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We discuss the asymptotic behavior of Fourier transforms of
Cantor measures and wavelets, and related functions that might
be called multiperiodic because they satisfy a simple recursion
relation involving a blend of additive and multiplicative struc-
tures.

Our numerical experiments motivated conjectures about this
asymptotic behavior, some of which we can prove. We de-
scribe the experiments, the proofs, and several remaining con-
jectures and open problems. We also contribute to the evolving
iconography of fractal mathematics by presenting the numeri-
cal evidence in graphical form.

1. INTRODUCTION

An interesting class of functions, which might be
called multiperiodic, can be described by simple re-
cursion relations involving a blend of additive and
multiplicative structures. Such functions arise typ-
ically as Fourier transforms of self-similar objects,
such as Cantor measures and wavelets. We report
here the results of numerical experiments we per-
formed on these functions, and some theorems and
conjectures about their asymptotic behavior that
were directly inspired by the numerical evidence.
We study functions of one variable, which we de-
note F'(z) and normalize to satisfy F'(0) = 1. The
simplest case we consider is a one-term recursion

F(z) = f(%)F(%) (1.1)

where the scaling factor p satisfies p > 1 and f

is a periodic function of period one satisfying the
consistency condition

f(0)=1.
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This leads easily to the infinite-product represen-

tation N
~T1 f(%), (1.2)
k=1

which converges rapidly as long as f is C! near
zero. We devote Sections 2 and 3 to this class
of functions, for p an integer and not an integer,
respectively.

In Sections 4 and 5 we examine solutions of two-
term recursion relations

F(z) = f«%ﬁ(%) + f2<%)F(%), (1.3)

where p1, p2 > 1 and the consistency condition is
now

fl(o) + fz(o) =L (1-4)

There is no analog of the product expansion (1.2),
but it is easy to see that there is a unique contin-
uous solution to (1.3) with F(0) = 1 if f; and f,
are C'.

In Section 6 we examine the Fourier transforms
of the equilibrium measure on the Julia sets for
the mapping z — 22 — r, where r > 2, and look
for analogous asymptotic behavior, although these
functions are no longer multiperiodic.

The simplest example of a product of the form
(1.2) is

ZcosE = smmr’ (1.5)

2k T
k=1

an equality due to Euler (although special cases
were known to Viete almost 400 years ago). The
right side of (1.5) is recognized as the Fourier trans-
form of Lebesgue measure on the interval [—2, L

2720

1/2 .

/ amizy sin7x

e dy = ,
—1/2 T

while the left side expresses the fact that this mea-
sure is obtainable by repeatedly halving the inter-
val and assigning equal probability to each half.
Another way of saying this is that the recursion
relation (1.1) for this example is equivalent to the
self-similarity of the measure

w(E) = 3n(GE = 3) +30GE+ 1)
Of course, the function (1.5) exhibits an especially

simple asymptotic behavior—see Figure 1—and it
would be misleading to expect the same from the

other functions we study. In Section 2 we will be
able to “explain” this behavior in terms of certain
remarkable “coincidences” involving the integral

1
/ log cos® mx dz.
0
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FIGURE 1. The simplest example of a function
satisfying (1.1) is F'(z) = (sin7wz)/(7x), obtained
by setting f(z) = coswz and p = 2.

If we keep the same function f(z) = cosmz but
take p > 2 in (1.2), we get the Fourier transform of
the Cantor measure on [—1, 1] obtained by delet-
ing the middle segment of length 1—2/p, assigning
equal probability to the outer segments and iter-
ating. The value p = 3 corresponds to the usual
middle-third Cantor set; Figure 2 shows the graph

of F(zx) in this case.
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FIGURE 2. Solution of (1.1) with f(z) = cosmx

and p = 3.



Janardhan, Rosenblum and Strichartz: Numerical Experiments in Fourier Asymptotics of Cantor Measures and Wavelets 251

x 1077
(@23

z f\/\/\ /\fU\/\J\/\/\ /\AA | /\ML\/U\A al

50 55 60 65 70 75 80 8 90 95 100

f(z) = cos® mx 4 3 cos* ma sin® 7

3000

2500 -

2000 -

1500 +

1000 +

500

0 \ \ : :
0 20 40 60 80 100

f(z) =14 2sin® 7z

FIGURE 3. Graphs of F(z) for p = 2 and the indicated functions f(z).

These functions have been extensively studied
since the thirties [Wiener and Wintner 1939; Erdds
1940; Salem 1983; Strichartz 1990; Strichartz 1993;
Lau; Lau and Wang]. More generally, the Fourier
transforms of any of the self-similar measures de-
fined in [Hutchinson 1981] will satisfy multiterm re-
cursion relations (1.3) with the f;(z) trigonometric
polynomials. (In general, there may be more than
two terms, but we expect that the two-term case
already exhibits all the behaviors of the general
case.)

Another source of functions of the form (1.2)
is the theory of wavelets. If ¢(z) is the scaling
function for the compactly supported wavelets of
Daubechies [1988, 1992], then F(x) = |$(x)]* sat-
isfies (1.2) with p = 2 and f(x) a nonnegative
trigonometric polynomial such that

fla)+ fla+3) =1

It is easy to construct such f: simply take the
first half of the terms in the binomial expansion
of (cos? mx +sin® mx)?N 1. For the theory of wave-
lets, it is important to obtain estimates of the form

|F(2)| < cla]™,

since such estimates imply smoothness of the wave-
lets of order & — 1 — €. See [Daubechies 1992,
Chap. 7] for a detailed discussion and references.
The goal of our experiments was to elucidate the
asymptotic behavior of the function F'(z) as z —
oo. From previous work, we knew that we could

expect relatively simple behavior on the part of
integrals such as

I,F(z) = /0 [F()]" dt.

For example, in [Strichartz 1990; Strichartz 1993,
Lau; Lau and Wang], it is proved under various
hypotheses that, as © — oo, the function I,F' be-
haves like cx™* or p(z)x~®, for a specific value of
a, where p(z) is a multiplicative periodic function.
Furthermore, numerical experiments performed by
Maria Korolov showed that we can expect the same
for I, F for any ¢ > 0 (we report some related ex-
periments in Section 5).
The problem we considered initially was this:

Problem 1.1. Find some conditions on the point-
wise asymptotic behavior of F that would imply the
known and conjectured asymptotic behavior of I, F'.

We did not solve this problem, but we did discover
some fascinating pointwise asymptotic behavior for
F'. The results for the one-term recursion relation
(1.2) are completely proven in this paper, but for
the general case we can only present a conjecture.

Our first approach was more exploratory than
experimental, in that Problem 1.1 does not present
any conjecture that can be tested. For simplicity,
we restricted attention to functions f that are non-
negative (replacing f by | f| just replaces F by |F|,
so we obtain the asymptotic behavior of |F'| in the
general case). We also used trigonometric polyno-
mials for f, so the resulting F' is band-limited (F
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has compact support) and therefore is slowly oscil-
lating, which makes it easier to graph accurately.

