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We discuss the asymptotic behavior of Fourier transforms of

Cantor measures and wavelets, and related functions that might

be called multiperiodic because they satisfy a simple recursion

relation involving a blend of additive and multiplicative struc-

tures.

Our numerical experiments motivated conjectures about this

asymptotic behavior, some of which we can prove. We de-

scribe the experiments, the proofs, and several remaining con-

jectures and open problems. We also contribute to the evolving

iconography of fractal mathematics by presenting the numeri-

cal evidence in graphical form.

1. INTRODUCTIONAn interesting class of functions, which might becalled multiperiodic, can be described by simple re-cursion relations involving a blend of additive andmultiplicative structures. Such functions arise typ-ically as Fourier transforms of self-similar objects,such as Cantor measures and wavelets. We reporthere the results of numerical experiments we per-formed on these functions, and some theorems andconjectures about their asymptotic behavior thatwere directly inspired by the numerical evidence.We study functions of one variable, which we de-note F (x) and normalize to satisfy F (0) = 1. Thesimplest case we consider is a one-term recursion
F (x) = f�x��F�x��; (1.1)

where the scaling factor � satis�es � > 1 and fis a periodic function of period one satisfying theconsistency conditionf(0) = 1:
c
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This leads easily to the in�nite-product represen-tation F (x) = 1Yk=1 f� x�k�; (1.2)
which converges rapidly as long as f is C1 nearzero. We devote Sections 2 and 3 to this classof functions, for � an integer and not an integer,respectively.In Sections 4 and 5 we examine solutions of two-term recursion relationsF (x) = f1� x�1�F� x�1�+ f2� x�2�F� x�2�; (1.3)where �1; �2 > 1 and the consistency condition isnow f1(0) + f2(0) = 1: (1.4)There is no analog of the product expansion (1.2),but it is easy to see that there is a unique contin-uous solution to (1.3) with F (0) = 1 if f1 and f2are C1.In Section 6 we examine the Fourier transformsof the equilibrium measure on the Julia sets forthe mapping z 7! z2 � r, where r > 2, and lookfor analogous asymptotic behavior, although thesefunctions are no longer multiperiodic.The simplest example of a product of the form(1.2) is 1Xk=1 cos �x2k = sin�x�x ; (1.5)
an equality due to Euler (although special caseswere known to Vi�ete almost 400 years ago). Theright side of (1.5) is recognized as the Fourier trans-form of Lebesgue measure on the interval [� 12 ; 12 ],Z 1=2�1=2 e2�ixydy = sin�x�x ;while the left side expresses the fact that this mea-sure is obtainable by repeatedly halving the inter-val and assigning equal probability to each half.Another way of saying this is that the recursionrelation (1.1) for this example is equivalent to theself-similarity of the measure�(E) = 12�� 12E � 14�+ 12�� 12E + 14�:Of course, the function (1.5) exhibits an especiallysimple asymptotic behavior|see Figure 1|and itwould be misleading to expect the same from the

other functions we study. In Section 2 we will beable to \explain" this behavior in terms of certainremarkable \coincidences" involving the integralZ 10 log cos2 �x dx:
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FIGURE 1. The simplest example of a functionsatisfying (1.1) is F (x) = (sin�x)=(�x), obtainedby setting f(x) = cos�x and � = 2.If we keep the same function f(x) = cos�x buttake � > 2 in (1.2), we get the Fourier transform ofthe Cantor measure on [� 12 ; 12 ] obtained by delet-ing the middle segment of length 1�2=�, assigningequal probability to the outer segments and iter-ating. The value � = 3 corresponds to the usualmiddle-third Cantor set; Figure 2 shows the graphof F (x) in this case.
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FIGURE 2. Solution of (1.1) with f(x) = cos�xand � = 3.
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FIGURE 3. Graphs of F (x) for � = 2 and the indicated functions f(x).These functions have been extensively studiedsince the thirties [Wiener and Wintner 1939; Erd}os1940; Salem 1983; Strichartz 1990; Strichartz 1993;Lau; Lau and Wang]. More generally, the Fouriertransforms of any of the self-similar measures de-�ned in [Hutchinson 1981] will satisfy multiterm re-cursion relations (1.3) with the fi(x) trigonometricpolynomials. (In general, there may be more thantwo terms, but we expect that the two-term casealready exhibits all the behaviors of the generalcase.)Another source of functions of the form (1.2)is the theory of wavelets. If '(x) is the scalingfunction for the compactly supported wavelets ofDaubechies [1988, 1992], then F (x) = j'̂(x)j2 sat-is�es (1.2) with � = 2 and f(x) a nonnegativetrigonometric polynomial such thatf(x) + f(x+ 12) � 1:It is easy to construct such f : simply take the�rst half of the terms in the binomial expansionof (cos2 �x+sin2 �x)2N+1. For the theory of wave-lets, it is important to obtain estimates of the formjF (x)j � c jxj��;since such estimates imply smoothness of the wave-lets of order � � 1 � ". See [Daubechies 1992,Chap. 7] for a detailed discussion and references.The goal of our experiments was to elucidate theasymptotic behavior of the function F (x) as x !1. From previous work, we knew that we could

