A Class of 1-Additive Sequences
and Quadratic Recurrences

Julien Cassaigne and Steven R. Finch

CONTENTS

. Introduction

. Preliminaries

. Ternary Quadratic Recurrence
. Precisely Three Even Terms

. Asymptotic Density

S VT A WN =

. Questions
References
Electronic Availability

For odd v > 5, Schmerl and Spiegel have proved that the
1-additive sequence (2,v) has precisely two even terms and,
consequently, is regular. For 5 < v = 1 mod 4, we prove,
using a different approach, that the 1-additive sequence (4, v)
has precisely three even terms. The proof draws upon the
periodicity properties of a certain ternary quadratic recurrence.

Unlike the case of (2,v), the regularity of (4,v) can be cap-
tured by expressions in closed form. For example, its period
can be written as an exponential sum of binary digit sums.
Therefore the asymptotic density A(v) of (4,v) tends to 0 as
v — 00, but is misbehaved in the sense that

2—log, 3
liminf (%) = Aw) =1,

V—00

v=1mod4

2—log, 3

lim sup (g) " A(v) > 0.27164.
v=1mod4

This is proved using techniques adapted from Harborth and

Stolarsky.

1. INTRODUCTION

Beginning with two positive integers v < v, Ulam
[1964] defined the 1-additive sequence (u,v) as

(u,v) = aq,a2,as,. ..

where a, = u, a; = v and a,,, for n > 3, is the least
integer exceeding a,,_; and possessing a unique rep-
resentation of the form a; + a;, for i < j.

These sequences have been studied by, among
others, Queneau [1972] and Finch [1991; 1992a;
1992b]. Many 1l-additive sequences appear to be-
have quite erratically. For example, all the se-
quences (1,v) for any v > 1, as well as the sequence
(2,3), defy any simple characterization.
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In [Finch 1992a] it was conjectured that the se-
quence (2,v), for odd v > 5, has precisely two even
terms. Schmerl and Spiegel [1994] and, indepen-
dently, Shirriff (private communication, 1993) have
proved this conjecture. It then follows that (2,v) is
regular in the sense that the sequence of successive
is eventually peri-
odic. As a corollary, (2,v) has positive asymptotic
density.

The following conjecture [Finch 1992b, Conj. 3]
is based on empirical evidence obtained by com-
puting several thousand terms of the relevant se-
quences directly according to the definition (see ta-
bles in [Finch 1992b]).

differences as — ay, az — as, ...

Conjecture 1.1. Assume v > 5 is odd.

a) If v # 2™ — 1 for any m > 3, the sequence (4, v)
has precisely three even terms: 4, 2v + 4, and
4v + 4.

(b) When v = 2™ — 1 for some m > 3, the sequence
(4,v) has precisely four even terms: 4, 2v + 4,
4v+4, and 2(2v® + v — 2).

A general proof of this conjecture, analogous to
those of Schmerl and Spiegel or Shirriff, has not
been found. However, we offer in Section 4 a proof

2(2i, 2§ +1) = 2(4, j),

in the case v = 1 mod 4. This is possible only
because of the periodicity properties of a certain
ternary quadratic recurrence (Section 3). In Sec-
tion 5 we derive a formula for the asymptotic den-
sity of (4,v), for v = 1 mod 4. Section 6 concludes
with several related questions that remain open.

2. PRELIMINARIES

Assume that v > 5 is odd. Table 1 lists all terms
of the sequence (4,v) up to 4v + 8, from which it
follows that (4,v) has at least three even terms.

There are four cases, depending on the residue of

v modulo 8. Notice, in particular, that the only

even terms < 4v + 8 are 4, 2v + 4, and 4v + 4.
For non-negative h and [, let z(h,l) be the bi-

nomial coefficient (h;rl) modulo 2. For h < 0 or

1 <0,let z(h,l) =0. Then:

Lemma 2.1. (a) For h,l > 0, we have z(h,l) =
if and only if the bitwise “and” of the binary
representations of h and l is zero [Long 1981].

(b) A recursive definition of z is given by

2(2i,27) = 2(4, §), 2(2i+ 1, 2j) = 2(i, ),
2(2i+1,2j+1) =0,

3v+ 10 + 85} 1/8

v+ 10 4 85} 9/8

3v+10+8_7}(v 11)/ 8,

5 mod 8 1 mod & 3 mod 8 7 mod 8
4, 4, 4, 4,
{v+ 45359, fo+ 47}, {v+ 45350, {v+ 45350,
20 + 4, 2v + 4, 2v + 4, 2v + 4,
{20+ 7+ 4537/, {20+ 7+ 4537/, {2v+ 5+ 45}/ {2v+ 5+ 45}/
{3v+4+8j, {3v+4+8j, {3v+ 4+ 8j, {3v+4+8j,
3v + 6 + 8j, 3v + 6 + 8j, 3v + 6 + 8j, 3v + 6 + 8j,

3v+10 + 85778,

4v —1, 4v 4+ 3, dv+1, 4v 44,
dv+1, 4v 44, 4v + 3, 4v + 5,
4v 44, 4dv+5 4v 44, dv+7
4v 4+ 5, dv+7
v+ 7
TABLE 1. The initial terms of the 1-additive sequence (4,v), for v > 5 odd, are determined by the residue

of v modulo 8. The terms are listed vertically to facilitate comparison among the four cases. The notation

{fi(5),---, fn(j)}g denotes the subsequence f1(0),...

and the empty subsequence when k& < 0.

yfn(0), f1(1), .oy fu (1), ..oy fi(R), - ..

