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1. INTRODUCTION
Following Euler, we consider the nested sum

n—1

C(T’S)ZE%EJFZW}’ .1

= m<n

where 7 > 1 and s > 1 are real numbers. By taking
the sum over complementary pairs of summation
indices we obtain a simple reflection formula

¢(r,s) + C(s,m) = C(r)¢(s) — C(r + s), (1.2)

where ((-) is the Riemann zeta function.

A discussion of the precise region of convergence
of (1.1), together with questions of analytic contin-
uation, can be found in [Apostol and Vu 1984].

Euler discovered an identity for ((r, s) for r even

and s odd:
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Note that a formula for the case of r odd and s
even follows from this identity and the reflection
formula. Euler also gave an identity for the case
r=1:

s—2

— 33 ¢+ 1)¢(s

i=1

¢(1,s) = 1s¢(s+1) —J), (1.4

regardless of the parity of the integer s. When s
is even this last identity is a special case of (1.2)
and (1.3), but, as we shall see, the case of s odd
requires more work.

The function ((r,s) was investigated recently,
both theoretically and numerically, in [Borwein et
al. 1994]. The authors proved Euler’s identities and
evaluated what might be thought of as an outlying
case:

¢(2,4) = ¢*(3) — 5¢(6). (1.5)

This relation is also found in [Markett 1994].

To summarize, evaluations of {(r, s) for integers
r and s are known when r = 1, when r 4 s is odd,
when (r,s) = (2,4) or (4,2), and, via (1.2), when
r=Ss.

It is possible to derive some interesting relations
involving several “unevaluated” Euler sums. For
instance, it can be proved that

5¢(2,6) +2¢(3,5) = 10¢(3)¢(5) — z5m°  (1.6)

and

¢(2,6) +¢(2,8) +¢(2,10) +
= _“"12772_%” +28357T +%C(3)_<2(3)7 (1.7)

but in neither of these identities has any of the
individual Euler sums ((r, s) ever been evaluated
as a finite series of zeta values.

In keeping with the fact that few Euler sums
with r+ s even have been evaluated in closed form,
Bailey, Borwein and Girgensohn [Bailey et al. 1994]
suggest, on the basis of extensive numerical exper-
iments with sophisticated variants of “lattice basis
reduction” algorithms, that, for example, ((2,6)

and ¢(3,5) are not individually expressible as a lin-
ear combination of products of values of the zeta
function and related quantities.

In the same work the authors describe an Euler—
Maclaurin scheme for the numerical evaluation of
They have succeeded in numerical
evaluating various sums to hundreds of digits, al-
beit at the expense of considerable computer time.
In fact it was their observation that Euler—Mac-
laurin methods are not explicitly convergent that
motivated the present treatment. Moreover, the
lattice basis reduction algorithms require a lot of
decimal digits of input, so rapidly convergent ex-
pansions are of interest.

In this work we establish various formulas for
¢(r, s) for arbitrary real r and s. One class of for-
mulas generalizes the Euler identity (1.3). Formu-
las of another class converge more rapidly and are
therefore of value in numerical work. The meth-
ods described herein also have application to other
types of sums. After [Borwein et al. 1994] we can
define four possible sums:

2 (£1)" o= (£1)™!
S

n=2 m=1

Euler sums.

()

of which Euler’s case (1.1) is just (**. (Other au-
thors have used the notations o, = (™1, 0, = (77,
ap =C¢ 1, a, = (" ~.) Again for integers r and s
with r + s odd, each of these sums can be given
a finite zeta evaluation in the style of (1.3). The
methods of this paper can be applied to these al-
ternative sums, to yield corresponding converging
series for each.

These methods will perhaps be applicable in the
future to multiple zeta sums

1
P A e

0<n1<na<-

C(Sl, S2,..

or to the Witten zeta functions

W(r, s,t) Zzni m+n) (1.8)




These forms are described in Zagier’s overview of
the mathematical import of generalized zeta sums
[Zagier 1994]; also given there are beautiful known
evaluations for some of these sums.

