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We report on numerical results for certain families of S-uni-
modal maps with flat critical point. For four one-parameter
families, differing in their amount of flatness, we study the
Feigenbaum limits o and §. There seems to be a finite § and a
finite o associated with each period doubling cascade in each
family. Some rough numerical estimates are obtained, and our
upper bound on § is smaller than the corresponding supremum
for families with nonflat critical point. One would expect that
these numbers should only depend on the nature (flatness) of
the maximum, and thus be constant in each family. Our data
support this hypothesis for «, but are inconclusive when it
comes to J.

1. INTRODUCTION

Given the present knowledge of families of uni-
modals with quadratic (or, more generally, non-
flat) critical point, it is natural to start looking
at unimodal families with a flat critical point (the
nature of the critical point being constant in each
family), and investigate their metric and measure
theoretical properties. In this paper we investigate
the scaling properties of period doubling for certain
flat-top families in a series of simple and somewhat
naive numerical experiments. Still we feel that the
results are of some interest, and we are not aware
of any investigations parallel to the present one.
We will look at the families

Do (2) = Pug(2) = Q (1 —ap (2)),

where
Q- <L>1/q
qg+1
and
qg+1 1
ola) = exp (= - )
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It is understood that @, ,(0) is defined by continu-
ity to equal @, so all derivatives of ®,, vanish at
zero. Thus, ®,, is a C* flat top that behaves like
e~ /1= at the critical point 2 = 0, and Q is always
the critical value.

For each ¢ > 0 we get a full S-unimodal, convex
family on (—@Q, @) when a runs from 0 to 2. The
superstable two-cycle appears at a = 1. Plotting
the usual bifurcation diagram you obtain Figure 1.
From kneading theory we know that these families
go through period doubling from any primitive pe-
riod length. Thus it is relevant to study the Feigen-
baum limits « and ¢ (whose definition is recalled
below). In Sections 2 and 3 we investigate these
limits and obtain finite bounds. This means that
Figure 1 is a finitely distorted copy of the bifur-
cation diagram for, say, the quadratic family. See
[Collet and Eckmann 1980; Feigenbaum 1979; Melo
and van Strien 1993] for background and general
theory on bifurcations in unimodal families.

2. THE NUMBER §

2.1. Background

Consider a family f, of unimodal maps on an in-
terval, and a set {I,,}>°, of adjacent intervals in a-
space, numbered from left to right, satisfying the
following conditions: f, has a stable periodic or-
bit of length 2"k, for all a € I,,; and there exists
a unique a, € I, such that f, has a superstable
periodic orbit, that is, the critical point belongs to
the stable periodic orbit. Then study the limit

. Qp—1 — Ap—2
6= lim —.
n— oo an — a/nfl

(2.1)

For nonflat families, that is, |f.(z) — A| ~ |z|" in
a neighborhood of the critical point, the situation
is as follows:

e Numerically § always exists; it depends only on
r, the order of the maximum; and it increases
with 7.

e Heuristically 0 is the sole eigenvalue with abso-
lute value greater than one for the derivative at
the fixed point of the operator

T.: h(z) — ah(h<£)>,

(67

acting on some suitable space of functions of the
form h(x) = A+ B|z|" + higher-order terms.

e The results above have been proved rigorously
for r = 1+ € with ¢ small [Collet and Eckmann
1980], and for r = 2 [Lanford 1982].

e For r an even positive integer, we know from
Sullivan’s fundamental work [1992] that 7" has a
fixed point. See also [Melo and van Strien 1993].
This is also proven in [Eckmann and Wittwer
1985] for m sufficiently large.

e Eckmann and Wittwer [1985] have proved that
the derivative of the operator T, at the fixed
point has an eigenvalue of largest absolute value,
A(r), which is real and positive. They obtain
bounds for A(r), in particular

28.9 < limsup A(r) < 29.6. (2.2)
r—00
(As far as we understand it, though, the exis-
tence of this fixed point is rigorously established
only in the cases mentioned above.)

For families with a truly flat segment, ¢ is infinite,
and the length of the intervals (a,, a,+1) goes down
quadraticly:

[(@n; @ni1)] ~ (@01, @)l

for large n. This is proved for families with trape-
zoid shaped graphs in [Beyer and Stein 1982; Ka-
zarinoff and Wang 1987; Wang 1994].

2.2. Numerical results

Our numerical data suggest the following result:
Result 1. The limit (2.1) exists and is finite for every
periodic window of the families ®,,. For k fized,

d is increasing in q. (The flatter top, the larger ¢.)
For 3+ < q <1, we have 22 50 5 28.