, fn(k) when k > 0
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together with the initial conditions
2(0,0) =1,
2(0,—1) = 2(—1,0) = 2(—-1,—-1) = 0.

(c) For a fized h, the sequence z(h,l) is periodic
with (minimal) period 29, where g is the small-
est integer such that 29 > h. Moreover

29 -1

> a(h, 1) =297 #®)

1=0
[Wolfram 1984], where #(h) denotes the number
of ones in the binary erpansion of h and the
summation s ordinary addition.

(d) Let h°, ht,... be the bits in the binary expan-
sion of h, starting with the least significant bit,
and likewise for [°,1*,.... Definei > 0 to be
the smallest integer for which (I*,h*) # (1% h°).
Then z(h,l) = 1 implies

2(h—h°—=h* I+1°+1") = z(h+h°+h", 1-1°—1") = 1.

To prove this last statement, observe that by part
(a) we cannot have (I%,h/) = (1,1) for any j. If
=10 =0 or h° = h* = 0, the conclusion is
immediate. By symmetry, it suffices to consider
the case (I° h° 1", h*) = (1,0,0,1). We have

[=---0(1)1 and h=---1(0)0

in binary, where the digit in parentheses is repeated
1 — 1 times and where the beginning is unspecified.
Then

h—h’—hi=h—-1=---0(1)1
I+ +0'=14+1=---1(0)0
h+h®+h'=h+1=---1(0)1

11— F=1-1=---0(1)0,

from which the desired formula follows.

3. TERNARY QUADRATIC RECURRENCE

Assume for the remainder of this paper that v =
4k + 1, where k£ > 1, and let aq,as,... be the se-
quence (4,v). Let ¢ satisfy a; = 4v + 4; one sees

from Table 1 that ¢t = £(7v +41) if v = 1 mod 8
and t = ¢(7Tv 4 37) if v = 5mod 8. Define the
infinite sequence

(4,v) = by, ba, bs, . ..

where b, = a, for 1 < s <tandb,, forn>t+1,is
the least odd integer exceeding b,,_; and possessing
a unique representation of the form b;+b;, for i < j.
The claim that (4, v) has precisely three even terms
is equivalent to the claim that (4,v) = (4,v). We
shall associate to (4,v) a certain ternary quadratic
recurrence. Key properties of the recurrence will
then give rise to a proof of the claim.

Define z,, for n > 8k + 4, as the number of
representations of 2(n —6k —4)+1 as a sum b; +b;,
with ¢ < j. Since a sum of two integers is odd if
and only if exactly one of the integers is even, it
follows that

Ty =0(Tp 2—1)+6(Tn gk 3—1)+6(x, sxa—1),

(3.1
where §(0) = 1 and 6(r) = 0 for r # 0. One way to
simplify this formula is to let z; denote z,, mod 3;
we obtain the ternary quadratic recurrence

z, =2(x;, o(Th o+ 1)+, 4 5(Th 4 3+ 1)
+ 2 g 4T g 4+ 1)) mod 3

with initial data

(:BL J);, Tt m;k—i-?n m;k—i—z}) = (0> 07 )ty 0> 1)

The periods of {z} and {x,} are clearly the same
(since {z:} and {z,} can be expressed in terms of
each other). There is, however, no known general
treatment of quadratic recurrences available.

An alternative way to simplify (3.1) is to let y,, =
6(z, — 1); then y, indicates mere membership in
(4,v). We obtain in this case the binary nonlinear
recurrence

Yn = O(Yn—2 + Yn—ak—3 + Yn—sk—a — 1) (3.2)
with initial data

(Y1, Y25 - - > Ysk+3, Yskta) = (0,0,...,0,1).
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The periods of {y, } and {z, } are again clearly the
same. It is remarkable that a closed form expres-
sion for y, exists, as we proceed to show.

Lemma3.1. Writen asn = 8(2k+1)l+4c+r, with
[>-1,2k+1<c<6k+2andl1<r<4. Then
Yn, as defined by (3.2), is given by

0 ifr=1and 2k+1<c<bk+2,
z(2k+1,1) if r=1 and c =5k + 3,

0 ifr=1and bk+4<c<6k+2,
z2(c—=2k—1,1) ifr=2and2k+1<c<4k+1,
0 ifr=2and 4k +2 <c<6k+2,
0 ifr=3 and 2k +1 < c < 3k,
2(c=3k—1,1) ifr=3 and3k+1<c<bk+2,
0 ifr=3 and bk +3 <c <6k +2,
z(c—2k, 1) ifr=4 and 2k +1 < ¢ < 4k,

1-2(2k+1,1) ifr=4 and c=4k+1,
z(c—4k—1,1) ifr=4 and 4k+2<c<6k+1,
1—2(2k+1,1) ifr=4 and c=6k+2.

Proof. By induction on n, using the relation
z(h,l) =z(h—1,1) + z(h, l — 1) mod 2.