2. THE PERIODIC ZETA FUNCTION

In this section we establish integral identities and
series expansions involving the periodic zeta func-
tion E [Apostol 1976, p. 257 and following]. The
function is defined by

e 2wine
e

E ) = = C 7 S ) )

(s, ) ; e (s,z) +1S(s,x)
with the cosine and sine parts C and S given by
2. cos 2mne >, sin 27nx
C 7 = 7’ S ? = - . -

(s,x) ;::1 > (s,x) ; e

The primary integral identities from which our re-
sults on Euler sums will follow are:
1
2
C(s) = 2/ cotmx S(s,z)dx, 2.1
0
1

¢(r,s) = —%C(T—i-s)—i-Q/zcotmvS(s,x)C’(r, z)dz,

0

(2.2)
¢(r,s) = —=3¢(r + )
%
+ 2/ cotx S(r,x)(¢(s) — C(s,x)) dz,
0
(2.3)

¢(r,s) = ¢(r)¢(s) —

r—1 Zﬂ?
1 0o T E(s, —)
/ 2T d
0

I(r)

The first three integral identities follow from the
fact that, for n > 1 and m > 0, the integral

1
2
/ cot 7wz sin 2rnx cos 2rme dx (2.5)
0
is equal to 0O, i, or %, depending on whether m > n,
m = n, or m < n. To complete the derivations,
one writes the C' and S functions in (2.1)—(2.3) as
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trigonometric series, so that each integral becomes,
after the evaluation of (2.5), the relevant one- or
two-dimensional sum.

Identity (2.4) follows from series expansion of
the term (1 —e~*)~! in powers of e~®. In this case
the F function of imaginary argument becomes a
real-valued polylogarithm function:

12 e
E( 7_> = :Ls o )
s 27 ; ns (e )

which is a case of the more general Lerch—-Hurwitz
zeta function.

Note that the cotangent function appears in the
first three integral identities. A classic expansion
that will prove quite useful, especially in the devel-
opment of converging series evaluations, is

2 o0
cot T = —= E C(2k)z* L, (2.6)
™
k=0

The E function admits of series expansion [Erdélyi
1953, vol. 1, p. 29] when |z| < 1 and s is not a
positive integer:

(2miz)™

- +D(1—s)(—2miz)*".

Bls,z) =3 ((s=m)

m=0

In the neighborhood of s = n, with n a positive
integer, the ( singularity cancels the I' singularity
in the following way. One may use the asymptotic
relations, valid for small ¢,

(l+e)met+9+0(),

CD" 1 ) + 0(e))

n!

Nl-n—-¢)~

to infer that, when the first argument s = n is an
integer,

E(n,z)= Z C(n—m)%
mpne1
(2miz)™~!

F(n) (”éb(n) - 7/)(1) + %’L.Tl' —log 271'x), (2.7)
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In particular, C and S have finite polynomial
form in certain cases. In fact, for integer arguments
of appropriate parity and real z € [0, 1], these func-
tions can be expressed in terms of Bernoulli poly-
nomials B,,:

O(r,z) = —(—1)y 22 1qr Be2)
T.
B 4 ,Bs(z)

_ _(_1\(s—1)/29s—1,_s—8
S(s,z) = —(-1) A 0

for r even,

for s odd.

(2.8)
All coefficients of the Bernoulli polynomials are ra-
tional, so all coefficients of the C or S polynomials
of appropriate parity belong to Q(7). It will be
important for our derivation of converging series
that even without the parity restrictions, C and S
can at least be developed via (2.7) as an infinite
series plus logarithm term.
It is fortuitous that a special-case elementary
form exists beyond the odd/even restriction:

C(1,z) = —log(2sinmx).

