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Let (W,S) be an arbitrary Coxeter system, y ∈ S∗. We describe
an algorithm which will compute, directly from y and the Cox-
eter matrix ofW , the interval from the identity to y in the Bruhat
ordering, together with the (partially defined) left and right ac-
tions of the generators. This provides us with exactly the data
that are needed to compute the Kazhdan-Lusztig polynomials
Px,z, x ≤ z ≤ y. The correctness proof of the algorithm is
based on a remarkable theorem due to Matthew Dyer.

1. INTRODUCTION

Let (W,S) be a Coxeter system, i.e., a group W to-

gether with a presentation of the form S | (st)ms,t =

e (s, t ∈ S) , where S is a finite set which we shall

usually just consider to be {1, . . . , n}; e is the identity
element in W ; and (ms,t) is a symmetric matrix with

values in {1, 2, . . .} ∪ {∞}, such that ms,s = 1 for all

s ∈ S, ms,t ≥ 2 for s = t; ms,t = ∞ simply means

that the corresponding relation is to be omitted. The

cardinality of S is called the rank of the group; some-

times we omit S from the notation and simply say that

W is a Coxeter group. We refer to [Humphreys 90] for

general information about Coxeter groups. Examples of

Coxeter groups are Weyl groups of finite-dimensional or

Kač-Moody semisimple Lie algebras, and finite groups

generated by reflections in Euclidian space; other exam-

ples may be realized as discrete groups generated by re-

flections in hyperbolic space.

In their seminal paper [Kazhdan and Lusztig 79],

Kazhdan and Lusztig have defined for each pair of ele-

ments (x, y) inW such that x ≤ y in the Bruhat ordering
(to be defined below), a polynomial Px,y ∈ Z[q]. We will
use in Section 4 the recursion formula which, in principle,

leads to the computation of Px,y. If W is the Weyl group

of a finite-dimensional or Kač-Moody Lie algebra g, the

Kazhdan-Lusztig polynomials of W hold the key to the

representation theory of g, and also to the geometry of
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the corresponding Schubert varieties. In this case, it is

known that the coefficients of Px,y are nonnegative inte-

gers. For otherW , very little is known about the Px,y (in

particular, the positivity of their coefficients remains con-

jectural); they probably point to a yet-to-be-discovered

geometry and/or representation theory.

Due to the fundamental importance of Kazhdan-

Lusztig polynomials, and to the difficulty in computing

them by hand except in very special cases, great efforts

have been made to implement their calculation on a com-

puter. As far as I know, previous attempts to achieve

this (including my own) have always proceeded in three

stages: (a) implement the group W , either by way of a

linear representation, or combinatorially; (b) deal with

the Bruhat ordering; and (c) implement the actual re-

cursion. In practice, the main burden of the computation

falls on the Bruhat order routines, but in turn, the effi-

ciency of these routines will depend on how well we have

been able to solve stage (a). In view of these difficulties,

most computations I am aware of have been restricted

to finite Coxeter groups (for the best programs, up to a

group order of about half a million, say). The exceptions

are the results posted by Mark Goresky [Goresky 96] on

his homepage, concerning the first few hundred elements

of the affine Weyl groups associated to root systems of

rank ≤ 3, and Ã3, and Bill Casselman’s Kazhdan-Lusztig
programs, which he has used to compute one- and two-

sided cells in various finite, affine, and hyperbolic Cox-

eter groups (see [Casselman 00] for an application, and

Casselman’s homepage [Casselman 01]). Goresky’s files

contain the necessary data for the description of the sin-

gularities of the Schubert variety associated to y ∈ W , for
small y; basically, this involves the computation of the el-

ement cy in the Kazhdan-Lusztig basis (see Section 4.2),

and pruning the result a little to extract the irreducible

components of the stratification defined by equality of

polynomials (a rough version of equisingularity.)

In this paper, we shall present an algorithm which,

for any Coxeter group W , constructs directly from the

Coxeter matrix (ms,t) and a word a = (s1, . . . , sp) in

the generators, the interval [e, y] in the Bruhat order-

ing, where y = s1 . . . sp is the element of W represented

by a, together with the (partially defined) left and right

actions of all the generators on [e, y], without any prior

implementation of the group operations. This provides

us with exactly the data we need to compute Px,z for all

x ≤ z ≤ y using the recursion formula of Kazhdan and
Lusztig. The algorithm is based on the analysis of the

structure of Bruhat intervals and some other Bruhat-like

posets in [du Cloux 00]; the essential ingredient in its cor-

rectness proof is a remarkable theorem due to Matthew

Dyer in his thesis [Dyer 87], which we shall discuss in

Section 3.

We have made a preliminary implementation of this al-

gorithm in a demonstration program available from the

Coxeter homepage [du Cloux 01]. This program will

compute the basis element cy, and the data which would

appear in Goresky’s files describing the singularity of the

corresponding Schubert cell whenever this makes sense,

for an element y of moderate length in an arbitrary Cox-

eter group W , of rank less than 16, say (more details on

the scope of the program are given in Section 6.) The per-

formance limitations of the demonstration program are

mainly due to the simple-minded routines used to access

the Bruhat order within the Kazhdan-Lusztig computa-

tion. By using ideas from [du Cloux 99], we believe that

its performance (regarding both speed and memory us-

age) could be improved considerably–we hope to include

a full-fledged implementation in some future version of

Coxeter.

