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We give an effective version of a result reported by Serre as-
serting that the images of the Galois representations attached to
an abelian surface with End(A) = Z are as large as possible
for almost every prime. Our algorithm depends on the truth of
Serre’s conjecture for two-dimensional odd irreducible Galois
representations. Assuming this conjecture, we determine the
finite set of primes with exceptional image. We also give in-
finite sets of primes for which we can prove (unconditionally)
that the images of the corresponding Galois representations are
large. We apply the results to a few examples of abelian sur-
faces.

1. INTRODUCTION

Let A be an abelian surface defined over Q with

End(A) := EndQ(A) = Z. Let ρ : GQ → GSp(4,Z ) be
the compatible family of Galois representations given by

the Galois action on T (A) = A[f∞](Q̄), the Tate mod-
ules of the abelian surface (we are assuming that A is

principally polarized). Each ρ is unramified outside fN ,

where N is the product of the primes of bad reduction

of A. If we call G ∞ the image of ρ , then we have the

following result of Serre [Serre 86]:

Theorem 1.1. If A is an abelian surface over Q with

End(A) = Z and principally polarized, then G ∞ =

GSp(4,Z ) for almost every f.

Remark 1.2. If G is the image of ρ̄ , the Galois repre-

sentation on f-division points of A(Q̄) (and the residual
mod f representation corresponding to ρ ), it is enough

to show that G = GSp(4,F ) for almost every f [Serre
86]. Serre proposed the problem of giving an effective

version of this result: “...partir de courbes de genre 2

explicites, et tâcher de dire à partir de quand le groupe
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de Galois correspondant G devient égal à GSp(4,F ) .”
But Serre’s proof depends on certain ineffective results

of Faltings and therefore does not solve this problem.

In this article, we present an algorithm that computes

a finite setF of primes containing all those primes (if any)
with image of the corresponding Galois representation

exceptional, i.e., different from GSp(4,F ). The validity
of our method depends on the truth of Serre’s conjecture

for 2-dimensional irreducible odd Galois representations,

conjecture (3.2.4?) in [Serre 87]. This means that if f

is a prime such that G W= GSp(4,F ) and f /∈ F , then
G has a 2-dimensional irreducible (odd) component that

violates Serre’s conjecture.

The method is inspired by the articles [Serre 72], [Ri-

bet 75], [Ribet 85], and [Ribet 97] where the case of 2-

dimensional Galois representations is treated.

In the examples, we also give infinite sets of primes for

which we can prove the result on the images uncondition-

ally, i.e., without assuming Serre’s conjecture. Results of

this kind were previously obtained by Le Duff under the

extra assumption of semiabelian reduction of the abelian

surface at some prime. Our technique has two advan-

tages: It does not have any restriction on the reduction

type of the abelian surface, and in the case of semiabelian

reduction, it allows us to prove the result on the images

(unconditionally) for larger sets of primes.

2. MAIN TOOLS

2.1 Maximal Subgroups of PGSp(4, F )
In [Mitchell 14], Mitchell gives the following classification

of maximal proper subgroups G of PSp(4,F ) (f odd), as
groups of transformations of the projective space having

an invariant linear complex:

(1) a group having an invariant point and plane;

(2) a group having an invariant parabolic congruence;

(3) a group having an invariant hyperbolic congruence;

(4) a group having an invariant elliptic congruence;

(5) a group having an invariant quadric;

(6) a group having an invariant twisted cubic;

(7) a group G containing a normal elementary abelian

subgroup E of order 16, with: G/E ∼= A5 or S5;

(8) a group G isomorphic to A6, S6 or A7.

For the relevant definitions, see [Hirschfeld 85], see also

[Blichfeldt 19] and [Ostrom 77] for cases (7) and (8).

Remark 2.1. This classification is part of a general “phi-
losophy”: The subgroups of GL(n,F ), f large, are essen-
tially subgroups of Lie type, with some exceptions inde-

pendent of f (see [Serre 86]).

From this, we obtain a classification of maximal proper

subgroups H of PGSp(4,F ) with exhaustive determi-
nant. It is similar to the above classification, except that

cases (7) and (8) change according to the relation be-

tween H and G, given by the exact sequence:

1→ G→ H → {±1}→ 1.

