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We classify maximal finite irreducible subgroups of GLy(Q),
together with their natural lattices. There are 65 conjugacy
classes of such groups, 41 of which consist of primitive groups.
New methods for finding the maximal finite supergroups of
irreducible cyclic groups are developed and applied.

INTRODUCTION

In this work we determine a set of representatives
of the conjugacy classes of rational irreducible max-
imal finite (r.i.m.f.) groups in GL34(Q). This com-
pletes the classification of the r.i.m.f. subgroups
of GL,(Q) for n < 24 started in [Plesken 1991],
where the study of maximal finite subgroups of
GL,(Q) was essentially reduced to that of irreduc-
ible groups, and continued in [Plesken and Nebe
1995] and [Nebe and Plesken 1995] (compare also
[Plesken 1985], where the maximal finite irreduc-
ible subgroups of GL,(Z) for primes p < 24 are
determined).

Finite subgroups of GL,(Q) fix positive definite
quadratic forms on the one hand and on the other
hand they act on n-dimensional lattices. In partic-
ular the r.i.m.f. groups can be regarded as full au-
tomorphism groups of lattices in Euclidean spaces.
The existence of the Leech lattice, the unique even
unimodular lattice of dimension 24 with minimal
square length 4 [Conway and Sloane 1993], makes
the dimension particularly interesting. The auto-
morphism group of this lattice is a covering group
of the Conway group and an r.i.m.f. group. In close
relation to this lattice are some other interesting k-
modular lattices of r.i.m.f. subgroups of GLy4(Q)
that turn up; k-modular lattices are defined in
Definition 1.4(vii). Examples are given after Re-
mark 1.10, and detailed in my thesis [Nebe 1995,
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Chapter VI|. In fact, this paper is supposed to
make one main part of the results of my thesis
available to a wider audience. I have not included
its second part, the discussion of the simplicial
complexes MIF(Q) and M,y"(Q), which encode
the interrelation of the r.i.m.f. groups via common
irreducible subgroups.

The group GL»4(Q) has 65 conjugacy classes of
r.i.m.f. groups, listed in Table 1. Of these, 41 con-
sist of primitive groups (Definition 1.14).

Dimension 24 is the lowest where r.i.m.f. groups
fixing a two dimensional space of invariant quad-
ratic forms turn up (Theorem 3.1). Already in
GL;6(Q) there exist two nonuniform r.i.m.f. groups
fixing a four-dimensional space of invariant forms
[Nebe and Plesken 1995]. These two examples show
that for nonuniform groups it might happen that
the determinant of each integral invariant posi-
tive definite quadratic form is divisible by some
prime not dividing the order of the automorphism
group. That this is not possible for uniform groups
and under some additional assumptions also if the
space of invariant quadratic forms is of dimension
two has been shown in [Nebe and Plesken 1995]
(see also [Feit 1974] for the absolutely irreducible
case). Theorem 2.2 deals with this problem when
the commuting algebra of the group is isomorphic
to a number field, and gives rise to a purely arith-
metic method to determine the r.i.m.f. supergroups
of those groups.

The classification of the nonabelian finite sim-
ple groups and their character tables [Conway et
al. 1985; Jansen et al. 1995] is used. However,
the results of Section 4, where some r.i.m.f. super-
groups of the irreducible finite cyclic subgroups of
GL24(Q) are determined, are independent of this
classification, thanks to Theorem 2.2.

Concrete number-theoretic questions, such as the
computation of fundamental units and class num-
bers, can be dealt with using KANT [Pohst et
al. 1993]. Group-theoretic problems can often be
solved using GAP [Schonert et al. 1994] or CAY-
LEY [Cannon 1984]. The main computations are
done with the help of programs developed at the

Lehrstuhl B fir Mathematik of the RWTH Aachen,
such as the program for computing the automor-
phism group of a lattice implemented by B. Sou-
vignier [Plesken and Pohst 1985; Souvignier 1994;
Plesken and Souvignier 1996], the sublattice algo-
rithm to compute all invariant lattices of a given
matrix group and other C programs partly imple-
mented by H. Briickner.

