
Computing a Glimpse of Randomness
Cristian S. Calude, Michael J. Dinneen, and Chi-Kou Shu

CONTENTS

1. Introduction
2. Notation
3. Computably Enumerable and Random Reals
4. The First Bits of an Omega Number
5. Register Machine Programs
6. Solving the Halting Problem for Programs up to 84 Bits
7. The First 64 Bits of ΩU

8. Conclusions
Acknowledgments
References

2000 AMS Subject Classification: Primary 68Q30; Secondary 68Q17

Keywords: Chaitin Omega number, halting problem, algorithmic
randomness

A Chaitin Omega number is the halting probability of a univer-
sal Chaitin (self-delimiting Turing) machine. Every Omega num-
ber is both computably enumerable (the limit of a computable,
increasing, converging sequence of rationals) and random (its
binary expansion is an algorithmic random sequence). In par-
ticular, every Omega number is strongly noncomputable. The
aim of this paper is to describe a procedure, that combines Java
programming and mathematical proofs, to compute the exact
values of the first 64 bits of a Chaitin Omega:

0000001000000100000110001000011010001111110010111011101000010000.

Full description of programs and proofs will be given elsewhere.

1. INTRODUCTION

Any attempt to compute the uncomputable or to decide

the undecidable is without doubt challenging, but hardly

a new endeavor (see, for example, [Marxen and Buntrock

90], [Stewart 91], [Casti 97]). This paper describes a hy-

brid procedure (which combines Java programming and

mathematical proofs) for computing the exact values of

the first 64 bits of a concrete Chaitin Omega number,

ΩU , the halting probability of the universal Chaitin (self-

delimiting Turing) machine U , see [Chaitin 90a]. Note

that any Omega number is not only noncomputable, but

random, making the computing task even more demand-

ing.

Computing lower bounds for ΩU is not difficult: we

just generate more and more halting programs. Are the

bits produced by such a procedure exact? Hardly. If

the first bit of the approximation happens to be 1, then

yes, it is exact. However, if the provisional bit given by

an approximation is 0, then, due to possible overflows,

nothing prevents the first bit of ΩU from being either 0

or 1. This situation extends to other bits as well. Only

an initial run of 1s may give exact values for some bits

of ΩU .

The paper is structured as follows. Section 2 intro-

duces the basic notation. Computably enumerable (c.e.)

reals, random reals, and c.e. random reals are presented

cs A K Peters, Ltd.
1058-6458/2001 $0.50 per page

Experimental Mathematics 11:3, page 361

362 Experimental Mathematics, Vol. 11 (2002), No. 3

in Section 3. Various theoretical difficulties preventing

the exact computation of any bits of an Omega number

are discussed in Section 4. The register machine model of

Chaitin [Chaitin 90a] is discussed in Section 5. In Section

6 we summarize our computational results concerning the

halting programs of up to 84 bits long for U . They give a

lower bound for ΩU which is proved to provide the exact

values of the first 64 digits of ΩU in Section 7.

Chaitin [Chaitin 00b] has pointed out that the self-

delimiting Turing machine constructed in the preliminary

version of this paper [Calude et al. 00] is universal in

the sense of Turing (i.e., it is capable to simulate any

self-delimiting Turing machine), but it is not universal

in the sense of algorithmic information theory because

the “price” of simulation is not bounded by an additive

constant; hence, the halting probability is not an Omega

number (but a computably enumerable real with some

properties close to randomness). The construction pre-

sented in this paper is a self-delimiting Turing machine.

Full details will appear in [Shu 03].

2. NOTATION

We will use notation that is standard in algorithmic

information theory and assume familiarity with Tur-

ing machine computations, computable and computably

enumerable (c.e.) sets (see, for example, [Bridges 94],

[Odifreddi 99], [Soare 87], [Weihrauch 87]), and elemen-

tary algorithmic information theory (see, for example,

[Calude 94]).

By N,Q, we denote the set of nonnegative integers

(natural numbers) and rationals, respectively. If S is a

finite set, then #S denotes the number of elements of S.

Let Σ = {0, 1} denote the binary alphabet. Let Σ∗ be
the set of (finite) binary strings, and Σω the set of infinite

binary sequences. The length of a string x is denoted by

|x|. A subset A of Σ∗ is prefix-free if whenever s and t

are in A and s is a prefix of t, then s = t.

For a sequence x = x0x1 · · ·xn · · · ∈ Σω and an non-
negative integer n ≥ 1, x(n) denotes the initial segment
of length n of x and xi denotes the ith digit of x, i.e.

x(n) = x0x1 · · ·xn−1 ∈ Σ∗. Due to Kraft’s inequality,
for every prefix-free set A ⊂ Σ∗, ΩA = s∈A 2

−|s| lies
in the interval [0, 1]. In fact ΩA is a probability: Pick,

at random using the Lebesgue measure on [0, 1], a real

α in the unit interval and note that the probability that

some initial prefix of the binary expansion of α lies in the

prefix-free set A is exactly ΩA.