2.2 The Action of Inertia

From now on, we will assume that f is a prime of good

reduction for the abelian surface A. Then it follows from

results of Raynaud that the restriction ρ̄ |I has the fol-

lowing property [Raynaud 74, Serre 72]:

Theorem 2.2. If V is a Jordan-Hölder quotient of the I -

module A[f](Q̄) of dimension n over F , then V admits an
F n-vector space structure of dimension 1 such that the

action of I on V is given by a character φ : I ,t → F∗n
(t stands for tame) with:

φ = φd11 ....φ
dn
n , (2—1)

where φi are the fundamental characters of level n and

di = 0 or 1, for every i = 1, 2, . . . , n.

This statement is proved by Serre in [Serre 72] except

for the bound for the exponents, which is the result of

Raynaud mentioned above, later generalized by Fontaine-

Messing.

We will use the following lemmas repeatedly (see

[Dickson 01]):

Lemma 2.3. Let M ∈ Sp(4, F ) be a symplectic trans-
formation over a field F . The roots of the characteris-

tic polynomial of M can be written as α,β,α−1,β−1, for
some α,β.

Remark 2.4. A similar result holds in general for the

groups Sp(2n, F ).

In the case of the Galois representations attached to

A, we know that det(ρ̄ ) = χ2, where χ is the mod f

cyclotomic character. Therefore, we obtain:
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Lemma 2.5. The roots of the characteristic polynomial of
ρ̄ (Frob p) ∈ G can be written as α,β, p/α, p/β (p fN).

Remark 2.6. Here Frob p denotes the (arithmetic) Frobe-
nius element, defined up to conjugation. The value of

the representation in it is well-defined precisely because

of the fact that the representation is unramified at p.

Proof: Use Lemma 2.3, G ⊆ GSp(4,F ), and the exact
sequence:

1→ Sp(4,F )→ GSp(4,F )→ F∗ → 1.

Remark 2.7. The same is true for ρ (Frob p) ∈ G ∞ .

Thus, the characteristic polynomial of ρ (Frob p) has the

form

x4 − apx3 + bpx2 − papx+ p2

with ap, bp ∈ Z, ap = trace(ρ (Frob p)).

From Equation (2-1), we obtain the following possibil-

ities for ρ̄ |I (f N):
1 ∗ ∗ ∗
0 χ ∗ ∗
0 0 1 ∗
0 0 0 χ

 ;

ψ2 0 ∗ ∗
0 ψ2 ∗ ∗
0 0 ψ2 0

0 0 0 ψ2

 ;

ψ2 0 ∗ ∗
0 ψ2 ∗ ∗
0 0 1 ∗
0 0 0 χ

 ;

ψ + 2

4 0 0 0

0 ψ
2+ 3

4 0 0

0 0 ψ
3+1
4 0

0 0 0 ψ1+4

 ,
where ψi is a fundamental character of level i.

3. STUDY OF THE IMAGES

3.1 Reducible Case: 1-Dimensional Constituent

Let c be the conductor of the compatible family {ρ }.
For the case of the Jacobian of a genus 2 curve, it can

be computed using an algorithm of Liu, except for the

exponent of 2 in c, which can easily be bounded using

the discriminant of an integral model of the curve [Liu

94].

Suppose that the representation ρ̄ is reducible with a

1-dimensional sub(or quotient) representation given by a

character µ. This character is unramified outside fN and

takes values in F̄ ; therefore from the description of ρ̄ |I
given in Section 2.2 we have µ = εχi, with ε unramified

outside N and i = 0 or 1. Clearly cond(ε) | c. After
semisimplification, we have:

ρ̄ ∼= εχi ⊕ π,

for a 3-dimensional representation π with det(π) =

ε−1χ2−i. Therefore, cond(ε)2 | c. Let d be the maxi-
mal integer such that d2 | c. If we take a prime p ≡ 1
(mod d), we have ε(p) = 1 so χi is a root of the charac-

teristic polynomial of ρ̄ (Frob p). This gives:

bp − ap(p+ 1) + p2 + 1 ≡ 0 (mod f), (3—1)

both for i = 0 and i = 1 (in agreement with Lemma 2.5).

By the Riemann hypothesis, the roots of the charac-

teristic polynomial of ρ (Frob p) have absolute value
√
p.