See also Table 1 for some sharper estimates.
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The convergence to the limit § is much slower
than in, say, the quadratic family, and we are only
able to give coarse estimates of the numerical val-
ues. Especially we cannot see from our data if ¢ is
constant over each family, as one would expect. In
Table 1 we list our estimates of ¢ for a few values
of k and ¢ producing “nice” data. (Here k refers
to the primitive period length of the periodic win-
dow under consideration.) See Section 2.3 for an
account of our method and lines of thought.

k=2 k=3 k=4
q I 11 I 11 I 11
11(24.4,24.7) 24.6 | (24.6,24.7) 24.7 24.8
3 1(25.2,25.3) 25.5 | (25.3,25.5) 25.4 25.8
1[(26.1,26.3) 26.1 | (26.2,26.5) 26.3 | (26.4,26.6) 26.7

TABLE1. Estimates of intervals containing ¢ based
on the Aitken-transformed sequences (I), and es-
timates of § from least square fits of exponentials

(10).

Remark. Comparing (2.2) with the bounds in Re-
sult 1 and Table 1 we see that the flat tops we are
considering in this paper actually have a smaller
0 than maps with a high-order polynomial maxi-
mum. This is somewhat counterintuitive, since §
appears to increase with respect to flatness within
the class of analytic maps and within the class of
flat tops.

Bifurcation diagram for the family ®, /.

2.3. On Method and Accuracy

Our approach is as follows. We fix q. Then, for
k fixed, we find the parameter value a9 = agy
for which @, , has a superstable periodic orbit of
length k, with kneading sequence RL*~2C. Then,
recursively, we find the parameter value a,, = a,
corresponding to the superstable orbit that is cre-
ated after one period doubling of the orbit at a,,_;.
We have performed calculations for ¢ = 7,5,2,1
and k= 2,3,4,5,6.

We use a bisection search algorithm, with 19-
digit floating point arithmetic, and accept a,  if
a = Gy, locally minimizes |®2"~*(Q)| on the res-
For ¢ = % and
k = 2, which computationally seems to be the eas-
iest case, we have found reasonable values a,, for
n=20,1,...,13, and a3, aq,...,as were compared
with high-precision Mathematica calculations with
300 working digits. The numbers agree to 17 dec-
imal places. For ¢ = 1 and k = 6, the hardest
case considered, we found reasonable values a,, for
n=20,1,...,9.

We now compute the numbers

olution grid in the a-variable.

Qp—1 — Ap-2
Ap — Qp—1

We also define and compute

5n71 - 6n72

An = An,k = 5 5 .
n ~— Un—1
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Our approach to accuracy is as follows: We ac-
cept the values a, as they are given by this al-
gorithm. If you like, they are the objective of our
study. This is not unreasonable in view of the high-
precision results mentioned above, and the general
experience that this kind of computation works
well in dynamical systems numerics. Since §,, is
the quotient of the differences of successive values
of a,, roundoff errors of size 107'7 in a, produce
increasing absolute errors in §, as n — 0o0. Any-
how, we get §,, to at least two decimal places for
the cases considered.

an 577, An
1
1.35341891
1.42786314 4.74

1.43971881694707601  6.27

1.44129590698672292  7.51 0.808
1.44147686837076865  8.71 0.967
1.44149522114131208  9.86 0.956
1.44149689902037341 10.93 0.941
1.44149703947566102 11.94 0.935
1.44149705037694717 12.88 0.931
10 1.44149705116945322 13.75 0.928
11 1.44149705122387325 14.56 0.927
12 1.44149705122742775 15.31 0.926
13 1.44149705122764988 16.00 0.925
14 1.44149705122766323 16.64 0.925

© OO Uk W~ OoO| 3

TABLE 2. Values a,, §,, and A, for ¢ = % (recall
that a, is the parameter value for which there is
a superstable cycle of order 2"*1). We give fewer
decimals for a; and ay since they were used as
input in our main algorithm, and thus had to be
computed with cruder methods. The exact value
aop = 1 is obtained by hand.

Table 2 lists a,,, 0,, and A,, for k =2 and g =
The values of A, suggest that §,, ~ A + Be ",

(We get exactly the same type of behavior for
other values on ¢ and k. Numerical difficulties in-
crease in k, and as for g, the best-behaved cases
seem to be ¢ = % and q¢ = %; for qzi computa-
tions are easier but convergence is slower, and for

g = 1 convergence is faster but numerics is harder.)