Following Solovay [Solovay 75, Solovay 00], we say

that C is a (Chaitin) (self-delimiting Turing) machine,

shortly, a machine, if C is a Turing machine process-

ing binary strings such that its program set (domain)

PROGC = {x ∈ Σ∗ | C(x) halts} is a prefix-free set of
strings. Clearly, PROGC is c.e.; conversely, every prefix-

free c.e. set of strings is the domain of some machine.

The program-size complexity of the string x ∈ Σ∗ (rela-
tively to C) is HC(x) = min{|y| | y ∈ Σ∗, C(y) = x},
where min ∅ =∞. A major result of algorithmic informa-
tion theory is the following invariance relation: We can

effectively construct a machine U (called universal) such

that for every machine C, there is a constant c > 0 (de-

pending upon U and C) such that for every x, y ∈ Σ∗
with C(x) = y, there exists a string xI ∈ Σ∗ with
U(xI) = y (U simulates C) and |xI| ≤ |x|+c (the overhead
for simulation is no larger than an additive constant). In

complexity-theoretic terms, HU (x) ≤ HC(x) + c. Note
that PROGU is c.e., but not computable.

If C is a machine, then ΩC = ΩPROGC
represents its

halting probability. When C = U is a universal ma-

chine, then its halting probability ΩU is called a Chaitin

Ω number, shortly, Ω number.

3. COMPUTABLY ENUMERABLE AND
RANDOM REALS

Reals will be written in binary, so we start by looking

at random binary sequences. Two complexity-theoretic

definitions can be used to define random sequences

(see [Chaitin 75, Chaitin 00a]): an infinite sequence x

is Chaitin random if there is a constant c such that

H(x(n)) > n−c, for every integer n > 0, or, equivalently,
limn→∞H(x(n)) − n = ∞. Other equivalent definitions
include the Martin-Löf [Martin-Löf 66, Martin-Löf 66]

definition using statistical tests (Martin-Löf random se-

quences), the Solovay [Solovay 75] measure-theoretic de-

finition (Solovay random sequences), and the Hertling

and Weihrauch [Hertling and Weihrauch 98] topologi-

cal approach to define randomness (Hertling—Weihrauch

random sequences). Independent proofs of the equiv-

alence between the Martin-Löf and Chaitin definitions

have been obtained by Schnorr and Solovay, see [Chaitin

90a, Chaitin 01]. In what follows, we will simply call

“random” a sequence satisfying one of the above equiva-

lent conditions. Their equivalence motivates the follow-

ing “randomness hypothesis”([Calude 00]): A sequence is

“algorithmically random” if it satisfies one of the above

equivalent conditions. Of course, randomness implies

strong noncomputability (see, for example, [Calude 94]),

but the converse is false.

Calude et al.: Computing a Glimpse of Randomness 363

A real α is random if its binary expansion x (i.e.

α = 0.x) is random. The choice of the binary base

does not play any role, see [Calude and Jürgensen 94],

[Hertling and Weihrauch 98], [Staiger 91]: randomness is

a property of reals not of names of reals.

Following Soare [Soare 69], a real α is called c.e. if

there is a computable, increasing sequence of rationals

which converges (not necessarily computably) to α. We

will start with several characterizations of c.e. reals (see

[Calude et al. 01]). If 0.y is the binary expansion of a

real α with infinitely many ones, then α = n∈Xα 2
−n−1,

where Xα = {i | yi = 1}.

Theorem 3.1. Let α be a real in (0, 1]. The following

conditions are equivalent:

(i) There is a computable, nondecreasing sequence of ra-

tionals which converges to α.

(ii) The set {p ∈ Q | p < α} of rationals less than α is

c.e..

(iii) There is an infinite prefix-free c.e. set A ⊆ Σ∗ with
α = ΩA.

(iv) There is an infinite prefix-free computable set A ⊆
Σ∗ with α = ΩA.

(v) There is a total computable function f : N2 → {0, 1}
such that

(a) If for some k, n we have f(k, n) = 1 and

f(k, n + 1) = 0, then there is an l < k with

f(l, n) = 0 and f(l, n+ 1) = 1.

(b) We have: k ∈ Xα ⇐⇒ limn→∞ f(k, n) = 1.

We note that following Theorem 3.1, (v), given a com-

putable approximation of a c.e. real α via a total com-

putable function f , k ∈ Xα ⇐⇒ limn→∞ f(k, n) = 1;

the values of f(k, n) may oscillate from 0 to 1 and back;

we will not be sure that they stabilized until 2k changes

have occurred (of course, there need not be so many

changes, but in this case, there is no guarantee of the

exactness of the value of the kth bit).

Chaitin [Chaitin 75] proved the following important

result:

Theorem 3.2. If U is a universal machine, then ΩU is

c.e. and random.

The converse of Theorem 3.2 is also true: It has been

proved by Kučera and Slaman [Kučera and Slaman 01]

based on work reported in [Calude et al. 01] (see also

[Calude and Chaitin 99], [Calude 02a], [Downey 02]):

Theorem 3.3. Let α ∈ (0, 1). The following conditions
are equivalent:

(i) The real α is c.e. and random.

(ii) For some universal machine U , α = ΩU .

4. THE FIRST BITS OF AN OMEGA NUMBER

We start by noting that

Theorem 4.1. Given the first n bits of ΩU , one can decide
whether U(x) halts or not on an arbitrary string x of

length at most n.