2. DEFINITION AND ELEMENTARY PROPERTIES
OF THE BRUHAT ORDERING

2.1 Posets

For any poset P , and x ≤ y in P , we denote by [x, y] the
set of z ∈ P such that x ≤ z ≤ y. Let us say that P is

locally finite, if all intervals [x, y] in P are finite; assume

from now on that P is locally finite. A chain in P is

a totally ordered subset; a chain is maximal if it is not

properly contained in any other chain. Define the length

of a chain to be its cardinality minus one. We say that

P is graded, if for all x ≤ y ∈ P , all maximal chains in
[x, y] have the same length; this is also sometimes called

the Jordan-Dedekind condition. Let us assume that fur-

thermore P has a smallest element 0; then we define the

length function l on P by setting l(x) to be the length of

the maximal chains in [0, x]. For x ≤ y in P , we also de-
fine the length of the interval [x, y] to be the length of its

maximal chains; it is easy to see that the length of [x, y] is

equal to l(y)− l(x). The atoms of an interval [x, y] ⊂ P ,
x < y, are the z ∈ [x, y] such that l(z) = l(x) + 1; sim-
ilarly, the coatoms of [x, y] are the z ∈ [x, y] such that
l(z) = l(y) − 1. For x ∈ P , we will speak about the
coatoms of x instead of the coatoms of [0, x] and denote

their set coat(x). A decreasing subset of P is a subset Q

such that if y ∈ Q and x ≤ y, then x ∈ Q; since P has a
smallest element 0, this means simply that Q is a union

of intervals [0, y].
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2.2 Coxeter Groups

We denote S∗ the free monoid generated by S, i.e., the
set of all words in the alphabet S. To avoid confusion be-

tween elements of S∗ and elements of W , we will write a
word a ∈ S∗ as a = (s1, . . . , sp); if x = s1 . . . sp is the cor-
responding element in W , we say that a is an expression

for x. The smallest possible number of letters in an ex-

pression for x is called the length of x, and denoted l(x);

an expression for x is called reduced, if it has exactly l(x)

letters. It is an elementary fact about Coxeter groups

that for x ∈ W , s ∈ S, we have either l(xs) = l(x) + 1,
in which case we write xs > x, or l(xs) = l(x) − 1, in
which case we write xs < x, and of course, we have an

analogous statement for left multiplications.

2.3 Bruhat Ordering

The following proposition can be used to define the

Bruhat ordering :

Proposition 2.1. There exists a unique ordering on W ,
which we call the Bruhat ordering, and denote ≤, such
that (a) (W,≤) has smallest element e (b) for each
x ∈ W , s ∈ S such that l(xs) < l(x), [e, x] is the (non-
necessarily disjoint) union of [e, xs] and [e, xs]s.

Proof: Uniqueness is clear, since all intervals [e, x] are

uniquely defined by induction on the length of x, and

the knowledge of these intervals is enough to determine

the poset structure. For the existence, the main point is

to show that [e, xs] ∪ [e, x]s is independent of the choice
of s, so that it can be used as a definition of [e, xs]. This

can be proved directly by an elementary argument us-

ing dihedral groups, but we will omit the proof, since it

follows from the usual definition of the Bruhat ordering

(see the Proposition in [Humphreys 90], Section 5.9).

2.4 First Properties of the Bruhat Ordering

The Bruhat ordering satisfies the following properties:

(a) The previous usage of < in Section 2.2 is compatible

with Proposition 2.1: if x ∈ W and s ∈ S are such
that l(xs) < l(x), then xs ∈ [e, x], hence xs < x for
the Bruhat ordering.

(b) If a = (s1, . . . , sp) is any reduced expression for x,

the interval [e, x] is the set of all elements z ∈ W of

the form z = sj1 . . . sjq , where 1 ≤ j1 < . . . < jq ≤ p
(the elements corresponding to the so-called subex-

pressions of a.) This follows easily from (b) in propo-

sition 2.1 by induction on the length of x; in partic-

ular, our definition of the Bruhat ordering is equiv-

alent to the usual one (see for instance [Humphreys

90], Section 5.9).

(c) x→ x−1 is an automorphism of the Bruhat ordering
(this follows from (b) above).

(d) The Bruhat ordering also satisfies the property anal-

ogous to (b) in Proposition 2.1 for left multiplica-

tions (this follows from (c)).

(e) If x ∈ W , s ∈ S are such that xs < x, the interval

[e, x] is stable under right multiplication by s; this is

clear from the equality [e, x] = [e, xs] ∪ [e, xs]s. The
analogous property holds for left multiplications.

2.5 Further Properties of the Bruhat Ordering

Two other essential properties of the Bruhat ordering lie

slightly deeper than the previous observations. The first

one is that the Bruhat ordering is graded (see [Humphreys

90], Section 5.11); moreover, the length function on W

as a poset coincides with the length function previously

defined for elements of W . The second one is that the

poset W is Eulerian. This means that we have χ[x,y] = 0

for each x < y in W , where χ[x,y] is the “Euler charac-

teristic” defined by

χ[x,y] =
x≤z≤y

(−1)l(z)−l(x).