If1 <n < 8k+4, thenl = —1 and vy, is eas-
ily shown to be correct. The inductive step as-
sumes that the claim is proved for values less than
n, where n > 8k + 5. We will indicate the depen-
dence of (I, ¢, ) on such values, but not at n itself.
Table 2 exhibits the 25 cases with relevant param-
eter values. Using this, it is a straightforward (al-
though tedious) matter to complete the proof. For
example, if r = 3 and ¢ = 5k + 3, we get

Tn=Yn—2 +yn74k73+yn78k74 = 22(17 l)+2(2k+1, l)

If [ is even, then z(1,l) = 1 and hence y,, = 0; if
[ is odd, then z(1,l) = 2(2k + 1,]) = 0 and again
Yn = 0. The other cases are similar. O

The experimental origins of Table 2 are worth com-
menting on. The information we had at start was
the conjectured period, P = (2k + 1)2™3, of the
sequence {y, }, where m is the smallest integer sat-
isfying 2™ > 2k+1. The fact that P is a product is
a hint of some additional structure. We arranged
{yn}, for small k, into rectangles of shape a x b,

with ab = P. The idea behind this was that a
period like ab can be the result of the superposi-
tion of two phenomena of period a and b (at least
when the factors are relatively prime), and when
one writes the sequence in rows of length b, any
regularity in columns is a symptom of something
of period a.

Here the most striking result was for a = 2m*!
and b = 4(2k 4+ 1): vertical, horizontal, and di-
agonal lines clearly appeared, for every value of k,
reminiscent of Pascal triangle mod 2. For example,
with k& = 3, we obtained

0000000000000000000000000001
0101010101010111011101110110
0011001100110011100100010000
0100000101000011010000110101
0010000100100001000000010001
0101010000000011011101000001
0011001000000001000100000001
010000000000001 1010000000001
0010000000000001000000000001
010101010101011000100010001 1
0001000100010000000000000001
0100000101000010000000100001
0000000100000000000000000001
0101010000000010001000000001

0001000000000000000000000001
0100000000000010000000000001

Some patterns, especially in the bottom right, in-
dicated that something happens every second row
and every fourth column. This suggested divid-
ing the rectangle into four subrectangles of shape
2(2k 4+ 1) x 2™, according to n mod 4:

00000000000000
00001000000000
00000000000000
00000000000000
00000000000000
00000000000000

00000001111111
00000001010101
00000001100110
00000001000100
00000001111000
00000001010000

00000000001111
11110000001010
10100000001100
11000000001000
10000000001111
00000000001010

00000011111110
11111100101011
01010111001101
10011010001001
00010011110001
11100010100001

00000000000000 00000001100000 00000000001100 01000011000001
00000000000000 00000001000000 00000000001000 10000010000001

The second and third subrectangles are clearly Pas-
cal’s triangle shifted by 2k + 1 and 3k + 1. The
fourth is more complicated, but can be interpreted
as two overlapping triangles (with addition mod 2
in the two overlap points), shifted 2k and 4k + 1.
With these observations, one can easily guess the
formulas of Lemma 3.1.

The expression for y, in Lemma 3.1 is funda-
mental to our analysis of the 1-additive sequence
(4,4k+1). The values of n for which y,, is possibly
nonzero are of special interest. Before continuing,
we define ten sets of positive integers that depend
on (l,c,r):



These sets, which we will use extensively in the
next section, are disjoint and their union strictly
contains {n : y, = 1} (by Lemma 3.1). Note that
yn takes the following forms over the various sets:
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A={n:r=2and 2k+2<c<4k+1}
B={n:r=3and 3k +2 < c<5k+1}
C={n:r=4and 2k +1<c<4k}
D={n:r=4and 4k+2<c<6k+1}
E={n:r=2and c=2k+ 1}
F={n:r=3and c=3k+1}
G={n:r=1and c=>5k+3}
H={n:r=3and c=5k+2}
I={n:r=4and c=4k+ 1}
J={n:r =4 and c = 6k + 2}

neA
née€B
neC
n €D
neklk
neF
neG
neH
nel
ned

points.

S A

Yn

Yn =

Yn
Yn
Yn
Yn
Yn
Yn
Yn
Yn
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=z(h,l) withh=c—2k-1
=z(h,l) withh=c—3k—-1
= z(h,l) withh=c—2k

— 2(h,1) withh=c— 4k —1

— (2k+1,1)
— (2k+1,1)

These sets are of two types: A, B, C, D are inter-
vals with a new parameter h, ranging in the inter-
val 1 < h < 2k; while E, F, G, H, I, J are isolated

T c (bor)n—2 (Lo r)n—ak-3 (l, & T)n—gk—s Yn—2 Yn—ak—3 Yn—8k—4

1 c=2k+1  (I—1, 6k+2 3) (-1, 5k+2 2)  (I—1, 4k+2, 1) 0 0 0

1 2k4+2<c<3k+1l (I, e—13) (I—1, c+3k+1,2) (I—1, c+2k+1, 1) 0 0 0

1 = 3k+2 (4 3k+1,3) (I, 2k+1, 2) (I—1, 5k+3, 1) 1 1 2(2k+1, [—1)

1 3k+3<c<4k+1 (I, c-1, 3) (l, c—k—1, 2) (I-1, c+2k+1,1) z(c—3k—2,1) z(c—3k—2, 1) 0

1 4k+2<c<5k+2 (I, c-1, 3) (l, c—k—-1, 2) (I, c—2k—1, 1) z(c—3k—2, 1) z(c—3k—2, 1) 0

