40 ; f2v + 5 + 4jg(v�3)=40 ; f2v + 5 + 4jg(v�3)=40 ;f3v + 4 + 8j; f3v + 4 + 8j; f3v + 4 + 8j; f3v + 4 + 8j;3v + 6 + 8j; 3v + 6 + 8j; 3v + 6 + 8j; 3v + 6 + 8j;3v + 10 + 8jg(v�13)=80 ; 3v + 10 + 8jg(v�9)=80 ; 3v + 10 + 8jg(v�11)=80 ; 3v + 10 + 8jg(v�7)=80 ;4v � 1; 4v + 3; 4v + 1; 4v + 4;4v + 1; 4v + 4; 4v + 3; 4v + 5;4v + 4; 4v + 5 4v + 4; 4v + 74v + 5; 4v + 74v + 7

TABLE 1. The initial terms of the 1-additive sequence (4; v), for v � 5 odd, are determined by the residueof v modulo 8. The terms are listed vertically to facilitate comparison among the four cases. The notationff1(j); : : : ; fn(j)gk0 denotes the subsequence f1(0); : : : ; fn(0); f1(1); : : : ; fn(1); : : : ; f1(k); : : : ; fn(k) when k � 0and the empty subsequence when k < 0.
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together with the initial conditionsz(0; 0) = 1;z(0;�1) = z(�1; 0) = z(�1;�1) = 0:
(c) For a �xed h, the sequence z(h; l) is periodicwith (minimal) period 2g, where g is the small-est integer such that 2g > h. Moreover2g�1Xl=0 z(h; l) = 2g�#(h)

[Wolfram 1984], where #(h) denotes the numberof ones in the binary expansion of h and thesummation is ordinary addition.
(d) Let h0; h1; : : : be the bits in the binary expan-sion of h, starting with the least signi�cant bit ,and likewise for l0; l1; : : : . De�ne i > 0 to bethe smallest integer for which (li; hi) 6= (l0; h0).Then z(h; l) = 1 impliesz(h�h0�hi; l+l0+li) = z(h+h0+hi; l�l0�li) = 1:To prove this last statement, observe that by part(a) we cannot have (lj; hj) = (1; 1) for any j. Ifl0 = li = 0 or h0 = hi = 0, the conclusion isimmediate. By symmetry, it su�ces to considerthe case (l0; h0; li; hi) = (1; 0; 0; 1). We havel = � � � 0(1)1 and h = � � � 1(0)0in binary, where the digit in parentheses is repeatedi�1 times and where the beginning is unspeci�ed.Then h� h0 � hi = h� 1 = � � � 0(1)1l + l0 + li = l + 1 = � � � 1(0)0h+ h0 + hi = h+ 1 = � � � 1(0)1l � l0 � li = l � 1 = � � � 0(1)0;from which the desired formula follows.
3. TERNARY QUADRATIC RECURRENCEAssume for the remainder of this paper that v =4k + 1, where k � 1, and let a1; a2; : : : be the se-quence (4; v). Let t satisfy at = 4v + 4; one sees