Equivalently, the Möbius function of W is given by

µ(x, y) = (−1)(l(y)−l(x)) for all x < y in W (see [Stanley

97], Sections 3.14 and 3.7, for more details on Eulerian

posets and Möbius functions.) In this form, this was

proved by Verma [Verma 71].

An elementary consequence is that all intervals [x, y]

for which l(y)− l(x) = 2 have exactly four elements: x, y,
and exactly two intermediary elements z and z . Also, it

follows that for any x < y in W , the cardinality of [x, y]

is even.

3. DYER’S THEOREM

3.1 Dihedral Coxeter Groups

A dihedral Coxeter group is simply a Coxeter group of

rank 2, i.e., for which the generating set S has two el-

ements s, t. If m = ms,t is finite, then W is a finite

group of order 2m; if m is infinite, then W is the infinite

dihedral group, isomorphic to the (nontrivial) semidirect

product of Z with Z/2Z. The Bruhat ordering of a dihe-

dral group is particularly easy to describe: there are ex-

actly two elements in each length j such that 0 < j < m,

one in length 0, and one in length m if m < ∞; and all
elements in length j > 0 are comparable to all elements



374 Experimental Mathematics, Vol. 11 (2002), No. 3

e

s

t

st

ts

sts = tst

FIGURE 1. Hasse diagram of the Bruhat ordering in

type A2.

in length j−1. For example, ifm = 3, we get the familiar

picture of the Bruhat ordering on the Weyl group of type

A2 (also the symmetric group on three letters), shown in

Figure 1.

We say that an interval [x, y] of length > 1 in an arbi-

trary Coxeter group W is dihedral if it is isomorphic as a

poset to the Bruhat ordering on a (finite) dihedral group.

Let us also make the convention that intervals of length

0 (one-element sets) and of length 1 (two-element sets)

are dihedral. Then it is easy to see that any subinter-

val in a dihedral interval is again dihedral. We shall say

that y ∈ W is dihedral, if the interval [e, y] is dihedral;

equivalently, there exist s, t in S such that y belongs to

the subgroup of W generated by s and t.

3.2 Dihedral Subgroups

We now explain a striking result due to Matthew Dyer

(one of the many striking results contained in his thesis

[Dyer 87]) that imposes very important restrictions on

the Bruhat ordering of a Coxeter group. For its proof

(which we reproduce here since this result of Dyer’s ap-

parently has not been included in his publications), we

first need to review some of his other results.

The reflections in W are defined to be the conjugates

of the elements of S; so the set T of reflections is a fi-

nite union of conjugacy classes of elements of order 2 in

W . The canonical geometrical realisation ofW is defined

as follows. Consider the real vector space V = RS , of

dimension n, and its standard basis (es)s∈S . Endow V
with the unique symmetric bilinear form , for which

es, et = − cos( π
ms,t

). Then there is a unique injective

homomorphism from W into the orthogonal group of V

taking s to the orthogonal reflection with respect to the

hyperplane e⊥s ( [Humphreys 90], Section 5.3); this is the
canonical geometrical realization. We define the roots of

W to be the conjugates under W of the basis elements

es, and denote the set of roots by Φ. Since s.es = −es,
we have Φ = −Φ. Reflections inW will correspond to or-

thogonal reflections with respect to elements of Φ; more

precisely, if for each t ∈ T we define its reflection line Lt
to be the (−1)-eigenspace of the action of t in V , then

t → Lt ∩ Φ is a bijection from T to pairs of opposite

elements in Φ.

We will define a dihedral subgroup ofW to be any sub-

group generated by two distinct reflections. We will say

that two dihedral subgroups are commensurate, if they

are contained in a common dihedral subgroup. For any

dihedral group D, it is easy to see that for any choice

of reflections t1, t2 generating D, D ∩ T is exactly the

set of elements of odd length with respect to the chosen

generators, and also the set of conjugates of t1 and t2 in

D. Hence, all the reflection lines Lt, t ∈ D ∩ T , lie in
the two-dimensional subspace VD of V spanned by Lt1
and Lt2 ; this shows immediately that VD does not de-

pend on the choice of generators. If a dihedral subgroup

is contained in another, it is clear that the correspond-

ing two-dimensional subspaces are the same; hence, the

same is true for commensurate dihedral subgroups. The

converse also holds, and follows from the proof of the

following lemma [Dyer 87, Corollary 3.18]:

Lemma 3.1. Each dihedral subgroup of W is contained in

a unique maximal one.