1 c=5k+3 (4, 5k+2 3) (I, 4k+2, 2) @, 3k+2, 1) 2(2k+1, 1) 0 0

1 5k+4<c<6k+2 (L, c=1,3)  ( c—k—1, 2) 1, c—2k—1, 1) 0 0 0

2 c=2k+1  (I—1, 6k+2 4) (-1, 5k+2 3)  (I-1, 4k+2, 2) 1—2(2k+1, I-1) =2(2k+1, I—1) 0

2 2%+2<c<3k+l (I, c=1,4) (I—1, c+3k+1,3) (=1, c+2k+1, 2) z(c—2k—1, 1) 0 0

2 3k+2<c<4k+1 (I, c=1,4) (L c—k—1,3) (=1, c+2k+1, 2) z(c—2k—1, 1) 0 0

2 c=4k+2 (I, ak+1,4) (1, 3k+1, 3) @ 2k+1,2)  1-2(2k+1, 1) 1 1

2 4k+3<c<6k+2 (| c—1, 4) (l, c—k-1, 3) (I, c—=2k—1, 2)  2(c—4k—2,1) 2z(c—4k—2,1) 2(c—4k-21)

3 2k+1<ec<3k (Lel)  (I—1, c+3k+1,4) (I—1, c+2k+1, 3) 0 ek 1-1)  z(c—k 1)

3 c=3k+1 (I, 3k+1,1)  (I-1, 6k+2 4)  (I—1, 5k+2, 3) 0 1-2(2k+1, 1-1) 2(2k+1, (1)

3 3k+2<c<4k+l (Lo 1) (L, c—k—1,4) (I-1, c+2k+1, 3) 0 2(c—3k—1, 1) 0

3 4k+2<c<5k+l (Lo 1) (I, c—k—1, 4) (1, c—2k—1, 3) 0 2(c—3k—1, 1) 0

3 c=5k+2 (4, 5k+2, 1) (1 4k+1, 4) (i, 3k+1, 3) 0 1-2(2k+1, 1) 1

3 c=5k+3 (1, 5k+3, 1) (1, 4k+2, 4) (I, 3k+2, 3) 2(2k+1, 1) (1, 1) 2(1, 1)

3 Bkt4<c<6kt2 (Lo 1) (I, c—k—1, 4) (1, c—2k—1, 3) 0 2(c—5k—2,1)  z(c—5k—2, I)

4 c=2k+1 (I, 2k+1,2)  (I—1,5k+3,1)  (I—1, 4k+2, 4) 1 2(2k+1, [-1) 2(1, 1 1)

4 2%+2<c<3k (L e2 (-1 ct3k+2 1) (I-1 c+2k+1, 4) z(c—2k—1, 1) 0 2(c—2k, 1)

4  3k+1<c<4k 1, ¢ 2) (, c—k, 1) (I-1, c+2k+1, 4) z(c—2k—1,1) 0 z(c—2k, 1—1)

4 c=4dk+1 @, 4k+1,2) (i 3k+1, 1) (1—1, 6k+2, 4) 2(2k, 1) 0 1-2(2k+1, [—1)

4 4k+2<c<6k+l (L ¢ 2) (1, c—k 1) (I, c—2k—1, 4) 0 0 2(c—4k—1, 1)

4 ¢ = 6k+2 @, 6k+2,2) (I 5k+2, 1) @, 4k+1, 4) 0 0 1-2(2k+1, 1)
TABLE 2. Parameter values for the proof of Lemma 3.1.
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4. PRECISELY THREE EVEN TERMS

Most of this section will be devoted to proving the
following crucial fact.

Lemma 4.1. Suppose that y, = y, = 1 with p # q,
and that p+ q > 20k + 13. Then there exists d # 0
such that Ypiq = Yg—a = 1 with p+d # q — d and
pt+d#q.

Proof. Assume that p € X and ¢ € Y, and set
w = 8(2k + 1). For every pair (X,Y’), we have to
find an admissible value of d; there are 55 cases, not

counting reversals, which are dealt with using the
symmetry (p,q,d) — (q,p,—d). We illustrate the
derivation of these admissible values by focusing
on six cases, summarized in Table 3. The remain-
ing 49 cases can be subjected to a similar analysis
(see also Electronic Availability at the end of this
article).

Case 1: Isolated points mapped to isolated points. Sup-

pose that (X,Y) = (E, F). Then
p=wl,+4(2k +1) + 2,
g=wl,+4(3k+1)+3.