The principal strategy for the construction of the
maximal finite groups is the use of normal sub-
groups. An important notion is that of imprimi-
tivity (Definition 1.14), which reduces the classi-
fication of r.i.m.f. groups to the one of primitive
maximal finite groups. For a primitive subgroup
G < GL,(Q), the restriction of the natural repre-
sentation of G to a normal subgroup of G is ho-
mogenous. In particular each abelian normal sub-
group of G is cyclic. Using a theorem of P. Hall,
which classifies those p-groups whose abelian char-
acteristic subgroups are cyclic, this restricts the
possibilities for the maximal nilpotent normal sub-
group Fit(G) of G.

Let C := Cg(Fit(G)) be the centralizer in G
of Fit(G). Then C is a normal subgroup of G
and C/Z(Fit(G)) is a subgroup of the automor-
phism group of a direct product of finite simple
groups. Therefore the possibilities for C' can be de-
rived from the classification of finite simple groups
and their character tables in the Atlas of Finite
Groups [Conway et al. 1985]. The quotient group
G/(CFit(G)) is isomorphic to a subgroup of the
outer automorphism group Out(Fit(G)) of Fit(G),
so in principle the group G may be constructed
using only group theoretical means. But the ex-
clusive usage of group theoretical constructions is
cumbersome and not stable against errors. It is
not very powerful, because it does not use the fact
that G is maximal finite.

Maximal finite groups satisfy a certain closed-
ness condition: They are full automorphism groups
of all their invariant lattices with respect to all
their invariant quadratic forms.

Therefore, the language of lattices and quadratic
forms is introduced in Section 1.



Section 2 develops further arithmetic methods,
also dealing with reducible normal subgroups (Def-
inition 2.4). Short-cuts using the knowledge of
certain irreducible but not necessarily normal sub-
groups of G can be obtained with the help of The-
orem 2.2.

Section 3 contains the main result, the list of ir-
reducible maximal finite subgroups of GLy4(Q); see
Table 1 on pages 173-174. That table also displays
some information about the invariant lattices. On
the one hand, these lattices have nice geometric
and arithmetic properties and are of interest on
their own. On the other hand, they provide pow-
erful means for identifying the r.i.m.f. groups.

That the groups listed in Table 1 are maximal
finite can easily be checked using Remark 1.3, so it
remains to prove that the list of r.i.m.f. groups is
complete. This is done in the last three sections.

Nearly two-thirds of the r.im.f. subgroups of
GL24(Q) have irreducible cyclic subgroups. There-
fore the r.i.m.f. supergroups of those irreducible
groups are determined in Section 4, which is also
interesting for the classification of cyclotomic lat-
tices. The results of this Section are independent
from the classification of finite simple groups. The
latter is often used in Section 5, where we de-
termine the r.i.m.f. groups having an irreducible
subgroup that is a central product of quasisim-
ple groups. Whereas Section 4 provides short-cuts
used throughout Section 6, Section 5 is mainly in-
tended to fix the notation for the occurring char-
acters of the quasisimple groups.

The last section completes the proof of Theo-
rem 3.1, classifying the primitive r.i.m.f. groups
by constructing normal subgroups and determining
the r.i.m.f. supergroups as automorphism groups of
invariant lattices.

A table of notations may be found on page 192.
An additional table, on pages 193-195, lists the
invariant forms of the primitive r.i.m.f. groups of
degree dividing 24 that are not tensor products of
forms of smaller dimension. The invariant forms,
as well as generators for the r.i.m.f. groups, are
available in GAP.
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1. DEFINITIONS AND FIRST PROPERTIES

This section introduces the language of lattices and
quadratic forms. The main (trivial) observation is
Remark 1.3, describing the maximal finite groups
as full automorphism groups of all their invariant
lattices. Frequently used notations from [Plesken
and Nebe 1995] are briefly repeated (see also the
table of notations on page 192).

Definition 1.1. Let G < GL,,(Q) be a finite rational
matrix group. The set Q'™ has a natural QG-
module structure.

(i) A set L C Q" is a full Z-lattice if L is a
free abelian subgroup of rank n. The set of G-
invariant full Z-lattices is denoted by Z(G).

(i A quadratic form X € Q" is G-invariant if
gX g™ =X for all g € G. The Q-vector space of
G-invariant quadratic forms is denoted by F(G),
and the subset of F(G) consisting of positive
definite quadratic forms is denoted by F.o(G).