This can be shown by elementary means without
recourse to E expansions. Within the present con-
text it may be imagined that Euler’s closed forms
for ¢(1,s) for any positive integer s are possible
because of this elementary form for C(1,z). Note
the equivalent elementary form for the index-one
polylogarithm: L;(z) = —log(1 — z).

There is an alternative way to expand the pe-
riodic zeta function such that singularities do not
appear in series terms. One develops a Taylor se-
ries around z = 1:
2z — 1)™(mi)™

m!

E(s,x) = —Zn(s—m)(

m=0

. (2.9

where the eta function is defined by

n(s) = (1 —2'7%)¢(s).

This function is entire; for example, (1) = log 2.
The expansion (2.9) is certainly valid for all real

z € [0,1]. Again, C and S are finite polynomials
in (2z — 1), if the first argument is an even or odd
integer, respectively.

It is sometimes useful to invoke a polylogarithm
analog of the eta function expansion (2.9). For a
complex A with Re(\) > 0 we have

E(s, %) = Ly(e™®) = i; (A ;nf)mLsm(e_A),

m=0

(2.10)
which becomes formally equivalent to the eta ex-
pansion as )\ approaches ¢m.

3. THE GENERALIZED EULER IDENTITY

Now we shall establish Euler’s identity (1.3) and
derive our generalization. To prove (1.3) we use
the formalism of the previous section and the fol-
lowing expansion for the product of two Bernoulli
polynomials.

Lemma. Let r and s be nonnegative integers. Then
the product B,(t)B,(t) equals

1 S T
Z }(r(j—r>+S<j—8>>BT+S‘jB"(t)
j>0
j=r+smod2

(_1)TB7'+S
("3°)

s
Proof. See [Apostol 1976, p. 276, ex. 19], where
a proof is outlined. Andrew Granville showed us
another proof, whose essence we describe in the

case of interest to us: r is even and s is odd. One
compares coeflicients in the readily verified identity

+3((=1) 4+ 1)

267 (t,2)b™ (t,y) = b7 (0,3)(b™ (t,z + y) — b~ (t,y — z))
+b7(0,2)(b" (t,z +y) + b (t,¥ — z)),

where

m—1 et + eaf:(lft)

br(te) = Y Bm(t)wm! = e T




and
B o0 zm—1 emt _ ez(l—t)
bo(to) = m2=:0 Bun(t) m!  2(e* —1)
modd

are the generating functions for the even and odd
Bernoulli polynomials, respectively. [l

Now we use (2.8) when 7 is even and s is odd to
cast the above lemma as a statement about the S
and C functions. The result is

S(s,z)C(r,x)

o] (CRH ) ALY

]odd (3—])

From the integral identities (2.1) and (2.2) we im-
mediately recover Euler’s identity (1.3).

But we can go further. From the eta expansion
(2.9) for the periodic zeta function we can give a
general series without restrictions on integer r and
s. We summarize the algebraic steps. First sepa-
rate the eta expansion (2.9) into real and imaginary
parts and multiply these parts to express the SC
product of the integral representation (2.2) as a
power series in 2z — 1. Then consider the following
lemma:

Lemma. Let n be a positive odd integer. Then

(22 — 1) _22

k odd

1)(k+1)/2 n

(n+1-k)!

S(k,x).

Proof. The assertion is equivalent, using (2.8), to

n

n! 2k
D nr1-m @

k=1
kodd

2z —1)" =

Multiplying by "™ and summing over odd n shows
that the result follows from comparing coefficients
in the identity

usinh(u(2z — 1)) = b~ (z, 2u) sinh,
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which is a restatement of the earlier formula for
the generating function of the odd Bernoulli poly-
nomials. O

Using this lemma, the integral in (2.2) can be per-
formed formally, with the help of (2.1), to resolve
the general Euler sum as follows:

Theorem 3.1. Define constants @y, for k > 1 an odd
integer, by

Ed

-2

B, =— (—1)t- 1)/27; C(k—d+1). (.2

2|
S
o T
Sw

Then, for real ™ > 1 and s > 1, we have
() = ~4¢(r+9

Z D, Z ( )77(7“—3) (s—k+j). (33)

j=0
k odd jeven

This general series terminates, of course, when r
is an even integer and s is an odd integer, due to
the vanishing of the eta function for negative even
arguments. The result in these terminating cases
is equivalent to the finite Euler identity (1.3).
The constants ®;, themselves present an interest-
ing computational problem. The asymptotic be-
havior for large odd indices n is, as we shall see,

n—1
@, ~ 27 n!logn‘

In spite of this rapid decay, the summands in (3.2)
vary radically in magnitude and it is difficult to
maintain precision. Computing @, using this al-
ternating series is similar to computing zero by
evaluating the sine power series at .

A second computational problem is that even
when we know numerical values of the constants
®;, the series (3.3) generally exhibits slow conver-
gence. In the next section we develop means for
addressing such convergence problems.
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4. CONVERGENCE

Even though each ®; can be written as a finite zeta
series, we find that the following infinite series is
better behaved numerically, in that terms do not
vary radically in magnitude:

(hony2 ™
e =20

(Zlog”+;n4n<k+2n>>

Jj=1 k

This relation is obtained by integrating the power
series of the product SC in the variable (2z — 1),
and applying the cotangent expansion (2.6).

It is perhaps of interest that, in the course of this
work in resolving high-precision values for the @,
we noticed an efficient means for evaluating the
Riemann zeta function itself for odd arguments.
The idea is to use one of the various expansions
for a function such as S(3,z) and integrate (2.1)
termwise via the cotangent expansion (2.6). In this
way one can evaluate ((3)—or ((n) for any odd in-
teger n—to D good digits in O(D log D) arithmetic
operations. In fact the implied O constant can be
made conveniently small. A typical such series is:

36 5159780352
2 H(3) = 707 + 144 log =20 00992
2¢0) + 182008 78223072849

14— 9")(2n + B)

—122

which yields about two good decimal digits per
summand. One may yet improve the convergence
by peeling off longer partial sums from ((2n), ex-
pressing the necessary correction as extra logarith-
mic terms.

We have mentioned that the general eta series
(3.3) converges poorly (except of course when it
terminates). By trading off the elegance of the
singularity-free expansion (2.9) for the more com-
plicated but numerically efficient logarithmic ex-
pansion (2.7), we get a rapidly converging series.

The steps run as follows. First, by multiplying
the real and imaginary parts of expansion (2.7),

4" 2n—|— 1)2n+2)2n+3)

develop an SC product as a power series for real
x, plus possible logarithmic terms. Place this SC
series into the cotangent integral (2.2), and use the
expansion (2.6) to integrate term by term.

The procedure is somewhat tedious and the re-
sulting formula is rather unwieldy: see Theorem 4.1
on page 281. In spite of its complexity, however,
the formula has the advantage that much of the
calculation uses arithmetic involving only rational
numbers and values of the zeta function. We have
checked it numerically over many pairs (r, s).

Note that as a byproduct of this work with cotan-
gent integrals we get formulas for general cases of
the integral

2
In:/ " cot Tz dx.
0

Such values (except for n = 1) seem not to appear
in published tables. It turns out that, for every
positive integer n,

I, € Q(m, log 2, ¢(3), ¢(5), ...).

One may prove this by expressing monomials z"
in terms of S functions and the related functions
SO(s,z) = S(s,z) — S(s,2x)/2°. Actually the SO
functions, which are sine parts of a periodic func-
tion like E, but developed over odd summation
indices n, become, for odd s, proportional to stan-
dard Euler polynomials. One inserts expansions of
the monomial into the integral representation (2.1)
to obtain the finite series evaluation

s CDEDE (k)
" on (n—Fk+1)!

n e~ mk
kodd

dn! (1 =21

Ay A2

(@) C(n+1).