(X,Y) d (XY (lptd lg—a) (hp+d> hg—a) condition(s)
E, F w E, F) (Ip+1,1,—1 Ig>0
(&, F) (B, F) a1 ! (NB: I >0 or lg > 0)
—w (E, F) (Ip—1,1,+1) lp >0
(H,H) 12k+1 (C, A) (lp+1, lg) (2k, 1)
12k+3 (A4, C) (lp+1, lg) (2k, 1)
12k+5 (I, E) (Ip+1,1g)
(C,E) 4k+3 (B, H) (lp, lg—1) (hp, -) 2(2k+1,1g-1) =1
2 (A, J) (Ip, 1g—1) (hp, -) 2(2k+1,14—1) =0
(4,C) wlg—4hy (E,C) (lp+lq, 0) (= hp+hq) hp+hg <2k
wlg—4h, (B, D) (Ip+lg, 0) (5, hp+hg—2k—1) hyp+hg > 2k+1
-2 (07 A) (lp7 IQ) (hT-H hQ) lP # lq
4hq—4hy (Aa C) (lp: lq) (hq7 hp) lp =1, hp # hq
(A, B) 4k+1 (B, A) (Ips lq) (hp, hq) lp #1lg
4h,—4h, (A, B) (Ip, 1g) (hg, hp) lp =lg, hp # hq
w (A, B)  (lp+1,1,—1) (hp, hp) lp=1g, hp = hq, RO+h: =0,1+1* =1 (NB: [, > 0)
—4 (E, B) (Ip, 1p) - 2) lp=1lg, hp =hg =1, h0+h* = 1,141 =0
—4 (A, B) (Ip, Ip) (hp—1, hp+1) Iy =1lg, 1 < hp =hg <2k, hO+h* =1,10+1' =0
—4 (A, H) (Ip, 1p) (2k—1, ) lp =lg, hp = hg = 2k, RO+ h* = 1,141 =0
w—4 (E, B) (Ip+1,1,—1)  2) lp=1lg, hp =hg=1,hR°+h* =1,141' =1 (NB: [, > 0)
w—4 (A, B) (lp+1,l,—1)  (hp—1,hp+1) Ip=1g, 1 <hp="hg <2k, hO+h* =1,1+1* =1 (NB:1l, > 0)
w—4 (A, H) (Ip+1,1,-1) (2k—1, ) lp=1g, hp = hqg =2k, WO+h* =1,19+1! =1 (NB:[, > 0)
(C, 1) 2 (4, 4) (Ip, lq) (hyp, 2k) 2(2k+1,lg—1) =1 and l, #1q
8k+4 (D7 J) (lT-H lq_l) (hZH —) Z(2k+17 lq_l) =0
—8k—4 (D, J) (lp—1, 1) (hp, -) lp odd (NB: true if 2(2k+1, lg—1) =1 and [, = lg)

TABLE 3.

Admissible values of d for representative pairs (X,Y) in the proof of Lemma 4.1 and the discussion

following Theorem 4.2. We indicate the new sets (X’,Y"') for which p+d € X' and ¢ — d € Y’, and the
corresponding new values for [ and h. If there are several lines without conditions for a given pair (X,Y), each
of them is a solution. If there are several lines with conditions, at least one of the conditions is true for each

relevant value of (p, q).
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Choose s # 0 such that —I, < s < [,. This is
always possible, except when [, = [, = 0, in which
case p + ¢ = 20k + 13, which is excluded. (In
Table 3, we have taken s = £1.) Let d = sw. Then

p+d=w(l,+s)+4(2k+1)+2>0,
g—d=w(ly—s)+4(3k+1)+3>0,
and p+d € E = X', qg—d € F =Y’ hence
Yp+d = Yq—a = 1. This confirms the parameter val-
ues appearing on the first two lines of Table 3. Fi-
nally, p+d#q—dsince X' #Y', and p+d # ¢q

since X' # Y. (This final step is often trivial, so
we omit it from now on except in Case 4.)

Case 2: lIsolated points mapped to interval endpoints.
Suppose that (X,Y) = (H, H). Then

yp =202k+1,1,),
Y = 2(2k + 1, 1,).

p = wl, + 4(5k + 2) + 3,
q=wl, +4(5k +2)+3,
Since y, = y, = 1, we know that z(2k + 1, 1[,) =

z(2k+1, ;) = 1 and hence [, and [, are necessarily
even. Let d = 12k + 1. Then

p+d=w(l,+1)+4(4k) + 4,
g—d=wl,+4(2k+2) + 2.

We see that p+d € C, l,1qg =1, + 1, hprq = 2k
and g—de€ A, l, 4=1, h,_q=1. To prove that
d = 12k + 1 is admissible, note that

Yp+a = 2(Ppid; lpta)
=22k, l,+1)=22k+1,1,) =y, =1

since [, is even and by Lemma 2.1(b). Note also
that

Yg-a=2(hga,lg-a) = 2(1,1;) =1

because I, is even. (Two other admissible values
for d are also given in Table 3.)

Case 3: Mixed cases mapped to mixed cases. Suppose
that (X,Y) = (C,E). Then

p=wl, +4(2k + hy) + 4,
g=wl,+4(2k +1) + 2.

There are two subcases. First assume that
z(2k+1,1,—1)=1.
Let d = 4k + 3; then

p+d=wl,+43k+1+h,)+ 3,
g—d=w(l,—1)+4(5k+2)+ 3.
We see that p+d € B, l,1q = l,, hyrqa = h, and
g—de H,l,_q =1, — 1. Therefore
Ypt+d = 2(hp, lp) = yp =1,
Yg—a =22k +1,1,—1)=1
by assumption.
In the second subcase, assume instead that
z(2k+1,1,—1)=0.

Let d = 2. The analysis is similar to the first sub-
case.

Case 4: Intervals mapped to intervals (first example).
Suppose that (X,Y) = (4,C). Then

p=wl,+4(2k +1+h,) + 2,
q=wl, +4(2k + h,) + 4.

Again, there are two subcases. First assume that
hp + hg # 2k + 1. Let d = wl, — 4h,; then

p+d=w(l,+1,)+42k+1)+2,
q—d =4(2k + hy, + hy) + 4.

We see that p +d € E, hence y,,4 = 1. If we have
2<h,+hy <2k, thenq—-—deC,l,_4=0and
hg—a = hy + hy, hence y,_q = 2(h, + hy, 0) = 1. If
2k +2< h,+ hy <4k, theng—-dec D, l;_4=0
and hy_q = hp + hy — 2k — 1, hence

Yg—a = 2(hp +hy—2k —1,0) = 1.