expect relatively simple behavior on the part ofintegrals such asIqF (x) = Z x0 jF (t)jq dt:For example, in [Strichartz 1990; Strichartz 1993;Lau; Lau and Wang], it is proved under varioushypotheses that, as x ! 1, the function I2F be-haves like cx�� or �(x)x��, for a speci�c value of�, where �(x) is a multiplicative periodic function.Furthermore, numerical experiments performed byMaria Korolov showed that we can expect the samefor IqF for any q > 0 (we report some related ex-periments in Section 5).The problem we considered initially was this:
Problem 1.1. Find some conditions on the point-wise asymptotic behavior of F that would imply theknown and conjectured asymptotic behavior of IqF .We did not solve this problem, but we did discoversome fascinating pointwise asymptotic behavior forF . The results for the one-term recursion relation(1.2) are completely proven in this paper, but forthe general case we can only present a conjecture.Our �rst approach was more exploratory thanexperimental, in that Problem 1.1 does not presentany conjecture that can be tested. For simplicity,we restricted attention to functions f that are non-negative (replacing f by jf j just replaces F by jF j,so we obtain the asymptotic behavior of jF j in thegeneral case). We also used trigonometric polyno-mials for f , so the resulting F is band-limited (F̂
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has compact support) and therefore is slowly oscil-lating, which makes it easier to graph accurately.We plotted the graphs of a number of functionsF , some of which are shown in Figures 2{3 andFigure 11 in Section 3. After some trial-and-errormanipulations of these graphs, we were led to con-sider the sequence of functions1n logF (�nx) (1.6)on the interval 1 � x � �. Figure 4 shows thegraphs of these functions for F and � as in Figure 3.(Actually these �gures plot a slight variant of (1.6):see (2.2).) Figures 5{6 in Section 2 and 12{13 inSection 3 provide other examples.It is easy to conjecture from this evidence thatthe sequence (1.6) converges as n ! 1 in someweak sense to something quite complicated. Butactually, we will prove under minimal hypothesesthat the sequence always converges almost every-where and in Lp norm to the constantR 10 log f(t) dt.The convergence does not take place everywhere;in fact, there is a dense set of points where thesequence converges to a value di�erent from thisconstant, which explains why the graphs appearso complicated.One striking feature of the graphs of (1.6) when� is an integer, which is not present otherwise, isa strong appearance of self-similarity. To explainwhat is going on, we need a new de�nition.
Definition 1.2. A sequence of functions hn(x) on adomain D is said to be asymptotically self-similarwith respect to a transformation T : D0 ! D,where D0 is a subset of D, if for every " > 0 thereexists N such thatjhn(Tx)� hn(x)j � " (1.7)for all n � N and all x 2 D0.
Note. This de�nition probably should be general-ized to allow a transformation of the range as wellas the domain, but for the sake of simplicity, wehave restricted ourselves to the above, which is ad-equate for our examples.One of our main results is that the sequence (1.6)with � an integer is asymptotically self-similar withrespect to the transformationTx = �x (mod 1):

To see this, we need to look at the graphs of hn(x)and hn(Tx) and observe that they di�er by a smallamount for large n. However, we come up againsta serious paradox|we might almost say an un-certainty principle|when we do this. To make "small, we have to take n large. But the larger wetake n, the more complicated the graph of hn be-comes, and the harder it is to see anything at all.In fact, then, we settle for a compromise, where n isonly moderately large, so the complicated oscilla-tions of hn are still visible, and " is only moderatelysmall, so the di�erence between hn(x) and hn(Tx)is still noticeable, but not too large.It follows immediately from the de�nition that ifa sequence hn(x) is asymptotically self-similar withrespect to T , it is also asymptotically self-similarwith respect to every power T k of T (on a suitablesubdomain). Thus our functions hn will exhibitapproximate self-similarity with respect to a wholefamily of transformations. However, with n �xed,the error " in (1.7) will grow with k, so the di�er-ence between the graphs of hn(x) and hn(T kx) willbecome more and more noticeable (see Figure 7 foran illustration). Nevertheless, this multiple self-similarity is very striking (see Figure 4).The case of the one-term recursion relation withnoninteger �, discussed in Section 3, reveals thesame convergence properties for the sequence (1.6),but the asymptotic self-similarity is lost. For thetwo-term recursion relation (1.3), a dichotomy waspredicted by previous work [Strichartz 1993; Lau].If �1 and �2 are exponentially commensurable, thatis, if �1 = � j and �1 = �k for some � > 1 andintegers j; k, the two-term recursion relation leadsto functions F that resemble solutions to the one-term recursion relation with scaling function �. InSection 4 we discuss the experimental evidence forthis.Without the assumption of exponential commen-surability, we have not been able to discern anypointwise asymptotic regularity for F . In Section 5we report on experimental evidence for the asymp-totic behavior of the integrals IqF of (1.6). Thequestion can be formulated as follows.
Problem 1.3. Under what circumstances is it truethat IqF (x) � cqxbq (1.8)as x!1?
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1 1:1 1:2 1:3 1:4 1:5f(x) = cos6 �x+ 3 cos4 �x sin2 �x 1 1:1 1:2 1:3 1:4 1:5f(x) = 1 + 2 sin2 �x
FIGURE 4. Graphs of hn(x) = n�1(logF (�nx) � logF (x)) for the functions F of Figure 3 and � = 2, for nincreasing (as we go up) from 1 to 8 on the left and from 5 to 14 on the right. (On the left, only valueshn(x) � �3 are shown.) The graphs are symmetric with respect to the lines x = 1 and x = 1:5 (in particular,hn is periodic of period 1). The horizontal lines indicate the limit limn!1 hn(x), valid almost everywhere.
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The evidence we obtain does not allow us to con-jecture an answer, but we do produce a conjecturethat the weaker statementlimx!1 log IqF (x)log x exists (1.9)holds in great generality.In Section 6 we report on numerical evidence forthe asymptotic behavior (1.8) or (1.9) when F isthe Fourier transform of the equilibrium measureon a Julia set. The value of b2, if it exists, is relatedto the mean quadratic variation of the measure,according to results in [Lau and Wang]. We havebeen able to compute both values approximately,and they agree to within the error of our method.In [Strichartz 1992b], it is proved that the limit(1.9) exists for q = 2.In Section 7 we discuss the programs that wereused to generate the data, some of the problemsthat arose in creating the programs, and the testsof accuracy that we performed.We are grateful to Rick Durrett for discussionsconcerning probability theory, to John Hubbard foradvice on generating the Julia-set measures, and toPeter Sarnak for suggesting the use of the ergodictheorem in Corollary 2.2.
2. ONE-TERM RECURSION FOR INTEGER �In this section,

F (x) = 1Yk=1 f� x�k� (2.1)
for � an integer. We specify F by giving � and f .We have already seen some important examples.In Figure 2 we had � = 3 and f(x) = cos�x, andF was the Fourier transform of the usual Cantormeasure on the interval [� 12 ; 12 ].In Figure 3 (left) we had � = 2 andf(x) = cos6 �x+ 3 cos4 �x sin2 �x:Then F = j'̂j2, where ' is the scaling functionfor a compactly supported wavelet. We restrictedthe graph to 50 � x � 100, because the functionfalls o� so rapidly that it is impossible to see muchdetail if we take an interval starting at x = 0.This is the problem with the graphs presented in[Daubechies 1988].

1 1:1 1:2 1:3 1:4 1:5
FIGURE 5. Graphs of hn(x), for 1 � n � 7, for thefunction F arising from f(x) = cos2 �x and � = 3(the square of the function in Figure 2). Largenegative values of hn(x) have been excised.
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1 1:2 1:4 1:6 1:8 2
FIGURE 6. Graphs of hn(x), for 1 � n � 7, for thefunction F arising from an asymmetric sawtoothfunction f and � = 3.