The first 10,000 bits of ΩU include a tremendous

amount of mathematical knowledge. In Bennett’s words

[Bennett and Gardner 79]:

[Ω] embodies an enormous amount of wisdom in a

very small space . . . inasmuch as its first few thou-

sands digits, which could be written on a small piece

of paper, contain the answers to more mathematical

questions than could be written down in the entire

universe.

Throughout history mystics and philosophers have

sought a compact key to universal wisdom, a fi-

nite formula or text which, when known and under-

stood, would provide the answer to every question.

The use of the Bible, the Koran and the I Ching for

divination and the tradition of the secret books of

Hermes Trismegistus, and the medieval Jewish Ca-

bala exemplify this belief or hope. Such sources of

universal wisdom are traditionally protected from

casual use by being hard to find, hard to under-

stand when found, and dangerous to use, tending

to answer more questions and deeper ones than the

searcher wishes to ask. The esoteric book is, like

God, simple yet undescribable. It is omniscient, and

transforms all who know it . . . Omega is in many

senses a cabalistic number. It can be known of, but

not known, through human reason. To know it in

detail, one would have to accept its uncomputable

digit sequence on faith, like words of a sacred text.

It is worth noting that even if we get, by some kind of

miracle, the first 10,000 digits of ΩU , the task of solving

the problems whose answers are embodied in these bits

is computable, but unrealistically difficult: The time it

takes to find all halting programs of length less than n

from 0.Ω0Ω2 . . .Ωn−1 grows faster than any computable
function of n.

364 Experimental Mathematics, Vol. 11 (2002), No. 3

Computing some initial bits of an Omega number

is even more difficult. According to Theorem 3.3,

c.e. random reals can be coded by universal machines

through their halting probabilities. How “good” or “bad”

are these names? In [Chaitin 75] (see also [Chaitin

97, Chaitin 99]), Chaitin proved the following:

Theorem 4.2. Assume that ZFC1 is arithmetically

sound.2 Then, for every universal machine U , ZFC can

determine the value of only finitely many bits of ΩU .

In fact, one can give a bound on the number of bits of

ΩU which ZFC can determine; this bound can be explic-

itly formulated, but it is not computable. For example,

in [Chaitin 97] Chaitin described, in a dialect of Lisp, a

universal machine U and a theory T , and proved that U

can determine the value of at most H(T)+15, 328 bits of

ΩU ; H(T) is the program-size complexity of the theory

T , an uncomputable number.

Fix a universal machine U and consider all statements

of the form

“The nth binary digit of the expansion ofΩU is k”,

(4—1)

for all n ≥ 0, k = 0, 1. How many theorems of the

form (4—1) can ZFC prove? More precisely, is there a

bound on the set of nonnegative integers n such that

ZFC proves a theorem of the form (4—1)? From The-

orem 4.2, we deduce that ZFC can prove only finitely

many (true) statements of the form (4—1). This is Chaitin

information-theoretic version of Gödel’s incompleteness

(see [Chaitin 97, Chaitin 99]):

Theorem 4.3. If ZFC is arithmetically sound and U is

a universal machine, then almost all true statements of

the form (4—1) are unprovable in ZFC.

Again, a bound can be explicitly found, but not ef-

fectively computed. Of course, for every c.e. random

real α, we can construct a universal machine U such that

α = ΩU and ZFC is able to determine finitely (but as

many as we want) bits of ΩU .

A machine U for which Peano Arithmetic can prove

its universality and ZFC cannot determine more than

the initial block of 1 bits of the binary expansion of its

halting probability, ΩU , will be called Solovay machine.
3

1Zermelo set theory with choice.
2That is, any theorem of arithmetic proved by ZFC is true.
3Clearly, U depends on ZFC.

To make things worse Calude [Calude 02b] proved the

following result:

Theorem 4.4. Assume that ZFC is arithmetically sound.
Then, every c.e. random real is the halting probability of

a Solovay machine.

For example, if α ∈ (3/4, 7/8) is c.e. and random,
then in the worst case, ZFC can determine its first two

bits (11), but no more. For α ∈ (0, 1/2), we obtained
Solovay’s Theorem [Solovay 00]:

Theorem 4.5. Assume that ZFC is arithmetically sound.
Then, every c.e. random real α ∈ (0, 1/2) is the halting
probability of a Solovay machine which cannot determine

any single bit of α. No c.e. random real α ∈ (1/2, 1) has
the above property.

The conclusion is that the worst fears discussed in the

first section proved to materialize: In general, only the

initial run of 1s (if any) can be exactly computed.

5. REGISTER MACHINE PROGRAMS

We start with the register machine model used by Chaitin

[Chaitin 90a]. Recall that any register machine has a fi-

nite number of registers, each of which may contain an

arbitrarily large nonnegative integer. The list of instruc-

tions is given below in two forms: our compact form

and its corresponding Chaitin [Chaitin 90a] version. The

main difference between Chaitin’s implementation and

ours is in the encoding: we use 7 bit codes instead of 8

bit codes.

L: ? L1 (L: GOTO L1)

This is an unconditional branch to L1. L1 is a label of

some instruction in the program of the register machine.