from Table 1 that t = 18(7v + 41) if v � 1 mod 8and t = 18(7v + 37) if v � 5 mod 8. De�ne thein�nite sequenceh4; vi = b1; b2; b3; : : :where bs = as for 1 � s � t and bn, for n � t+1, isthe least odd integer exceeding bn�1 and possessinga unique representation of the form bi+bj , for i < j.The claim that (4; v) has precisely three even termsis equivalent to the claim that (4; v) = h4; vi. Weshall associate to h4; vi a certain ternary quadraticrecurrence. Key properties of the recurrence willthen give rise to a proof of the claim.De�ne xn, for n > 8k + 4, as the number ofrepresentations of 2(n�6k�4)+1 as a sum bi+bj,with i < j. Since a sum of two integers is odd ifand only if exactly one of the integers is even, itfollows thatxn = �(xn�2�1)+�(xn�4k�3�1)+�(xn�8k�4�1);
(3.1)where �(0) = 1 and �(r) = 0 for r 6= 0. One way tosimplify this formula is to let x�n denote xn mod 3;we obtain the ternary quadratic recurrencex�n = 2(x�n�2(x�n�2 + 1) + x�n�4k�3(x�n�4k�3 + 1)+ x�n�8k�4(x�n�8k�4 + 1)) mod 3with initial data(x�1; x�2; : : : ; x�8k+3; x�8k+4) = (0; 0; ; : : : ; 0; 1):The periods of fx�ng and fxng are clearly the same(since fx�ng and fxng can be expressed in terms ofeach other). There is, however, no known generaltreatment of quadratic recurrences available.An alternative way to simplify (3.1) is to let yn =�(xn � 1); then yn indicates mere membership inh4; vi. We obtain in this case the binary nonlinearrecurrenceyn = �(yn�2 + yn�4k�3 + yn�8k�4 � 1) (3.2)with initial data(y1; y2; : : : ; y8k+3; y8k+4) = (0; 0; : : : ; 0; 1):
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The periods of fyng and fxng are again clearly thesame. It is remarkable that a closed form expres-sion for yn exists, as we proceed to show.
Lemma 3.1. Write n as n = 8(2k+1)l+4c+r, withl � �1, 2k + 1 � c � 6k + 2 and 1 � r � 4. Thenyn, as de�ned by (3.2), is given by0 if r = 1 and 2k+ 1 � c � 5k+2;z(2k+ 1; l) if r = 1 and c = 5k+ 3;0 if r = 1 and 5k+ 4 � c � 6k+2;z(c� 2k� 1; l) if r = 2 and 2k+ 1 � c � 4k+1;0 if r = 2 and 4k+ 2 � c � 6k+2;0 if r = 3 and 2k+ 1 � c � 3k;z(c� 3k� 1; l) if r = 3 and 3k+ 1 � c � 5k+2;0 if r = 3 and 5k+ 3 � c � 6k+2;z(c� 2k; l) if r = 4 and 2k+ 1 � c � 4k;1� z(2k+ 1; l) if r = 4 and c = 4k+ 1;z(c� 4k� 1; l) if r = 4 and 4k+ 2 � c � 6k+1;1� z(2k+ 1; l) if r = 4 and c = 6k+ 2:
Proof. By induction on n, using the relationz(h; l) = z(h� 1; l) + z(h; l � 1) mod 2:If 1 � n � 8k + 4, then l = �1 and yn is eas-ily shown to be correct. The inductive step as-sumes that the claim is proved for values less thann, where n � 8k + 5. We will indicate the depen-dence of (l; c; r) on such values, but not at n itself.Table 2 exhibits the 25 cases with relevant param-eter values. Using this, it is a straightforward (al-though tedious) matter to complete the proof. Forexample, if r = 3 and c = 5k + 3, we getxn=yn�2+yn�4k�3+yn�8k�4=2z(1; l)+z(2k+1; l):If l is even, then z(1; l) = 1 and hence yn = 0; ifl is odd, then z(1; l) = z(2k + 1; l) = 0 and againyn = 0. The other cases are similar. �The experimental origins of Table 2 are worth com-menting on. The information we had at start wasthe conjectured period, P = (2k + 1)2m+3, of thesequence fyng, where m is the smallest integer sat-isfying 2m > 2k+1. The fact that P is a product isa hint of some additional structure. We arrangedfyng, for small k, into rectangles of shape a � b,

with ab = P . The idea behind this was that aperiod like ab can be the result of the superposi-tion of two phenomena of period a and b (at leastwhen the factors are relatively prime), and whenone writes the sequence in rows of length b, anyregularity in columns is a symptom of somethingof period a.Here the most striking result was for a = 2m+1and b = 4(2k + 1): vertical, horizontal, and di-agonal lines clearly appeared, for every value of k,reminiscent of Pascal triangle mod 2. For example,with k = 3, we obtained0000000000000000000000000001010101010101011101110111011000110011001100111001000100000100000101000011010000110101001000010010000100000001000101010100000000110111010000010011001000000001000100000001010000000000001101000000000100100000000000010000000000010101010101010110001000100011000100010001000000000000000101000001010000100000001000010000000100000000000000000001010101000000001000100000000100010000000000000000000000010100000000000010000000000001Some patterns, especially in the bottom right, in-dicated that something happens every second rowand every fourth column. This suggested divid-ing the rectangle into four subrectangles of shape2(2k + 1)� 2m, according to n mod 4:0000000000000000001000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000
0000000111111100000001010101000000011001100000000100010000000001111000000000010100000000000110000000000001000000

0000000000111111110000001010101000000011001100000000100010000000001111000000000010100000000000110000000000001000
0000001111111011111100101011010101110011011001101000100100010011110001111000101000010100001100000110000010000001The second and third subrectangles are clearly Pas-cal's triangle shifted by 2k + 1 and 3k + 1. Thefourth is more complicated, but can be interpretedas two overlapping triangles (with addition mod 2in the two overlap points), shifted 2k and 4k + 1.With these observations, one can easily guess theformulas of Lemma 3.1.The expression for yn in Lemma 3.1 is funda-mental to our analysis of the 1-additive sequence(4; 4k+1). The values of n for which yn is possiblynonzero are of special interest. Before continuing,we de�ne ten sets of positive integers that dependon (l; c; r):
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A = fn : r = 2 and 2k + 2 � c � 4k + 1gB = fn : r = 3 and 3k + 2 � c � 5k + 1gC = fn : r = 4 and 2k + 1 � c � 4kgD = fn : r = 4 and 4k + 2 � c � 6k + 1gE = fn : r = 2 and c = 2k + 1gF = fn : r = 3 and c = 3k + 1gG = fn : r = 1 and c = 5k + 3gH = fn : r = 3 and c = 5k + 2gI = fn : r = 4 and c = 4k + 1gJ = fn : r = 4 and c = 6k + 2gThese sets, which we will use extensively in thenext section, are disjoint and their union strictlycontains fn : yn = 1g (by Lemma 3.1). Note thatyn takes the following forms over the various sets:

n 2 A ) yn = z(h; l) with h = c� 2k � 1n 2 B ) yn = z(h; l) with h = c� 3k � 1n 2 C ) yn = z(h; l) with h = c� 2kn 2 D ) yn = z(h; l) with h = c� 4k � 1n 2 E ) yn = 1n 2 F ) yn = 1n 2 G ) yn = z(2k + 1; l)n 2 H ) yn = z(2k + 1; l)n 2 I ) yn = 1� (2k + 1; l)n 2 J ) yn = 1� (2k + 1; l)These sets are of two types: A, B, C, D are inter-vals with a new parameter h, ranging in the inter-val 1 � h � 2k; while E, F , G, H, I, J are isolatedpoints.
r c (l; c; r)n�2 (l; c; r)n�4k�3 (l; c; r)n�8k�4 yn�2 yn�4k�3 yn�8k�41 c = 2k+1 (l�1; 6k+2; 3) (l�1; 5k+2; 2) (l�1; 4k+2; 1) 0 0 01 2k+2 � c � 3k+1 (l; c�1; 3) (l�1; c+3k+1; 2) (l�1; c+2k+1; 1) 0 0 01 c = 3k+2 (l; 3k+1; 3) (l; 2k+1; 2) (l�1; 5k+3; 1) 1 1 z(2k+1; l�1)1 3k+3 � c � 4k+1 (l; c�1; 3) (l; c�k�1; 2) (l�1; c+2k+1; 1) z(c�3k�2; l) z(c�3k�2; l) 01 4k+2 � c � 5k+2 (l; c�1; 3) (l; c�k�1; 2) (l; c�2k�1; 1) z(c�3k�2; l) z(c�3k�2; l) 01 c = 5k+3 (l; 5k+2; 3) (l; 4k+2; 2) (l; 3k+2; 1) z(2k+1; l) 0 01 5k+4 � c � 6k+2 (l; c�1; 3) (l; c�k�1; 2) (l; c�2k�1; 1) 0 0 02 c = 2k+1 (l�1; 6k+2; 4) (l�1; 5k+2; 3) (l�1; 4k+2; 2) 1�z(2k+1; l�1) z(2k+1; l�1) 02 2k+2 � c � 3k+1 (l; c�1; 4) (l�1; c+3k+1; 3) (l�1; c+2k+1; 2) z(c�2k�1; l) 0 02 3k+2 � c � 4k+1 (l; c�1; 4) (l; c�k�1; 3) (l�1; c+2k+1; 2) z(c�2k�1; l) 0 02 c = 4k+2 (l; 4k+1; 4) (l; 3k+1; 3) (l; 2k+1; 2) 1�z(2k+1; l) 1 12 4k+3 � c � 6k+2 (l; c�1; 4) (l; c�k�1; 3) (l; c�2k�1; 2) z(c�4k�2; l) z(c�4k�2; l) z(c�4k�2; l)3 2k+1 � c � 3k (l; c; 1) (l�1; c+3k+1; 4) (l�1; c+2k+1; 3) 0 z(c�k; l�1) z(c�k; l�1)3 c = 3k+1 (l; 3k+1; 1) (l�1; 6k+2; 4) (l�1; 5k+2; 3) 0 1�z(2k+1; l�1) z(2k+1; l�1)3 3k+2 � c � 4k+1 (l; c; 1) (l; c�k�1; 4) (l�1; c+2k+1; 3) 0 z(c�3k�1; l) 03 4k+2 � c � 5k+1 (l; c; 1) (l; c�k�1; 4) (l; c�2k�1; 3) 0 z(c�3k�1; l) 03 c = 5k+2 (l; 5k+2; 1) (l; 4k+1; 4) (l; 3k+1; 3) 0 1�z(2k+1; l) 13 c = 5k+3 (l; 5k+3; 1) (l; 4k+2; 4) (l; 3k+2; 3) z(2k+1; l) z(1; l) z(1; l)3 5k+4 � c � 6k+2 (l; c; 1) (l; c�k�1; 4) (l; c�2k�1; 3) 0 z(c�5k�2; l) z(c�5k�2; l)4 c = 2k+1 (l; 2k+1; 2) (l�1; 5k+3; 1) (l�1; 4k+2; 4) 1 z(2k+1; l�1) z(1; l�1)4 2k+2 � c � 3k (l; c; 2) (l�1; c+3k+2; 1) (l�1; c+2k+1; 4) z(c�2k�1; l) 0 z(c�2k; l�1)4 3k+1 � c � 4k (l; c; 2) (l; c�k; 1) (l�1; c+2k+1; 4) z(c�2k�1; l) 0 z(c�2k; l�1)4 c = 4k+1 (l; 4k+1; 2) (l; 3k+1; 1) (l�1; 6k+2; 4) z(2k; l) 0 1�z(2k+1; l�1)4 4k+2 � c � 6k+1 (l; c; 2) (l; c�k; 1) (l; c�2k�1; 4) 0 0 z(c�4k�1; l)4 c = 6k+2 (l; 6k+2; 2) (l; 5k+2; 1) (l; 4k+1; 4) 0 0 1�z(2k+1; l)