This gives automatic bounds for the absolute values of

the coefficients ap and bp, and from these bounds, we see

that for large enough p congruence, Equation (3-1) is not

an equality. Therefore, only finitely many primes f may

verify (3-1)

Variant. Instead of taking a prime p ≡ 1 (mod d), we
can work in general with p of order f in (Z/dZ)∗. Let
Polp(x) be the characteristic polynomial of ρ̄ (Frob p).

Then ε(p)pi is a root of Polp(x), with i = 0 or 1, and

ε(p)f = 1 ∈ F . Then

Res(Polp(x), x
f − 1) ≡ 0 (mod f) (3—2)

where Res stands for resultant (again, cases i = 0 and 1

agree). This variant is used in the examples to avoid

computing Polp(x) for large p.

3.2 Reducible Case: ”Related” 2-Dimensional
Constituents

Suppose that, after semisimplification, ρ̄ decomposes as

the sum of two 2-dimensional irreducible Galois repre-

sentations: ρ̄ ∼= π1 ⊕ π2. Assume also that these two

constituents are related by Lemma 2.5, i.e., if α,β are

the roots of the characteristic polynomial of π1(Frob p),

then p/α, p/β are the roots of that of π2(Frob p). If

not, then it follows from Lemma 2.5 that α = p/β, so

det(π1) = det(π2) = χ; this case will be studied in the

next subsection.

Using the description of ρ̄ |I given in Section 2.2, we

see that one of the following must happen (where ε is a

character unramified outside N):

• Case 1: det(π1) = εχ2, det(π2) = ε−1.

• Case 2: det(π1) = εχ, det(π2) = ε−1χ.
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Case 1. In this case, we have the factorization

Polp(x) ≡ (x2−rx+p2ε(p)) (x2− rx

pε(p)
+ε−1(p)) (mod f).

As in the previous subsection, cond(ε) | d. Eliminating r
from the equation, we obtain

Qp(bp, ap, ε(p)) := (ε(p)bp − 1− p2ε(p)2)(pε(p) + 1)2
− a2ppε(p)2 ≡ 0 (mod f).

If we take p ≡ 1 (mod d), we obtain

(bp − 1− p2) (p+ 1)2 ≡ a2p p (mod f). (3—3)

Again, from the bounds for the coefficients, we see that

for large enough p, this is not an equality. Thus only

finitely many f can satisfy (3-3). Alternatively, for com-

putational purposes, we may take p with pf ≡ 1 (mod d).
Then we have

Res(Qp(bp, ap, x), x
f − 1) ≡ 0 (mod f). (3—4)

Case 2. This case is quite similar to the previous one.

We start with

Polp(x) ≡ (x2−rx+pε(p)) (x2− rx

ε(p)
+pε−1(p)) (mod f)

with cond(ε) | d. From this,

QIp(bp, ap, ε(p)) := (ε(p)bp − p− pε(p)2)(ε(p) + 1)2
− a2pε(p)2 ≡ 0 (mod f).

Thus, if p ≡ 1 (mod d),

4(bp − 2p) ≡ a2p (mod f). (3—5)

In general, if pf ≡ 1 (mod d),

Res(QIp(bp, ap, x), x
f − 1) ≡ 0 (mod f). (3—6)

In this case, the fact that this holds only for finitely many

primes f is nontrivial. It may be thought of as a conse-

quence of Theorem 1.1.

3.3 The Remaining Reducible Case

As explained above, in the remaining reducible case, we

have ρ̄ss ∼= π1 ⊕ π2 with det(π1) = det(π2) = χ. In

Section 2.2, we described the possibilities for ρ̄ |I . This
gives for π1|I and π2|I :w

1 ∗
0 χ

W
or

w
ψ2 0

0 ψ2

W
.

In addition, cond(π1)cond(π2) | c.
At this point, we invoke Serre’s conjecture (3.2.4?) (see

[Se 87]) that gives us a control on π1 and π2. Both repre-

sentations should be modular of weight 2, i.e., there exist

two cusp forms f1, f2 with

ρ̄f1,
∼= π1, ρ̄f2,

∼= π2, f1 ∈ S2(N1), f2 ∈ S2(N2),

N1N2 | c (we are assuming π1,π2 to be irreducible; other-
wise, they are covered by Section 3.1). Both cusp forms

have trivial nebentypus.