We plotted the graphs of a number of functions
F, some of which are shown in Figures 2-3 and
Figure 11 in Section 3. After some trial-and-error
manipulations of these graphs, we were led to con-
sider the sequence of functions

% log F(p"x) (1.6)

on the interval 1 < =z < p. Figure 4 shows the
graphs of these functions for F' and p as in Figure 3.
(Actually these figures plot a slight variant of (1.6):
see (2.2).) Figures 56 in Section 2 and 12-13 in
Section 3 provide other examples.

It is easy to conjecture from this evidence that
the sequence (1.6) converges as n — 0o in some
weak sense to something quite complicated. But
actually, we will prove under minimal hypotheses
that the sequence always converges almost every-
where and in L” norm to the constant fol log f(t) dt.
The convergence does not take place everywhere;
in fact, there is a dense set of points where the
sequence converges to a value different from this
constant, which explains why the graphs appear
so complicated.

One striking feature of the graphs of (1.6) when
p is an integer, which is not present otherwise, is
a strong appearance of self-similarity. To explain
what is going on, we need a new definition.

Definition 1.2. A sequence of functions h,(z) on a
domain D is said to be asymptotically self-similar
with respect to a transformation 7" : Dy — D,
where Dy is a subset of D, if for every € > 0 there
exists N such that

|hn(Tx) — hy(z)| < € (1.7)
for all n > N and all z € D,.

Note. This definition probably should be general-
ized to allow a transformation of the range as well
as the domain, but for the sake of simplicity, we
have restricted ourselves to the above, which is ad-
equate for our examples.

One of our main results is that the sequence (1.6)
with p an integer is asymptotically self-similar with
respect to the transformation

Tz = pz (mod 1).

To see this, we need to look at the graphs of A, (z)
and h,,(Tx) and observe that they differ by a small
amount for large n. However, we come up against
a serious paradox—we might almost say an un-
certainty principle—when we do this. To make ¢
small, we have to take n large. But the larger we
take n, the more complicated the graph of h, be-
comes, and the harder it is to see anything at all.
In fact, then, we settle for a compromise, where n is
only moderately large, so the complicated oscilla-
tions of h,, are still visible, and ¢ is only moderately
small, so the difference between h,(x) and h, (Tz)
is still noticeable, but not too large.

It follows immediately from the definition that if
a sequence h,, () is asymptotically self-similar with
respect to 7T, it is also asymptotically self-similar
with respect to every power T* of T' (on a suitable
subdomain). Thus our functions h, will exhibit
approximate self-similarity with respect to a whole
family of transformations. However, with n fixed,
the error € in (1.7) will grow with k, so the differ-
ence between the graphs of h,,(z) and h,,(T"z) will
become more and more noticeable (see Figure 7 for
an illustration). Nevertheless, this multiple self-
similarity is very striking (see Figure 4).

The case of the one-term recursion relation with
noninteger p, discussed in Section 3, reveals the
same convergence properties for the sequence (1.6),
but the asymptotic self-similarity is lost. For the
two-term recursion relation (1.3), a dichotomy was
predicted by previous work [Strichartz 1993; Lau].
If p; and ps are exponentially commensurable, that
is, if p, = p? and p; = p* for some p > 1 and
integers j, k, the two-term recursion relation leads
to functions F' that resemble solutions to the one-
term recursion relation with scaling function p. In
Section 4 we discuss the experimental evidence for
this.

Without the assumption of exponential commen-
surability, we have not been able to discern any
pointwise asymptotic regularity for F'. In Section 5
we report on experimental evidence for the asymp-
totic behavior of the integrals I,F of (1.6). The
question can be formulated as follows.

Problem 1.3. Under what circumstances is it true
that

I,F(z) ~ cyz’ (1.8)

as T — 007
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f(z) = cos® 7z + 3 cos* Tz sin” Tz f(z) =14+ 2sin’* 7z

FIGURE 4. Graphs of h,(z) = n"!(log F'(p"z) — log F'(z)) for the functions F of Figure 3 and p = 2, for n
increasing (as we go up) from 1 to 8 on the left and from 5 to 14 on the right. (On the left, only values
hy(x) > —3 are shown.) The graphs are symmetric with respect to the lines = 1 and = 1.5 (in particular,
hy, is periodic of period 1). The horizontal lines indicate the limit lim,,—, hy,(z), valid almost everywhere.
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The evidence we obtain does not allow us to con-
jecture an answer, but we do produce a conjecture
that the weaker statement

lim log I, F(z)

Hm —es exists (1.9)

holds in great generality.

In Section 6 we report on numerical evidence for
the asymptotic behavior (1.8) or (1.9) when F is
the Fourier transform of the equilibrium measure
on a Julia set. The value of b,, if it exists, is related
to the mean quadratic variation of the measure,
according to results in [Lau and Wang]. We have
been able to compute both values approximately,
and they agree to within the error of our method.
In [Strichartz 1992b], it is proved that the limit
(1.9) exists for ¢ = 2.

In Section 7 we discuss the programs that were
used to generate the data, some of the problems
that arose in creating the programs, and the tests
of accuracy that we performed.

We are grateful to Rick Durrett for discussions
concerning probability theory, to John Hubbard for
advice on generating the Julia-set measures, and to
Peter Sarnak for suggesting the use of the ergodic
theorem in Corollary 2.2.

2. ONE-TERM RECURSION FOR INTEGER p

In this section,

Fo) = I11(%) 21)

for p an integer. We specify F' by giving p and f.

We have already seen some important examples.
In Figure 2 we had p = 3 and f(x) = cos 7z, and
F was the Fourier transform of the usual Cantor
measure on the interval [—1, 2].

In Figure 3 (left) we had p =2 and
f(z) = cos® 7z + 3 cos® mx sin® 7.

Then F = |¢|?, where ¢ is the scaling function
for a compactly supported wavelet. We restricted
the graph to 50 < x < 100, because the function
falls off so rapidly that it is impossible to see much
detail if we take an interval starting at =z = 0.
This is the problem with the graphs presented in
[Daubechies 1988].

1.1 1.2 1.3 1.4 1.5

FIGURE5. Graphs of h, (), for 1 <n < 7, for the
function F arising from f(z) = cos? 7z and p = 3
(the square of the function in Figure 2). Large
negative values of h,(x) have been excised.
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FIGURE6. Graphs of h, (), for 1 <n < 7, for the
function F' arising from an asymmetric sawtooth
function f and p = 3.