TABLE 2. Parameter values for the proof of Lemma 3.1.
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4. PRECISELY THREE EVEN TERMSMost of this section will be devoted to proving thefollowing crucial fact.
Lemma 4.1. Suppose that yp = yq = 1 with p 6= q,and that p+ q > 20k+13. Then there exists d 6= 0such that yp+d = yq�d = 1 with p + d 6= q � d andp+ d 6= q.
Proof. Assume that p 2 X and q 2 Y , and setw = 8(2k + 1). For every pair (X;Y ), we have to�nd an admissible value of d; there are 55 cases, not

counting reversals, which are dealt with using thesymmetry (p; q; d) ! (q; p;�d). We illustrate thederivation of these admissible values by focusingon six cases, summarized in Table 3. The remain-ing 49 cases can be subjected to a similar analysis(see also Electronic Availability at the end of thisarticle).
Case 1: Isolated points mapped to isolated points. Sup-pose that (X;Y ) = (E;F ). Thenp = wlp + 4(2k + 1) + 2;q = wlq + 4(3k + 1) + 3:(X; Y ) d (X0; Y 0) (lp+d; lq�d) (hp+d; hq�d) condition(s)(E; F ) w (E; F ) (lp+1; lq�1) lq > 0�w (E; F ) (lp�1; lq+1) lp > 0 (NB: lp > 0 or lq > 0)(H; H) 12k+1 (C; A) (lp+1; lq) (2k; 1)12k+3 (A; C) (lp+1; lq) (2k; 1)12k+5 (I; E) (lp+1; lq)(C; E) 4k+3 (B; H) (lp; lq�1) (hp; ) z(2k+1; lq�1) = 12 (A; J) (lp; lq�1) (hp; ) z(2k+1; lq�1) = 0(A; C) wlq�4hp (E; C) (lp+lq ; 0) ( ; hp+hq) hp+hq � 2kwlq�4hp (E; D) (lp+lq ; 0) ( ; hp+hq�2k�1) hp+hq > 2k+1�2 (C; A) (lp; lq) (hp; hq) lp 6= lq4hq�4hp (A; C) (lp; lq) (hq ; hp) lp = lq; hp 6= hq(A; B) 4k+1 (B; A) (lp; lq) (hp; hq) lp 6= lq4hq�4hp (A; B) (lp; lq) (hq ; hp) lp = lq; hp 6= hqw (A; B) (lp+1; lp�1) (hp; hp) lp = lq; hp = hq ; h0+hi = 0; l0+li = 1 (NB: lp > 0)�4 (E; B) (lp; lp) ( ; 2) lp = lq; hp = hq = 1; h0+hi = 1; l0+li = 0�4 (A; B) (lp; lp) (hp�1; hp+1) lp = lq; 1 < hp = hq < 2k; h0+hi = 1; l0+li = 0�4 (A; H) (lp; lp) (2k�1; ) lp = lq; hp = hq = 2k; h0+hi = 1; l0+li = 0w�4 (E; B) (lp+1; lp�1) ( ; 2) lp = lq; hp = hq = 1; h0+hi = 1; l0+li = 1 (NB: lp > 0)w�4 (A; B) (lp+1; lp�1) (hp�1; hp+1) lp = lq; 1 < hp = hq < 2k; h0+hi = 1; l0+li = 1 (NB: lp > 0)w�4 (A; H) (lp+1; lp�1) (2k�1; ) lp = lq; hp = hq = 2k; h0+hi = 1; l0+li = 1 (NB: lp > 0)(C; I) 2 (A; A) (lp; lq) (hp; 2k) z(2k+1; lq�1) = 1 and lp 6= lq8k+4 (D; J) (lp; lq�1) (hp; ) z(2k+1; lq�1) = 0�8k�4 (D; J) (lp�1; lq) (hp; ) lp odd (NB: true if z(2k+1; lq�1) = 1 and lp = lq)