Proof: Let α, β be two nonproportional elements of Φ,

and let V1 be the two-dimensional subspace of V spanned

by α and β. Let Φ1 = Φ∩V1, and let D be the subgroup

of W generated by the reflections rγ , γ ∈ Φ1, where for
each unit vector u ∈ V , we denote by ru the reflection
x→ x−2 u, x u. It will suffice to show thatD is dihedral.
If , 1 is the restriction of , to V1, there are three

cases to consider: (a) , 1 is positive definite; (b) , 1

is nonzero positive degenerate; (c) , 1 has signature

(1,−1). In cases (a) and (c), take V2 = V ⊥1 ; in case (b),
choose a subspace V2 ⊂ V ⊥1 such that V = V1⊕V2. Then
in all cases, D acts trivially on V2. So D is contained in

O(V1)× {IdV2} ⊂ O(V ).
But it is well known ([Bourbaki 68], Chapter V, no

4.4, Corollary 3) that W is a discrete subgroup of O(V );

hence, D may be identified with a discrete subgroup of

O(V1). Moreover, as a Lie group O(V1) always has the

form Z2 A, where A is isomorphic to R/Z in case (a),

to R in case (b), and to R× in case (c), with Z2 acting by
inversion; in case (c), D is contained in Z2 R∗+. Then
from elementary topological considerations, one sees that

in all three cases D is a dihedral subgroup of W , finite

in case (a), infinite in the two other cases.

3.3 The Reflection Subgroup of a Bruhat Interval

In fact, Dyer [Dyer 90] Theorem 3.3 shows that if R is any

(finite, say) subset of T , the subgroupW ofW generated
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by R is always a Coxeter group in its own right (this

was proved independently by Deodhar in [Deodhar 89]).

More precisely, he defines a canonical subset S ⊂ T ∩W
such that S is a set of Coxeter generators for W ; he

shows that |S | ≤ |R|, although it is certainly possible
that |S | > |S|. In particular, when W is dihedral, S is

a two-element set. We shall call such a subgroup W a

reflection subgroup of W .

It is a well known and useful fact in the theory of

Coxeter groups ([Humphreys 90] section 5.12) that if I is

any subset of S, and ifWI is the subgroup ofW generated

by I, then any (left, say) coset WIx of WI in W contains

a unique element of minimal length. This was extended

in [Dyer 90] Corollary 3.4 to the case of an arbitrary

reflection subgroup W .

Let x < y in W be such that l(x) = l(y) − 1. Then
it is an easy consequence of 2.4 (b) that if y = s1 . . . sp
is a reduced decomposition, x may be obtained by eras-

ing a single sj from the decomposition (and in fact, j

is unique.) This may also be expressed by saying that

there exists a reflection t ∈ T such that x = yt (take t =
sp . . . sj+1sjsj+1 . . . sp); so we have y

−1x = x−1y ∈ T .
The following theorem regroups the main results of

Dyer’s study of the reflection subgroups arising from

maximal chains in subintervals [Dyer 91, Proposition 2.1]:

Theorem 3.2. Let x < y in W , and let x = x0 < x1 <

. . . < xm = y be a maximal chain in [x, y], so that m =

l(y) − l(x). For 1 ≤ j ≤ m, set tj = x−1j−1xj , and let
W ⊂ W be the subgroup generated by the tj . Then

(a) W is independent of the choice of the maximal

chain.

(b) Let z be the unique element of minimal length in

W x; then [x, y] is contained in the left coset W z,

and the map u → uz−1 defines a poset isomor-
phism from [x, y] to [x , y ] ⊂ W , where x = xz−1,
y = yz−1, and [x , y ] is the interval in the Bruhat
ordering defined by the canonical generating set S

of W .

3.4 Dyer’s Characterization of Dihedral Intervals

The above theorem is the essential ingredient in the proof

of the theorem on which our algorithm is based, and

which may be stated as follows :

Theorem 3.3. ([Dyer 87] Proposition 7.25.) Let (W,S)

be an arbitrary Coxeter system, and let [x, y] be a Bruhat

interval in W of length at least two. Then the following

are equivalent :

(i) [x, y] has two atoms;

(ii) [x, y] has two coatoms;

(iii) [x, y] is dihedral.

Proof: Of course (iii)⇒(i) and (iii)⇒(ii) are trivial. Let
us prove, for instance that (ii)⇒(iii). We argue by induc-
tion on l(y)− l(x). If l(y)− l(x) is two, there is nothing
to prove. So we may assume that l(y) − l(x) is at least
three.

Let t, t be the two reflections ofW taking y to the two

coatoms of [x, y] (see Section 3.3). From Lemma 3.1, the

dihedral subgroup t, t is contained in a unique maximal

dihedral subgroup D. From Theorem 3.2, it suffices to

prove that the subgroup generated by all the u−1v, u <
v in [x, y], l(u) = l(v) − 1, is dihedral; and since any
reflection subgroup (containing at least two reflections)

of a dihedral group is again dihedral, it will suffice to

show that u−1v ∈ D for all such u, v.

We argue by induction on l(y)−l(u). If l(y)−l(u) = 1,
we have u−1v ∈ {t, t }, so there is nothing to prove. As-
sume l(y) − l(u) > 1, and let z be an atom of [v, y],

so that l(z) − l(u) = 2. Write [u, z] = {u, v, v , z}, and
let t1 = u−1v, t2 = v−1z, t2 = v −1z. Then we know
from Theorem 3.2 that the two dihedral subgroups t1, t2
and t2, t2 are commensurate (in fact the latter is con-

tained in the former); but from the inductive hypothesis,

t2, t2 ⊂ D; so t1, t2 ⊂ D as well, and in particular

t1 ∈ D. The proof of (i)⇒(iii) is entirely similar.

