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We report on numerical results for certain families of S-uni-

modal maps with flat critical point. For four one-parameter

families, differing in their amount of flatness, we study the

Feigenbaum limits � and �. There seems to be a finite � and a

finite � associated with each period doubling cascade in each

family. Some rough numerical estimates are obtained, and our

upper bound on � is smaller than the corresponding supremum

for families with nonflat critical point. One would expect that

these numbers should only depend on the nature (flatness) of

the maximum, and thus be constant in each family. Our data

support this hypothesis for �, but are inconclusive when it

comes to �.

1. INTRODUCTIONGiven the present knowledge of families of uni-modals with quadratic (or, more generally, non-
at) critical point, it is natural to start lookingat unimodal families with a 
at critical point (thenature of the critical point being constant in eachfamily), and investigate their metric and measuretheoretical properties. In this paper we investigatethe scaling properties of period doubling for certain
at-top families in a series of simple and somewhatnaive numerical experiments. Still we feel that theresults are of some interest, and we are not awareof any investigations parallel to the present one.We will look at the families�a(x) = �a;q(x) = Q (1� a' (x)) ;where Q = � qq + 1�1=qand '(x) = exp�q + 1q � 1jxjq�:
c
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It is understood that �a;q(0) is de�ned by continu-ity to equal Q, so all derivatives of �a;q vanish atzero. Thus, �a;q is a C1 
at top that behaves likee�1=jxjq at the critical point x = 0, and Q is alwaysthe critical value.For each q > 0 we get a full S-unimodal, convexfamily on (�Q;Q) when a runs from 0 to 2. Thesuperstable two-cycle appears at a = 1. Plottingthe usual bifurcation diagram you obtain Figure 1.From kneading theory we know that these familiesgo through period doubling from any primitive pe-riod length. Thus it is relevant to study the Feigen-baum limits � and � (whose de�nition is recalledbelow). In Sections 2 and 3 we investigate theselimits and obtain �nite bounds. This means thatFigure 1 is a �nitely distorted copy of the bifur-cation diagram for, say, the quadratic family. See[Collet and Eckmann 1980; Feigenbaum 1979; Meloand van Strien 1993] for background and generaltheory on bifurcations in unimodal families.
2. THE NUMBER �
2.1. BackgroundConsider a family fa of unimodal maps on an in-terval, and a set fIng1n=0 of adjacent intervals in a-space, numbered from left to right, satisfying thefollowing conditions: fa has a stable periodic or-bit of length 2nk, for all a 2 In; and there existsa unique an 2 In such that fan has a superstableperiodic orbit, that is, the critical point belongs tothe stable periodic orbit. Then study the limit

� = limn!1 an�1 � an�2an � an�1 : (2.1)
For non
at families, that is, jfa(x)� Aj � jxjr ina neighborhood of the critical point, the situationis as follows:� Numerically � always exists; it depends only onr, the order of the maximum; and it increaseswith r.

� Heuristically � is the sole eigenvalue with abso-lute value greater than one for the derivative atthe �xed point of the operatorTr:h(x) 7! �h�h�x���;acting on some suitable space of functions of theform h(x) = A+Bjxjr + higher-order terms.� The results above have been proved rigorouslyfor r = 1+ " with " small [Collet and Eckmann1980], and for r = 2 [Lanford 1982].� For r an even positive integer, we know fromSullivan's fundamental work [1992] that T has a�xed point. See also [Melo and van Strien 1993].This is also proven in [Eckmann and Wittwer1985] for m su�ciently large.� Eckmann and Wittwer [1985] have proved thatthe derivative of the operator Tr at the �xedpoint has an eigenvalue of largest absolute value,�(r), which is real and positive. They obtainbounds for �(r), in particular28:9 < lim supr!1 �(r) < 29:6: (2.2)(As far as we understand it, though, the exis-tence of this �xed point is rigorously establishedonly in the cases mentioned above.)For families with a truly 
at segment, � is in�nite,and the length of the intervals (an; an+1) goes downquadraticly: j(an; an+1)j � j(an�1; an)j2for large n. This is proved for families with trape-zoid shaped graphs in [Beyer and Stein 1982; Ka-zarino� and Wang 1987; Wang 1994].
2.2. Numerical resultsOur numerical data suggest the following result:
Result 1. The limit (2.1) exists and is �nite for everyperiodic window of the families �a;q. For k �xed ,� is increasing in q. (The 
atter top, the larger �.)For 14 � q � 1, we have 22 / � / 28.See also Table 1 for some sharper estimates.