There are finitely many cusp forms in these finitely

many spaces. We have an algorithm to detect the primes

f falling in this case by comparing characteristic polyno-

mials mod f, since

ρ̄ss ∼= ρ̄f1, ⊕ ρ̄f2, .

We take all pairs of integers N1, N2 with N1N2 = c and

all pairs of cusp forms f1 ∈ S2(N1), f2 ∈ S2(N2) (either
newforms or oldforms). If we denote by Polfi,p(x) the

characteristic polynomial of ρfi, (Frob p) (i = 1, 2), we

should have for some such pair f1, f2:

Polf1,p(x)Polf2,p(x) ≡ Polp(x) (mod f) (3—7)

for every p fN . Theorem 1.1 guarantees that this can

only happen for finitely many primes.

Remark 3.1. The Galois representations ρfi, attached
to fi were constructed by Deligne (cf. [De 71]). The

polynomials Polfi,p(x) are of the form

Polfi,p(x) = x
2 − cpx+ p,

where cp is the eigenvalue of fi corresponding to the

Hecke operator Tp. These eigenvalues, and a fortiori

the characteristic polynomials Polf,p(x) for any cusp

form f , can be computed with an algorithm of W. Stein

(cf. [St]). The compatible family of Galois representa-

tions constructed by Deligne, in the case of a cusp form

f ∈ S2(N), shows up in the Jacobian J0(N) of the mod-
ular curve X0(N): It agrees with a two-dimensional con-

stituent of the one attached to the abelian variety Af
corresponding to f .

For computational purposes, we introduce the follow-

ing variant: Observe that eitherN1 orN2 (sayN1) satisfy

N1 | c, N1 ≤
√
c.

Consider all divisors of c verifying this, maximal (among

divisors of c) with this property. Call S the set of such
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divisors. Then we are supposing that there exists f ∈
S2(t) with t ∈ S and

Res(Polf,p(x), Polp(x)) ≡ 0 (mod f),

for every p fN . Therefore, for some t ∈ S

Res(
�

f∈S2(t)
Polf,p(x), Polp(x) ) ≡ 0 (mod f), (3—8)

for every p fN .

With this formula, we compute in any given example

all primes f falling in this case.

Remark 3.2. In all reducible cases (Sections 3.1, 3.2, and
3.3), we have considered reducibility over F̄ .

3.4 Stabilizer of a Hyperbolic or Elliptic Congruence

If G corresponds to an irreducible subgroup inside (its

projective image) some of the maximal subgroups in cases

(3) and (4) of Mitchell’s classification, there is a normal

subgroup of index 2 of G such that

1→M → G → {±1}→ 1,

and the subgroup M is reducible (not necessarily over

F ).
In fact, a hyperbolic (elliptic) congruence is composed

of all lines meeting two given skew lines in the projective

three-dimensional space over F defined over F (F 2 , re-

spectively), called the axes of the congruence (see [Hi

85]). The stabilizer of such congruences consists of those

transformations that fix or interchange the two axes, and

it contains the normal reducible index two subgroup of

those transformations that fix both axes.

From the description of ρ̄ |I given in Section 2.2, we

see that if f > 3, it is contained in M . Therefore,

if we take the quotient G /M , we obtain a represen-

tation GQ → C2 whose kernel is a quadratic field un-

ramified outside N . Then there is a quadratic character

φ : (Z/cZ)∗ → C2 with φ(p) = −1 ⇒ ρ̄ (Frob p) is of

the form 
0 0 ∗ ∗
0 0 ∗ ∗
∗ ∗ 0 0

∗ ∗ 0 0

 .
Therefore, trace(ρ̄ (Frob p)) = 0 , i.e.,

ap ≡ 0 (mod f), (3—9)

for every p fN with φ(p) = −1.

Considering all quadratic characters ramifying only at

the primes in N , we detect the primes f falling in this

case. Once again, from Theorem 1.1, it follows that this

set is finite (of course, this fact strongly depends on the

assumption End(A) = Z).