Note that this f(z) has a factor cos* 7z, and
we know from Euler’s formula (1.5) that this con-
tributes a factor of (sinmz/7wz)* to F(z). If we
remove the factor cos® Tz, we are left with f(z) =
1 + 2sin® 7z, which leads to Figure 3 (right), still
with p = 2. The function F' now grows with =
rather than decays. Because f(z) is bounded away
from zero in this example, the behavior of F(z) is a
bit simpler, and we can already discern in the figure
a hint of the asymptotic behavior we are looking
for.

It is tempting to take the logarithm of (2.1) to
turn the product into a sum. In order to do this
we must assume that f(x) is nonnegative; if this
is not the case to begin with, as in Figure 2, we
can always take the square f(x)? in place of f(z),
which simply squares F'(z). We observe then that

n—1
log F(p"x) —log F(x) = Y log f(p'x),
=0
and therefore we define

h@ = o sr). @2

Since h,,(z) differs from + log F'(p"z) by + log F'(z),
the two functions have the same behavior as n —
oo if we restrict = to a fixed interval, which we take
to be 1 < x < p. The advantages of using h,,(z)
rather than * log F'(p"x) are that h,(z) is periodic
of period one (here we use the fact that p is an
integer) and it is easier to compute.

In Figure 4 we show the graphs of h,, for the
wavelet scaling function of Figure 3—both the orig-
inal and the factored versions. (The domain is re-
duced to 1 < z < 2 because the functions are peri-
odic of period one.) In Figure 5 we show h,, for the
Fourier transform of the Cantor measure squared,
the square of Figure 2. Finally, in Figure 6, we
show h, for an asymmetric sawtooth function f
and p = 3. This function has no particular sig-
nificance, but it is displayed to show that neither
symmetry nor smoothness of f play an important
role in the qualitative behavior of the sequence h,,.

Despite the colorful behavior of the graphs of h,,,
we have the following banal result.
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Proposition 2.1. Suppose p is an integer and f is
a continuous periodic function satisfying f > 0.
Then
1

ILm h.(z) :/ log f(t) dt (2.3)

n oo 0
on [1,p], almost everywhere and in L, norm for
any p with 1 < p < co.

Proof. By the central limit theorem, the sequence
of points p’z is uniformly distributed mod 1 for
almost every x. For each such z, (2.3) is merely
the statement that the Monte Carlo approxima-
tions to the integral of log f(z) converge, which by
a theorem of Weyl only requires Riemann integra-
bility. L,-convergence follows from the dominated

convergence theorem, since the sequence h,, is uni-
formly bounded. O

Corollary 2.2. Suppose p is an integer, f > 0 and
log f(z) € L? on [1, p|, for some p with 1 < p < co.
Then (2.3) holds in LP norm and almost every-
where.

Proof. The transformation z +— pz (mod 1) on
[1, p] is measure-preserving and ergodic, so the re-
sult follows by the ergodic theorem. O

To understand the graphs we have obtained, we
have to realize that the pointwise limit is not the
constant function fol log f, but rather an every-
where discontinuous function that is equal to this
constant almost everywhere, and is undefined on
a set of measure zero that is also dense. Suppose,
to be specific, that p = 2 and z = p/q is a ratio-
nal number with ¢ odd. Then the sequence 27p/q
(mod 1) cycles periodically through a finite set of
rationals a;/q,az2/q, ..., an/q, and

m

Tim h,(2) = %Zbg(%). (2.4)

(If g is even, we have a similar result.) In fact, the
rate of convergence in (2.4) is O(n!), whereas the
rate of convergence in (2.3) is roughly O(n=1/2).
There is no reason why the sum in (2.4) should
equal the integral fol log f exactly, and this ac-
counts for the wild oscillations of h,. If we try
to take n large enough that h,(z) is close to the
limit, the oscillations will be so violent that the
graph will be unintelligible.

The approximate self-similarity of the graphs of
h, is striking. Perhaps Figure 6 is the best exam-
ple to look at, because all the other graphs have
additional symmetries due to the fact that f(x) is
an even function about z = 1. Let I, denote the

2
interval
-1k —1)(k+1
(=Dk _, (= Dk+1)
p P

for k=0,...,p— 1 and let the transformation 7},
be defined by x +— pz — (k+ 1)(p — 1). Note that
I, C [1, p] and T} maps I; one-to-one onto [1, p].

1+

Proposition 2.3. Under the hypotheses of Proposi-
tion 2.1, the sequence h,(x) is asymptotically self-
similar with respect to the mapping T), on I,. Un-
der the weaker hypothesis of Corollary 2.2, we have
an LP-variant of the conclusion, namely

1/p
</ |hn(z) = hn(Thx)|? da:> =0(n™").
Iy
Proof. Because f is periodic, we have

log f(p’Tyx) = log f(p’*'x),
SO

h(Ti) = 3 log f(p'a),

hence

hi(z) = ho(Tix) = = (log f(z) — log f(2"z)).

The result follows by taking the sup norm or the
LP norm. O

1
n

We illustrate the proposition in Figure 7. For the
factored wavelet function f = 1 + 2sin®z of Fig-
ure 3 (right), we graph his(x) and its composition
with Ty, T? and T7.

Figure 8 gives an idea of how slow the conver-
gence is. For each indicated n, we sampled the val-
ues of h,(z) at 2048 = 2'' equally spaced points
in the interval 1 < z < 2. We sorted the resulting
values and plotted them in decreasing order. Thus
the plots give the cumulative distribution of values
of h,, the abcissas corresponding to the accumu-
lated frequency and the ordinates to the values.

If h,, were close to the limit, the curve would run
close to the horizonal line at height

1
/ log(1 + 2sin® 7t) dt ~ .6238107,
0
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FIGURE 7.
hi2(TEx) and hyo(T3x), as we go up. To get each graph from the one below it, zoom in on the right half.

257

For the function F arising from f(z) = 1 4 2sin® 7z and p = 2, the graphs of hiy(z), hi2(117),
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FIGURE 8. Cumulative distribution of values of h,(x) for the function F' of Figure 3 (right) in the interval

1 < z < 2. The functions were sampled at 2048 = 2!! regularly spaced points. The distributions change very

slowly as n increases: for example, the graphs for n = 11,12,13, 14 largely overlap.
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except for a small region of larger values near the
left end and a small region of smaller values near
the right end. The fact that we don’t see this indi-
cates that we are quite far from convergence. It is
only for n = 1000 that we are beginning to see the
expected behavior. (However, the data for high n
cannot be highly accurate, not only because of the
difficulty in computing h,,, but because the number
of sampled points is much too small.)

Figure 9 shows the graph of hg for p = 2 and
f(z) = cos? mxz, which by Euler’s formula yields
F(z) = (sinwz/mz)?. The line patterns that ap-
pear in the graph are artifacts of the regular scan
used to produce it; see Section 7. The form of
F' indicates that the regularity of h,, is to be ex-
pected, but we can also give an explanation that is
in keeping with (2.3) and (2.4).