L: ∧ R L1 (L: JUMP R L1)

Set the register R to be the label of the next instruction

and go to the instruction with label L1.

L: @ R (L: GOBACK R)

Go to the instruction with a label which is in R. This

instruction will be used in conjunction with the jump

instruction to return from a subroutine. The instruction

is illegal (i.e., run-time error occurs) if R has not been

explicitly set to a valid label of an instruction in the

program.

Calude et al.: Computing a Glimpse of Randomness 365

L: = R1 R2 L1 (L: EQ R1 R2 L1)

This is a conditional branch. The last 7 bits of regis-

ter R1 are compared with the last 7 bits of register R2.

If they are equal, then the execution continues at the

instruction with label L1. If they are not equal, then

execution continues with the next instruction in sequen-

tial order. R2 may be replaced by a constant which can

be represented by a 7-bit ASCII code, i.e., a constant

from 0 to 127.

L: # R1 R2 L1 (L: NEQ R1 R2 L1)

This is a conditional branch. The last 7 bits of register

R1 are compared with the last 7 bits of register R2. If

they are not equal, then the execution continues at the

instruction with label L1. If they are equal, then exe-

cution continues with the next instruction in sequential

order. R2 may be replaced by a constant which can be

represented by a 7-bit ASCII code, i.e., a constant from

0 to 127.

L:) R (L: RIGHT R)

Shift register R right 7 bits, i.e., the last character in R

is deleted.

L: (R1 R2 (L: LEFT R1 R2)

Shift register R1 left 7 bits, add to it the rightmost 7

bits of register R2, and then shift register R2 right 7

bits. The register R2 may be replaced by a constant

from 0 to 127.

L: & R1 R2 (L: SET R1 R2)

The contents of register R1 are replaced by the contents

of register R2. R2 may be replaced by a constant from

0 to 127.

L: ! R (L: READ R)

One bit is read into the register R, so the numerical

value of R becomes either 0 or 1. Any attempt to read

past the last data-bit results in a run-time error.

L: / (L: DUMP)

All register names and their contents, as bit strings, are

written out. This instruction is also used for debugging.

L: % (L: HALT)

Halts the execution. This is the last instruction for each

register machine program.

A register machine program consists of a finite list of

labeled instructions from the above list, with the restric-

tion that the HALT instruction appears only once, as the

last instruction of the list. The data (a binary string)

follows immediately the HALT instruction. The use of

undefined variables is a run-time error. A program not

reading the whole data, or attempting to read past the

last data-bit, results in a run-time error. Because of the

position of the HALT instruction and the specific way data

is read, register machine programs are Chaitin machines.

To be more precise, we present a context-free grammar

G = (N,Σ, P, S) in Backus-Naur form which generates

the register machine programs.

(1) N is the finite set of nonterminal variables:

N = {S} ∪ INST ∪ TOKEN
INST = {�RMSInsX, �?InsX, �∧InsX, �@InsX, �=InsX, �#InsX,�)InsX, �(InsX, �&InsX, �!InsX, �/InsX, �%InsX}

TOKEN = {�DataX, �LabelX, �RegisterX, �ConstantX,
�SpecialX, �SpaceX, �AlphaX, �LSX}

(2) Σ, the alphabet of the register machine programs, is

a finite set of terminals, disjoint from N :

Σ = �AlphaX ∪ �SpecialX ∪ �SpaceX ∪ �DigitX
�AlphaX = {a, b, c, . . . , z}
�SpecialX = {:, /, ?,∧,@,=,#,), (,&, !,%}
�SpaceX = {‘space’,‘tab’}
�DigitX = {0, 1, . . . , 9}

�ConstantX = {d | 0 ≤ d ≤ 127}

(3) P (a subset of N × (N ∪Σ)∗) is the finite set of rules
(productions):

S → �RMSInsX∗�%InsX�DataX
�DataX → (0|1)∗

�LabelX → 0 | (1|2| . . . |9)(0|1|2| . . . |9)∗

�LSX → : �SpaceX∗

�RegisterX → �AlphaX(�AlphaX ∪ (0|1|2| . . . |9))∗

�RMSInsX → �?InsX | �∧InsX | �@InsX | �=InsX | �#InsX |�)InsX | �(InsX | �&InsX | �!InsX | �/InsX
(L: HALT)

�%InsX → �LabelX�LSX%
(L: GOTO L1)

�?InsX → �LabelX�LSX?�SpaceX∗�LabelX
(L: JUMP R L1)

�∧InsX → �LabelX�LSX ∧ �SpaceX∗�RegisterX
�SpaceX+�LabelX
(L: GOBACK R)

�@InsX → �LabelX�LSX@�SpaceX∗�RegisterX
(L: EQ R 0/127 L1 or L: EQ R R2 L1)

�=InsX → �LabelX�LSX = �SpaceX∗�RegisterX�SpaceX+
�ConstantX�SpaceX+�LabelX | �LabelX�LSX =
�SpaceX∗�RegisterX�SpaceX+�RegisterX
�SpaceX+�LabelX

366 Experimental Mathematics, Vol. 11 (2002), No. 3

(L: NEQ R 0/127 L1 or L: NEQ R R2 L1)