3.5 Stabilizer of a Quadric

This case can be treated exactly as the one above: As-

suming again absolute irreducibility of the image G , it

contains a normal subgroup of index 2, and we obtain a

quadratic character unramified outsideN verifying Equa-

tion (3-9). In this case, ρ̄ is the tensor product of two

irreducible 2-dimensional Galois representations (see [Hi

85], page 28), one of them dihedral (this is the necessary

and sufficient condition for the tensor product to be sym-

plectic; see [B-R 89], page 51), so the matrices in G are

of the form:
av 0 cv 0

0 az 0 cz

bv 0 dv 0

0 bz 0 dz

 or


0 az 0 cz

av 0 cv 0

0 bz 0 dz

bv 0 dv 0

 ,
depending on the value of the quadratic character φ.

3.6 Stabilizer of a Twisted Cubic

This case is incompatible with the description of ρ̄ |I
given in Section 2.2. In this case, all upper-triangular

matrices are of the form (see [Hi 85], page 233):
a3 ∗ ∗ ∗
0 a2d ∗ ∗
0 0 ad2 ∗
0 0 0 d3

 .
In no case is the subgroup of G given by ρ̄ |I of this

form.

3.7 Exceptional Cases

The cases already studied cover all possibilities in the

classification except the exceptional groups, i.e., cases (7)

and (8). In these cases, comparing the exceptional group

H ⊆ PGSp(4,F ) (its order and structure) with the fact
that P(G ) contains the image of P(ρ̄ |I ) described in
Section 2.2, we end up with the only possibilities (f > 3):

f = 5, 7.

For these two primes, as for any prime we suspect of

satisfying G W= GSp(4,F ), we compute several charac-
teristic polynomials Polp(x) mod f. At the end, either

we prove that it must be G = GSp(4,F ) (because the
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orders of the roots of the computed polynomials do not

give any other option) or we reinforce our suspicion that

f is exceptional.

3.8 Conclusion

Having gone through all cases in the classification (the

stabilizer of a parabolic congruence is reducible, it has

an invariant line of the complex, cf. [Mi 14]) we conclude

that for all primes f except those whose image, according

to our algorithm, may fall in a proper subgroup (accord-

ing to Theorem 1.1, only finitely many) the image of

P(ρ̄ ) is PGSp(4,F ).
From this, it easily follows that if f is not one of the fi-

nitely many exceptional primes, we haveG = GSp(4,F )
and applying a lemma of [Se 86] (see also [Se 68]) we ob-

tain G ∞ = GSp(4,Z ). Recall that at one step, we have
assumed the veracity of Serre’s conjecture (3.2.4?).

4. AN EXAMPLE

We have applied the algorithm to the example given by

the Jacobian of the genus 2 curve given by the equation

y2 = x6 − x3 − x+ 1.

The algorithm of Q. Liu computes the prime-to-2 part of

the conductor. From this computation and the bound of

the conductor in terms of the discriminant of an integral

equation ([Liu 94]), we obtain c | 212 · 23 · 5.
We exclude a priori the primes dividing the conduc-

tor: 2, 5 and 23. We sketch some of the computations

performed:

Reducible cases with 1-dimensional constituent or two
related 2-dimensional constituents. The maximal pos-

sible value of the conductor of ε is d = 64. We com-

pute the characteristic polynomials of ρ (Frob p) for the

primes p = 229, 257, 641, 769 and applying the algorithm

(Equations (3-2), (3-4), and (3-6)), we easily check that

no prime f > 3 falls in these cases.

Remark 4.1. The characteristic polynomials used at this
and the remaining steps can be found in Section 6.

Remaining reducible case. First we describe the set of

special divisors of c:

S = {368, 460, 512, 640}.

Then we compute, for each t ∈ S and each Hecke eigen-
form f ∈ S2(t), the characteristic polynomial Polf,p(x)
for p = 3, 7, 11, 13, 17, 19 with the algorithm implemented

by W.Stein ([St]). Then, comparing these polynomials

with the characteristic polynomials of ρ (Frob p) as in

Equation (3-8), we see that no prime f > 3 falls in this

case.

Cases “governed” by a quadratic character. We have to

consider all possible quadratic characters φ unramified

outside c (there are 15) and for each of them take a couple

of primes p with φ(p) = −1 and ap W= 0. Applying the

algorithm (Equation (3-9)), we see that no prime f > 3

falls in these cases. At this step, we have used the values

ap for the primes p = 3, 7, 13, 97, 113, 569, 769.

Exceptional cases. We compute the reduction of a few

characteristic polynomials modulo 7 and we find elements

whose order (in PGSp(4,F7)) does not correspond to the
structure of any of the exceptional groups.