Note that this f(x) has a factor cos4 �x, andwe know from Euler's formula (1.5) that this con-tributes a factor of (sin�x=�x)4 to F (x). If weremove the factor cos4 �x, we are left with f(x) =1 + 2 sin2 �x, which leads to Figure 3 (right), stillwith � = 2. The function F now grows with xrather than decays. Because f(x) is bounded awayfrom zero in this example, the behavior of F (x) is abit simpler, and we can already discern in the �gurea hint of the asymptotic behavior we are lookingfor.It is tempting to take the logarithm of (2.1) toturn the product into a sum. In order to do thiswe must assume that f(x) is nonnegative; if thisis not the case to begin with, as in Figure 2, wecan always take the square f(x)2 in place of f(x),which simply squares F (x). We observe then that
logF (�nx)� logF (x) = n�1Xj=0 log f(� jx);

and therefore we de�ne
hn(x) = 1n n�1Xj=0 log f(� jx): (2.2)

Since hn(x) di�ers from 1n logF (�nx) by 1n logF (x),the two functions have the same behavior as n !1 if we restrict x to a �xed interval, which we taketo be 1 � x � �. The advantages of using hn(x)rather than 1n logF (�nx) are that hn(x) is periodicof period one (here we use the fact that � is aninteger) and it is easier to compute.In Figure 4 we show the graphs of hn for thewavelet scaling function of Figure 3|both the orig-inal and the factored versions. (The domain is re-duced to 1 � x � 2 because the functions are peri-odic of period one.) In Figure 5 we show hn for theFourier transform of the Cantor measure squared,the square of Figure 2. Finally, in Figure 6, weshow hn for an asymmetric sawtooth function fand � = 3. This function has no particular sig-ni�cance, but it is displayed to show that neithersymmetry nor smoothness of f play an importantrole in the qualitative behavior of the sequence hn.Despite the colorful behavior of the graphs of hn,we have the following banal result.
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Proposition 2.1. Suppose � is an integer and f isa continuous periodic function satisfying f > 0.Then limn!1hn(x) = Z 10 log f(t) dt (2.3)
on [1; �], almost everywhere and in Lp norm forany p with 1 � p <1.
Proof. By the central limit theorem, the sequenceof points � jx is uniformly distributed mod 1 foralmost every x. For each such x, (2.3) is merelythe statement that the Monte Carlo approxima-tions to the integral of log f(x) converge, which bya theorem of Weyl only requires Riemann integra-bility. Lp-convergence follows from the dominatedconvergence theorem, since the sequence hn is uni-formly bounded. �
Corollary 2.2. Suppose � is an integer , f � 0 andlog f(x) 2 Lp on [1; �], for some p with 1 � p <1.Then (2.3) holds in Lp norm and almost every-where.
Proof. The transformation x 7! �x (mod 1) on[1; �] is measure-preserving and ergodic, so the re-sult follows by the ergodic theorem. �To understand the graphs we have obtained, wehave to realize that the pointwise limit is not theconstant function R 10 log f , but rather an every-where discontinuous function that is equal to thisconstant almost everywhere, and is unde�ned ona set of measure zero that is also dense. Suppose,to be speci�c, that � = 2 and x = p=q is a ratio-nal number with q odd. Then the sequence 2jp=q(mod 1) cycles periodically through a �nite set ofrationals a1=q; a2=q; : : : ; am=q, and

limn!1hn(x) = 1m mXj=1 log f�ajq �: (2.4)
(If q is even, we have a similar result.) In fact, therate of convergence in (2.4) is O(n�1), whereas therate of convergence in (2.3) is roughly O(n�1=2).There is no reason why the sum in (2.4) shouldequal the integral R 10 log f exactly, and this ac-counts for the wild oscillations of hn. If we tryto take n large enough that hn(x) is close to thelimit, the oscillations will be so violent that thegraph will be unintelligible.

The approximate self-similarity of the graphs ofhn is striking. Perhaps Figure 6 is the best exam-ple to look at, because all the other graphs haveadditional symmetries due to the fact that f(x) isan even function about x = 12 . Let Ik denote theinterval1 + (�� 1)k� � x � 1 + (�� 1)(k + 1)�for k = 0; : : : ; � � 1 and let the transformation Tkbe de�ned by x 7! �x � (k + 1)(�� 1). Note thatIk � [1; �] and Tk maps Ik one-to-one onto [1; �].
Proposition 2.3. Under the hypotheses of Proposi-tion 2.1, the sequence hn(x) is asymptotically self-similar with respect to the mapping Tk on Ik. Un-der the weaker hypothesis of Corollary 2.2, we havean Lp-variant of the conclusion, namely�ZIk jhn(x)� hn(Tkx)jp dx�1=p = O(n�1):
Proof. Because f is periodic, we havelog f(� jTkx) = log f(�j+1x);so hn(Tkx) = 1n nXj=1 log f(� jx);
hencehn(x)� hn(Tkx) = 1n�log f(x)� log f(2nx)�:The result follows by taking the sup norm or theLp norm. �We illustrate the proposition in Figure 7. For thefactored wavelet function f = 1 + 2 sin2 x of Fig-ure 3 (right), we graph h12(x) and its compositionwith T1, T 21 and T 31 .Figure 8 gives an idea of how slow the conver-gence is. For each indicated n, we sampled the val-ues of hn(x) at 2048 = 211 equally spaced pointsin the interval 1 � x � 2. We sorted the resultingvalues and plotted them in decreasing order. Thusthe plots give the cumulative distribution of valuesof hn, the abcissas corresponding to the accumu-lated frequency and the ordinates to the values.If hn were close to the limit, the curve would runclose to the horizonal line at heightZ 10 log(1 + 2 sin2 �t) dt � :6238107;
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1 1:2 1:4 1:6 1:8 2
FIGURE 7. For the function F arising from f(x) = 1 + 2 sin2 �x and � = 2, the graphs of h12(x), h12(T1x),h12(T 21 x) and h12(T 31 x), as we go up. To get each graph from the one below it, zoom in on the right half.
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FIGURE 8. Cumulative distribution of values of hn(x) for the function F of Figure 3 (right) in the interval1 � x � 2. The functions were sampled at 2048 = 211 regularly spaced points. The distributions change veryslowly as n increases: for example, the graphs for n = 11; 12; 13; 14 largely overlap.



258 Experimental Mathematics, Vol. 1 (1992), No. 4

except for a small region of larger values near theleft end and a small region of smaller values nearthe right end. The fact that we don't see this indi-cates that we are quite far from convergence. It isonly for n = 1000 that we are beginning to see theexpected behavior. (However, the data for high ncannot be highly accurate, not only because of thedi�culty in computing hn, but because the numberof sampled points is much too small.)Figure 9 shows the graph of h8 for � = 2 andf(x) = cos2 �x, which by Euler's formula yieldsF (x) = (sin�x=�x)2. The line patterns that ap-pear in the graph are artifacts of the regular scanused to produce it; see Section 7. The form ofF indicates that the regularity of hn is to be ex-pected, but we can also give an explanation that isin keeping with (2.3) and (2.4).