For example, we have

log2 15 225
327 3273

I5:
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Theorem 4.1. For any real v > 1 and real s > 1, we have

C(Ta S) =
jodd ™m even
iyl
+A(r) Y
modd

) S L2k +s—1)¢(r -

m=0
m even

A(r)B(s)

+ 421

_g(r+s)_%24(2k (ZL 2k) Z (2)¢tr—m)s—j+m)

L.2k+r—-1)C(s—m)(A,_1J(r, m+r+2k—1)+1)

m)(AsJ (s, m+s+2k—1)+1)

<(AT1J(T, q)+1)(AJ(s,q)+1)+ A’q;AS)>,

where the primed sums indicate that terms involving singularities of the zeta function are omitted, and

where we define

g=r-+s+2k—2;

[n]—1

1
J(n,a) = Z 7 —logm + o
=2
7.‘.1“21"72
Alr) = ———(1 - A,_ A,
(r) I'(r) cos(37r) ( )+ !
7.‘.525—2
B(s)=———+—(1—-A,) — A,
() I'(s) sin(%ws)( )

Lj(a) =

A — 1 ifn is an even integer,
" 10 otherwise;
(-1 eny
j12te(j +a)’
(_1)(1"71)/2(27.‘_)1“71 '
I(r) ’

(-1)*(2m)"

L(s)

(Because of the A factors, one never need compute J(n,a) for noninteger n, so as a practical matter
the greatest integer notation | | in the definition of J is superfluous.)

5. EULER’S IDENTITY FOR {(1,n)

The Euler formula (1.4), for even integers s, follows
immediately from the integral identity (2.3) and
the finite expansion (3.1), because in such cases
S(1,z) and C(s,z) are polynomials. But the iden-
tity for ¢(1,s) with s an odd integer is more prob-
lematic.

Our method of proof is based on the observa-
tion of [Borwein et al. 1994] that certain generating
functions are tractable. We start by defining the
S function with three arguments as a sum reminis-
cent of the usual S functions:

o0
sm27rn:1:
(s,z;2) = g

(1‘5)

The following generating function involves at once

all the ((1,z) with z odd:

g9(z) :==

M]3

2" (¢(1,m) + 3¢(1+ n))

w

d

3

Q.

S
)

1

= 2/2 cotmx S(3,x;2)C(1, z) dz,
0
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To evaluate the integral in the expression for g(z),
we observe that the augmented S function can be
given an elementary form, for example through
Poisson summation:

(23: 1 sin(wzt(Qac — 1)))

5(37x’z) 2 2

Therefore our generating function is

o(2) = H(0) - o)

where H is the somewhat forbidding integral

- 5 (5.1
zsinmz

H(z) = /2 log” (2 sin 7z) cos(mz(1 — 2z)) dz.

0

It turns out that such integrals can be resolved in
terms of derivatives of beta functions:

2
10 2/
2 Q2 0

Y )

200 T(E(v+1)+2)(E(v+1)—2)

H(z)= cos” ! tcos 2zt dt

v=1

v=1

On taking derivatives with respect to v we obtain
psi functions ¥ = I"/T, then use known zeta ex-
pansions of such psi functions to arrive at

o= (( 5 e v
kodd
1Y«

k=
k even

C(k+2)( k:—i—l)zk).

Finally, we use this last form for H in (5.1) to
recover the coefficient of 2°73, namely, ((1,s) +
3C(1 + s) for odd s. This results in a form for
¢(1, s) equivalent to the Euler form (1.4).