From all the above computations, we conclude:

Theorem 4.2. Let A be the jacobian of the genus 2 curve:

y2 = x6 − x3 − x+ 1.

Let G ∞ be the image of ρA, , the Galois representation

on A[f∞](Q̄), whose conductor divides 212 · 5 · 23. Then,
assuming Serre’s conjecture (3.2.4?),

G ∞ = GSp(4,Z )

for every f > 5, f W= 23.

Remark 4.3. We are not claiming that the image is not
maximal for any of the four excluded primes.

5. UNCONDITIONAL RESULTS
AND MORE EXAMPLES

5.1 The Case of Semiabelian Reduction

For certain genus 2 curves one can prove that the image

is large for an infinite set of primes by using the following

results of Le Duff [LeD 98]:

Proposition 5.1. Let A be an abelian surface defined over
Q. Suppose that for a prime p of bad reduction of A, Ã0p
(the connected component of 0 in the special fiber of the

Nron Model of A at p) is an extension of an elliptic curve

by a torus. Then, for every prime f W= p with f Φ(p)

(number of connected components of Ãp), G contains a

transvection.

Recall that a transvection is an element u such that

Image(u− 1) has dimension 1.
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Proposition 5.2. ([LeD 98]) If G ⊂ Sp(4,F ) is a proper
maximal subgroup containing a transvection, all its ele-

ments have reducible (over F ) characteristic polynomial.
Therefore, a transvection together with a matrix with ir-

reducible characteristic polynomial generate Sp(4,F ).

Remark 5.3. We can also find in [Mi 14] the list of max-
imal subgroups of PSp(4,F ) containing central elations,
and a central elation is the image in PSp(4,F ) of a
transvection in Sp(4,F ). These groups correspond to

cases (1) and (3) in Section 2.1 or to a group having an

invariant line of the complex, defined over F .

Recall that Polq(x) denotes the characteristic polyno-

mial of ρ (Frob q) for any prime q of good reduction for

the abelian surface A and f W= p. From the two previous

results, we have the following theorem:

Theorem 5.4. (Le Duff.) Let p be a bad reduction prime

verifying the condition of Proposition 5.1 and q a prime

with Polq(x) irreducible, then for every f 2pqΦ(p) such

that Polq(x) is irreducible modulo f, G = GSp(4,F ). If
∆q is the discriminant of Polq(x) and ∆Qq the discrim-

inant of Qq(x) := x2 − aqx + bq − 2q, the irreducibility
condition is:

(
∆q

f
) = −1 and (∆Qq

f
) = −1.

Example 5.5. (Le Duff.) Take the genus 2 curve:

C2 : y2 = x5 − x+ 1.

A2 = J(C2) has good reduction outside 2, 19, 151. For

p = 19, 151, the condition in Proposition 5.1 is satisfied

with Φ(p) = 1. Take q = 3, Pol3(x) is irreducible and

Theorem 5.4 gives: G = GSp(4,F ) for every f > 3 with
(61 ) = −1 and (5 ) = −1.

Remark 5.6. Of course, considering more irreducible

characteristic polynomials, one can obtain the same re-

sult for other primes. In particular, G = GSp(4,F ) for
f = 19, 151 (cf. [LeD 98]).

Remark 5.7. The example in the previous section also
verifies Le Duff’s condition.

Let us apply our method to this example. The in-

variants are c = cond(A2) | 28 · 19 · 151 (computed with
Liu’s algorithm); then cond(ε) | d = 16; and the set

S = {256, 604, 608}.

In this example, we only have to worry about those

maximal subgroups in Mitchell’s classification containing

central elations. Therefore, we only have to discard the

maximal subgroups considered in Sections 3.1, 3.3, and

3.4.

• The reducible case with 1-dimensional constituent is
easily handled using the characteristic polynomials

(see Section 6) Polp(x) for p = 17, 97 and we con-

clude that no prime f > 2 falls in this case.

• Due to the fact that the spaces of modular forms
S2(t) for t ∈ S are rather large, we decided to save
computations and to apply the procedure described

in Section 3.3, Equation (3-8), only to the prime

p = 3. After computing all resultants of Pol3(x)

with all the characteristic polynomials Polf,3(x) for

f ∈ S2(t), t ∈ S, we find the possibly exceptional
primes f > 2:

f = 3, 5, 11, 19, 29, 31, 41, 61, 109, 151.