N[

The asymptotics 6, ~ A + Be~“™ indicate that
the sequences {4, } converge, and for a sequence
like this, converging with an approximate expo-
nential fall-off, one can speed up convergence by
applying Aitken’s 6*-process [Flannery et al. 1986,
p. 132-133]. One considers the transformation S,
also known as Shanks’ transformation, mapping a

sequence {b, })_, to the sequence {c, }2_}!', where

bn+lbn—1 - bi
bn+1 + bn—l - 2bn -

Cp =

Clearly S maps {A + Be “"} to the constant se-
quence {A, A, A, ...}, so it is reasonable to think
that {0, } := S({J,}) converges, and that this limit
coincides with lim§,,. We also apply S once more
and write {6,,} := S({0,}). We obtain the inter-
val estimates of Table 1 by inspection of the se-
quences {o,,} and {6, }. For ¢ = 1 these sequences
are listed in Table 3. (There are also generalized
Shanks’ transformations designed to take away sev-
eral exponential transients in a numerically robust
way [Bender et al. 1978]. In our case they do not
yield any improvement in convergence.)

There is another approach as well. One can do a
least square fit of A+ Be~“™ to the sequences {4, },
and read off A = lim,, §,,. This gives small total
square error (~ 107%), and fairly good agreement
with estimates based on the Aitken process: see
Table 1.

The discrepancies between these two estimates,
and the differences for fixed ¢ but different k, may
both be due to the influence of transient behavior
and numerical errors.

3. THE NUMBER «

3.1. Background

Let f, be a unimodal family, and let {a,} be a
sequence of parameter values belonging to the same
periodic window in parameter space, such that f,
has a superstable periodic orbit of length p,, = 2"k,
just as in Section 2.1. Then, for n > 0, define

fn = 5:/2 (0)
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n k=2 k=3 k=4 k=5 k=6 e These are rigorous results in the cases r = 2 and
3 1274 11.28 11.65 12.11 12.54 r=1+e
4 44.04 21.02 27.30 —118.5 3.67 .
5 34.83 2522 2699 30.92 39.13 3.2. Numerical results
6 2823 26.16 26.32 27.15 28.87 Let a, = a, be defined as in Section 2.3. Then
7 2646 26.10 2660 27.43 28.55 define |
8 2553 24.94 2472  24.69 24.79 _—
9 2506 24.91 25.02 25.24 25.56 §n =& =2, , (0),
10 24.77 24.59 24.55  24.49 23.68
11 24.64 24.65 24.64 and study the limits
12 24.59 24.39
13 24.48 o= o — lim o v — lim Ent1k — Enk
14 24.48 - el S
7 2447 26.16 26.35 27.17 28.90 Th . tonicall
8 2462 2491 2493 92514 2542 e sequences {«,, x },, increase monotonically ('see‘
0 92492 924.94 92483 2492 9501 Table 4 for two examples), and we have an a priori
10 24.53 24.64 24.62 25.04 24.80 upper bound «, , < —1. For ¢ fixed, the sequences
11 24.57 24.60 24.55 24.94 corresponding to k = 2, 3, 4, 5 and 6 seem to have
12 24.66 24.67 the same limiting behavior. This is illustrated for
13 24.59 q= % in Figure 2, which plots the shifted sequences
TABLE3. The S-transformed sequences o, 5 (top) ¥, = {a1/2 -k
and the twice S-transformed sequences &, for nk In=6-k
q= 3
Thus &, is halfway around the critical orbit, and is —12
the point on the critical orbit closest to the critical
point. Then study the limits —1.25
a = lim a, = lim M -1.3
n—00 n—oo §n+2 — &n—l—l
For nonflat families, |f,(x) — A| ~ |z|" in some 1.3
neighborhood of the critical point, we have the fol-
lowing facts (compare Section 2.1):
g (comp ) 7 " e .

e Numerically these limits exist and « is a con-
stant depending only on 7.

e a = A/g(A), where g is the fixed point of the
operator T, defined in Section 2.1.

FIGURE 2. Comparing suitable shifts of the se-
quences {a, } for k = 2,3,4,5,6 in the case ¢ = %

n= 1 2 3 4 ) 6 7 8 9 10 11 12 13
a}/g = —1.784 —-1.601 —1.497 —1.423 —1.367 —1.322 —1.287 —1.258 —1.234 —1.213 —1.196 —1.181 —1.169

al,= —1.446 —1.333 —1.268 —1.222 —1.188 —1.163 —1.143 —1.127 —1.114 —1.104 —1.095

TABLE4. The sequences {«,} for k =2 and ¢ = %, 1.
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Thus we obtain the following experimental re-
sult:

Result2. The limits o exist and seem to be indepen-

. _ 1311
dent of k. For the cases considered, g = 1,%, 5,7,
we have —1.15 < a < —1.