�2:5�2
�1:5�1
�0:50

1 1:1 1:2 1:3 1:4 1:5 1:6 1:7 1:8 1:9 2
FIGURE 9. Graph of h8(x) for the choice � = 2and f(x) = cos�x, obtained by sampling at 214regularly spaced points. Values below �2:5 havebeen excised.

Proposition 2.4. Let a1=q; : : : ; am=q be the full cycleof 2jp=q (mod 1), where p and q are odd. Then1m mXj=1 log cos2 �ajq = Z 10 log cos2 �t dt = �2 log 2:(2.5)
Proof. The value of the integral is elementary. Theassertion about the sum is equivalent tom�1Yj=0 cos2 �2jpq = 2�2m;

or to m�1Yj=0 �exp i�2jpq + exp �i�2jpq �2 = 1;
so it su�ces to show thatm�1Yj=0 �exp 2�i2jpq + 1� = 1:
Expanding this product, we obtain simply2m�1Xk=0 e2�ikp=q:But e2�ip=q = ! is a q-th root of unity, and mis chosen so that 2mp = p (mod q), so this sumconsists of (2m � 1)p=q repetitions of 1 + !+ � � �+!q�1 = 0 followed by exp(2�i(2m � 1)p=q) = 1. �More generally, any rational number can be writtenin the form 2�kp=q, where p and q are odd andrelatively prime. If k � 1 and q = 1, we obtainhn(2�kp) = �1 for n large enough. Otherwise, itfollows from (2.4) and (2.5) thathn(2�kp=q) = �2 log 2 +O(n�1):Figure 10 shows the graph of h6(x) for the choice� = 2 and f(x) equal to the square wave functionf(x) = � 1 if 0 � x < 12 ,e if 12 � x � 1,so that hn(x) is the average of the �rst n digits inthe binary expansion of x.

00:2
0:40:6
0:81

1 1:2 1:4 1:6 1:8 2
FIGURE 10. Graph of the average of the �rst sixbinary digits in the binary expansion of the frac-tional part of x.
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3. ONE-TERM RECURSION FOR NONINTEGER �We consider the same class of functions as in theprevious section, but we no longer require that �be an integer. In our illustrations we take � = 2:1.Figure 11 shows three examples. At the top, wetake f(x) = cos�x, so F (x) is the Fourier trans-form of a Cantor measure; compare Figure 2, whichcomes from the same f but di�erent �. In the mid-dle, f(x) = 1+2 sin2 �x; compare Figure 3 (right).(Note, however, that the function for � = 2:1 hasno interpretation in the theory of wavelets.) In thebottom part of Figure 11 we go a step further, tak-ing for f(x) the function 12(cos2 x+cos2 �x), whichis not periodic, but almost periodic.In Figure 12 we show the graphs of successive hnfor the function F of Figure 11 (middle). This �g-ure suggests that the conclusions of Proposition 2.1and Corollary 2.2 should continue to hold in thiscase, but we no longer have the asymptotic self-similarity.
Proposition 3.1. The conclusions of Proposition 2.1are valid for all real � > 1.
Proof. The only di�erence in the proof is in the ar-gument showing that the sequence � jx is uniformlydistributed mod 1 for almost every x. This resultis essentially contained in [Koksma 1935], but forthe sake of completeness, we give the argument.By a well-known criterion of Weyl, �kx is uni-formly distributed mod 1 if and only if

limn!1 1n nXk=1 exp(2�im�kx) = 0 (3.1)
for every integer m 6= 0. Since we claim this foralmost every x, we can without loss of generalityset m = 1. We �rst look at L2 norms. Fix aninterval a � x � b. ThenZ ba ���� 1n nXk=1 exp(2�i�kx)����2dx= nXj=1 nXk=1 1n2 Z ba exp(2�i(� j � �k)x) dx

= b� an + 2n2 X1�j<k�nZ ba cos 2�(� j � �k)x dx
� b� an + 2�n2 X1�j<k�n 1�k � � j � cn;

�0:4�0:20
0:20:4
0:60:8
1

0 20 40 60 80 100f(x) = cos�x

02004006008001000120014001600

0 20 40 60 80 100f(x) = 1 + 2 sin2 �x

00:010:020:030:040:050:060:070:08

10 20 30 40 50 60 70 80 90 10012(cos2 x+ cos2 �x)
FIGURE 11. Graphs of F (x) for � = 2:1 and theindicated functions f(x).
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1 1:2 1:4 1:6 1:8 2 �
FIGURE 12. Graphs of hn(x), for 5 � n � 14, forthe function F arising from f(x) = 1 + 2 sin2 �xand � = 2:1.

since 1�k � � j = 1�k�j � 1 1� j � 1�� 1 1� jand P1j=1 1=� j < 1. Thus, if we write sn(x) =1nPnk=1 exp(2�i�kx), we haveksnk22 � cn;which implies sn2(x) ! 0 for almost every x. Buta simple argument shows that n2 � N � (n + 1)2impliesjsN(x)� sn2(x)j= ����� 1N � 1n2� n2X1 e2�i�kx + 1N NXn2+1 e2�i�kx����� n2� 1n2 � 1N �+ 1N (N � n2) � cn;so convergence of the subsequence implies conver-gence of the sequence. �Proposition 3.1 can be extended to multiperiodicfunctions on certain nilpotent Lie groups [Strich-artz 1992a].In Figure 13 we show the graphs of consecutivehn(x) for the function F (x) in Figure 11 (bottom).Despite the fact that f is only almost periodic, wesee the same convergence.
Proposition 3.2. Suppose f(x) is uniformly almostperiodic and bounded away from zero, that is,f(x) � " > 0 for all x: (3.2)Then limn!1hn(x) =M(log f) (3.3)almost everywhere, where M(log f) denotes the so-called Bohr meanM(log f) = limT!1 12T Z T�T log f(t) dt:
Proof. Because of (3.2), the function log f is alsouniformly almost periodic. Therefore there exists acountable spectrum �0 = 0; �1; �2; : : : of reals suchthat log f(x) is the uniform limit of trigonometricpolynomials of the form

a0 + NXj=1 aj exp(2�i�jx);
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1 1:2 1:4 1:6 1:8 2 �
FIGURE 13. Graphs of hn(x), for 2 � n � 10,for F arising from f(x) = 12 (cos2 x+ cos2 �x) and� = 2:1. Large negative values of hn(x) have beenexcised.