Having computed the characteristic polynomials

Polp(x) for p = 11, 41, 79, 101, 199, 211

(see Section 6), we checked that for each of the ten

possibly exceptional primes f listed above, one of

these six polynomials is irreducible modulo f. Then,

applying Theorem 5.4, we conclude that none of

these primes is exceptional. Thus, no f > 2 has

reducible image.

• For cases governed by a quadratic character, we have
to consider all possible quadratic characters φ un-

ramified outside c and for each of them take a couple

of primes p with φ(p) = −1 and ap W= 0. We use the
values ap for p = 3, 5, 97, 257 (see Section 6) and an

application of the algorithm (Equation (3-9)) proves

that the only possibly exceptional primes f > 2 are

f = 3, 5, 11, 97, 257.

We already mentioned that 3, 5, and 11 are not excep-

tional. Applying Theorem 5.4 again, we see that 97

and 257 are also nonexceptional because Pol11(x) is ir-

reducible modulo 97 and Pol281(x) is irreducible modulo

257. We have the following theorem:

Theorem 5.8. Let A2 be the Jacobian of the genus 2 curve
given by the equation y2 = x5 − x + 1. Assume Serre’s
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conjecture (3.2.4?) ([Serre 87]). Then the images of the

Galois representations on the f-division points of A2 are

G = GSp(4,F ), for every f > 2.

Remark 5.9. ρ̄2 is also irreducible over F2. This irre-
ducibility for all f is equivalent to the fact that A2 is

isolated in its isogeny class in the sense that any abelian

variety isogenous to A2 over Q is isomorphic to A2 over

Q. Unfortunately, this condition of being isolated is not
effectively verifiable.

Among the subgroups containing central elations, we
have used Serre’s conjecture only to eliminate the follow-
ing one:

G ⊆ {A×B ∈ GL(2,F )×GL(2,F ) : det(A) = det(B) = χ}.
(5—1)

Take q with Polq(x) irreducible. If (
∆Qq ) = −1 case

(5-1) cannot hold, because the matrices A and B would

have their traces in F 2 F . This follows from the fac-

torization

Polq(x) =p
x2 − Daq +0∆Qq

2

i
x+ q

Qp
x2 − Daq −0∆Qq

2

i
x+ q

Q
.

Then, again using Pol3(x), we prove the following theo-

rem without using Serre’s conjecture:

Theorem 5.10. The images of the Galois representations
on the f-division points of A2 are

G = GSp(4,F ), for every f > 3 with
p5
f

Q
= −1.

Observe that we have obtained an unconditional result

that is stronger than the one in [LeD 98], because it only

uses the condition on one of the discriminants (thus, it

applies to more primes). We warn the reader that there is

a mistake in [Le Duff 98], page 521; the polynomial Pol11

corresponding to this example is wrongly computed. It

should read:

x4 + 7x3 + 31x2 + 77x+ 121.

5.2 Unconditional Results in the General Case

We will show now that even in the case that the condi-

tion of Proposition 5.1 is not verified at any prime, we

can obtain similar unconditional results. In an arbitrary

example, if we do not use Serre’s conjecture, there is an-

other case to consider (in addition to case (5-1)):

G ⊆ {M ∈ GL(2,F 2) : det(M) = χ}. (5—2)

The inclusion of this group in GSp(4,F ) is given by
the map: M → diag(M,MFrob), where Frob is the non-

trivial element in Gal(F 2/F ).
Two tricks allow us to discard this case:

(i) Suppose that for a prime q, Polq(x) decomposes over

Q as follows:

Polq(x) = (x
2 +Ax+ q)(x2 +Bx+ q), A W= B.

Then case (5-2) cannot hold if f B −A and f W= q.
(ii) Suppose that p2k+1 , cond(A), then for every f

pΦ(p), case (5-2) cannot hold. The condition on f is

imposed to ensure that for these f p2k+1 , cond(ρ̄ )
also holds.

Example 5.11. (Smart.) The following curve is taken

from the list given in [Smart 97] of all genus 2 curves

defined over Q with good reduction away from 2:

C3 : y2 = x(x4 + 32x3 + 336x2 + 1152x− 64),
A3 = J(C3), c | 220 (this is the uniform bound for the 2-

part of the conductor of abelian surfaces over Q, [Brumer
and Kramer 94]). Le Duff’s method cannot be applied

to this example; the condition of Proposition 5.1 is not

verified at 2.