The fact that « seems to be independent of k& sup-
ports the idea that J is also independent of k.

4. A GENERAL CONJECTURE

We think that the following scenario is possible:
Consider two unimodal families & and G consisting
of the maps F,(z) = 1 —af(z) and G, = 1 —
ag(x) respectively. Say that F and G are flatness-
equivalent, written F ~ G, if for all n > 0 the
following holds: If

d* d*

S H(0) = g(0) =0
for all £ < n, there exists a constant C' > 0 such
that

(d"f/dx")(x)
(drg/dz")(x)
(d"f/dx")(x)
(drg/dz")(x)
Clearly ~ is an equivalence relation. If ¥ and §
have polynomial top, ¥ ~ G just means that they
are of the same polynomial order. For the maps
®, , considered in this paper, it means equality in
q. Furthermore, under this definition, the family
consisting of the k-th iterate of F, with a varying
over a k period window is flatness-equivalent to the
family generated by F,, so long as f fulfills some
mild regularity condition (for instance,

()
= (@ 1 a9 )

for all k,j > 0.) In particular, flatness equivalence
classes are invariant under the doubling operator
T.

Generalizing from the nonflat case, we conjec-
ture that, for each family F there exist a constant
d = 0(F), and F ~ G implies §(F) = 6(9). The

1
— < liminf

C r—0

< C.

< lim sup
z—0

number 6(F) can be interpreted as the (dominat-
ing) expanding eigenvalue of DT at the fixed point
of T, operating on class(JF).

At present we have no idea of how to do renor-
malization theory for these flat families, so we can-
not give theoretical support to the results and the
speculations of this paper. In the absence of theory,
more extensive high precision calculations would
be of interest.

ACKNOWLEDGMENT

Bo Hagerman at Radio Communication Systerms,
KTH (Royal Institute of Technology), has played
an invaluable part in the making of this paper. He
did all the necessary programming for finding pa-
rameter values corresponding to superstable period
orbits of high order—in other words, all nontrivial
programming.

REFERENCES

[Bender et al. 1978] C. M. Bender and S. A. Orszag,
Advanced mathematical methods for scientists and
engineers, McGraw-Hill, New York, 1978.

[Beyer and Stein 1982] W. A. Beyer and P. R. Stein,
“Period doubling for trapezoid function iteration:
Metric theory”, Adv. in Appl. Math. 3 (1982), 1-
17.

[Collet and Eckmann 1980] P. Collet and J.-P. Eck-
mann, [terated maps on the interval as dynamical
systems, Birkhauser, Boston, 1980.

[Eckmann and Epstein 1990] J.-P. Eckmann and H.
Epstein, “Bounds on the unstable eigenvalue for
period doubling”, Commun. Math. Phys. 128 (1990),
427-435.

[Eckmann and Wittwer 1985] J.-P. Eckmann and P.
Wittwer, “Computer methods and Borel summabil-
ity applied to Feigenbaums equation”, Lecture Notes
in Phys. 227, Springer, Berlin, 1985.

[Feigenbaum 1979] M. J. Feigenbaum, “The universal
metric properties of nonlinear transformations”, J.
Stat. Phys. 21 (1979), 669-706.



Thunberg: Feigenbaum Numbers for Certain Flat-Top Families 57

[Flannery et al. 1986] B. P. Flannery, W. H. Press, S. A. [Melo and van Strien 1993] W. de Melo and S.
Teukolsky and W. T. Vetterling, Numerical Recipes, van Strien, One-Dimensional Dynamics, Springer,
Cambridge University Press, Cambridge, 1986. Berlin, 1993.

[Kazarinoff and Wang 1987] N. D. Kazarinoff and L. [Sullivan 1992] D. Sullivan, “Bounds, quadratic differ-
Wang, “A metric property of period doubling for entials and re-normalization conjectures”, pp. 417-
nonisosceles trapezoidal maps on an interval”, Adv. 466 in Mathematics into the Twenty-First Century
Appl. Math. 8 (1987), 208—-221. (edited by F. Browder), Amer. Math. Soc., Provi-

dence, RI, 1988.
[Lanford 1982] O. Lanford III, “A computer-assisted

proof of the Feigenbaum conjectures”, Bull. Amer. [Wang 1994] L. Wang, “A proof of the Beyer and Stein
Math. Soc. 6 (1982), 427-434. conjecture”, Adv. Math. 23 (1994), 183-184.

Hans Thunberg, Matematiska Institutionen, Kungl Tekniska Ho6gskolan, S-100 44 Stockholm, Sweden
(hasset@math.kth.se)

Received November 5, 1993; accepted in revised form June 17, 1994