where we may take a0 = M(log f). Since we canreplace log f by this approximating sum with uni-formly small error, to establish (3.3) almost every-where it su�ces to show that
limn!1 1n n�1Xk=0 exp(2�i�j�kx) = 0

for almost every x. Since there are only a countablenumber of �j, we are back to proving (3.1), whichwe have already done. �There is also a statement analogous to Corollary2.2, where we drop the assumption (3.2) and as-sume only that f is nonnegative and log f belongsto the Besicovitch class Bp of almost periodic func-tions [Besicovitch 1954]. Then the limit (3.3) holdsin the Bp norm.Figure 14 graphs the cumulative distribution ofvalues of hn for � = 2:1 and f(x) = 1 + sin2 �x.It is the analog of Figure 8 with � changed to 2.1,and it shows a similar behavior.
4. TWO-TERM RECURSION: THE COMMENSURABLE

CASEIn this section we study functions determined bythe two-term relationF (x) = f1� x�1�F� x�1�+ f2� x�2�F� x�2�; (4.1)where �1 and �2 are exponentially commensurable.To be speci�c, we take �1 = 2 and �2 = 4, butwe expect the general case to be similar. We canrewrite (4.1) asF (4x) = f1(2x)F (2x) + f2(x)F (x); (4.2)and then, by induction,F (2nx) = Gn(x)F (2x) +Hn(x)F (x); (4.3)where Gn and Hn satisfy the same recurrence re-lation,Gn+1(x) = f1(2nx)Gn(x) + f2(2n�1x)Gn�1(x);Hn+1(x) = f1(2nx)Hn(x) + f2(2n�1x)Hn�1(x);but with di�erent initial conditions:G0(x) = 0; G1(x) = 1;H0(x) = 1; H1(x) = 0: (4.4)
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FIGURE 14. Cumulative distribution of values of hn(x) for the function F of Figure 11 (middle) in the interval1 � x � 2:1 = �. The functions were sampled at 213 regularly spaced points.All this follows easily by substituting (4.3) in (4.2)and equating factors of F (2x) and F (x). We canalso write the recurrence in matrix form:�Gn+1(x)Gn(x) � = � f1(2nx) f2(2n�1x)1 0 �� Gn(x)Gn�1(x)� ;(4.5)and likewise for the Hn. If we setM(x) = � f1(2x) f2(x)1 0 � ;
it follows from (4.4) and (4.5) thatGn(x) = �M(2n�1x)M(2n�2x) : : :M(x)�21;Hn(x) = �M(2n�1x)M(2n�2x) : : :M(x)�22; (4.6)
where the subscripts indicate matrix entries.It follows from the theory of products of randommatrices [Furstenberg and Kesten 1960] that thereare positive constants G and H such thatlimn!1 1n logGn(x) = G and limn!1 1n logHn(x) = Halmost everywhere.

If G > H, the �rst term predominates in (4.3),whereas if G < H, the second term predominates.Therefore lim 1n logF (2nx) = max(G;H)almost everywhere. We obtain the same conclusionif G = H. Thus we expect the graphs of1n logF (2nx); 1n logGn(x) and 1n logHn(x)all to follow the same pattern as the graphs of hn(x)in the one-term case.Figure 15 shows the graph of F (x) forf1(x) = 12 + 2 sin2 �x;f2(x) = 12 + 3 sin2 �x;these functions are positive and satisfy the consis-tency condition f1(0) + f2(0) = 1; (4.7)but otherwise have no special signi�cance.Figure 16 shows, for the same F , the graphs ofn�1 logF (2nx) for 10 � n � 14. The oscillatorybehavior of n�1 logGn(x) and of n�1 logHn(x) is



Janardhan, Rosenblum and Strichartz: Numerical Experiments in Fourier Asymptotics of Cantor Measures and Wavelets 263

020004000600080001000012000

0 20 40 60 80 100
FIGURE 15. Graph of the solution F (x) of (4.1),for �1 = 2, �2 = 4, f1(x) = :5 + 2 sin2 �x, andf2(x) = :5 + 3 sin2 �x.the same as that of n�1 logF (2nx); moreover, allthree sequences show asymptotic self-similarity forthe transformations x 7! 2x � 1 and x 7! 2x � 2.Figure 16 also graphs the di�erences1n(logF (2nx)� logGn(x))and 1n(logF (2nx)� logHn(x)):Given this evidence, we are led to formulate thefollowing conjecture:

Conjecture 4.1. Let f1 and f2 be positive continuousperiodic functions satisfying (4.7), and let �1 = �k1and �2 = �k2, where k1 and k2 are integers and� > 1. If F is as in (4.1), there exists a constantC such that limn!1 1n logF (�nx) = C (4.8)almost everywhere. Furthermore, if � is an integer,the sequence is asymptotically self-similar for thetransformations x 7! �x� k.We conjecture that similar results hold for m-termgeneralizations of (4.1) and (4.7).
Problem 4.2. Find an interpretation for the con-stant in (4.8).
5. TWO-TERM RECURSION:

THE INCOMMENSURABLE CASEIn this section we consider the same two-term re-cursion relation (4.1), but with �1 and �2 exponen-