We eliminate ALL maximal proper subgroups in

Mitchell’s classification using the characteristic polyno-

mials Polp(x) for several primes p and cond(ε) | 1024,
S = {1024}, with the algorithm described in Section 3.

To be more precise, the reducible cases treated in

Section 3.1 and 3.2 are excluded using the polynomials

Polp(x) for p = 3, 17, 19, 31. Assuming Serre’s conjec-

ture, the remaining reducible case is excluded using the

polynomials Polp(x) for p = 7, 11, 13. The cases con-

sidered in Sections 3.4 and 3.5 are excluded using the

polynomials Polp(x) for p = 3, 5. Finally, with the tech-

nique described in Section 3.7, we check that f = 5, 7 are

nonexceptional. All characteristic polynomials used are

listed in Section 6.

After these computations we find no exceptional primes.

Theorem 5.12. Assume Serre’s conjecture (3.2.4?)

([Serre 87]). Then the images of the Galois represen-

tations on the f-division points of A3 are

G = GSp(4,F ), for every f > 3.
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Without Serre’s conjecture, trick (i) is used to discard

case (5-2). In fact, Pol5(x) decomposes as in (i) with A =

−2 and B = 0. The same happens to Pol17(x). To deal
with case (5-1), we check that Pol3(x) is irreducible and

∆Q3
= 12 (see Section 6). We obtain the unconditional

result:

Theorem 5.13. The images of the Galois representations
on the f-division points of A3 are

G = GSp(4,F ), for every f > 3 with
p3
f

Q
= −1.

5.3 Further Examples

In [Leprévost 91], Leprévost gives a genus 2 curve over

Q(t) with 13-rational torsion. For t = 13 we obtain:

C : y2 = −4x5+300x4−1404x3+5408x2−8788x+28561,

A = J(C) has cond(A) = 2a · 133 · 52 · 172. Le Duff’s
condition is not verified at any prime. We can determine

the image as in the previous example, with or without

assuming Serre’s conjecture (in the “reducible case with

1-dimensional constituent,” we find f = 13 an exceptional

prime).

Remark 5.14. Here trick (ii) eliminates case (5-2) for

every f W= 13 because

133 , cond(A) and Φ(13) = 13.

Brumer and Kramer (unpublished) have given exam-

ples of Jacobians of genus 2 curves with prime conductor.

For them, our algorithm determines the image with just

a few computations. For instance, when applying Serre’s

conjecture, no computation is necessary because we have

S = {1} and S2(1) = 0.

One of these examples is given by the Jacobian of the

genus two curve:

C : y2 = x(x2+1)(1729x3+45568x2+25088x−76832).

The conductor of J(C) is 709.

Remark 5.15. All the examples of abelian surfaces con-
sidered in this article verify the condition End(A) = Z.
This follows in particular from our result on the images

of the attached Galois representations (the condition on

the endomorphism algebra is also necessary for this result

to hold).

p ap bp
3 -3 6

7 -2 6

11 -4 18

13 -5 16

17 0 22

19 -6 42

97 6 154

113 18 250

229 24 534

257 15 148

569 6 -118

641 12 -266

769 -6 402

TABLE 1. Abelian surface A (Section 4).

6. COMPUTED CHARACTERISTIC POLYNOMIALS

We list all the characteristic polynomials Polp(x) that

have been used in the examples of the abelian surface

A in Section 4 and the abelian surfaces A2 and A3 in

Section 5.

Recall that in any case the polynomial Polp(x) is of

the form

x4 − apx3 + bpx2 − papx+ p2,

so it is enough to give the values ap, bp.

p ap bp
3 -3 7

5 -5 15

17 -3 16

97 -8 86

257 -11 -113

11 -7 31

41 -7 72

79 7 75

101 -8 -16

199 25 338

211 -17 103

281 1 148

p ap bp
3 2 4

5 2 10

7 -2 2

11 -2 12

13 -6 18

17 4 22

19 -2 -4

31 4 46

(a)

(b)

TABLE 2. (a) Abelian surface A2 = J(C2) (Section 5.1);
(b) Abelian surface A3 = J(C3) (Section 5.2).
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