This analytical derivation gives us a byproduct
analogous to the exact cotangent integral evalua-
tions (5.1); namely, we now know any integral of
the form

J, = /2 log”(2sin7z)(2x — 1)? dz,
0

where ¢ is an even integer. Each such integral be-
longs to Q(72, ¢(3), ¢(5),...). For example,

1172 60, 720

Js = S + =5 (3) = L6,

There may be some hope for using such logarithmic
integrals to establish some outlying cases, such as
(1.5), or relations such as (1.6), although we have
not carried out such derivations. Such identities
involving unevaluated sums follow from a partial-
fraction algebraic method of [Borwein et al. 1994]
that can be traced back to Euler. One may also
find (1.6) in the guise of [Markett 1994, eq. (1.8)].
For example, the algebraic method yields (1.5) in
the guise of the identity

¢(6) = 12¢(1,5) + 6¢(2,4).

Such an identity also follows from the fact that the
integral

1

/ 2 (68(5,2)C(1, 2) + 35(4,2)C/(2,z) — 58(6,))
X cot Tz dx

vanishes (even though the integrand generally does
not). But it is not clear how to establish such
results via integral calculus alone. It is possibly
relevant that the term involving C(1, ) can be in-
tegrated by parts to yield some logarithmic forms
Jg.

6. EXPANSIONS WITH FREE PARAMETER

We have developed a generalized Euler series and a
rapidly converging series. There is yet another type
of series, this time involving incomplete gamma
function values. For the identity (2.4), we observe
that the integral may be split in the classic style
due to Riemann in his studies of the zeta functional

equation:
((r,s)=¢(r)¢(s) = ﬁ (/0A+/:o> %Ls(e*m) dz.

(6.1)



A rapidly converging expansion can be devel-
oped as follows. Let the free parameter be A < 2.
In the first integral above, the factor 1/(1 —e™®)
may be developed in a converging Bernoulli series,
with the polylogarithm developed also in a series,
of the type (2.7). The second integral can be ex-
pressed by expanding the same 1/(1 — e™*) factor,
but this time in powers of e™*, to yield incomplete
gamma function terms. Define functions H, and
G, for real indices v by

The result of these manipulations of (6.1) can be
expressed as follows.

Theorem 6.1. Forr > 1 real, s > 1 noninteger, and
A € (0,27), we have

:slfz1 —1)~
_F(T)Hz_‘;(( Z?( ) H+r 1()\)
A CIL) PRGN

For s integer, the equality must be modified as fol-
lows: replace the third line by

() 1
ey (otr2) 2 = Covra)

m=1

and, on the second line, omit the summand involv-
ing the zeta singularity.

The expansion in this theorem has several features
of interest. For one thing, a computer program
can be tested strenuously by altering the free pa-
rameter A, in which case one expects of course an
invariant numerical result. Note also that for r
an integer, the incomplete gamma functions are
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elementary. But perhaps the most important fea-
ture is that the incomplete gamma sum is not fun-
damentally two-dimensional as it might first ap-
pear. In fact, one may keep track of the partial
sum of n~%, and by so doing evaluate the double
sum up to m = M with O(M) evaluations of the
m-~dependent part.

If means for fast polylog evaluation are available,
an interesting option is to use the polylog expan-
sion (2.10) in representation (6.1) to obtain the
following alternative series. For any real r > 1 and
s> 1, and any A € (0, 27),

() =CH ) 5 oD Hrm)
IR ) = (-\)"I'(n+r—1)B,
()Z)‘ Lom(e n'I‘n+r+m) '

n=0

Aside from the development of converging ex-
pansions, we note that formal manipulations of the
polylogarithm integral representation can yield in-
teresting identities. Equation (1.7) and many like
it may be obtained by summing appropriately in-
side the integral of (2.4).