�#InsX → �LabelX�LSX#�SpaceX∗�RegisterX�SpaceX+
�ConstantX�SpaceX+�LabelX | �LabelX�LSX#
�SpaceX∗�RegisterX�SpaceX+�RegisterX�SpaceX+
�LabelX
(L: RIGHT R)

�)InsX → �LabelX�LSX)�SpaceX∗�RegisterX
(L: LEFT R L1)

�(InsX → �LabelX�LSX(�SpaceX∗�RegisterX�SpaceX+�ConstantX | �LabelX�LSX(�SpaceX∗�RegisterX
�SpaceX+�RegisterX
(L: SET R 0/127 or L: SET R R2)

�&InsX → �LabelX�LSX&�SpaceX∗�RegisterX�SpaceX+�ConstantX | �LabelX�LSX&�SpaceX∗�RegisterX
�SpaceX+�RegisterX
(L: READ R)

�!InsX → �LabelX�LSX!�SpaceX∗�RegisterX
(L: DUMP)

�/InsX → �LabelX�LSX/

(4) S ∈ N is the start symbol for the set of register

machine programs.

It is important to observe that the above construction

is universal in the sense of algorithmic information the-

ory (see the discussion at the end of Section 1). Register

machine programs are self-delimiting because the HALT

instruction is at the end of any valid program. Note that

the data, which immediately follows the HALT instruc-

tion, is read bit by bit with no endmarker: This type

of construction was first programmed in Lisp by Chaitin

[Chaitin 90a, Chaitin 00a].

To minimize the number of programs of a given length

that need to be simulated, we have used “canonical pro-

grams” instead of general register machines programs.

A canonical program is a register machine program in

which (1) labels appear in increasing numerical order

starting with 0; (2) new register names appear in

increasing lexicographical order starting from ‘a’; (3)

there are no leading or trailing spaces; (4) operands are

separated by a single space; (5) there is no space after

labels or operators; and (6) instructions are separated

by a single space. Note that for every register machine

program, there is a unique canonical program which is

equivalent to it, that is, both programs have the same

domain and produce the same output on a given input.

If x is a program and y is its canonical program, then

|y| ≤ |x|.

Here is an example of a canonical program:

0:!a 1:^b 4 2:!c 3:?11 4:=a 0 8 5:&c 110

6:(c 101 7:@b 8:&c 101 9:(c 113 10:@b 11:%10

To facilitate the understanding of the code, we rewrite

the instructions with additional comments and spaces:

0:! a // read the first data bit into register a

1:^ b 4 // jump to a subroutine at line 4

2:! c // on return from the subroutine call c is

//written out

3:? 11 // go to the halting instruction

4:= a 0 8 // the right most 7 bits are compared with

// 127; if they are equal, then go to label 8

5:& c ‘n’ // else, continue here and

6:(c ‘e’ // store the character string ‘ne’ in register

7:@ b // c; go back to the instruction with label 2

// stored in register b

8:& c ‘e’ // store the character string ‘eq’ in

// register c

9:(c ‘q’

10:@ b

11:% // the halting instruction

10 // the input data

For optimization reasons, our particular implementa-

tion designates the first maximal sequence of SET/LET

instructions as (static) register preloading instructions.

We “compress” these canonical programs by (1) delet-

ing all labels, spaces and the colon symbol with the first

nonstatic instruction having an implicit label 0, (2) sepa-

rating multiple operands by a single comma symbol, and

(3) replacing constants with their ASCII numerical val-

ues. The compressed format of the above program is

!a^b,4!c?11=a,0,8&c,110(,c,101@b&,c,101(,c,113@b%10

Note that compressed programs are canonical pro-

grams because during the process of “compression,”

everything remains the same except for the elimination

of space. Compressed programs use an alphabet with 49

symbols (including the halting character). The length is

calculated as the sum of the program length and the data

length (7 times the number of characters). For example,

the length of the above program is 7× (49 + 2) = 357.
For the remainder of this paper, we will be focusing

on compressed programs.

6. SOLVING THE HALTING PROBLEM
FOR PROGRAMS UP TO 84 BITS

A Java version interpreter for register machine com-

pressed programs has been implemented; it imitates

Chaitin’s universal machine in [Chaitin 90a]. This in-

terpreter has been used to test the Halting Problem for

all register machine programs of at most 84 bits long.

The results have been obtained according to the follow-

ing procedure:

Calude et al.: Computing a Glimpse of Randomness 367

Program plus Number of Program plus Number of

data length halting programs data length halting programs

7 1 49 1012

14 1 56 4382

21 3 63 19164

28 8 70 99785

35 50 77 515279

42 311 84 2559837

TABLE 1. Distribution of halting programs.

1. Start by generating all programs of 7 bits and test

which of them stops. All strings of length 7 which

can be extended to programs are considered prefixes

for possible halting programs of length 14 or longer;

they will simply be called prefixes. In general, all

strings of length n which can be extended to pro-

grams are prefixes for possible halting programs of

length n+7 or longer. Compressed prefixes are pre-

fixes of compressed (canonical) programs.