R
1 11 12 13 14 15 16 1.7 1.8 1.9 2

FIGURE 9. Graph of hg(z) for the choice p = 2
and f(z) = cosmz, obtained by sampling at 2'*
regularly spaced points. Values below —2.5 have
been excised.

Proposition 2.4. Let a1/q,. .., a,,/q be the full cycle
of 2p/q (mod 1), where p and q are odd. Then

1 & : !
— zlog cos? 14 _ / log cos® mt dt = —21log 2.
mi q 0

(2.5)

Proof. The value of the integral is elementary. The
assertion about the sum is equivalent to

or to

m—1 . . . : 2
1) —im2!
” (exp T p—i—exp T p> =1,
q q

j=0
so it suffices to show that

m—1 J
2mi2!

I1 <exp ™ p+1)=1.
q

Jj=0

Expanding this product, we obtain simply

2™m—1

E eQﬂ’ikp/q .
k=0

But e*/9 = w is a ¢-th root of unity, and m
is chosen so that 2™p = p (mod g), so this sum
consists of (2™ — 1)p/q repetitions of 1 +w + - -+
wi™! = 0 followed by exp(27i(2™ — 1)p/q) = 1. O

More generally, any rational number can be written
in the form 27%p/q, where p and ¢ are odd and
relatively prime. If £ > 1 and ¢ = 1, we obtain
h,(27%p) = —oco for n large enough. Otherwise, it
follows from (2.4) and (2.5) that

ha(27"p/q) = —2log2 + O(n ™).

Figure 10 shows the graph of hg(z) for the choice
p =2 and f(z) equal to the square wave function

1 if0<z<i,
f<x)_{e if%gxgl,

so that h,(z) is the average of the first n digits in
the binary expansion of z.

14 -

0.8 1

0.4 1

0.2 1

O e T T T T
1 1.2 1.4 1.6 1.8 2

FIGURE 10. Graph of the average of the first six
binary digits in the binary expansion of the frac-
tional part of z.
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3. ONE-TERM RECURSION FOR NONINTEGER p

We consider the same class of functions as in the
previous section, but we no longer require that p
be an integer. In our illustrations we take p = 2.1.
Figure 11 shows three examples. At the top, we
take f(z) = cosmz, so F(x) is the Fourier trans-
form of a Cantor measure; compare Figure 2, which
comes from the same f but different p. In the mid-
dle, f(x) = 1+ 2sin® 7z; compare Figure 3 (right).
(Note, however, that the function for p = 2.1 has
no interpretation in the theory of wavelets.) In the
bottom part of Figure 11 we go a step further, tak-
ing for f(z) the function 3 (cos?® x + cos® mz), which
is not periodic, but almost periodic.

In Figure 12 we show the graphs of successive h,,
for the function F' of Figure 11 (middle). This fig-
ure suggests that the conclusions of Proposition 2.1
and Corollary 2.2 should continue to hold in this
case, but we no longer have the asymptotic self-
similarity.

Proposition 3.1. The conclusions of Proposition 2.1
are valid for all real p > 1.

Proof. The only difference in the proof is in the ar-
gument showing that the sequence p’z is uniformly
distributed mod 1 for almost every x. This result
is essentially contained in [Koksma 1935], but for
the sake of completeness, we give the argument.

By a well-known criterion of Weyl, p*z is uni-
formly distributed mod 1 if and only if

R o
nILHOIO - kz_;exp(2wzmp z)=0 (3.1)
for every integer m # 0. Since we claim this for
almost every x, we can without loss of generality
set m = 1. We first look at L? norms. Fix an
interval a < x < b. Then

[
a | T

2

dzx

n

=Y exp(2miptz)

n

I :
—2/ exp(27i(p? — p*)x) dw
n a

[
. I
I M 3 -
A

k=1

b— 2 ’ :
= a—i—ﬁ Z /cos%r(p]—pk)xdx

n :
1<j<k<n"®

<b—a+i Z 1 _<£’
~— n mn? - pF—pi T n
1<j<k<n
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FIGURE 11. Graphs of F(z) for p = 2.1 and the
indicated functions f(z).
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AN AW
EERVERY
| | | | |
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FIGURE 12. Graphs of h,(z), for 5 < n < 14, for

the function F arising from f(z) = 1 + 2sin® 7z

and p = 2.1.

since
1 1 1 1 1
<

pk — pi :pk—j_lﬁ— ,0——1;
and Z;}il 1/p? < oo. Thus, if we write s,(z) =
% ZZ=1 exp(2mip*x), we have

C
Isall3 < £,

which implies s,2(z) — 0 for almost every z. But
a simple argument shows that n? < N < (n + 1)?
implies

|3N(m) - Snz(LL‘)|
n? N
_ 1 1 27ripkz 1 27ripkz
-|(7 ) z;e N ;16

1 1 1
<n?( - %)+ vV -n?) <,

- n? N N n
so convergence of the subsequence implies conver-
gence of the sequence. O

Proposition 3.1 can be extended to multiperiodic
functions on certain nilpotent Lie groups [Strich-
artz 1992a].

In Figure 13 we show the graphs of consecutive
h,(z) for the function F(z) in Figure 11 (bottom).
Despite the fact that f is only almost periodic, we
see the same convergence.

Proposition 3.2. Suppose f(x) is uniformly almost
periodic and bounded away from zero, that is,

flz)>e>0 forallx. (3.2)
Then
ILm hn(z) = M(log f) (3.3)

almost everywhere, where M (log f) denotes the so-
called Bohr mean
T

M(log f) = TIEEO%/Tlogf(t) dt.

Proof. Because of (3.2), the function log f is also
uniformly almost periodic. Therefore there exists a
countable spectrum Ay = 0, A1, Ao, ... of reals such
that log f(z) is the uniform limit of trigonometric
polynomials of the form

N
ap + Z a; exp(2mi\;z),

j=1



Janardhan, Rosenblum and Strichartz: Numerical Experiments in Fourier Asymptotics of Cantor Measures and Wavelets

1 1.2 14 1.6 1.8 2

FIGURE 13. Graphs of h,(z), for 2 < n < 10,
for F' arising from f(z) = %(cos?z + cos® rz) and
p = 2.1. Large negative values of h,(z) have been

excised.

p
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where we may take ag = M (log f). Since we can
replace log f by this approximating sum with uni-
formly small error, to establish (3.3) almost every-
where it suffices to show that

n—1

1
lim — ) " exp(2mi;p"z) =0

k=0

for almost every x. Since there are only a countable
number of \;, we are back to proving (3.1), which
we have already done. O

There is also a statement analogous to Corollary
2.2, where we drop the assumption (3.2) and as-
sume only that f is nonnegative and log f belongs
to the Besicovitch class B of almost periodic func-
tions [Besicovitch 1954]. Then the limit (3.3) holds
in the B? norm.