0

0

0

0

0

1 1:1 1:2 1:3 1:4 1:5
FIGURE 16. F is as in Figure 15 and n ranges from10 to 14 as we go up. Within each unit, the jumpygraph is that of n�1 logF (2nx); the smooth curvesrepresent the di�erences n�1(logF (2nx)�Gn(x))(upper) and n�1(logF (2nx)�Hn(x)) (lower).
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tially incommensurable. In Figure 17 we show thegraph of F for the choice�1 = 2; f1(x) = :3 + :2 cos�x;�2 = 3; f2(x) = :4 + :1 cos�x;�rst using a linear scale and then a log-log scale.The second graph seems to suggest that the bulkof the data is following roughly a straight line, butwe have not been able to quantify the e�ect, as wedid by the use of the functions hn in the one-termrecursion case.In Figure 18 we show the graph of F for thechoice �1 = 3; f1(x) = 12 ;�2 = 4; f2(x) = 12 cos�x:In this case, F is the Fourier transform of a Cantor-type measure on the interval [� 13 ; 13 ], constructedby iterating the following procedure: give the mid-dle third of the interval probability 12 and the outertwo quarters of the interval probability 14 each.Since we were not able to �nd any regularityin the pointwise behavior of F , we considered theintegrals IqF (x) = Z x0 jF (t)jq dt: (5.1)(Note that here, in contrast to the one-term recur-sion case, the function jF (x)jq does not satisfy arecursion relation of the same form as (4.1).) From[Strichartz 1993] and [Lau], we know that, for theexample of Figure 18,limx!1 x��1I2F (x) = c;where � = 1� b � 0:815867 is the solution of122 3� + 142 4� + 142 4� = 1: (5.2)However, there are no known results that predictthe behavior of IqF for q 6= 2 for this example, oreven I2F for the example of Figure 17. We decidedto test the hypothesislimx!1 x�bqIqF (x) = cq; (5.3)and estimate the constant bq. Since (5.3) is equiv-alent tolimx!1 log IqF (x)� (bq log x+ log cq) = 0; (5.4)
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FIGURE 17. Graphs of the solution F (x) of (4.1),for �1 = 2, �2 = 3, f1(x) = :3 + :2 cos�x andf2(x) = :4 + :1 cos�x. The bottom graph uses alog-log scale.
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FIGURE 18. Graph of F (x) for �1 = 3, �2 = 4,f1(x) = 12 and f2(x) = 12 cos�x.
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this involves plotting IqF on a log-log scale, notingthe resemblance to a straight line for large valuesof log x (we did not perform statistical tests), andapproximating bq by the slope of the least meansquare best-�tting line.
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q .5 1. 2. 2.9 3.3 4.5bq .8045 .6182 .2960 .1105 .06526 .01167
FIGURE 19. Graphs of log IqF (x) as functions oflog x, for the function F of Figure 17, and valuesof bq estimated therefrom.Figure 19 shows the graph of log IqF (x) versuslog x for the function F of Figure 17 for typicalvalues of q. It is clear that the deviation fromstraightness becomes worse as q increases. Thisis not surprising in view of the fact that the higherpowers of jF j tend to put more emphasis on val-ues that deviate most from the general trend. Ourevidence is certainly consistent with (5.4), but wewould have liked to continue the computations outto larger values of log x in order to con�rm the

decrease in deviation from straightness. Unfortu-nately, this would involve computing integrals oververy large intervals, and the accuracy of our datacould not be relied upon.As a di�erent sort of check, we computed a sec-ond integral, I2qF (x) = Z x0 IqF (t) dt;for which we would expectlog I2qF (x) = (bq + 1) log x+ c0qwith a greater accuracy of �t. In Figure 20 weshow the graphs of log I2qF (x) versus log x for thethree largest values of q from Figure 19. It is clearthat the desired smoothing has occurred, and thegraphs are close to being straight, but the di�er-ence between the slopes of the best-�t lines for Fig-ures 19 and 20 are not exactly equal to one, indi-cating the inaccuracy in our approximation to bq(assuming, of course, that (5.4) is correct).
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q 2.9 3.3 4.51 + bq 1.1333 1.0737 1.0173
FIGURE 20. Graphs of log I2qF (x) as functions oflog x, for the function F of Figure 17, and valuesof 1 + bq estimated therefrom.In Figure 21 we plot the graph of bq as a functionof q for :5 � q � 4:5, as estimated by the slope ofthe best line �t to the computed data for IqF , andthe graph of bq+1 as estimated from the computeddata for I2qF .Figures 22{24 show graphs analogous to thoseof Figures 19{21, for the function F of Figure 18.Since this function displays greater variability than
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FIGURE 21. Graphs of bq as a function of q (lowercurve) and of 1+bq as a function of q (upper curve)for the function F of Figure 17, as estimated fromthe slopes of log IqF (x) and log I2qF (x) as func-tions of log x. The step size for the �rst graph is.01, and for the second graph .4.the �rst, we see greater deviations from straight-ness in the graphs of log IqF (x). Note that theestimated value b2 � :181399 agrees well with theknown value 1� �, where � is the root of (5.2).Finally, in Figure 25, we graph the di�erence be-tween log I2F (x) versus log x and the best straight-line �t for the function F of Figure 18. There is ahint of a pattern here, but it is not yet clear exactlywhat it might be.The experimental evidence seems to support aslightly weaker assertion than (5.3):

Conjecture 5.1. Let f1 and f2 be positive continuousperiodic functions satisfying (1.4), let �1; �2 > 1,let F satisfy (1.3), and de�ne IqF by (5.1). Thenbq = limx!0 log IqF (x)log xexists for any q > 0.We conjecture that similar results hold for m-termgeneralizations of (1.3).
Problem 5.2. Find an interpretation for bq.
6. JULIA SETSIn this section we let F (x) be the Fourier transformof the equilibrium measure on a Julia set. For thequadratic polynomialfr(z) = z2 � r;
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FIGURE 22. Graphs of log IqF (x) as functions oflog x, for the function F of Figure 18, and valuesof bq estimated therefrom.with r > 2, it is known that the Julia set Jr is atotally disconnected (Cantor) set, contained in thereal line. Figure 26 shows J2:1.Let '�r (x) = �px+ rdenote the two inverse images of x under fr, wherex > �r. This de�nes two homeomorphisms '+r and'�r from (�r;1) to �(0;1). There is a uniqueprobability measure �r, supported on Jr, that sat-is�es�r(E) = 12�r('+r (E)) + 12�r('�r (E)): (6.1)This measure is easily approximated by randomlyapplying the mappings '�. Because �r is symmet-
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q 2.9 3.3 4.51 + bq 1.0503 1.0286 1.0077
FIGURE 23. Graphs of log I2qF (x) as functions oflog x, for the function F of Figure 18, and valuesof 1 + bq estimated therefrom.ric about the origin, the Fourier transform is justa cosine transform,F (x) = Z cos(xy) d�r(y);which is approximated by