Corollary 3.4. Let y ∈ W be non-dihedral (see Section

3.1), and let s ∈ S. Then if zs < s for all z ∈ coat(y)
except at most one, we have ys < y; the analogous prop-

erty holds for left multiplications.

Proof: We consider the case of right multiplications. If

y = e, there is nothing to prove. So let y > e, and

assume that ys > y. If we would have zs < z for all

z ∈ coat(y), then from Section 2.4 (e), [e, y[:= [e, y] \ {y}
would be stable under right multiplication by s; but on

[e, y[ this defines an involution without fixed points, con-

tradicting the fact that |[e, y[| is odd, since |[e, y]| is even
from Section 2.5.

Hence, there is a unique z ∈ coat(y) such that zs > z.
Now any x < y other than z satisfies x ≤ z for some

z ∈ coat(y), z = z: this is clear if x ∈ coat(y), and oth-
erwise follows from the fact that [x, y] has at least two

coatoms if l(y) − l(x) > 1. Hence [e, y] \ {z, y} is stable
under right multiplication by s, and [e, ys] contains ex-

actly two elements not already in [e, y], viz. zs and ys; in
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particular, coat(ys) = {y, zs}, which from Theorem 3.3

implies that [e, ys] is dihedral; but then [e, y] is dihedral

as well, contradicting our assumption on y.

4. KAZHDAN-LUSZTIG POLYNOMIALS

4.1 Recursion Formulae

We refer to the original paper [Kazhdan and Lusztig 79]

or to [Humphreys 90], Chapter 7, for the proper definition

and proofs of the basic properties of the Kazhdan-Lusztig

polynomials. Our goal here is to recall the recursion for-

mulæ from [Kazhdan and Lusztig 79] which we use to

compute these polynomials, in order to assess the data

which will be needed in the process.

Let q be an indeterminate. Then it is clear that there

is at most one family Px,y of elements of Z[q], defined for

x ≤ y in W , satisfying the following requirements :

(a) Px,x = 1 for all x ∈W ;
(b) if x < y, and s ∈ S, are such that ys < y and xs > x,

Px,y = Pxs,y;

(b’) if x < y, and s ∈ S, are such that sy < y and sx > x,
Px,y = Psx,y;

(c) if x < y, and s ∈ S, are such that ys < y and xs < x,
and x is not comparable to ys, Px,y = Pxs,ys;

(d) if x < y, and s ∈ S, are such that ys < y, xs < x,

and x ≤ ys, we have

Px,y = Pxs,ys+qPx,ys−
x≤z<ys
zs<z

q
1
2 (l(y)−l(z))µ(z, ys)Px,z,

where µ(z, ys) is the coefficient of degree 1
2 (l(ys) −

l(z) − 1) in Pz,ys (defined to be 0 if l(ys) − l(z) is
even); it is not hard to show by induction that, in

fact, Px,y is at most of degree
1
2 (l(y)− l(x)−1) when

x < y.

4.2 Kazhdan-Lusztig Basis

In fact, the Px,y are (up to a degree shift) the coordinates

of the elements of a remarkable basis of the Hecke alge-

bra of W, the so-called Kazhdan-Lusztig basis. There is

one such basis element cy for each y in W, and in many

applications it is the knowledge of such a cy which is re-

quired. In other words, a common requirement will be

the computation of the Px,y for a fixed y, and all x ≤ y.
The whole recursion then takes place in the interval [e, y],

which is finite even if the group is infinite. We see that

in order to carry out the recursion, we will need the fol-

lowing:

(a) an enumeration of the interval [e, y], and a descrip-

tion of the Bruhat ordering on it;

(b) in this enumeration, the action of the generators s ∈
S on the left and on the right.

Note that the action of each s ∈ S on [e, y] is only
partially defined. In fact, it follows from Proposition 2.1

that it is everywhere defined (on the right, say) if and

only if ys < y; in other words, if and only if s belongs

to the so-called right descent set of y (see Section 4.3

below). Otherwise, xs remains within [e, y] if and only

if there exists z ≥ x in [e, y] such that zs < z. We will

say that this is the domain of the right action of s; it is

a (possibly empty) decreasing subset of [e, y].

4.3 Descent Sets

For each y ∈ W, we define L(y) (R(y)) to be the set
of s ∈ S such that sy < y (ys < y); we set LR(y) =

L(y) R(y) ⊂ S S. We say that L(y) (R(y), LR(y)) is

the left (right, two-sided) descent set of y. These descent

sets play an important role in the theory.

We notice that the knowledge of LR(x) for each x ≤ y
suffices to determine the left and right actions of all gen-

erators on [e, y] (this remark could be used if a compact

data encoding is required, but it is likely to be unpractical

for systematic computations). Indeed, encoding LR(x)

as a sequence of 2|S| bits in the obvious way, and looking
at the bit position for, say, the right action of a genera-

tor s, we see that if the bit for x is set, meaning xs < x,

there will be exactly one among the coatoms z of x for

which the corresponding bit is not set; indeed, [e, x] is

stable under right multiplication by s, so zs > z happens

if and only if zs = x, hence z = xs (these are precisely

the remarks underlying the axiomatization in [du Cloux

00]).