Figure 14 graphs the cumulative distribution of
values of h, for p = 2.1 and f(z) = 1 + sin’ 7z.
It is the analog of Figure 8 with p changed to 2.1,
and it shows a similar behavior.

4. TWO-TERM RECURSION: THE COMMENSURABLE
CASE

In this section we study functions determined by
the two-term relation

F(I):ﬁ(%)F(%) fz(%>F<%>, (4.1)

where p; and p, are exponentially commensurable.
To be specific, we take p; = 2 and p, = 4, but
we expect the general case to be similar. We can
rewrite (4.1) as

F(4z) = fi(22)F(20) + fo(@)F(x),  (4.2)
and then, by induction,
F(2"z) = G,(z)F(2z) + H,(x)F(z),  (4.3)

where G,, and H,, satisfy the same recurrence re-
lation,

Gn+1(x) = h (2nx)Gn($) + f2(2n_1$)anl(x)a
Hn+1($) = fl (2n$)Hn($) + f2(2n71$)Hn—1($)7
but with different initial conditions:

Go(z) =0,
Hy(z) =1,

Gi(z) =1,

H,(z) = 0. (44)
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FIGURE 14. Cumulative distribution of values of h, (x) for the function F of Figure 11 (middle) in the interval
1 <z < 2.1 = p. The functions were sampled at 2'3 regularly spaced points.

All this follows easily by substituting (4.3) in (4.2)
and equating factors of F'(2z) and F(z). We can
also write the recurrence in matrix form:

(Gl = (e e (G )
(4.

and likewise for the H,,. If we set

M(z) = <f1<12x> fa(:v)) |

5)

0

it follows from (4.4) and (4.5) that

Gu(z) = (M(2" '2)M (2" ?z) ... M(:U))21,

H,(z) = (MQ2" 'z)M (2" ?z)... M(z)) (4.6)

22’

where the subscripts indicate matrix entries.

It follows from the theory of products of random
matrices [Furstenberg and Kesten 1960] that there
are positive constants G and H such that

1 1
lim —logG,(z) =G and lim —logH,(x) =H

n—oo M, n—oo M,

almost everywhere.

If G > H, the first term predominates in (4.3),
whereas if G < H, the second term predominates.
Therefore

1
lim — log F(2"x) = max(G, H)
n

almost everywhere. We obtain the same conclusion
if G = H. Thus we expect the graphs of

1 1 1
—log F(2"z), —logG,(z) and —logH,(x)
n n n

all to follow the same pattern as the graphs of h,,(z)
in the one-term case.
Figure 15 shows the graph of F(z) for
fi(z) = % + 2sin’ ma,
fo(z) = L + 3sin’ ma;

these functions are positive and satisfy the consis-
tency condition

f1(0) + f2(0) = 1, (4.7)

but otherwise have no special significance.

Figure 16 shows, for the same F, the graphs of
n~tlog F(2"z) for 10 < n < 14. The oscillatory
behavior of n~*log G, (x) and of n~'log H,(z) is
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FIGURE 15. Graph of the solution F(z) of (4.1),
for py = 2, po = 4, fi(z) = .5+ 2sin’* 7wz, and
f2(z) = .54 3sin® 1.

the same as that of n~'log F'(2"z); moreover, all
three sequences show asymptotic self-similarity for
the transformations z +— 2z — 1 and = — 2z — 2.
Figure 16 also graphs the differences

%(log F(2"7) — log Gy ()
and )
E(log F(2"z) —log H,(x)).

Given this evidence, we are led to formulate the
following conjecture:

Conjecture 4.1. Let f, and f, be positive continuous
periodic functions satisfying (4.7), and let p, = p™
and py = p*, where ky and ky are integers and
p>1. If F is as in (4.1), there exists a constant
C such that

lim < log F(p"z) = C (4.8)

n—oo M,
almost everywhere. Furthermore, if p is an integer,

the sequence is asymptotically self-similar for the
transformations x — pr — k.

We conjecture that similar results hold for m-term
generalizations of (4.1) and (4.7).

Problem 4.2. Find an interpretation for the con-
stant in (4.8).

5. TWO-TERM RECURSION:
THE INCOMMENSURABLE CASE

In this section we consider the same two-term re-
cursion relation (4.1), but with p; and p, exponen-

1.1 1.2 1.3 1.4 1.5

FIGURE16. F'isasin Figure 15 and n ranges from
10 to 14 as we go up. Within each unit, the jumpy
graph is that of n=!log F'(2"z); the smooth curves
represent the differences n~!(log F'(2"z) — G (x))
(upper) and n~(log F(2"z) — H,,(x)) (lower).
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tially incommensurable. In Figure 17 we show the
graph of F for the choice

fi(z) = .3+ 2cosmx,
fo(x) = .44 lcosmz,

91:27
02:3:

first using a linear scale and then a log-log scale.
The second graph seems to suggest that the bulk
of the data is following roughly a straight line, but
we have not been able to quantify the effect, as we
did by the use of the functions h,, in the one-term
recursion case.

In Figure 18 we show the graph of F' for the

choice
filz) =
fa(z) =

In this case, F'is the Fourier transform of a Cantor-
type measure on the interval [—3, ], constructed
by iterating the following procedure: give the mid-
dle third of the interval probability % and the outer
two quarters of the interval probability i each.
Since we were not able to find any regularity
in the pointwise behavior of F', we considered the

integrals

P1:37
p2:4—7

)

N|= N

COSTTXI.

I,F(x) :/ |F'(¢)]? dt. (5.1)
0

(Note that here, in contrast to the one-term recur-

sion case, the function |F(z)|? does not satisfy a

recursion relation of the same form as (4.1).) From

[Strichartz 1993] and [Lau], we know that, for the

example of Figure 18,

lim 2* 'L F(z) = c,

€Tr—r 00
where « =1 — b =~ 0.815867 is the solution of
2—23 =+ E4 + E4 =1. (5.2)

However, there are no known results that predict
the behavior of I, F for ¢ # 2 for this example, or
even I, F' for the example of Figure 17. We decided
to test the hypothesis

. —b o
zlggox ], F(x) = ¢,

(5.3)

and estimate the constant b,. Since (5.3) is equiv-
alent to

lim log I, F'(z) — (b, logx + logc,) = 0,

T—r0o0

(5.4)

0 30 100 150 200

1
0.1 t |
0.01
1 3 10 30 100 300 1000
FIGURE 17. Graphs of the solution F(z) of (4.1),

for p1 = 2, p2 = 3, fi(z) = .3+ 2cosmz and
fo(z) = .4+ .1cosmz. The bottom graph uses a
log-log scale.
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0.4 ]

WA A ]

—0.2
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FIGURE 18. Graph of F(z) for p; = 3, pa = 4,
fi(z) = and f2(z) =  cosma.