In the second subcase, assume that I, # I, or
hp # hg. (Thus the two subcases are not disjoint,
but they certainly exhaust all possibilities, since
h, = h, implies that h, + h, cannot be odd).

Ifl, #1;,let d=—2. Then p+d e C, ly1q=1,,
hp+da = hy, hence y,1q =y, = 1; also ¢ — d € A,
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ly—a =1y, hy—q = hy, hence y,_q = y, = 1. Here
X' =Y, so we need [, # [, to ensure p +d # q.
Ifl, =1, and h, # hg, let d = 4(hy — h,). Then
ptde A lya=1,=1y hyra=hy, hence yp, g =
Yo =Llialsoqg—-—dec C,lq=1;,=1,, hgq = hy,
hence y, ¢ = y, = 1. Here X' = X, so we need

h, # hg to ensure d # 0.

Case 5: Intervals mapped to intervals (second example).

Suppose that (X,Y) = (4, B). Then

p=wl,+4(2k+1+hy,) +2,
q=wly+4(3k+ 1+ hy) + 3.

It I, # 1, or h, # hy, the procedure is similar to
that for the second subcase of Case 4. Thus assume
that [, =1, =l and h, = h, = h. Let d = w(I°+1*)
— 4(h° + h*), where we now utilize Lemma 2.1(d).
(This definition gives rise to d = w, d = —4 and
d =w — 4 in Table 3.) Then

p+d=wl+1°+1)+4(2k+1+h—h" —h?)+2,
qg—d=wl—1°=1")4+48k+1+h+h’+h")+3.

We have I, 4 =1+ 1°+ 1" and

if h>1,

p+deA and hyg=h—h"—h
ifh=1;

p+deFE

in either case, yprq = 2(h—h® —hi, I+1°+1%) = 1.
We also have [,_4 =1—1"—1">0 and

if h<2k or h*=0,

¢—dEB, hy_q=h+ho+hi
if h=2k and hi=1;

q—deH

in either case, y,—q = z(h+h°+h', [ =1°—1") = 1.
This completes the sketch of the proof of the
lemma. The last pair (C,I) in Table 3 is discussed

Theorem 4.2. For any k > 1, the l-additive se-
quence (4, 4k + 1) has precisely three even terms.
Equivalently, (4, 4k + 1) = (4, 4k + 1).

Proof. Set v = 4k + 1, and suppose (4,v) has an
even term exceeding 4v+4. Let e be the least such
even term. Observe that e is the first point of dis-
agreement between (4, v) and (4, v), so y,, indicates
membership in (4,v) for n < fe 4+ 6k + 4. Since
4+ (4v+4)=(v+4)+ (3v+4)and (2v+4) +
(4v+4) = (3v + 2) + (3v + 6), we may rule out
the possibility that e is a sum of two even terms
of (4,v). Hence e = f + g, where f and g are odd
terms. Setting

p:%(f—1)+6k+4,

we have y, = y, = 1 and

q=3(g—1)+6k+4,

p+q=32e+12k+7
> 1(4v + 8) + 12k + 7 = 20k + 13.

The last inequality follows from Table 1.

By Lemma 4.1, there exists d # 0 for which
Yptd = Yg-a = 1 Withp+d#qg—dand p+d #q.
Then

e=(2(p+d—6k—4)+1)+ (2(g—d—6k—4)+1),

which is a contradiction since e = f + g was the
unique representation of e as a sum of two odd
terms f < g. O

Again, the experimental origins of Lemma 4.1 are
worth mentioning. We used a model with strips
of paper in order to find candidates for d (modulo
w). Most of the cases can be solved with values of
d such that (p,q) € (X,Y) implies (p+d, ¢ —d) €
(X', Y"), with intervals being mapped to intervals,
and isolated points to isolated points or interval

=1

below. O
1=0
c= 2k+1 2k+2 3k+1 3k+2 4k 4k+1 4k+2
12341234 12341234 123412341234
EC A F B C*A* I D
FIGURE 1.

appropriate positions.

5k+1 5k+2 5k+3 6k+1 6k+2 2k+1 2k+2
123412341234 1234123412341234
B* H G D* J E C A

The proof of Lemma 4.1 was helped by the use of strips marked with ticks and letters A-J in
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endpoints. These conditions drastically reduce the
number of candidates.

To construct the model, choose a (not necessarily
integer) value of £ > 3, and take two strips of ruled
paper at least 32k + 16 units long (one might take
a unit to be around 2mm, with £ = 3.25). The
strips are graduated from (I, ¢,7) = (0, 2k+1, 1) to
(1, 6k+2, 4). Along the edge of each strip, mark in
three colors the positions of the isolated points E—
J, the interval starting points A—D and the interval
ending points A*—~D* (each point appears twice, for
[l =0and ! =1). Figure 1 shows one such strip.

To use the model, place one strip against the
other, so that point X on strip 1 matches point Y
on strip 2, and so that their overlap encompasses
more than half of their length. Consider the case
(X,Y) = (C,I), shown in Figure 2. Matches of
markings indicate candidates for (X',Y”), in this
case (C,I), (A, A*), (A%, A), (I,C), (D,J), (H,G),
(G,H), (J,D). For the last four, the sum of I’s
has to decrease by 1. Since X is an interval, X'
should be one too. Thus three cases are left: (C,I),
(A,A*) and (D, J). Of these, mapping (C,I) to
(C,I) would involve changing I; this is not eas-
ily done for intervals since values of z(h,[) become
perturbed. Mapping to (A4, A*) and (D, J) may or
may not work: a few computations give the three
conditions listed in Table 3. (Sometimes some more
thought is needed to find the right variation of [).