Finally, we observe that the Witten zeta function
(1.8) admits of straightforward integral representa-
tions:

W(r,s,t)z/o E(r,z)E(s,z)E(t,z) dx

Y i iz
iy [ el )
1“(:&)/0 AN 7Y Al 7 e
(6.2)
Various algebraic relations, such as Zagier’s trian-

gle recurrence

W(rys,t)=W(r—1,s,t+1)+W(r,s—1, t+1),

follow immediately upon integration by parts of
the second, polylogarithm representation in (6.2).
As for numerical work, it is evident that the ex-
pansion methods of this treatment may be applied
to these integral representations to cast the Witten
zeta function as a converging series.
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7. NUMERICAL RESULTS

Using the converging series given in Theorems 4.1
and 6.1, we tested several known Euler identities
and established numerical values for such oddities
as ((2,2) and ¢(2,%). We show on Table 1 some
of the results found.

To ensure software reliability, one has various
options. First, the free-parameter expansions of
Section 6 should give invariant results as the pa-
rameter A is varied. Second, “check-sum” iden-
tites abound; for example, the first relation of (1.6)
is unlikely to hold numerically if either ((2,6) or
¢(3,5) is off the mark.

Often, given a specific pair (7, s), one may fur-
ther streamline a converging series. For example,
we computed ((2, 6) to a little beyond 1000 decimal
digits using the following modification of the series
of Theorem 4.1 for the equivalent case of ((6,2):

)
878 = a; (v ((2n) 1+ (2n+7)(1 —log 7
_—Z <ZC( ) 1+ (2n+5)(1—log )

945 = J = 4 (2n+j)2
- 1 < ((2k)¢(2n — 2k
n Z ((2k)¢(2n )),
= 4"(2n+j) £ E(2k+1)
where the constants a;, for j = 1,...,7, are equal

to 1, 0, —21, 0, 105, —126, 42 (they are related to
the coeflicients of the sixth Bernoulli polynomial).

This run was performed with Pari [Batut et al.
1992], and consumed a few hours on a common
workstation; by comparison, 100-digit accuracy re-
quires just a few seconds.

To effect a rigorous numerical check on such a
high-precision run, we used a different expansion—
this time the free-parameter expansion of Theorem
6.1—to calculate ((3,5) also to a little more than
1000 digits. Then we verified a checksum relation
(1.6) on our 1000-digit values of {(2,6) and ((3,5).
Both 1000-digit values appear correct on the basis

of this test. A subset of the digits found for (2, 6)
and ((3,5) is shown in Table 1.

Just prior to publication, our numerical evalua-
tion of the above formula for ((6,2) was checked
independently by David Bailey, who employed an
FFT-based convolution scheme for the final sum,
and a scheme for rapid evaluation of the {(2n). He
reports that his 1200-digit run is in agreement with
our first 1000 digits for ¢(2,6).
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V)

Approximate value of {(r, s)

0.93182449042503409855161511070364305170750579463468769957662770
0.38133015311160926057188187543098929328088653813490311664930381
0.0178197404168359883626595302487246121687131371102911884188.. ..
...473292693586748663898283792081659511950953195
0.0377076729848475440113047822936599148226013194152775240126 . . .
... 177265769807079032483793747603319517196244996
0.0041224696783998322240469568386942088558126273584685692852453
0.00841966850309633242396857971467065063691787506395809227257446
0.0174551947508350247357406393866684137318592829095214310061565
0.00099920678720969184043380148821583760914101923281940968488203
0.00201547801088202946783053145858135503874776651437449337609272
0.0040882961515893033313621992830912734634204960410691654540421
0.0083663991887686780781702994259187088925622914932741007840123
0.00099571474274251309551098420825772106634908875663822487087287
0.00201013899185484762781776097488739981176241063120855599011704
0.0040800562712988267651149954426882196454448363888123113382069
0.00099485808496876276081122728160355874986899821530337158555764
0.0020088266878980288790660543386219286731728325200883185439044
0.0009946456558278109016146529677459396783051618067192814141506

N Njotjw | 3
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TABLE 1. First sixty or so digits of some values of {(r,s) for which no finite evaluation is known. For ((2,6)
and {(3,5) we also have given digits 955-1000 out of the respective 1000-digit expansions.
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