F (x) � 1N NXk=1 cos(xyk); (6.2)for a sequence yk 2 Jr de�ned recursively as fol-lows: yk+1 = '�r (yk); (6.3)with � chosen randomly with equal probability;the initial y1 is obtained by starting with one ofthe points 12 � 12pr2 + 1, which are known to beon the Julia set, and randomly iterating '�r a fewtimes. Of course, the larger x is, the more pointsN are needed for a good approximation.We worked with two values of r in our experi-ments: 2:1 and 6. Figure 27 shows two portions ofthe graph of F in each case. (See Section 7 for adiscussion of the accuracy of these graphs.)Figure 28 shows the graph of IqF on a log-logscale for r = 2:1 and 6, and q = :5, 1 and 2. We
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FIGURE 24. Graphs of bq as a function of q (lowercurve) and of 1+bq as a function of q (upper curve)for the function F of Figure 17, as estimated fromthe slopes of log IqF (x) and log I2qF (x) as func-tions of log x. The step size for the �rst graph is.01, and for the second graph .4.
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FIGURE 25. Di�erence between log I2F (x) and thestraight-line approximation :1814 log x� :1142 as afunction of log x, for the function F of Figure 18.computed the graphs for higher values of q, butthey di�er so much from a straight line that wehesitate to claim any signi�cance for them.Figure 29 plots the approximate slope as a func-tion of q for both values of r; the values of q greaterthan 2 are included but are unlikely to be very ac-curate. The resemblance of these graphs to thecorresonding graphs in Section 5 leads us to con-
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FIGURE 26. The Julia set J2:1, dragged vertically for better visibility.
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FIGURE 27. Graphs of F = �̂2:1 (left) and of F = �̂6 (right). To compute F (x) we used (6.2), with N = 10; 000.
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FIGURE 28. Graphs of log IqF (x) as a function of log x, for F = �̂2:1 (left) and F = �̂6 (right).
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jecture that (5.3) and (5.4) should hold, at leastfor q � 2.
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FIGURE 29. Values of bq as a function of q, forF = �̂2:1 and F = �̂6, as estimated from the slopesof log IqF (x) as a function of log x. The step sizeis .4.For q = 2, the validity of (5.3) is equivalent,by a result of [Lau and Wang], to a more elemen-tary statement in terms of the measure �r. Themean quadratic variation of order � for a probabil-ity measure � is de�ned to belims!0 1s�+1 Z 1�1 �([x; x+ s])2dx (6.4)if the limit exists. According to [Lau and Wang],this limit exists if and only iflimx!1x��1I2F (x)exists for F = �̂ (we assume for simplicity that �is symmetric about the origin).Now it is easier to compute the discrete analogof (6.4). Set
MQV(s) = 1Xk=�1�([ks; (k + 1)s])2: (6.5)

Then (6.4) is essentially equivalent to MQV(s) �cs�, or logMQV(s) � � log s+ c0: (6.6)We computed MQV(s) from (6.5), using the se-quence yk generated by (6.3) to approximate themeasure. The computation is made simpler by thefact that most of the intervals [ks; (k + 1)s] havemeasure zero. In Figure 30 we plot the data on alog-log scale for both r = 2:1 and r = 6, along with

a best straight-line �t. This gives strong supportto the hypothesis (6.6), and the slope estimates� = :4392 for r = 6 and � = :7894 for r = 2:1agree well with the predicted values of 1� b2 fromFigure 28, namely :4382 and :7804.
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FIGURE 30. Values of logMQV(s) as a functionof log s (logarithms to base 2) for F = �̂2:1 andF = �̂6, together with the best-�tting straight line.The estimated slopes are .43923 for r = 6 and.78945 for r = 2:1.
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FIGURE 31. Values of logMQV(s) as a functionof log s (base 2) for F = �̂2:1 and F = �̂6 (detail).However, the relative straightness of the log-loggraphs of MQV(s) is misleading. In Figure 31 we�ll in more detail, plotting MQV(s) on a log-logscale for more values of s in a smaller range. Theresult shows much greater variability. In part, thismight be accounted for by the discrete substitu-tion of (6.5) for (6.4). (Although this involves thereplacement of an integral by a Riemann sum ofstep size s, which tends to zero, the function being
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integrated also varies with s, so the best we cansay is thatc1s Z 1�1 �([x; x+ s])2 dx � MQV(s)
� c2s Z 1�1 �([x; x+ s])2 dx

for certain constants c1 and c2.) But the variabil-ity could also be indicative that the limit (6.4) doesnot really exist, and that only some weaker conclu-sion holds, such as
c1 � 1s1+� Z 1�1 �([x; x+ s])2dx � c2 (6.7)

for 0 < s < 1. The order � in (6.7) representssome sort of dimension for the measure �, so itseems to be an interesting question to prove (6.7)for � = �r with � = �r given by some explicit orimplicit function.In [Strichartz 1992b] the weaker statement that
lims!0 log R1�1 �([x; x+ s])pdxlog sexists is proved for p > 1, and a procedure for com-puting the limit to any desired accuracy is given.In particular, this implies (1.9) for q = 2.

7. EXPERIMENTAL PROCEDUREIn this section we explain brie
y the computingmethods used to produce the experimental results,and discuss questions of accuracy.The experimental data in this paper were gen-erated on the Sun SPARCserver 490 and SPARC-station 1. The programs to generate the data werewritten in C. The graphs were produced using Gnu-plot (Unix version 2.0), with labels separately pro-cessed in TEX at production time.The primary program we wrote to generate thedata takes as input the choice of a function, therange of x-values over which to observe the func-tion, and the desired sampling rate. It outputs a�le of x- and y-values of the function, with a headercontaining information about the input data andprogram version, among other things. The pro-gram is written in a structured and 
exible mannerthat facilitates the addition of new functions andmodules at the user's discretion.

We also wrote auxiliary programs to further pro-cess precomputed function data, performing taskssuch as integration by the Simpson rule, sortingby x- or y-value, taking logs, and �tting a least-squares straight line.Our computations were carried out using thevariable type \double", which in general provedsu�cient. However, there were occasions when theerror became appreciably large; this point will bediscussed in more detail later.When computing integrals, we had to keep inmind the error caused by the use of the Simpsonrule. This could be minimized by sampling at ashigh a rate as feasible. In Figures 19{20, for exam-ple, the size of each x-interval is 0.25.When evaluating functions expressed as in�nitesums or products, we had to come up with a rea-sonable �nite cuto�. We chose K log x, where theconstant K is chosen large enough that further in-creasing it did not a�ect the function values in thelower x-range. Multiplying by log x ensured that,as x became larger, more terms of the in�nite prod-uct or sum would be taken, as is desirable.In spite of all precautions, the possibility was al-ways present that the pictures we produced wereslightly tainted by computer error. We checkedfor error whenever possible by repeating computa-tions with some key parameter changed, and thenchecking to see if the computed values changed asexpected.In addition to the many computing obstaclesthat arose during the course of our research, otherobstacles arising from the nature of the functionsthemselves often appeared, which we tried to solvein the best manner possible. Because we werestudying the asymptotic, or long-range, behaviorof the functions we were computing, it was oftennecessary to compute the logarithm of a functionover a large x-range in order to better see how itwas behaving. In fact, the logarithm was one ofour most basic tools for interpreting our output inmost cases. Of course, by the nature of the loga-rithm, we were forced to select functions that werenonnegative. However, many of the functions wewished to compute, for example, f(x) = cosx, stillhad undesirable zeros even when converted to anonnegative function by squaring.We settled upon the following solution. The partof the program that scans the speci�ed x-range andcomputes the log of the function value at each point