5. ASYMPTOTIC DENSITY

Theorem 4.2 allows statements about the sequence
{yn} to carry over to statements about the se-
quence (4,v), where v = 4k + 1 with £ > 1. We
exploit this connection here, obtaining formulas for
the fundamental difference and the period of (4,v).

Lemma5.1. The sequence {y,} is periodic with min-
imal period P = 2™"3(2k + 1), where m is the
smallest integer satisfying 2™ > 2k + 1.

Proof. We have expressed {y,} as a function of

several z(h,l), where h < 2k + 1. Hence it is clear

by Lemma 2.1(c) that y, . p = y, for all n. To show

that the period p of {y,} is indeed P (and not one

of its divisors), observe first that 0 = y,11 = Ypi2 =

-+ = Ypisk+3. By Lemma 3.1, we know that
Yuwl+8k+6 = Yuwltd(2k+1)+2 = 1,

Ywl+12k+7 = Ywl+d(3k+1)43 = 1

for all [, that

Yulti6k+2 = Yulta@r+2)+a = 2(1,1) =1
if [ is even, and that
Ywi+16k+8 = Yuwltaht1)+4 = 1 —2(2k+1,1) =1,
Ywi+24k+12 = Ywi+4(6k+2)+4 = 1- z(2k +1, l) =1

if [ is odd. This means that p cannot be in the
following intervals:

This method does not exhaust all the cases, but [wl + 3, wl + 8k + 5] for all [,
only 11 out of 55 pairs (X,Y) are left for which it [wl + 4k + 4, wl + 12k + 6] for all [,
is necessary to vary h (see cases 3-5 in the proof [wl + 8k +9, wl 4+ 16k 4+ 11]  if [ is even,
of Lemma 4.1). [wl + 8k + 5, wl + 16k +7]  if [ is odd,
[wl + 16k + 9, wl 4+ 24k + 11] if [ is odd.
trip 1
. Strip -1
E C A F B C*A* 1 D B* H G D* J E C A
e N NN R N R
| I | | | |
I A*C* B F ACE J D* G H B* D I A*C*
=1 =0
strip 2 (backwards)
FIGURE 2. Juxtaposing two strips so that point X on strip 1 matches point Y on strip 2 shows the possible

candidates for (X',Y"). Here (X,Y) = (C,I).
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These intervals overlap, covering all positive in-
tegers except the points wl+ 16k + 8 when [ is odd.
Hence the only candidates for p must be of the form
w(l 4 1), for [ odd. Since p divides P = 2™w, it is
clear that I + 1 = 27 for some j < m. Note that
j =m — 1 is impossible because

Y20k+13 = Ywotak+3)+1 = 2(2k+1,0) =1
and

Y20k+13+p = Yu(i+1)+4(sk+3)+1 = 2(2k +1,2771) =0
(since 2™~ < 2k + 1 < 2™). Therefore p=P. O

Lemma5.2. The number of ones in a (minimal) pe-
riod of the sequence {y,} is

2k
2m+2 Z 2*#(]‘)’
j=0

where m is the smallest integer satisfying 2™ >
2k + 1.

Proof. By Lemma 2.1(c), we can write

2m—1 4 6k+2

P
D=2 D D Yutrickr
n=1

=0 r=1c=2k+1

2™ -1 2k
= <z(2k+1,l)+22(j, )
=0 j=0
2k+1 2k
+3° 26,0+ 2, D+ 1-2(2k+1,0)
j=0 j=1
2k
+3°2(, l)+1—z(2k+1,z)>
j=1
2m_1 2k 2k 2™ -1
=43 > 2(G,0=4) " =G,
=0 j=0 j=0 1=0
2k
j=0

Definition. Let (u,v) = aj,as,as,... be a regular
1-additive sequence. The smallest positive inte-
ger N such that ayini1 — oy = apy1 — a, for all
sufficiently large n is called the period. The value

D = any, —a, for large n is called the fundamental
difference.

Theorem 5.3. Assume 5 < v = 1 mod 4, and let m
be the largest integer satisfying 2™ < v. Then the
1-additive sequence (4, v) is reqular with fundamen-
tal difference D = 2™%3(v + 1) and period

v—1)/2

(v-1)
N =2m Yy a7#0),
j=0

In particular, if 5 < v = 2™ + 1, then
N =2mtt48.3m 1

which confirms an observation by Boston (private
communication, 1993). Techniques from [Harborth
1977] and [Stolarsky 1977|, coupled with Theo-
rem 5.3, can be applied to prove the following re-
sult.

Corollary 5.4. Let A(v) = N(v)/D(v) denote the
asymptotic density of (4,v), let § = log3/log2 ~
1.58496, and let ¢y = (1 — 2Y/9=2)0=2_ For all
k> 1, we have
(2k+1)°7> < A(4k +1) < 2co(2k 4+ 1)
< 0.27261 (2k + 1)772
lim A(4k+1) =0,

1
4

lign inf(2k)>°A(4k + 1) =

1
4

lim sup(2k)>*A(4k + 1) > £3°°1 > 0.27164.

k—o00

Proof. Let
rz—1
O(x) = 227#(") for z>1,
j=0

and note that ®(z) = 4z- A(2z —1) for odd z. The
proof that

1<z7®(z) < ¢ (5.1)

is by induction. If (5.1) is true for 1 < z < 2°, we
use the recursion

B(2° +2) = B(2°) + L0(z)

1
2
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to obtain

(g)s + %xe—l S @(28 +x) S (g)s + C_ome—]..