(iii) G is called uniform if dimF(G) = 1.

(iv) The enwveloping algebra G is the Q-subalgebra
of Q**™ spanned by the matrices in G.

Definition 1.2. Let L, L’ be full Z-lattices in Q%"
FC @:yxmn a subset of the symmetric rational n X n-
matrices, and F' € F.

(i) The automorphism group Aut(F,L) of F on L
is defined as the set of g € GL,(Q) such that
Lg=L and gFg¢g" = F.

(ii) The Bravais group B(F, L) of F on L is defined
as the intersection of all Aut(F’, L), as F' runs
over F.

(iii) If G is a finite subgroup of GL,(Q) and L €
Z(@Q) is a ZG-lattice, the Bravais group of G on
L is defined as the Bravais group of the space
of G-invariant forms: B(G, L) := B(F(G), L).

Remark 1.3. Let G < GL,(Q) be a finite rational
matrix group. Each finite supergroup G' < GL, (Q)
of G is contained in a group Aut(F, L) for some
F € F.0(G), and L € Z(G). In particular, G is
maximal finite if and only if G = Aut(F, L) for all
F € F.4(G) and all L € Z(@G).
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Definition 1.4. Let L, L’ be full Z-lattices in Q'*"
and F,F' € Q[., positive definite symmetric
matrices.

(i) The dual lattice L#¥F) of L with respect to F
consists of the elements z € Q" satisfying
xFy"™ € Z for all y € L.

(i) F' is called integral on L if L#F) D L.

(iii) F' is called primitive on L if L#¥F) DO L and
pL#F) 2 L for all primes p.

(iv) If F' is integral on L, the lattice

LY .=z € L | xFa" € 27}

is called the even sublattice of L with respect to
F. We call (L, F) even if L) = L.

(v) det(F, L) denotes the determinant of a Gram
matrix of L with respect to F.

i) (L, F') is called normalized if F is integral on
L and the finite abelian group L#*()/L is of
square-free exponent and of rank at most %n
[Watson 1962].

(vii) For k € N, the lattice (L, F) is called k-modular
if there is a matrix 7' € GL,(Q) with L =
L#IT and TFTY = kF. (See [O’Meara 1973],
where such a lattice is called T-modular.) A
1-modular lattice is called unimodular.

Remark 1.5. Let G < GL,(Q) be a finite rational
matrix group, F' € F.o(G), and ¢ € Cyux«(G) with
det(c) # 0. The set Z(G) is closed under the oper-
ations

where M, M, M, € Z(G).

A finite rational matrix group G < GL,(Q) is
called lattice sparse if any lattice in Z(G) can be
obtained from any other by combining the five op-
erations just defined. If p is a prime, G is called
p-lattice sparse if any lattice L € Z(G) can be ob-
tained, by combining these operations, from any

other lattice in Z(G) that contains L with index a
p-power.

Definition 1.6. Let U be a finite subgroup of GL,,(Q)
and S C Z(U).

(i) S is called U-critical if all r.i.m.f. supergroups
of U are conjugate to a group Aut(F,L) with
FeJF{U)and L€ S.

(i) S is called U-normal critical if all r.i.m.f. super-
groups G containing U as a normal subgroup are
conjugate to a group Aut(F, L) with F € F(U)
and L € S.

Remark 1.7. Let U be a finite subgroup of GL,(Q)
and let S C Z(U) be a set of representatives of the
orbits of Ny, (g)(U) on Z(U).

(i) S is a U-critical set.

(i) If U is uniform, the subset S’ of normalized el-
ements of S is a U-critical set.

(iii) If U is uniform and lattice sparse, every lattice
L € Z(U) is U-critical.

Notations 1.8. Examples of r.i.m.f. groups are the
automorphism groups of the following irreducible
root lattices: A, for n # 7,8, B, for n # 4, Fy,
Es, E;, and Eg [Plesken 1991]. We will use the
same symbol to denote one of these root lattices,
the corresponding root system, and the (GL,, (Q)-
conjugacy class of) its automorphism group.