Thunberg: Feigenbaum Numbers for Certain Flat-Top Families 53

0:5 1 1:5 2�:1
�:050
0:05
0:1

FIGURE 1. Bifurcation diagram for the family �a;1=2.The convergence to the limit � is much slowerthan in, say, the quadratic family, and we are onlyable to give coarse estimates of the numerical val-ues. Especially we cannot see from our data if � isconstant over each family, as one would expect. InTable 1 we list our estimates of � for a few valuesof k and q producing \nice" data. (Here k refersto the primitive period length of the periodic win-dow under consideration.) See Section 2.3 for anaccount of our method and lines of thought.
q k = 2 k = 3 k = 4I II I II I II12 (24:4; 24:7) 24:6 (24:6; 24:7) 24:7 24:834 (25:2; 25:3) 25:5 (25:3; 25:5) 25:4 25:81 (26:1; 26:3) 26:1 (26:2; 26:5) 26:3 (26:4; 26:6) 26:7

TABLE 1. Estimates of intervals containing � basedon the Aitken-transformed sequences (I), and es-timates of � from least square �ts of exponentials(II).
Remark. Comparing (2.2) with the bounds in Re-sult 1 and Table 1 we see that the 
at tops we areconsidering in this paper actually have a smaller� than maps with a high-order polynomial maxi-mum. This is somewhat counterintuitive, since �appears to increase with respect to 
atness withinthe class of analytic maps and within the class of
at tops.

2.3. On Method and AccuracyOur approach is as follows. We �x q. Then, fork �xed, we �nd the parameter value a0 = a0;kfor which �a;q has a superstable periodic orbit oflength k, with kneading sequence RLk�2C. Then,recursively, we �nd the parameter value an = an;kcorresponding to the superstable orbit that is cre-ated after one period doubling of the orbit at an�1.We have performed calculations for q = 14 ; 12 ; 34 ; 1and k = 2; 3; 4; 5; 6.We use a bisection search algorithm, with 19-digit 
oating point arithmetic, and accept an;k ifa = an;k locally minimizes j�2nk�1a;q (Q)j on the res-olution grid in the a-variable. For q = 12 andk = 2, which computationally seems to be the eas-iest case, we have found reasonable values an forn = 0; 1; : : : ; 13, and a3; a4; : : : ; a8 were comparedwith high-precision Mathematica calculations with300 working digits. The numbers agree to 17 dec-imal places. For q = 1 and k = 6, the hardestcase considered, we found reasonable values an forn = 0; 1; : : : ; 9.We now compute the numbers�n = �n;k = an�1 � an�2an � an�1 :We also de�ne and compute�n = �n;k = �n�1 � �n�2�n � �n�1 :
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Our approach to accuracy is as follows: We ac-cept the values an as they are given by this al-gorithm. If you like, they are the objective of ourstudy. This is not unreasonable in view of the high-precision results mentioned above, and the generalexperience that this kind of computation workswell in dynamical systems numerics. Since �n isthe quotient of the di�erences of successive valuesof an, roundo� errors of size 10�17 in an produceincreasing absolute errors in �n as n ! 1. Any-how, we get �n to at least two decimal places forthe cases considered.n an �n �n0 11 1:353418912 1:42786314 4:743 1:43971881694707601 6:274 1:44129590698672292 7:51 0:8085 1:44147686837076865 8:71 0:9676 1:44149522114131208 9:86 0:9567 1:44149689902037341 10:93 0:9418 1:44149703947566102 11:94 0:9359 1:44149705037694717 12:88 0:93110 1:44149705116945322 13:75 0:92811 1:44149705122387325 14:56 0:92712 1:44149705122742775 15:31 0:92613 1:44149705122764988 16:00 0:92514 1:44149705122766323 16:64 0:925
TABLE 2. Values an, �n and �n for q = 12 (recallthat an is the parameter value for which there isa superstable cycle of order 2n+1). We give fewerdecimals for a1 and a2 since they were used asinput in our main algorithm, and thus had to becomputed with cruder methods. The exact valuea0 = 1 is obtained by hand.Table 2 lists an, �n and �n for k = 2 and q = 12 .The values of �n suggest that �n � A+Be�Cn.(We get exactly the same type of behavior forother values on q and k. Numerical di�culties in-crease in k, and as for q, the best-behaved casesseem to be q = 12 and q = 34 ; for q= 14 computa-tions are easier but convergence is slower, and forq = 1 convergence is faster but numerics is harder.)