Janardhan, Rosenblum and Strichartz: Numerical Experiments in Fourier Asymptotics of Cantor Measures and Wavelets 271

along the way was modi�ed to ignore y-values lessthan a user-controllable parameter ". In this way,the program was able to weed out y-values too closeto zero with a simple test. (Figures 4 and 13 showdata so clipped.) Alternatively, the program couldbe set to compute the functions as usual, and thezero-test could be carried out in the helper programthat computes logarithms of functions already indata-�le format.Another computing obstacle we faced, especiallywhen trying to obtain data for very large x, ineither the one- or two-term recursion cases, wasthat of compute time. This problem was dodgedto some degree by the following change to the scan-ning algorithm: instead of sampling the x-range atregular steps, the modi�ed program computed y-values at a speci�ed number of points chosen ran-domly from the x-range. In this way, the programcould produce a view of at least the bulk struc-ture of the function without having to computeas many points. (The random-number generatorused was called drand48(), and was seeded at eachrun with a long integer by the function srand48().Both of these functions are part of the standard Clibrary.) This method was most useful when com-bined with the fact that certain \average" behav-iors were expected for certain types of functions atlarge values of x, such as the cumulative distribu-tions in Figures 8 and 14. The random scan alsocame in handy a couple of times to clarify the be-havior of some plots that looked the way they didonly because of the regular step at which they werecomputed.When F (x) is de�ned by a recursion with twoterms, the computational challenges are consider-ably greater than in the one-term case. How doesone compute such a function? There is no explicititerative formula for it, as there is in the one-termcase. However, if one knows the value of F (x) forsome range of x, one can compute it for any otherrange by using the recursive formula. How doesone calculate F (x) for some range of x? We useda Taylor expansion about x = 0.In the formula for the n-th derivative of the func-tion, we were able to group together all terms in-volving the n-th derivative of F (x) to obtain an ex-plicit formula for it in terms of its lower derivatives.Thus, using a recursive scheme, we were able tocompute many of the derivatives of F at 0. Wewere then able to use those derivatives to construct

a Taylor approximation for F near zero. Once wehad this approximation, we could use it to computethe value of F (x) for any x by employing recursion.What about accuracy? As already mentioned,we used double precision, which gives 16 signi�-cant digits of accuracy. We used as many termsin the Taylor expansions as this accuracy wouldallow. We tested how far out these Taylor expan-sions could be trusted by looking to see how far outan increase in the number of Taylor terms failedto produce a detectable change in function values(see Figure 32). For the most part, we were able totrust Taylor expansions of 35 terms for x between0 and 0.5 at least.
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FIGURE 32. Graphs of the Taylor polynomial ap-proximations to the function F of Figure 15, withdi�erent cuto�s. The function F is even, so onlyeven powers of x occur in the Taylor polynomials.Of course, the above computational technique isnot free from error. To obtain an idea of the size ofthe error, we examined the special case �1 = 2 and�2 = 4, where (4.3) holds. The computations of Gnand Hn from (4.6) are faster and more accurate,enabling us to compute F (x) for larger values of xwith greater reliability. By comparing the outputwith the recursion-Taylor computation, we foundthe two in substantial agreement for x between 0and 105.The other time-consuming operation is the com-putation of the derivatives of f at 0. We can speedit up by storing the derivatives in an array as theyare computed. When the next higher derivativeneeds to be computed, the algorithm need not re-curse to do so, since all lower derivatives are al-ready in memory.
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In spite of all this, the fact remains that two-term recursion is computationally expensive, es-pecially when the functions f1 and f2 are trigono-metric functions or the like, and must be computedusing time-consuming series expansions. If one ofthese functions is something computationally sim-ple, like a constant or a polynomial of low degree,a lot of time can be saved.More speci�c programming challenges and prob-lems with accuracy arose in our investigations ofthe Fourier transforms of measures supported byJulia sets. We used the approximation (6.2). Im-mediately, we knew we might have trouble with thevalue for N in that expression. The error in ap-proximating the function in this way should be ap-proximately cN�1=2, where c is a (hopefully small)constant. Thus, in order to approximate the func-tion to a degree of accuracy of merely 1100 , we al-ready need 10,000 iterations for each x-value! Ifan interval is sampled for a scant 1000 points, weare talking about 107 iterations, which is indeedan enormous amount of computation. To see justhow good or bad things were, we looked at a small,randomly chosen, x-range for each value of r, andincreased N in steps of 1000 (later 10,000), to seewhat e�ect this had in the approximation. It wasnot until about N = 10; 000 that the qualitativeappearance of the graphs of the function settleddown to a constant shape. Even then, the devi-ation between two choices for N was appreciablerelative to the function values: see Figure 33. Forpracticality, we did stick with N = 10; 000. As canbe seen in Figure 33, the error is not systematic,and thus we feel our computations are at least a

good beginning to the investigation of these Fouriertransforms. Also note that certain values of r lendthemselves to better accuracy: for r = 6, wherethe Julia set is much more concentrated than atr = 2:1, there is some improvement in accuracy be-tween the left and right part of the �gure; whereasfor r = 2:1 there seems to be no improvement evenwith N this high.The other computation we performed with theseJulia-set measures was a calculation of the meanquadratic variation (6.5), and we ran into problemsof a similar nature.For the �rst computation of MQV(s), we ap-proximated the measure by \tossing" one hundredthousand points, and allowed s to decrease from1 down to 2�24. This produced the top set ofpoints in Figure 34. What was happening here?Why was this very straight line bending as mores values were added to the left? We conjecturedthat our interval size was getting so small, andthus the total number of slices considered so large,that this number was in fact much bigger than the100,000 total points \thrown" in the �rst place.Since the function is a measure of probability, thiscould certainly account for erroneous computationsas s becomes very small. To test this, we gener-ated as many points of the Julia set as we possi-bly could with our current memory capacity, andcomputed MQV(s) once more. This time (withN = 500; 000), the new points of MQV(s) wereindeed improved (again see Figure 34), althougheven with N = 500; 000 we are still nowhere nearhigh enough to compute MQV(s) for s to muchless than 2�18.
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FIGURE 33. Graphs of (6.2) as a function of x, showing the e�ect of a change in N . On the left we usedN = 10;000 and 20,000; on the right, 50,000 and 100,000. The broken line is �̂6, the solid line is �̂2:1.
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FIGURE 34. Plots of logMQV(s) as functions oflog s (logarithms to base 2) for F = �̂2:1, with�2:1 generated by 100,000 points (upper graph)and 500,000 points (lower graph); compare withFigure 30. The deviation from a straight line be-comes more pronounced for small s, but is less se-vere if we use the more accurate approximationfor �.
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