2

Define a new function
(2)° + Lzt

(2° 4+ )01
for c > 1 and 0 < x < 2°. Then one can check by
differentiation that ¢ has exactly one extremum,
say o, for fixed c¢. Since ¢(0,¢) = 1, ¢(2°,¢) =
$(2 4 ¢) and @(z9,co) = co, we deduce that the
minimum value of ¢(z,1) is 1 and that the maxi-
mum value of ¢(x,cy) is ¢p. This proves (5.1) for
1 <z < 2% and completes the induction.

We also have

2 -1D"e @2 —-1)>1

90(1'70) =

as s — oo and

() ()

i=0 i=0
as s — oo. O

Improvements can be made in the lower bound for
the limit superior, analogous to the treatment in
[Harborth 1977].

It’s interesting that @ is the fractal dimension of
Pascal’s triangle modulo 2 [Wolfram 1984]. This is
not surprising in view of the origin of Lemma 3.1.

6. QUESTIONS

We have proved above that the 1-additive sequence
(4, 4k + 1), for k > 1, has precisely three even
terms, and we have determined formulas for the
fundamental difference and period as well. Con-
jecture 4 and part of Conjecture 3 in [Finch 1992b]
have therefore been solved.

A resolution of similar issues for (4, 4k + 3), for
k > 1, is unlikely soon. The chief reason for this
pessimism is that no empirical patterns have been
discovered for the fundamental differences [Finch
1992b], so closed-form expressions analogous to the
ones in Lemma 3.1 do not seem to exist. A second
reason is that these sequences often have extended

transient phases prior to the onset of regularity,
which makes computations more difficult for the
case (4, 4k+3) than for (4, 4k+1). A third reason
is that the relevant indicator sequences {y, }, given
for n > 8k + 8 by

Yn =0(Yn—2+Yn—ak—5+Yn—sk—s—1),
yn =1 if and only if 2(n— 6k —8)+3 € (4,4k+3),

with initial conditions

(y17 Y2, .-, Ysk+T, y8k+8) - (07 07 sy 07 1)7

do not generally display patterns akin to Pascal’s
triangle, which, as we recall, is what led to the
proof of Lemma 3.1.

There is, however, an exception. The special 1-
additive sequence (4, 4k+3) with &k = 2™ —1, where
m > 1, has the following closed-form expression for
Yn, where 1 < n < ng = 32(k + 1)2. Write n as
n=16(k+ 1) +4c+rwithl>-1,2k4+2<c<
6k + 5 and 1 < r < 4. Then ¥, equals

0 ifr=1and 2k+2<c<3k+2;
z(c—3k—3,1) ifr=1and 3k+3<c<bk+4
(¢c—5k—5,l+1) ifr=1and 5k+5<c<5k+1+5;
if r=1and 5k +1+6 <c<6k+5;
if r=2and 2k+2<c<4k+3;
ifr=2and 4k+4<c<6k+5;
if r=3 and 2k+2<c<5k+4;
(¢c—5k—5,l+1) ifr=3and 5k+5<c<5k+I1+5;
if r=3 and 5k +1+6 <c<6k+5;
ifr=4and 2k+2<c<2k+1+1;

(c—2k—2,1)

O OO N OO n oW

(c—2k—-1,1) ifr=4and 2k+1+2<c<4k+2;

if r=4and 4k+3<c<4k+1+3;
z(e—4k —3,1) ifr=4and 4k+14+4<c<6k+4;
6(1+1) if r=4 and c=6k+5.

Here we have two kinds of structures: Pascal’s tri-
angles as before, and Pascal’s triangles cut in half
along a diagonal. The upper bound ny, on n was
chosen so that we might make the following con-
jecture:

Conjecture 6.1. Suppose that 20k + 23 < n < ny.

Then
Z YplYg 71 and Z YpYq = 1.

pt+g=n p+g=no
r<q p<q
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A corollary of this result would be that the se-
quence (4,2™%2 — 1), for m > 1, has at least four
even terms. We have not attempted a proof of
this, although it would be, in principle, similar to
Lemma 4.1.

It is known that the 1l-additive sequence (4,7)
has fundamental difference D = 11,301,098 and
period N = 1,927,959 after a transient phase of
approximately 1.36 x 107 terms [Finch 1992b]. No
periodicity has been detected for the 1-additive se-
quence (4,15), even up to 2.12 x 10! terms. It
is doubtful that significant progress can be made
concerning (4, 2™2 — 1) soon, given the computa-
tional barriers involved.

Some progress has been made on Conjecture 8
of [Finch 1992b]. Assume that the 1l-additive se-
quence (7,v), where v > 8 is even, has precisely
2 + %v even terms. Cassaigne has developed a
computer-assisted proof that the fundamental dif-
ference

D(7,v) = 112(v + 2)

for v > 38. Similar formulas for D(u,v) could be
proved under similar assumptions, for odd u sat-
isfying 9 < w < 19 and for suitable large even v.
The problem of writing an expression for D(u,v)
valid for infinitely many v remains open.
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