TABLE 3. Admissible values of d for representative pairs (X;Y ) in the proof of Lemma 4.1 and the discussionfollowing Theorem 4.2. We indicate the new sets (X 0; Y 0) for which p + d 2 X 0 and q � d 2 Y 0, and thecorresponding new values for l and h. If there are several lines without conditions for a given pair (X;Y ), eachof them is a solution. If there are several lines with conditions, at least one of the conditions is true for eachrelevant value of (p; q).
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Choose s 6= 0 such that �lp � s � lq. This isalways possible, except when lp = lq = 0, in whichcase p + q = 20k + 13, which is excluded. (InTable 3, we have taken s = �1:) Let d = sw. Thenp+ d = w(lp + s) + 4(2k + 1) + 2 > 0;q � d = w(lq � s) + 4(3k + 1) + 3 > 0;and p + d 2 E = X 0, q � d 2 F = Y 0, henceyp+d = yq�d = 1: This con�rms the parameter val-ues appearing on the �rst two lines of Table 3. Fi-nally, p + d 6= q � d since X 0 6= Y 0, and p + d 6= qsince X 0 6= Y . (This �nal step is often trivial, sowe omit it from now on except in Case 4.)
Case 2: Isolated points mapped to interval endpoints.Suppose that (X;Y ) = (H;H). Thenp = wlp + 4(5k + 2) + 3; yp = z(2k + 1; lp);q = wlq + 4(5k + 2) + 3; yq = z(2k + 1; lq):Since yp = yq = 1, we know that z(2k + 1; lp) =z(2k+1; lq) = 1 and hence lp and lq are necessarilyeven. Let d = 12k + 1. Thenp+ d = w(lp + 1) + 4(4k) + 4;q � d = wlq + 4(2k + 2) + 2:We see that p + d 2 C, lp+d = lp + 1, hp+d = 2kand q � d 2 A, lq�d = lq, hq�d = 1. To prove thatd = 12k + 1 is admissible, note thatyp+d = z(hp+d; lp+d)= z(2k; lp + 1) = z(2k + 1; lp) = yp = 1since lp is even and by Lemma 2.1(b). Note alsothat yq�d = z(hq�d; lq�d) = z(1; lq) = 1because lq is even. (Two other admissible valuesfor d are also given in Table 3.)
Case 3: Mixed cases mapped to mixed cases. Supposethat (X;Y ) = (C;E). Thenp = wlp + 4(2k + hp) + 4;q = wlq + 4(2k + 1) + 2:

There are two subcases. First assume thatz(2k + 1; lq � 1) = 1:Let d = 4k + 3; thenp+ d = wlp + 4(3k + 1 + hp) + 3;q � d = w(lq � 1) + 4(5k + 2) + 3:We see that p + d 2 B, lp+d = lp, hp+d = hp andq � d 2 H, lq�d = lq � 1. Thereforeyp+d = z(hp; lp) = yp = 1;yq�d = z(2k + 1; lq � 1) = 1by assumption.In the second subcase, assume instead thatz(2k + 1; lq � 1) = 0:Let d = 2. The analysis is similar to the �rst sub-case.
Case 4: Intervals mapped to intervals (first example).Suppose that (X;Y ) = (A;C): Thenp = wlp + 4(2k + 1 + hp) + 2;q = wlq + 4(2k + hq) + 4:Again, there are two subcases. First assume thathp + hq 6= 2k + 1. Let d = wlq � 4hp; thenp+ d = w(lp + lq) + 4(2k + 1) + 2;q � d = 4(2k + hp + hq) + 4:We see that p+ d 2 E, hence yp+d = 1. If we have2 � hp + hq � 2k, then q � d 2 C, lq�d = 0 andhq�d = hp + hq, hence yq�d = z(hp + hq; 0) = 1. If2k + 2 � hp + hq � 4k, then q � d 2 D, lq�d = 0and hq�d = hp + hq � 2k � 1, henceyq�d = z(hp + hq � 2k � 1; 0) = 1:In the second subcase, assume that lp 6= lq orhp 6= hq. (Thus the two subcases are not disjoint,but they certainly exhaust all possibilities, sincehp = hq implies that hp + hq cannot be odd).If lp 6= lq, let d = �2. Then p+ d 2 C, lp+d = lp,hp+d = hp, hence yp+d = yp = 1; also q � d 2 A,
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lq�d = lq, hq�d = hq, hence yq�d = yq = 1. HereX 0 = Y , so we need lp 6= lq to ensure p+ d 6= q.If lp = lq and hp 6= hq, let d = 4(hq � hp). Thenp+ d 2 A, lp+d = lp = lq, hp+d = hq, hence yp+d =yq = 1; also q � d 2 C, lq�d = lq = lp, hq�d = hp,hence yq�d = yp = 1. Here X 0 = X, so we needhp 6= hq to ensure d 6= 0.
Case 5: Intervals mapped to intervals (second example).Suppose that (X;Y ) = (A;B). Thenp = wlp + 4(2k + 1 + hp) + 2;q = wlq + 4(3k + 1 + hq) + 3:If lp 6= lq or hp 6= hq, the procedure is similar tothat for the second subcase of Case 4. Thus assumethat lp = lq = l and hp = hq = h. Let d = w(l0+li)� 4(h0 + hi), where we now utilize Lemma 2.1(d).(This de�nition gives rise to d = w, d = �4 andd = w � 4 in Table 3.) Thenp+d = w(l+ l0+ li)+4(2k+1+h�h0�hi)+2;q�d = w(l� l0� li)+4(3k+1+h+h0+hi)+3:We have lp+d = l + l0 + li and� p+ d 2 A and hp+d = h� h0 � hi if h > 1,p+ d 2 E if h = 1;in either case, yp+d = z(h�h0�hi; l+ l0+ li) = 1.We also have lq�d = l � l0 � li � 0 and� q�d2B; hq�d=h+h0+hi if h<2k or hi=0,q�d2H if h=2k and hi=1;in either case, yq�d = z(h+h0+hi; l� l0� li) = 1.This completes the sketch of the proof of thelemma. The last pair (C; I) in Table 3 is discussedbelow. �

Theorem 4.2. For any k � 1, the 1-additive se-quence (4; 4k + 1) has precisely three even terms.Equivalently , (4; 4k + 1) = h4; 4k + 1i.
Proof. Set v = 4k + 1, and suppose (4; v) has aneven term exceeding 4v+4. Let e be the least sucheven term. Observe that e is the �rst point of dis-agreement between (4; v) and h4; vi, so yn indicatesmembership in (4; v) for n < 12e + 6k + 4. Since4 + (4v + 4) = (v + 4) + (3v + 4) and (2v + 4) +(4v + 4) = (3v + 2) + (3v + 6), we may rule outthe possibility that e is a sum of two even termsof (4; v). Hence e = f + g, where f and g are oddterms. Settingp = 12(f � 1) + 6k + 4; q = 12(g � 1) + 6k + 4;we have yp = yq = 1 andp+ q = 12e+ 12k + 7> 12(4v + 8) + 12k + 7 = 20k + 13:The last inequality follows from Table 1.By Lemma 4.1, there exists d 6= 0 for whichyp+d = yq�d = 1 with p+ d 6= q � d and p+ d 6= q.Thene = �2(p+d�6k�4)+1�+�2(q�d�6k�4)+1�;which is a contradiction since e = f + g was theunique representation of e as a sum of two oddterms f < g. �Again, the experimental origins of Lemma 4.1 areworth mentioning. We used a model with stripsof paper in order to �nd candidates for d (modulow). Most of the cases can be solved with values ofd such that (p; q) 2 (X;Y ) implies (p+ d; q� d) 2(X 0; Y 0), with intervals being mapped to intervals,and isolated points to isolated points or intervall = 0 l = 1r =c = 1 2 3 42k+1 1 2 3 42k+2 1 2 3 43k+1 1 2 3 43k+2 1 2 3 44k 1 2 3 44k+1 1 2 3 44k+2 1 2 3 45k+1 1 2 3 45k+2 1 2 3 45k+3 1 2 3 46k+1 1 2 3 46k+2 1 2 3 42k+1 1 2 3 42k+2E EC CA AF B C� A� I D B� H G D� J

FIGURE 1. The proof of Lemma 4.1 was helped by the use of strips marked with ticks and letters A{J inappropriate positions.
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endpoints. These conditions drastically reduce thenumber of candidates.To construct the model, choose a (not necessarilyinteger) value of k � 3, and take two strips of ruledpaper at least 32k+ 16 units long (one might takea unit to be around 2mm, with k = 3:25). Thestrips are graduated from (l; c; r) = (0; 2k+1; 1) to(1; 6k+2; 4). Along the edge of each strip, mark inthree colors the positions of the isolated points E{J , the interval starting points A{D and the intervalending points A�{D� (each point appears twice, forl = 0 and l = 1). Figure 1 shows one such strip.To use the model, place one strip against theother, so that point X on strip 1 matches point Yon strip 2, and so that their overlap encompassesmore than half of their length. Consider the case(X;Y ) = (C; I), shown in Figure 2. Matches ofmarkings indicate candidates for (X 0; Y 0), in thiscase (C; I), (A;A�), (A�; A), (I; C), (D;J), (H;G),(G;H), (J;D). For the last four, the sum of l'shas to decrease by 1. Since X is an interval, X 0should be one too. Thus three cases are left: (C; I),(A;A�) and (D;J). Of these, mapping (C; I) to(C; I) would involve changing l; this is not eas-ily done for intervals since values of z(h; l) becomeperturbed. Mapping to (A;A�) and (D;J) may ormay not work: a few computations give the threeconditions listed in Table 3. (Sometimes some morethought is needed to �nd the right variation of l).This method does not exhaust all the cases, butonly 11 out of 55 pairs (X;Y ) are left for which itis necessary to vary h (see cases 3{5 in the proofof Lemma 4.1).