2. Testing the Halting Problem for programs of length

n ∈ {7, 14, 21, . . . , 84} was done by running all

candidates (that is, programs of length n which

are extensions of prefixes of length n − 7) for up
to 100 instructions, and proving that any gener-

ated program which does not halt after running

100 instructions never halts. For example, (uncom-

pressed) programs that match the regular expression

"0:\^ a 5.* 5:\? 0" never halt on any input.

For example, the programs "!a!b!a!b/%10101010"

and "!a?0%10101010" produce run-time errors; the first

program “under reads” the data and the second one “over

reads” the data. The program "!a?1!b%1010" loops.

One would naturally want to know the shortest pro-

gram that halts with more than 100 steps. If this pro-

gram is larger than 84 bits, then all of our looping pro-

grams never halt. The trivial program with a sequence

of 100 dump instructions runs for 101 steps, but can we

do better? The answer is yes. The following family of

programs {P1, P2, . . .} recursively counts to 2i, but has
linear growth in size. The programs P1 through P4 are

given below:4

/&a,0=a,1,5&a,1?2%

/&a,0&b,0=b,1,6&b,1?3=a,1,9&a,1?2%

/&a,0&b,0&c,0=c,1,7&c,1?4=b,1,10&b,1?3=a,1,13&a,1?2%

/&a,0&b,0&c,0&d,0=d,1,8&d,1?5=c,1,11&c,1?4=b,1,14&b,1

?3=a,1,17&a,1?2%

4In all cases the data length is zero.

In order to create the program Pi+1 from Pi only 4

instructions are added, while updating “goto” labels.

The running time t(i) (excluding the halt instruction)

of program Pi is found by the following recurrence: t(1) =

6, t(i) = 2 · t(i − 1) + 4. Thus, since t(4) = 86 and

t(5) = 156, P5 is the smallest program in this family

to exceed 100 steps. The size of P5 is 86 bytes (602

bits), which is smaller than the trivial dump program of

707 bits. What is the smallest program that halts after

100 steps is an open question. A hybrid program, given

below, created by combining P2 and the trivial dump

programs is the smallest known.

&a,0/&b,0/////////////////////=b,1,26&b,1?2=a,1,29

&a,1?0%

This program of 57 bytes (399 bits) runs for 102 steps.

Note that the problem of finding the smallest program

with the above property is undecidable (see [Chaitin 99]).

The distribution of halting compressed programs of

up to 84 bits for U , the universal machine processing

compressed programs, is presented in Table 1. All binary

strings representing programs have the length divisible

by 7.

7. THE FIRST 64 BITS OF ΩU

Computing all halting programs of up to 84 bits for U

seems to give the exact values of the first 84 bits of ΩU .

However, this is false! To understand the point, let’s

first ask ourselves whether the converse implication in

Theorem 4.1 is true? The answer is negative. Globally,

if we can compute all bits of ΩU , then we can decide the

Halting Problem for every program for U and conversely.

However, if we can solve for U the Halting Problem for

all programs up to N bits long, we might not still get

any exact value for any bit of ΩU (less all values for the

first N bits). Reason: A large set of very long halting

programs can contribute to the values of more significant

bits of the expansion of ΩU .

368 Experimental Mathematics, Vol. 11 (2002), No. 3

Ω7U = 0.0000001

Ω14U = 0.00000010000001

Ω21U = 0.000000100000010000011

Ω28U = 0.0000001000000100000110001000

Ω35U = 0.00000010000001000001100010000110010

Ω42U = 0.000000100000010000011000100001101000110111

Ω49U = 0.0000001000000100000110001000011010001111101110100

Ω56U = 0.00000010000001000001100010000110100011111100101100011110

Ω63U = 0.000000100000010000011000100001101000111111001011101100111011100

Ω70U = 0.0000001000000100000110001000011010001111110010111011100111001111001001

Ω77U = 0.00000010000001000001100010000110100011111100101110111010000011100000101001111

Ω84U = 0.000000100000010000011000100001101000111111001011101110100001000001111011011011011101

TABLE 2. Successive approximations for ΩU .

So, to be able to compute the exact values of the first

N bits of ΩU , we need to be able to prove that longer

programs do not affect the first N bits of ΩU . And, for-

tunately, this is the case for our computation. Due to

our specific procedure for solving the Halting Problem

discussed in Section 6, any compressed halting program

of length n has a compressed prefix of length n− 7. This
gives an upper bound for the number of possible com-

pressed halting programs of length n.

Let ΩnU be the approximation of ΩU given by the sum-

mation of all halting programs of up to n bits in length.

Compressed prefixes are partitioned into two cases–ones

with a HALT (%) instruction and ones without. Hence,

halting programs may have one of the following two

forms: either “x y HALT u,” where x is a prefix of length

k not containing HALT, y is a sequence of instructions of

length n− k not containing HALT, and u is the data of

length m ≥ 0, or “xu,” where x is a prefix of length k
containing one occurrence of HALT followed by data (pos-

sibly empty) and u is the data of length m ≥ 1. In both
cases, the prefix x has been extended by at least one char-

acter. Accordingly, the “tail” contribution to the value

of

ΩU =

∞

n=0 {|w|=n, U(w)halts}
2−|w|

is bounded from above by the sum of the following two

convergent series (which reduce to two independent sums

of geometric progressions):

∞

m=0

∞

n=k

#{x | prefix x not containing HALT, |x| = k}
x

· 48n−k
y

· 1

HALT

· 2m
u

·128−(n+m+1),

and

∞

m=0

#{x | prefix x containing HALT, |x| = k}
x

· 2m
u

·128−(m+k).