The asymptotics �n � A + Be�Cn indicate thatthe sequences f�ng converge, and for a sequencelike this, converging with an approximate expo-nential fall-o�, one can speed up convergence byapplying Aitken's �2-process [Flannery et al. 1986,p. 132{133]. One considers the transformation S,also known as Shanks' transformation, mapping asequence fbngNn=0 to the sequence fcngN�1n=1 , wherecn = bn+1bn�1 � b2nbn+1 + bn�1 � 2bn :Clearly S maps fA + Be�Cng to the constant se-quence fA;A;A; : : :g, so it is reasonable to thinkthat f�ng := S(f�ng) converges, and that this limitcoincides with lim �n. We also apply S once moreand write f�̂ng := S(f�ng). We obtain the inter-val estimates of Table 1 by inspection of the se-quences f�ng and f�̂ng. For q = 12 these sequencesare listed in Table 3. (There are also generalizedShanks' transformations designed to take away sev-eral exponential transients in a numerically robustway [Bender et al. 1978]. In our case they do notyield any improvement in convergence.)There is another approach as well. One can do aleast square �t of A+Be�Cn to the sequences f�ng,and read o� A = limn �n. This gives small totalsquare error (� 10�4), and fairly good agreementwith estimates based on the Aitken process: seeTable 1.The discrepancies between these two estimates,and the di�erences for �xed q but di�erent k, mayboth be due to the in
uence of transient behaviorand numerical errors.
3. THE NUMBER �
3.1. BackgroundLet fa be a unimodal family, and let fang be asequence of parameter values belonging to the sameperiodic window in parameter space, such that fanhas a superstable periodic orbit of length pn = 2nk,just as in Section 2.1. Then, for n > 0, de�ne�n = fpn=2an (0):
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n k = 2 k = 3 k = 4 k = 5 k = 63 12:74 11:28 11:65 12:11 12:544 44:04 21:02 27:30 �118:5 3:675 34:83 25:22 26:99 30:92 39:136 28:23 26:16 26:32 27:15 28:877 26:46 26:10 26:60 27:43 28:558 25:53 24:94 24:72 24:69 24:799 25:06 24:91 25:02 25:24 25:5610 24:77 24:59 24:55 24:49 23:6811 24:64 24:65 24:6412 24:59 24:3913 24:4814 24:487 24:47 26:16 26:35 27:17 28:908 24:62 24:91 24:98 25:14 25:429 24:22 24:94 24:83 24:92 25:0110 24:53 24:64 24:62 25:04 24:8011 24:57 24:60 24:55 24:9412 24:66 24:6713 24:59
TABLE 3. The S-transformed sequences �n;k (top)and the twice S-transformed sequences �̂n;k forq = 12 .Thus �n is halfway around the critical orbit, and isthe point on the critical orbit closest to the criticalpoint. Then study the limits� = limn!1�n = limn!1 �n+1 � �n�n+2 � �n+1 :For non
at families, jfa(x)� Aj � jxjr in someneighborhood of the critical point, we have the fol-lowing facts (compare Section 2.1):� Numerically these limits exist and � is a con-stant depending only on r.� � = A=g(A), where g is the �xed point of theoperator Tr de�ned in Section 2.1.