4.4 Outline of the Computation

Assuming we have solved (a) and (b) above, the only

further (and obvious) idea used in our program is to re-

member the values of all the polynomials already com-

puted. More precisely, assume that a polynomial Px,z is

required for x ≤ z ≤ y. The program first reduces to

the case where LR(x) ⊃ LR(z) (this amounts to putting
ourselves in cases (c) or (d) of Section 4.1). Then it looks

up a list of such x; the first time this occurs for a given z,

it actually has to make the list, which involves extracting

the subinterval [e, z]–we will come back to this problem,

which is probably the most time-consuming part of the

computation, in the next section. If the polynomial has

already been computed, it will find it there; otherwise, it
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uses the recursion formula, potentially triggering many

other computations, finds the requested Px,z , and writes

it down.

5. DESCRIPTION OF THE MAIN ALGORITHM

5.1 Data Structures

We shall now describe an algorithm which takes as input

an arbitrary word over the alphabet S, and produces as

output the poset [e, y], and for each x ∈ [e, y], the “shift-
table” of x recording the result of the left and right ac-

tions of the generators on x. The only other datum that

this algorithm needs is the Coxeter matrix of W, which

is assumed to have been somehow read into memory. In

other words, for s, t in {1, . . . , n}, we may call a function
Cox(s, t), which will return ms,t (with some convention

for representing ∞; in our program, it is represented by
0).

An enumeration of [e, y] simply means an identifica-

tion of [e, y] with the numbers 0 to N − 1, where N is

the cardinality of [e, y]. We view this as a function ν

from [e, y] to [0, N [⊂ N. We shall always require that

the enumeration be increasing: i.e., if x < z in [e, y], we

want to have ν(x) < ν(z). Increasing enumerations exist

for any finite poset. On the other hand, we do not insist

that the enumeration be length-first; in other words, we

do not require that l(x) < l(z) implies ν(x) < ν(z). It

is always possible to do a length-sort if and when this

becomes necessary (for instance, in order to have pleas-

ant output.) In particular, the fact that ν is increasing

implies that ν(e) = 0.

In order to represent a graded poset, it is enough to

give for each x in [e, y] the list of coatoms of x; this will

be empty if and only if x = e.

To summarize, we wish to find the cardinality N of

[e, y], and construct the following data:

(a) for each x ∈ [0, N [, the list coat[x] of the elements
in [0, x[ which correspond to coatoms of x;

(b) for each x ∈ [0, N [, the length length[x];
(c) for each x ∈ [0, N [, the shift table shift[x]; this is

the datum of 2n elements of [0, N [∪∞, correspond-
ing to the left and right action of the generators,

where ∞ is a special value, indicating that the cor-

responding shift is undefined (in practice, it is con-

venient to take for ∞ a value which is larger than

any legal value for x).

(d) for each x ∈ [0, N [, the descent set LR[x]; of course
these are trivially deduced from the shift tables, and

we have seen that the converse is also true; however,

it is convenient to have them both available.

Notice that these data imply the enumeration of the

poset: clearly, if all left shifts are known, it is a trivial

matter to write down for each x ∈ [0, N [ a reduced ex-
pression for the corresponding group element, and indeed

the ShortLex normal form (this is by definition the lex-

icographically smallest reduced expression, correspond-

ing to the ordering of S implied by its identification with

{1, . . . , n}.) Conversely, if we are given a reduced expres-
sion of an element of [e, y], following the right shifts from

the identity, we find the corresponding x ∈ [0, N [ (in fact,
this works for any expression, reduced or not, provided

the path does not take us outside of [e, y].) So we will

leave ν implicit in the sequel.

At the beginning of the algorithm, the data are ini-

tialized to their values for y = e: we have N = 1, the

coatom list of x = 0 is empty, the length of x = 0 is 0, the

shifts are all set to∞, and the descent set LR[0] is empty.
We shall describe in the next sections the main loop of

the algorithm, passing from the data for [e, y] to the data

for [e, ys], where s is a new letter in our input word. A

very nice feature of the construction is that, apart from

some undefined shifts becoming defined, it fully preserves

the data already constructed for [e, y], at least if ys > y

(which should be the “hard” case, and always happens

if the word is reduced.) So once we have determined the

size of the bigger interval, we simply resize our lists and

fill in the new part.

5.2 Poset Structure

It is easy to find out how many new elements have to be

added to our interval. Indeed, from Section 2.4 (e), we

see that for each x ∈ [e, ys] we have x ≤ y or xs ≤ y or
both; hence the new elements are the x = x s, where x

runs through the elements in [e, y] for which x s is not

already in [e, y], i.e., for which the right shift of x by

s is undefined. From this, we get the new value of N ,

and we can fill in the length function and the right shifts

by s (note that right shift by s is everywhere defined on

[e, ys].)