Janardhan, Rosenblum and Strichartz: Numerical Experiments in Fourier Asymptotics of Cantor Measures and Wavelets 265

this involves plotting I, F' on a log-log scale, noting
the resemblance to a straight line for large values
of logz (we did not perform statistical tests), and
approximating b, by the slope of the least mean
square best-fitting line.

q D 1. 2. 2.9 3.3 4.5
b, .8045 .6182 .2960 .1105 .06526 .01167

FIGURE 19. Graphs of log I, F(z) as functions of
log x, for the function F' of Figure 17, and values
of b, estimated therefrom.

Figure 19 shows the graph of log I, F'/(z) versus
log x for the function F' of Figure 17 for typical
values of q. It is clear that the deviation from
straightness becomes worse as ¢ increases. This
is not surprising in view of the fact that the higher
powers of |F| tend to put more emphasis on val-
ues that deviate most from the general trend. Our
evidence is certainly consistent with (5.4), but we
would have liked to continue the computations out
to larger values of logx in order to confirm the

decrease in deviation from straightness. Unfortu-
nately, this would involve computing integrals over
very large intervals, and the accuracy of our data
could not be relied upon.

As a different sort of check, we computed a sec-
ond integral,

IIF(x) = / I,F(t)dt,
0
for which we would expect
log I7F () = (b, + 1) logz + ¢,

with a greater accuracy of fit. In Figure 20 we
show the graphs of log I? F'(x) versus logz for the
three largest values of ¢ from Figure 19. It is clear
that the desired smoothing has occurred, and the
graphs are close to being straight, but the differ-
ence between the slopes of the best-fit lines for Fig-
ures 19 and 20 are not exactly equal to one, indi-
cating the inaccuracy in our approximation to b,
(assuming, of course, that (5.4) is correct).

7 r — q= 29 /,//’
— ¢=33
6 I - q= 4.5 //,/i//x" |
5 - i |
4+ /// . ]
3F 1

3 35 4 45 5 55 6 65 7

q 2.9 3.3 4.5
1+b, 11333 1.0737 1.0173

FIGURE 20. Graphs of log I2F(z) as functions of
log x, for the function F' of Figure 17, and values
of 1 + b, estimated therefrom.

In Figure 21 we plot the graph of b, as a function
of g for .5 < g < 4.5, as estimated by the slope of
the best line fit to the computed data for I,F', and
the graph of b, +1 as estimated from the computed
data for IZF.

Figures 22-24 show graphs analogous to those
of Figures 19-21, for the function F' of Figure 18.
Since this function displays greater variability than
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0.5 1 1.5 2 2.5 3 3.5 4 45
FIGURE 21. Graphs of b, as a function of ¢ (lower
curve) and of 1+b, as a function of ¢ (upper curve)
for the function F' of Figure 17, as estimated from
the slopes of logI,F(x) and log IZF(x) as func-
tions of logx. The step size for the first graph is
.01, and for the second graph .4.

the first, we see greater deviations from straight-
ness in the graphs of logI,F(z). Note that the
estimated value by =~ .181399 agrees well with the
known value 1 — «, where « is the root of (5.2).

Finally, in Figure 25, we graph the difference be-
tween log I F'(x) versus log z and the best straight-
line fit for the function F' of Figure 18. There is a
hint of a pattern here, but it is not yet clear exactly
what it might be.

The experimental evidence seems to support a
slightly weaker assertion than (5.3):

Conjecture 5.1. Let fy and fy be positive continuous
periodic functions satisfying (1.4), let py,pa > 1,
let F' satisfy (1.3), and define I,F by (5.1). Then

log I, F
b, = lim log I, F'(x)
z=0  logx
exists for any q > 0.

We conjecture that similar results hold for m-term
generalizations of (1.3).

Problem 5.2. F'ind an interpretation for b,.

6. JULIA SETS

In this section we let F'(z) be the Fourier transform
of the equilibrium measure on a Julia set. For the
quadratic polynomial

fr(z) =z - T,

0.2

0.1 r i

3 35 4 45 5 55 6 65 7

q D 1. 2. 2.9 3.3 4.5
b, .7848 .5591 .1814 .04003 .01931 .00225

FIGURE 22. Graphs of log I, F(z) as functions of
log z, for the function F' of Figure 18, and values
of b, estimated therefrom.

with 7 > 2, it is known that the Julia set J,. is a
totally disconnected (Cantor) set, contained in the
real line. Figure 26 shows J, 1.

Let

(@) =EVo+r

denote the two inverse images of x under f,, where
x > —r. This defines two homeomorphisms ¢; and
¢, from (—r,00) to £(0,00). There is a unique
probability measure p,., supported on J,., that sat-
isfies

1 (B) = L (6t (B)) + 2o (B)). (6.)

This measure is easily approximated by randomly
applying the mappings ¢*. Because y, is symmet-



Janardhan, Rosenblum and Strichartz: Numerical Experiments in Fourier Asymptotics of Cantor Measures and Wavelets 267

7+ — q¢=29 L
-— q=33 e
=4. i
61 a g - 1
5 F P - 4
4t ///ff""‘ ]
3 ,/ 4

3 35 4 45 5 55 6 65 T
q 2.9 3.3 4.5
1+b, 1.0503 1.028 1.0077

FIGURE 23.  Graphs of log I7F'(x) as functions of
log =, for the function F' of Figure 18, and values
of 1+ b, estimated therefrom.

ric about the origin, the Fourier transform is just
a cosine transform,

F(o) = [ cos(ay) din),

which is approximated by

N
1
F(x) =~ N kz_; cos(zyy), (6.2)
for a sequence y; € J, defined recursively as fol-
lows:

Yer1 = @5 (Yr), (6.3)

with + chosen randomly with equal probability;
the initial y; is obtained by starting with one of
the points % + %\/r2 + 1, which are known to be
on the Julia set, and randomly iterating pF a few
times. Of course, the larger z is, the more points
N are needed for a good approximation.

We worked with two values of r in our experi-
ments: 2.1 and 6. Figure 27 shows two portions of
the graph of F' in each case. (See Section 7 for a
discussion of the accuracy of these graphs.)

Figure 28 shows the graph of I,F' on a log-log
scale for r = 2.1 and 6, and ¢ = .5, 1 and 2. We

-2 -1

FIGURE 26.

—-0.02 ¢

—0.04 ¢

—0.06

1.8

0 L L L L T L
05 1 15 2 25 3 35 4 45

FIGURE 24. Graphs of b, as a function of ¢ (lower
curve) and of 1+b, as a function of ¢ (upper curve)
for the function F' of Figure 17, as estimated from
the slopes of log I, F(x) and log IZF(x) as func-
tions of logx. The step size for the first graph is
.01, and for the second graph .4.

0.04

=
| I

3 35 4 45 5 H5H 6 65 7
FIGURE25. Difference between log I F(x) and the

straight-line approximation .1814log x —.1142 as a
function of log x, for the function F' of Figure 18.

computed the graphs for higher values of ¢, but
they differ so much from a straight line that we
hesitate to claim any significance for them.