The number 48 comes from the fact that the alphabet has

49 characters and the last instruction before the data is

HALT (%).

There are 402906842 prefixes not containing HALT

and 1748380 prefixes containing HALT. Hence, the “tail”

contribution of all programs of length 91 or greater is

bounded by:

∞

m=0

∞

n=13

402906842 · 48n−13 · 2m · 128−(n+m+1)

+

∞

m=0

1748380 · 2m · 128−(m+13)

= 402906842 · 64

128 · 4813 ·
∞

n=13

48

128

n

+ 1748380 · 1

63 · 12813 < 2
−68, (7—1)

that is, the first 68 bits of Ω84U “may be” correct by our

method. Actually, we do not have 68 correct bits, but

only 64 because adding a 1 to the 68th bit may cause an

overflow up to the 65th bit. From (7—1) it follows that

no other overflows may occur.

The list in Table 2 presents the main results of the

computation:

The exact bits are underlined in the 84 approximation:

Ω84U = 0.0000001000000100000110001000011010001111

11001011101110100001000001111011011011011101

Calude et al.: Computing a Glimpse of Randomness 369

In summary, the first 64 exact bits of ΩU are:

00000010000001000001100010000110100011111100101

11011101000010000

8. CONCLUSIONS

The computation described in this paper is the first at-

tempt to compute some initial exact bits of a random

real. The method, which combines programming with

mathematical proofs, can be improved in many respects.

However, due to the impossibility of testing that long

looping programs never actually halt (the undecidability

of the Halting Problem), the method is essentially non-

scalable.

As we have already mentioned, solving the Halting

Problem for programs of up to n bits might not be enough

to compute exactly the first n bits of the halting proba-

bility. In our case, we have solved the Halting Problem

for programs of at most 84 bits, but we have obtained

only 64 exact initial bits of the halting probability.

Finally, there is no contradiction between Theorem 4.5

and the main result of this paper. Ω’s are halting proba-

bilities of Chaitin universal machines, and each Ω is the

halting probability of an infinite number of such ma-

chines. Among them, there are those (called Solovay

machines in [Calude 02b]) which are in a sense “bad,”

as ZFC cannot determine more than the initial run of

1s of their halting probabilities. But the same Ω can be

defined as the halting probability of a Chaitin univer-

sal machine which is not a Solovay machine, so ZFC,

if supplied with that different machine, may be able to

compute more (but always, as Chaitin proved, only fi-

nitely many) digits of the same Ω. Such a machine has

been used for the Ω discussed in this paper.

All programs used for the computation as

well as all intermediate and final data files

(3 giga-bytes in gzip format) can be found at

ftp://ftp.cs.auckland.ac.nz/pub/CDMTCS/Omega/

ACKNOWLEDGMENTS

We thank Greg Chaitin for pointing out an error in our pre-

vious attempt to compute the first bits of an Omega number

[Calude and Dineen 00], and for continuous advice and en-

couragement.

REFERENCES

[Bennett and Gardner 79] C. H. Bennett, M. Gardner. “The

random number omega bids fair to hold the mysteries of

the universe.” Scientific American 241 (1979), 20—34.

[Bridges 94] D. S. Bridges. Computability–A Mathematical

Sketchbook, Springer Verlag, Berlin, 1994.

[Calude 94] C. S. Calude. Information and Randomness. An

Algorithmic Perspective. Springer-Verlag, Berlin, 1994.

[Calude 00] C. S. Calude. “A glimpse into algorithmic infor-

mation theory.” in Logic, Language and Computation, P.

Blackburn, N. Braisby, L. Cavedon, A. Shimojima (eds.),

Volume 3, CSLI Series, pp. 67—83, Cambridge University

Press, Cambridge, 2000.

[Calude 02a] C. S. Calude. “A characterization of c.e. random

reals.” Theoret. Comput. Sci., 217 (2002), 3—14.

[Calude 02b] C. S. Calude. “Chaitin Ω numbers, Solovay ma-

chines and incompleteness.” Theoret. Comput. Sci. 284
(2002), 269—277.

[Calude and Chaitin 99] C. S. Calude and G. J. Chaitin.

“Randomness everywhere.” Nature, 400:22 (July 1999),
319—320.

[Calude et al. 00] C. S. Calude, M. J. Dinneen, and C. Shu.

“Computing 80 Initial Bits of A Chaitin Omega Num-

ber: Preliminary Version.” CDMTCS Research Report

146 (2000)

[Calude et al. 01] C. S. Calude, P. Hertling, B. Khoussainov,

and Y. Wang. “Recursively enumerable reals and Chaitin

Ω numbers.” in Proceedings of the 15th Symposium

on Theoretical Aspects of Computer Science (Paris),

M. Morvan, C. Meinel, D. Krob (eds.), pp. 596—606,

Springer—Verlag, Berlin, 1998. Full paper in Theoret.

Comput. Sci. 255 (2001), 125—149.