Now we may construct the coatom lists of the new ele-

ments as follows ([du Cloux 00], Section 2.9 and Proposi-

tion 2.14.) Traverse the list of new elements in increasing

order. For each x, let x = xs; then the coatoms of x are

x , and the z = z s, where z runs through the coatoms

of x in [e, y] for which z s > z . Since the coatoms of x

are all represented by strictly smaller integers, it is clear

that the enumeration is indeed increasing.



378 Experimental Mathematics, Vol. 11 (2002), No. 3

5.3 Shifts

It remains to explain how to find the shifts other than

right multiplication by s. Let σ be such a shift, i.e., σ is

either right multiplication by some t = s, or left multi-

plication by any t. Before we start, all the σ(x) for the

newly created x are set to undefined. Let ∆ ⊂ [e, y] be
the previous domain of σ, and let ∆ ⊂ [e, ys] be the new
one. Then we need to define σ on ∆ \∆; this will involve
some of the newly created elements, and some already

existing elements for which σ was previously undefined.

But we notice that, in fact, ∆ \∆ = {σ(x), x}, where
x runs through the set of newly created elements such

that σ(x) < x. So if for each newly created element x

we are able to decide whether σ(x) < x or σ(x) > x, we

are done: if σ(x) > x, the corresponding shift is left un-

defined for the time being; if σ(x) < x, there is a unique

coatom z of x such that σ(z) > z (in fact, σ(z) will have

the value∞ at this point), and we set σ(x) = z, σ(z) = x.

So again, we traverse the list of newly created elements

in increasing order. If l(x) = 1 (which can happen only if

x is the first new element and s is a generator which had

not occurred before), then x = s, and the only σ other

than right shift by s that can take it down is left shift

by s; so we conclude directly in this case. Assume from

now on that l(x) > 1. We have already remarked that if

σ(x) < x, there is a single coatom z of x such that σ(z) >

z; so if there are at least two such coatoms, we may

conclude without further ado that σ(x) > x. Otherwise,

from the Theorem in Section 3.4, we can decide if x is

dihedral or not by looking at the cardinality of coat[x].

If x is nondihedral, we conclude from Corollary 3.4 that

σ(x) < x. If x is dihedral, it is easy to conclude directly:

the other generator involved in x is the unique element

t in R[xs]. Since we have assumed that σ(z) < z for one

of the two coatoms of x, σ is either left multiplication

by s, or right or left multiplication by t. If l(x) = ms,t,

σ(x) < x; otherwise, xt > x, and sx < x, tx > x if l(x)

is odd, sx > x, tx < x if l(x) is even (note that this is

the only place in the whole algorithm where the Coxeter

matrix comes in.) This concludes the main loop of the

algorithm.

5.4 Nonreduced Expressions

Each time the algorithm reads a new generator from its

input word, we are in the situation where the data for

the interval [e, y] have been constructed, and we want

the data for [e, ys]. We have assumed so far that ys > y

(note that from the shift tables for y, which are available

when we read s, we can immediately determine whether

or not this is the case.) If, on the contrary, ys < y, we are

in the situation where we have to restrict to a subinter-

val [e, ys] of the already constructed interval. There is a

straightforward way of extracting the subinterval “back-

wards” from the knowledge of the coatom lists. In our

program, however, we prefer to imitate the above proce-

dure, using for instance the ShortLex normal form for

ys, to extract [e, ys] in the form of a list of elements in

[e, y]. Then as the construction proceeds, we have to deal

with the situation where we only enlarge a subinterval of

our current poset, which can no longer be assumed to

be an interval, but rather an arbitrary finite decreasing

subset of W ; in fact, this causes no trouble at all, and

can be handled exactly as above.

Note that there are efficient methods available to con-

struct a priori the normal form of an arbitrary element

in an arbitrary Coxeter group (see [Casselman 02] for

a nice exposition of the practical implementation of the

ideas from Brink and Howlett in [Brink and Howlett 93]).

So the trouble caused by nonreduced expressions could in

principle be avoided entirely. However, as we have seen

in Section 4.4, it will in any case be necessary to extract

many subintervals of the form [e, x] in the course of the

Kazhdan-Lusztig computations, so this problem has to

be addressed one way or another.

6. SCOPE AND FURTHER DEVELOPMENTS

6.1 Poset Memory Requirements

We would like to conclude with a few informal remarks

on the resources required by this algorithm. In our expe-

rience, given enough memory, time has never been a fac-

tor in Kazhdan-Lusztig computations. It only becomes

a problem if we are unable to keep in memory the ta-

bles described in this article, or the polynomials already

computed. Assuming for simplicity that everything is

represented by 32-bit unsigned integers, the memory re-

quirements for the table constructions are not hard to

evaluate. The limiting factor is the size N of the actual

poset [e, y] we are constructing.

The sizes of the length, descent, and shift tables are

exactly N , N , and 2nN , respectively (if we assume that

the rank does not exceed 16, so that the descent sets

can be represented by a single word.). The size of the

coatom lists is harder to predict, but a rule-of-thumb for

the most common cases (where there is enough commu-

tativity around) is that 2nN is a reasonable estimate for

the total number of coatoms (for groups like the free Cox-

eter group, where all the coefficients ms,t are infinite, the
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y1 = 21321324321323432132 ∈ F4; (length 21)

y2 = 21213212132124321213212343212132123432121321234321213212 ∈ H4; (length 56)

y3 = (321212)
8.3.(212123)8 ∈ G̃2 (length 97);

y4 = (12345)
8 ∈ Ã4 (length 40).