Figure 29 plots the approximate slope as a func-
tion of g for both values of r; the values of ¢ greater
than 2 are included but are unlikely to be very ac-
curate. The resemblance of these graphs to the
corresonding graphs in Section 5 leads us to con-

1 2

The Julia set J.1, dragged vertically for better visibility.
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Graphs of F' = fiz1 (left) and of F' = fig (right). To compute F(z) we used (6.2), with N = 10,000.
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Graphs of log I, F(z) as a function of logz, for F' = fip 1 (left) and F' = fig (right).
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jecture that (5.3) and (5.4) should hold, at least
for ¢ < 2.

0.9
0.8 r * 1
0.7 r v 1
0.6 - 1
0.5 . 1
04 F B
0.3 r 1
02 r=21"- . .
0.1+ "=

0

0.5 1 1.5 2 2.5 3
FIGURE 29. Values of b, as a function of ¢, for
F = jis1 and F = [ig, as estimated from the slopes

of log I,F'(z) as a function of logx. The step size
is .4.

For ¢ = 2, the validity of (5.3) is equivalent,
by a result of [Lau and Wang], to a more elemen-
tary statement in terms of the measure p,. The
mean quadratic variation of order « for a probabil-
ity measure p is defined to be

lim ! /OO w([x, x + s])*dw

+1
s—0 8¢ oo

(6.4)

if the limit exists. According to [Lau and Wang],
this limit exists if and only if

lim 2% ' L,F(z)

Tr—roQ
exists for F' = i (we assume for simplicity that u
is symmetric about the origin).

Now it is easier to compute the discrete analog
of (6.4). Set

o0

MQV(s) = 3 allks, (k+1)s))

k=—o00

(6.5)

Then (6.4) is essentially equivalent to MQV(s) =
cs®, or

log MQV (s) ~ alogs +¢'. (6.6)

We computed MQV (s) from (6.5), using the se-
quence y;, generated by (6.3) to approximate the
measure. The computation is made simpler by the
fact that most of the intervals [ks, (k + 1)s] have
measure zero. In Figure 30 we plot the data on a
log-log scale for both r = 2.1 and r = 6, along with

a best straight-line fit. This gives strong support
to the hypothesis (6.6), and the slope estimates
a = .4392 for r = 6 and a = .7894 for r = 2.1

agree well with the predicted values of 1 — by from
Figure 28, namely .4382 and .7804.

-12 -1 -10 -9 -8 -7 -6 -5 -4 -3

FIGURE 30. Values of log MQV(s) as a function
of logs (logarithms to base 2) for F' = [io; and
F = jig, together with the best-fitting straight line.
The estimated slopes are .43923 for r = 6 and
.78945 for r = 2.1.

4 :
74.5 7’..00,00.0,00’0’..'0’0"'0’... o T = 6.0
5 | 1
5.5 | ]
—6 | 1
_6.5 [ . ".’.‘.‘.”’...0.00.0.0 T:21 4
g ‘ ‘ ‘ ‘ ‘ ‘
-69 —-68 —-6.7 —6.6 —-6.5 —6.4 —6.3
FIGURE 31. Values of log MQV(s) as a function

of log s (base 2) for F' = jiz1 and F' = [ig (detail).

However, the relative straightness of the log-log
graphs of MQV(s) is misleading. In Figure 31 we
fill in more detail, plotting MQV (s) on a log-log
scale for more values of s in a smaller range. The
result shows much greater variability. In part, this
might be accounted for by the discrete substitu-
tion of (6.5) for (6.4). (Although this involves the
replacement of an integral by a Riemann sum of
step size s, which tends to zero, the function being
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integrated also varies with s, so the best we can
say is that

= (e a+ ) do < MQV(s)
Co e 2
< —= p(lx, z + s])* dx
S —00

for certain constants ¢; and c;.) But the variabil-
ity could also be indicative that the limit (6.4) does
not really exist, and that only some weaker conclu-
sion holds, such as

1 oo
¢S i / p(lz,z +s))%de < e (6.7)

for 0 < s < 1. The order a in (6.7) represents
some sort of dimension for the measure p, so it
seems to be an interesting question to prove (6.7)
for p = p, with a = «, given by some explicit or
implicit function.

In [Strichartz 1992b] the weaker statement that

log [ [z, z + s])Pds
lim =
5—0 log s

exists is proved for p > 1, and a procedure for com-
puting the limit to any desired accuracy is given.
In particular, this implies (1.9) for ¢ = 2.

7. EXPERIMENTAL PROCEDURE

In this section we explain briefly the computing
methods used to produce the experimental results,
and discuss questions of accuracy.

The experimental data in this paper were gen-
erated on the Sun SPARCserver 490 and SPARC-
station 1. The programs to generate the data were
written in C. The graphs were produced using Gnu-
plot (Unix version 2.0), with labels separately pro-
cessed in TEX at production time.

The primary program we wrote to generate the
data takes as input the choice of a function, the
range of z-values over which to observe the func-
tion, and the desired sampling rate. It outputs a
file of - and y-values of the function, with a header
containing information about the input data and
program version, among other things. The pro-
gram is written in a structured and flexible manner
that facilitates the addition of new functions and
modules at the user’s discretion.

We also wrote auxiliary programs to further pro-
cess precomputed function data, performing tasks
such as integration by the Simpson rule, sorting
by z- or y-value, taking logs, and fitting a least-
squares straight line.

Our computations were carried out using the
variable type “double”, which in general proved
sufficient. However, there were occasions when the
error became appreciably large; this point will be
discussed in more detail later.

When computing integrals, we had to keep in
mind the error caused by the use of the Simpson
rule. This could be minimized by sampling at as
high a rate as feasible. In Figures 19-20, for exam-
ple, the size of each z-interval is 0.25.

When evaluating functions expressed as infinite
sums or products, we had to come up with a rea-
sonable finite cutoff. We chose K logz, where the
constant K is chosen large enough that further in-
creasing it did not affect the function values in the
lower z-range. Multiplying by log x ensured that,
as  became larger, more terms of the infinite prod-
uct or sum would be taken, as is desirable.

In spite of all precautions, the possibility was al-
ways present that the pictures we produced were
slightly tainted by computer error. We checked
for error whenever possible by repeating computa-
tions with some key parameter changed, and then
checking to see if the computed values changed as
expected.

In addition to the many computing obstacles
that arose during the course of our research, other
obstacles arising from the nature of the functions
themselves often appeared, which we tried to solve
in the best manner possible. Because we were
studying the asymptotic, or long-range, behavior
of the functions we were computing, it was often
necessary to compute the logarithm of a function
over a large z-range in order to better see how it
was behaving. In fact, the logarithm was one of
our most basic tools for interpreting our output in
most cases. Of course, by the nature of the loga-
rithm, we were forced to select functions that were
nonnegative. However, many of the functions we
wished to compute, for example, f(x) = cosx, still
had undesirable zeros even when converted to a
nonnegative function by squaring.