[Calude and Jürgensen 94] C. Calude and H. Jürgensen.

“Randomness as an invariant for number representa-

tions.” in Results and Trends in Theoretical Computer

Science, H. Maurer, J. Karhumäki, G. Rozenberg (eds.),

pp. 44—66, Springer-Verlag, Berlin, 1994.

[Casti 97] J. L. Casti. “Computing the uncomputable.” The

New Scientist, 154/2082 (17 May 1997), 34.

[Chaitin 75] G. J. Chaitin. “A theory of program size for-

mally identical to information theory.” J. Assoc. Com-

put. Mach. 22 (1975), 329—340. (Reprinted in: [Chaitin
90b], 113—128)

[Chaitin 90a] G. J. Chaitin. Algorithmic Information Theory,

Cambridge University Press, Cambridge, 1987. (Third

printing 1990)

[Chaitin 90b] G. J. Chaitin. Information, Randomness and

Incompleteness, Papers on Algorithmic Information

Theory, World Scientific, Singapore, 1987. (2nd ed.,

1990)

[Chaitin 97] G. J. Chaitin. The Limits of Mathematics.

Springer-Verlag, Singapore, 1997.

[Chaitin 99] G. J. Chaitin. The Unknowable, Springer-Verlag,

Singapore, 1999.

[Chaitin 00a] G. J. Chaitin. Exploring Randomness,

Springer-Verlag, London, 2000.

[Chaitin 00b] G. J. Chaitin. Personal communication to C. S.

Calude, November 2000.

370 Experimental Mathematics, Vol. 11 (2002), No. 3

[Chaitin 01] G. J. Chaitin. Personal communication to C. S.

Calude, December 2001.

[Downey 02] R. G. “Downey. Some Computability-

Theoretical Aspects of Reals and Randomness.”

CDMTCS Research Report 173 (2002).

[Hertling and Weihrauch 98] P. Hertling and K. Weihrauch.

“Randomness spaces.” in Automata, Languages and Pro-

gramming, Proceedings of the 25th International Collo-

quium, ICALP’98 (Aalborg, Denmark), K. G. Larsen,

S. Skyum, and G. Winskel (eds.), pp. 796—807, Springer-

Verlag, Berlin, 1998.

[Kučera and Slaman 01] A. Kučera and T. A. Slaman. “Ran-

domness and recursive enumerability.” SIAM J. Com-

put., 31:1 (2001), 199—211.

[Martin-Löf 66] P. Martin-Löf. Algorithms and Random Se-

quences, Erlangen University, Nürnberg, Erlangen, 1966.

[Martin-Löf 66] P. Martin-Löf. “The definition of random se-

quences.” Inform. and Control 9 (1966), 602—619.

[Marxen and Buntrock 90] H. Marxen and J. Buntrock. “At-

tacking the busy beaver 5.” Bull EATCS 40 (1990), 247—
251.

[Odifreddi 99] P. Odifreddi. Classical Recursion Theory,

North-Holland, Amsterdam, Vol.1, 1989, Vol. 2, 1999.

[Shu 03] C. Shu. Computing Exact Approximations of a

Chaitin Omega Number, Ph.D. Thesis, University of

Auckland, New Zealand, 2003.

[Soare 69] R. I. Soare. “Recursion theory and Dedekind

cuts.” Trans. Amer. Math. Soc. 140 (1969), 271—294.

[Soare 87] R. I. Soare. Recursively Enumerable Sets and De-

grees, Springer-Verlag, Berlin, 1987.

[Solovay 75] R. M. Solovay. Draft of a paper (or series of pa-

pers) on Chaitin’s work . . . done for the most part dur-

ing the period of Sept.—Dec. 1974, unpublished manu-

script, IBM Thomas J. Watson Research Center, York-

town Heights, New York, May 1975, 215 pp.

[Solovay 00] R. M. Solovay. “A version of Ω for which ZFC
can not predict a single bit.” in Finite Versus Infi-

nite. Contributions to an Eternal Dilemma, C.S. Calude,

G. Păun (eds.), pp. 323—334, Springer-Verlag, London,

2000.

[Staiger 91] L. Staiger. “The Kolmogorov complexity of real

numbers.” in Proc. Fundamentals of Computation The-

ory, Lecture Notes in Comput. Sci. No. 1684, G. Ciobanu

and Gh. Păun (eds.), pp. 536—546, Springer—Verlag,

Berlin, 1999.

[Stewart 91] I. Stewart. “Deciding the undecidable.” Nature

352 (1991), 664—665.

[Weihrauch 87] K. Weihrauch. Computability, Springer-

Verlag, Berlin, 1987.

Cristian S. Calude, Department of Computer Science, University of Auckland, Private Bag 92019, Auckland, New Zealand

(cristian@cs.auckland.ac.nz)

Michael J. Dinneen, Department of Computer Science, University of Auckland, Private Bag 92019, Auckland, New Zealand

(mjd@cs.auckland.ac.nz)

Chi-Kou Shu, Department of Computer Science, University of Auckland, Private Bag 92019, Auckland, New Zealand

(cshu004@cs.auckland.ac.nz)

Received January 31, 2002; accepted February 11, 2002.