5. ASYMPTOTIC DENSITYTheorem 4.2 allows statements about the sequencefyng to carry over to statements about the se-quence (4; v), where v = 4k + 1 with k � 1. Weexploit this connection here, obtaining formulas forthe fundamental di�erence and the period of (4; v).
Lemma 5.1. The sequence fyng is periodic with min-imal period P = 2m+3(2k + 1), where m is thesmallest integer satisfying 2m > 2k + 1.
Proof. We have expressed fyng as a function ofseveral z(h; l), where h � 2k + 1. Hence it is clearby Lemma 2.1(c) that yn+P = yn for all n. To showthat the period p of fyng is indeed P (and not oneof its divisors), observe �rst that 0 = yp+1 = yp+2 =� � � = yp+8k+3. By Lemma 3.1, we know thatywl+8k+6 = ywl+4(2k+1)+2 = 1;ywl+12k+7 = ywl+4(3k+1)+3 = 1for all l, thatywl+16k+2 = ywl+4(4k+2)+4 = z(1; l) = 1if l is even, and thatywl+16k+8 = ywl+4(4k+1)+4 = 1� z(2k + 1; l) = 1;ywl+24k+12 = ywl+4(6k+2)+4 = 1� z(2k + 1; l) = 1if l is odd. This means that p cannot be in thefollowing intervals:[wl + 3; wl + 8k + 5] for all l,[wl + 4k + 4; wl + 12k + 6] for all l,[wl + 8k + 9; wl + 16k + 11] if l is even,[wl + 8k + 5; wl + 16k + 7] if l is odd,[wl + 16k + 9; wl + 24k + 11] if l is odd.

l = 0 l = 1strip 1

strip 2 (backwards)l = 1 l = 0
E EC CA AF B C� A� I D B� H G D� J

ECAFB C�C� A�A� II DB�HGD�J
FIGURE 2. Juxtaposing two strips so that point X on strip 1 matches point Y on strip 2 shows the possiblecandidates for (X 0; Y 0). Here (X;Y ) = (C; I).
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These intervals overlap, covering all positive in-tegers except the points wl+16k+8 when l is odd.Hence the only candidates for pmust be of the formw(l + 1), for l odd. Since p divides P = 2mw, it isclear that l + 1 = 2j for some j � m. Note thatj = m� 1 is impossible becausey20k+13 = yw0+4(5k+3)+1 = z(2k + 1; 0) = 1andy20k+13+p = yw(l+1)+4(5k+3)+1 = z(2k + 1; 2m�1) = 0(since 2m�1 < 2k + 1 < 2m). Therefore p = P . �
Lemma 5.2. The number of ones in a (minimal) pe-riod of the sequence fyng is

2m+2 2kXj=0 2�#(j);
where m is the smallest integer satisfying 2m >2k + 1.
Proof. By Lemma 2.1(c), we can writePXn=1 yn= 2m�1Xl=0 4Xr=1 6k+2Xc=2k+1 ywl+4c+r= 2m�1Xl=0 �z(2k+1; l)+ 2kXj=0 z(j; l)+2k+1Xj=0 z(j; l)+ 2kXj=1 z(j; l)+1�z(2k+1; l)

+ 2kXj=1 z(j; l)+1�z(2k+1; l)�
=4 2m�1Xl=0 2kXj=0 z(j; l)=4 2kXj=0 2m�1Xl=0 z(j; l)
=2m+2 2kXj=0 2�#(j): �

Definition. Let (u; v) = a1; a2; a3; : : : be a regular1-additive sequence. The smallest positive inte-ger N such that aN+n+1 � aN = an+1 � an for allsu�ciently large n is called the period. The value

D = aN+n�an for large n is called the fundamentaldi�erence.
Theorem 5.3. Assume 5 � v � 1 mod 4, and let mbe the largest integer satisfying 2m < v. Then the1-additive sequence (4; v) is regular with fundamen-tal di�erence D = 2m+3(v + 1) and period

N = 2m+2 (v�1)=2Xj=0 2�#(j):
In particular, if 5 � v = 2m + 1, thenN = 2m+1 + 8 � 3m�1;which con�rms an observation by Boston (privatecommunication, 1993). Techniques from [Harborth1977] and [Stolarsky 1977], coupled with Theo-rem 5.3, can be applied to prove the following re-sult.
Corollary 5.4. Let �(v) = N(v)=D(v) denote theasymptotic density of (4; v), let � = log 3= log 2 �1:58496, and let c0 = (1 � 21=(��2))��2. For allk � 1, we have14(2k + 1)��2 � �(4k + 1) � 14c0(2k + 1)��2< 0:27261 (2k + 1)��2;limk!1�(4k + 1) = 0;lim infk!1 (2k)2���(4k + 1) = 14 ;lim supk!1 (2k)2���(4k + 1) > 17 3��1 > 0:27164:
Proof. Let�(x) = x�1Xj=0 2�#(j) for x � 1;
and note that �(x) = 4x ��(2x�1) for odd x. Theproof that 1 � x1���(x) � c0 (5.1)is by induction. If (5.1) is true for 1 � x � 2s, weuse the recursion�(2s + x) = �(2s) + 12�(x)
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to obtain( 32)s + 12x��1 � �(2s + x) � ( 32)s + c02 x��1:De�ne a new function'(x; c) = ( 32)s + 12cx��1(2s + x)��1for c � 1 and 0 � x � 2s. Then one can check bydi�erentiation that ' has exactly one extremum,say x0, for �xed c. Since '(0; c) = 1, '(2s; c) =13(2 + c) and '(x0; c0) = c0, we deduce that theminimum value of '(x; 1) is 1 and that the maxi-mum value of '(x; c0) is c0. This proves (5.1) for1 � x � 2s+1 and completes the induction.We also have(2s � 1)1�� �(2s � 1)! 1as s!1 and� sXi=0 22i�1���� sXi=0 22i�! 17 3��1as s!1. �Improvements can be made in the lower bound forthe limit superior, analogous to the treatment in[Harborth 1977].It's interesting that � is the fractal dimension ofPascal's triangle modulo 2 [Wolfram 1984]. This isnot surprising in view of the origin of Lemma 3.1.
6. QUESTIONSWe have proved above that the 1-additive sequence(4; 4k + 1), for k � 1, has precisely three eventerms, and we have determined formulas for thefundamental di�erence and period as well. Con-jecture 4 and part of Conjecture 3 in [Finch 1992b]have therefore been solved.A resolution of similar issues for (4; 4k + 3), fork � 1, is unlikely soon. The chief reason for thispessimism is that no empirical patterns have beendiscovered for the fundamental di�erences [Finch1992b], so closed-form expressions analogous to theones in Lemma 3.1 do not seem to exist. A secondreason is that these sequences often have extended