For prime p, the irreducible rational represen-
tations of PSLy(p) of degree p — 1 and p + 1 are
described in [Plesken and Nebe 1995, Chapter V].
According to the notations introduced there, the
lattices of dimension p + 1 are denoted by M, ,,
where ¢ € {2,3,4,6} divides (p — 1)/2. The cor-
responding representations are obtained by induc-
ing up the representation of the Borel subgroup of
SLy(p) (of unimodular matrices (“ i), for a,b,c €

0
F,) onto (C;fi_ll)/i> <C.

The ZPSLy(p) lattices of dimension p — 1 can
be constructed as follows. The cyclic group C, =
(a) < GL,_1(Q) of order p acts on the root lattice
A,_y. The C},-sublattices of p-power index in 4,_;

are linearly ordered and generated by the rows of



the matrices (¢ — I, ;)". Denote the unique ZC)-
sublattice of A, ; = A;l_)l of index p*~! by A;ill.
The lattices Agfll are called Craig lattices [Conway
and Sloane 1993].

If i € {2,3} divides (p+1)/2 and p > 3, then ac-
cording to [Plesken and Nebe 1995, Theorem V.§]
the automorphism group of A;(ffl)/(%)) is isomor-
phic to Cy x PGLy(p) and a lattice sparse r.i.m.f.
group.

For the nonabelian finite simple and quasisimple
groups we use the notation of [Conway et al. 1985],
except that we denote the alternating group of de-
gree n by Alt,, to avoid confusion with the root
system A,. Split extensions are indicated by the
symbol :, while . indicates an extension that may
be either split or nonsplit. The group (—1,,G) is
denoted by +G.

For i = 1,2, let G; < GL,,(Q) be irreducible
finite matrix groups with corresponding natural
representations A; and commuting algebras A; :=
Cgrixni (G;). The A; are Q-division algebras. The
tensor product

G oGy, = GlCY'oGZ

need not be an irreducible subgroup of GL,,,,,(Q),
since the Q-algebra A; ®g A, is not necessarily a
division algebra. If () is a maximal common sub-
algebra of A; and A,, an irreducible constituent
group of G; ® GG, is denoted by G, % Gs.

The following abbreviations are used: If Q = Q,
then () is omitted in most cases. @ = Q] is simply
denoted by a. The quaternion algebra @ = Q,,
with center Q ramified at the places p and g with
Hasse invariant % is abbreviated as p, q.

If G; or G5 are of degree 1 over @, then % is
simply denoted by O. Hence Qg O Qs denotes the
absolutely irreducible subgroup of GL,(Q) isomor-
phic to QgggQg = 2! Alternatively, this group
may be denoted by Dg ® Dg or 217

Consider the case when GG; = Cs and G, =

SLy(3). Then the enveloping algebras are G, =
A; 2 Q[¢s] and Gy =2 Ay = Q. 5. Although the
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maximal common subalgebra of A; and A, is Q,
we have G, < A}*?. The irreducible subgroup of
GLg(Q) isomorphic to C5 x SLy(3) is denoted by
C5 ® SLy(3).

N

Among the commonly occurring groups are exten-
sions of the matrix groups G, %G& by a cyclic group

of order 2. They are denoted as follows:

Notations 1.9. For 7 = 1,2, let G, < GL,,(Q) be
finite irreducible matrix groups with commuting
algebras A; in Q"™ and let () be a maximal
common subalgebra of dimension d of A; and A,.
Setting n :=nyny/d, we view as embedded in Q**™
the groups G, their rational algebra spans G, as
well as A;, Q, G, % G5, etc. Assume that G % Gy

is an irreducible subgroup of GL,,(Q).

(i) Let a; € G; \ G, be units normalizing G, such
that p~ta? € G, for some square-free nonzero
integer p. Then

2(p) _
G, % G, = (G, % G, p~laray)

is an irreducible finite subgroup of GL, (Q) con-
taining G % G, as a subgroup of index 2.

(i) Assume there is a chain of simple Q-algebras
(G1G,) € AC BC Qv with (crossed product)
B = A® Ax for some x € B satisfying z? = +1,
zAx = A, and 2G,;xz = G, for i = 1,2. If there
are units a; € G, with a,# normalizing G; and
p(a;x)? € Gy, for i =1, 2, and some square-free
integer p # 0, then

2(p)
G1 %’ G2 = <G1 % G2, p_1a1a2x>

is an irreducible finite subgroup of GL, (Q) con-
taining G % G5 with index 2.