FIGURE 2. Some Coxeter group elements.


1 3 2 2

3 1 4 2

2 4 1 3

2 2 3 4



1 5 2 2

5 1 3 2

2 3 1 3

2 2 3 1


1 6 2

6 1 3

2 3 1



1 3 2 2 3

3 1 3 2 2

2 3 1 3 2

2 2 3 1 3

3 2 2 3 1


FIGURE 3. Coxeter matrices of F4, H4, G̃2, Ã4.

size would be much larger). In addition, there is an un-

avoidable overhead of 2N elements, because we have to

indicate somehow the number of elements in each coatom

list, and we need a pointer to the beginning of each list.

So we end up with an estimate of 4(n+1)N long integers,

which seems to be pretty well-validated by experience.

6.2 Kazhdan-Lusztig Memory Requirements

Of course, we will still need a sizeable amount of ad-

ditional memory for the Kazhdan-Lusztig computations.

In order to give an idea of how big this requirement might

be, we print a table obtained for a few typical cases.

We consider the elements y1, . . . , y4 defined in Fig-

ure 2 (Here we use the usual Coxeter matrices for F4,

H4, G̃2 and Ã4, see Figure 3.). The elements in F4 and

H4 are (at least in our experience) among the worst possi-

ble ones: in fact, they are elements of longest length with

the property of having one-element left and right descent

sets, which are moreover equal. The element chosen in

G̃2 also has this property. The element in Ã4 has one-

element left and right descent sets, but they are unequal.

The breakup of the corresponding memory costs has

been collected in Table 1. A few explanatory comments

may be in order regarding this table. The memory cost

for the poset construction is computed as explained above

(on a machine where pointers also have a size of 4 bytes.)

The number of Hasse edges is, in fact, the total number

of coatoms for the various lists coat[x]; notice that our

heuristic bound of 2nN holds in these examples.

As we have explained in Section 4.4, in order to record

the polynomials already computed, we maintain an array

of N rows, where row z holds the Px,z for the elements

x ≤ z, which are in “extremal position” with respect

to z; a row is allocated if and when a Px,z is actually

required. The allocation requires eight bytes for each

polynomial: four to record the value of x, and four for a

pointer to the actual polynomial, which is written down

in full only once. The header of each row also requires

eight bytes. In fact, we maintain another such table for

recording µ-coefficients (when a µ-coefficient is required,

we try as much as possible to compute it without unnec-

essarily computing full polynomials; also, µ-coefficients

are essential information in many applications.) We allo-

cate a µ-coefficient only if in addition to x being extremal

with respect to z, the length difference is odd and ≥ 3.
Again, each allocation takes up eight bytes. Finally, we

do not allocate the row for z if z−1 < z in our enumera-
tion; it is reasonably easy to deduce row z from row z−1

if one maintains a (partially defined) table of inverses, at

an additional cost of N words. The cost of the memory

tables is the sum of the 4N words for the headers, the

space for the allocation of the nonempty rows, and the

space for the table of inverses.

When many distinct polynomials appear, the space

used for recording them becomes an important part of

the memory requirement (sometimes the dominant part.)

The cost of storing them is deg(P )+ 2 words for each P ,

plus the cost of a searching structure to access the store

efficiently (in our case, a hash table). The total cost of

the computation is the sum of the costs for the poset,

memory tables, and polynomial storage.

6.3 Conclusion

The upshot of this analysis is that on a computer with

512 Mb of memory available, the computation of the basis

vector cy should go through for a size of [e, y] of about 2
18
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y1 ∈ F4 y2 ∈ H4 y3 ∈ G̃2 y4 ∈ Ã4
N 988 14 042 9 276 56 410

Hasse edges 5 244 98 357 53 925 496 734

memory cost for poset

construction (bytes)

68 400 1 067 444 586 740 5 145 896

Kazhdan-Lusztig

polynomials allocated

1383 379 991 572 003 2 221 661

Kazhdan-Lusztig

polynomials computed

887 246 895 416 994 1 569 005

mu coefficients allocated 410 181 387 269 985 1 042 705

mu coefficients computed 146 107 148 191 284 619 255

memory cost for

memory tables (bytes)

34 104 4 771 864 6 921 424 27 243 128

distinct polynomials

found

135 67 864 190 860 23 946

deg(P ) + 2 728 653 508 2 992 386 240 106

memory cost for poly-

nomial storage (bytes)

3992 3 156 944 13 496 424 1 151 992

total cost for

computation (bytes)

106 496 8 996 252 21 004 588 33 541 016

TABLE 1. Memory costs for some typical computations.

to 220 if the rank is not bigger than 8, say (this will not

be possible with the demonstration program, however;

a more careful implementation of the Kazhdan-Lusztig

computation will be needed.) In practice, this seems to

correspond to elements of length around 40 or 50, unless

the rank of the group is small, where lengths might get

larger (but not much larger than 100, except in very easy

cases.)
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