transient phases prior to the onset of regularity,which makes computations more di�cult for thecase (4; 4k+3) than for (4; 4k+1). A third reasonis that the relevant indicator sequences fyng, givenfor n > 8k + 8 byyn = �(yn�2+yn�4k�5+yn�8k�8�1);yn = 1 if and only if 2(n�6k�8)+32 h4; 4k+3i;with initial conditions(y1; y2; : : : ; y8k+7; y8k+8) = (0; 0; : : : ; 0; 1);do not generally display patterns akin to Pascal'striangle, which, as we recall, is what led to theproof of Lemma 3.1.There is, however, an exception. The special 1-additive sequence (4; 4k+3) with k = 2m�1, wherem � 1, has the following closed-form expression foryn, where 1 � n � n0 = 32(k + 1)2. Write n asn = 16(k + 1)l + 4c+ r with l � �1, 2k + 2 � c �6k + 5 and 1 � r � 4. Then yn equals0 if r= 1 and 2k+2� c� 3k+2;z(c� 3k� 3; l) if r= 1 and 3k+3� c� 5k+4;z(c� 5k� 5; l+1) if r= 1 and 5k+5� c� 5k+ l+5;0 if r= 1 and 5k+ l+6� c� 6k+5;z(c� 2k� 2; l) if r= 2 and 2k+2� c� 4k+3;0 if r= 2 and 4k+4� c� 6k+5;0 if r= 3 and 2k+2� c� 5k+4;z(c� 5k� 5; l+1) if r= 3 and 5k+5� c� 5k+ l+5;0 if r= 3 and 5k+ l+6� c� 6k+5;0 if r= 4 and 2k+2� c� 2k+ l+1;z(c� 2k� 1; l) if r= 4 and 2k+ l+2� c� 4k+2;0 if r= 4 and 4k+3� c� 4k+ l+3;z(c� 4k� 3; l) if r= 4 and 4k+ l+4� c� 6k+4;�(l+1) if r= 4 and c= 6k+5:Here we have two kinds of structures: Pascal's tri-angles as before, and Pascal's triangles cut in halfalong a diagonal. The upper bound n0 on n waschosen so that we might make the following con-jecture:
Conjecture 6.1. Suppose that 20k + 23 < n < n0.Then Xp+q=np<q ypyq 6= 1 and Xp+q=n0p<q ypyq = 1:
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A corollary of this result would be that the se-quence (4; 2m+2 � 1), for m � 1, has at least foureven terms. We have not attempted a proof ofthis, although it would be, in principle, similar toLemma 4.1.It is known that the 1-additive sequence (4; 7)has fundamental di�erence D = 11; 301; 098 andperiod N = 1; 927; 959 after a transient phase ofapproximately 1:36� 107 terms [Finch 1992b]. Noperiodicity has been detected for the 1-additive se-quence (4; 15), even up to 2:12 � 1011 terms. Itis doubtful that signi�cant progress can be madeconcerning (4; 2m+2� 1) soon, given the computa-tional barriers involved.Some progress has been made on Conjecture 8of [Finch 1992b]. Assume that the 1-additive se-quence (7; v), where v � 8 is even, has precisely2 + 12v even terms. Cassaigne has developed acomputer-assisted proof that the fundamental dif-ference D(7; v) = 112(v + 2)for v � 38. Similar formulas for D(u; v) could beproved under similar assumptions, for odd u sat-isfying 9 � u � 19 and for suitable large even v.The problem of writing an expression for D(u; v)valid for in�nitely many u remains open.
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