We settled upon the following solution. The part
of the program that scans the specified z-range and
computes the log of the function value at each point
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along the way was modified to ignore y-values less
than a user-controllable parameter . In this way,
the program was able to weed out y-values too close
to zero with a simple test. (Figures 4 and 13 show
data so clipped.) Alternatively, the program could
be set to compute the functions as usual, and the
zero-test could be carried out in the helper program
that computes logarithms of functions already in
data-file format.

Another computing obstacle we faced, especially
when trying to obtain data for very large z, in
either the one- or two-term recursion cases, was
that of compute time. This problem was dodged
to some degree by the following change to the scan-
ning algorithm: instead of sampling the z-range at
regular steps, the modified program computed y-
values at a specified number of points chosen ran-
domly from the z-range. In this way, the program
could produce a view of at least the bulk struc-
ture of the function without having to compute
as many points. (The random-number generator
used was called drand48(), and was seeded at each
run with a long integer by the function srand48().
Both of these functions are part of the standard C
library.) This method was most useful when com-
bined with the fact that certain “average” behav-
iors were expected for certain types of functions at
large values of x, such as the cumulative distribu-
tions in Figures 8 and 14. The random scan also
came in handy a couple of times to clarify the be-
havior of some plots that looked the way they did
only because of the regular step at which they were
computed.

When F(z) is defined by a recursion with two
terms, the computational challenges are consider-
ably greater than in the one-term case. How does
one compute such a function? There is no explicit
iterative formula for it, as there is in the one-term
case. However, if one knows the value of F(z) for
some range of x, one can compute it for any other
range by using the recursive formula. How does
one calculate F'(x) for some range of 7 We used
a Taylor expansion about z = 0.

In the formula for the n-th derivative of the func-
tion, we were able to group together all terms in-
volving the n-th derivative of F(z) to obtain an ex-
plicit formula for it in terms of its lower derivatives.
Thus, using a recursive scheme, we were able to
compute many of the derivatives of F' at 0. We
were then able to use those derivatives to construct

a Taylor approximation for F' near zero. Once we
had this approximation, we could use it to compute
the value of F'(z) for any = by employing recursion.

What about accuracy? As already mentioned,
we used double precision, which gives 16 signifi-
cant digits of accuracy. We used as many terms
in the Taylor expansions as this accuracy would
allow. We tested how far out these Taylor expan-
sions could be trusted by looking to see how far out
an increase in the number of Taylor terms failed
to produce a detectable change in function values
(see Figure 32). For the most part, we were able to
trust Taylor expansions of 35 terms for x between
0 and 0.5 at least.
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FIGURE 32. Graphs of the Taylor polynomial ap-
proximations to the function F' of Figure 15, with
different cutoffs. The function F' is even, so only
even powers of x occur in the Taylor polynomials.

Of course, the above computational technique is
not free from error. To obtain an idea of the size of
the error, we examined the special case p; = 2 and
p2 = 4, where (4.3) holds. The computations of G,,
and H,, from (4.6) are faster and more accurate,
enabling us to compute F(x) for larger values of =
with greater reliability. By comparing the output
with the recursion-Taylor computation, we found
the two in substantial agreement for x between 0
and 10°.

The other time-consuming operation is the com-
putation of the derivatives of f at 0. We can speed
it up by storing the derivatives in an array as they
are computed. When the next higher derivative
needs to be computed, the algorithm need not re-
curse to do so, since all lower derivatives are al-
ready in memory.
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In spite of all this, the fact remains that two-
term recursion is computationally expensive, es-
pecially when the functions f; and f, are trigono-
metric functions or the like, and must be computed
using time-consuming series expansions. If one of
these functions is something computationally sim-
ple, like a constant or a polynomial of low degree,
a lot of time can be saved.

More specific programming challenges and prob-
lems with accuracy arose in our investigations of
the Fourier transforms of measures supported by
Julia sets. We used the approximation (6.2). Im-
mediately, we knew we might have trouble with the
value for N in that expression. The error in ap-
proximating the function in this way should be ap-
proximately cN~'/2, where c is a (hopefully small)
constant. Thus, in order to approximate the func-
tion to a degree of accuracy of merely Tiov we al-
ready need 10,000 iterations for each z-value! If
an interval is sampled for a scant 1000 points, we
are talking about 107 iterations, which is indeed
an enormous amount of computation. To see just
how good or bad things were, we looked at a small,
randomly chosen, z-range for each value of r, and
increased N in steps of 1000 (later 10,000), to see
what effect this had in the approximation. It was
not until about N = 10,000 that the qualitative
appearance of the graphs of the function settled
down to a constant shape. Even then, the devi-
ation between two choices for IV was appreciable
relative to the function values: see Figure 33. For
practicality, we did stick with N = 10,000. As can
be seen in Figure 33, the error is not systematic,
and thus we feel our computations are at least a

good beginning to the investigation of these Fourier
transforms. Also note that certain values of r lend
themselves to better accuracy: for r = 6, where
the Julia set is much more concentrated than at
r = 2.1, there is some improvement in accuracy be-
tween the left and right part of the figure; whereas
for r = 2.1 there seems to be no improvement even
with N this high.

The other computation we performed with these
Julia-set measures was a calculation of the mean
quadratic variation (6.5), and we ran into problems
of a similar nature.

For the first computation of MQV(s), we ap-
proximated the measure by “tossing” one hundred
thousand points, and allowed s to decrease from
1 down to 272*. This produced the top set of
points in Figure 34. What was happening here?
Why was this very straight line bending as more
s values were added to the left? We conjectured
that our interval size was getting so small, and
thus the total number of slices considered so large,
that this number was in fact much bigger than the
100,000 total points “thrown” in the first place.
Since the function is a measure of probability, this
could certainly account for erroneous computations
as s becomes very small. To test this, we gener-
ated as many points of the Julia set as we possi-
bly could with our current memory capacity, and
computed MQV(s) once more. This time (with
N = 500,000), the new points of MQV(s) were
indeed improved (again see Figure 34), although
even with N = 500,000 we are still nowhere near
high enough to compute MQV(s) for s to much
less than 2718,
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FIGURE 33. Graphs of (6.2) as a function of x, showing the effect of a change in N. On the left we used

N = 10,000 and 20,000; on the right, 50,000 and 100,000. The broken line is jfig, the solid line is fig 1.
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FIGURE 34. Plots of logMQV(s) as functions of
log s (logarithms to base 2) for F' = [izq, with
p2.1 generated by 100,000 points (upper graph)
and 500,000 points (lower graph); compare with
Figure 30. The deviation from a straight line be-
comes more pronounced for small s, but is less se-
vere if we use the more accurate approximation
for p.
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