� These are rigorous results in the cases r = 2 andr = 1 + ".
3.2. Numerical resultsLet an = an;k be de�ned as in Section 2.3. Thende�ne �n = �n;k = �2n�1kan;q (0);and study the limits� = �k = limn!1�n;k = limn!1 �n+1;k � �n;k�n+2;k � �n+1;k :The sequences f�n;kgn increase monotonically (seeTable 4 for two examples), and we have an a prioriupper bound �n;k � �1. For q �xed, the sequencescorresponding to k = 2, 3, 4, 5 and 6 seem to havethe same limiting behavior. This is illustrated forq = 12 in Figure 2, which plots the shifted sequences�k = f�1=2n;kg14�kn=6�k:

2 4 6 8
�1:35�1:3�1:25�1:2

FIGURE 2. Comparing suitable shifts of the se-quences f�ng for k = 2; 3; 4; 5; 6 in the case q = 12 .
n = 1 2 3 4 5 6 7 8 9 10 11 12 13�1=2n;2 = �1:784 �1:601 �1:497 �1:423 �1:367 �1:322 �1:287 �1:258 �1:234 �1:213 �1:196 �1:181 �1:169�1n;2 = �1:446 �1:333 �1:268 �1:222 �1:188 �1:163 �1:143 �1:127 �1:114 �1:104 �1:095

TABLE 4. The sequences f�ng for k = 2 and q = 12 ; 1.
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Thus we obtain the following experimental re-sult:
Result 2. The limits �qk exist and seem to be indepen-dent of k. For the cases considered , q = 1; 34 ; 12 ; 14 ,we have �1:15 � � � �1.The fact that � seems to be independent of k sup-ports the idea that � is also independent of k.
4. A GENERAL CONJECTUREWe think that the following scenario is possible:Consider two unimodal families F and G consistingof the maps Fa(x) = 1 � af(x) and Ga = 1 �ag(x) respectively. Say that F and G are 
atness-equivalent, written F � G, if for all n > 0 thefollowing holds: Ifdkdxk f(0) = dkdxk g(0) = 0for all k < n, there exists a constant C > 0 suchthat 1C < lim infx!0 ����(dnf=dxn)(x)(dng=dxn)(x) ����� lim supx!0 ����(dnf=dxn)(x)(dng=dxn)(x) ���� < C:Clearly � is an equivalence relation. If F and Ghave polynomial top, F � G just means that theyare of the same polynomial order. For the maps�a;q considered in this paper, it means equality inq. Furthermore, under this de�nition, the familyconsisting of the k-th iterate of Fa with a varyingover a k period window is 
atness-equivalent to thefamily generated by Fa, so long as f ful�lls somemild regularity condition (for instance,lim"!0 (dkf=dxk)2(")(dk+jf=dxk+j)(") = 0for all k; j > 0.) In particular, 
atness equivalenceclasses are invariant under the doubling operatorT .Generalizing from the non
at case, we conjec-ture that, for each family F there exist a constant� = �(F), and F � G implies �(F) = �(G). The

number �(F) can be interpreted as the (dominat-ing) expanding eigenvalue of DT at the �xed pointof T , operating on class(F).At present we have no idea of how to do renor-malization theory for these 
at families, so we can-not give theoretical support to the results and thespeculations of this paper. In the absence of theory,more extensive high precision calculations wouldbe of interest.
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