(iii) Let A; D G_l be a simple sul_)algebra of @"X”
centralizing G,. Let a; € A; \ G, and a, € G, be
units normalizing G; and G4, respectively, with

p~ta? € G, for some square-free nonzero integer
p. Then

2(p) _
Gl IXQ) G2 = <G1 % Gz, P 1@]_@2)
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is an irreducible finite subgroup of GL, (Q) con-
taining G % G5 with index 2.

In each case, if p =1, we omit (p) from the symbols.
If G, or G, is of degree 1 over (), we omit the x and

the subscript from the symbols, writing insteadzg),
25), and ZI%).
Examples. The symbol [6. U4(3).2\;§L35L2(3)]24 rep-

resents an irreducible matrix group G of degree 24
constructed from the matrix group

G, :=6.U4(3).2, < GL1,(Q)

with commuting algebra A; := Cgizx12(G) and the
matrix group Gy = SLy(3) < GL4(Q) with com-
muting algebra A, := Cgixa(Gs); both A; and A,
are isomorphic to Qv/—3]. The commuting alge-
bra @ < Q?**?* of the central product

G Gy =6.U4(3).2 ®SLy(3) < GL
1% 2 4(3) % 2(3) < GL4(Q)

is again isomorphic to Q[v/—3], and we have G =
(Gl&&Gz,aﬁ for a suitable matrix x € Q***** in-
-3

ducing the Galois automorphism on Q.

The group G could also be denoted by the sym-
bol [6.U3(3).2°0) SLy(3)]s. Here Gy = 6.U4(3).2,
is an irreducible subgroup of GL24(Q) with com-
muting algebra A4, = Q_ ,, and G, is isomorphic
to the unit group of the maximal Z-order in A,
this being unique up to conjugacy.

This notation distinguishes the two isomorphic
groups [L2(7)25)F4]24 and [Lo(7) 2&%) Fy)a4, since it
implies that the irreducible constituents of the re-
striction of the natural representation to L,(7) are
absolutely irreducible in the first case but not in
the second.

In most cases it is not necessary to construct the
extensions by the cyclic group of order 2 explic-
itly, since these extensions occur in a natural way
as subgroups of the normalizer of G; ® G5 in the

automorphism group of a suitable lattice. Also,
the extension cannot be read off from the sym-
bol, as shown by the example of the two isoclinic

r.im.f. subgroups [(SLa(5) O SLy(5)):2 Alt5]24ﬁ-
of GL24(Q)

The occurrence of such pairs of groups is ex-
plained as follows.

Remark 1.10. Let U < GL,(Q) be an irreducible
Bravais group with dimg(F(U)) = 2. Then the
maximal totally real subfield K of the center of the
commuting algebra of U is a real quadratic num-
ber field. Assume that there is a U-invariant lattice
L € Z(U) giving rise to an embedding U — GL,,(Z)
such that D := Ngr,,(z)(U)/U is isomorphic to an
infinite dihedral group. Then the two nonconju-
gate subgroups of D of order 2 define two uniform
supergroups G = (U, z) and H = (U, tz), containing
U with index two. Here tU generates the transla-
tion subgroup of D and z induces the Galois auto-
morphism of K.

If one takes for example U = +D;, < GL4(Q),
then G and H are conjugate in GL4(Q). But it
often occurs that the two groups G and H are
not isomorphic—for instance in the last example
of the two isoclinic r.i.m.f. subgroups of GL44(Q),
but also in other cases, where only one of the two
groups G or H is maximal finite. Two examples
of such groups U are closely related to the Leech
lattice: 2..Jy O SLa(5) and SLy(13) O SL2(3). One
extension of each group—namely [2..], El SL5(5)]24

2(2) . . .

and [SL.(13) 3 SL3(3)]24—1is a maximal finite sub-
group of GL,4(Q), the other one a subgroup of the
r.im.f. group [2.Coy]z4, the automorphism group of
the Leech lattice. The group U = SL,(13) O SLy(3)
is also the automorphism group of an extremal 3-
modular lattice. Further examples can be found in
[Nebe 1995, Chapter VIJ.

The following observation may be used for some
of the r.i.m.f. subgroups of GL24(Q), to distinguish
the two groups G and H.

Remark 1.11. Let U < G be a normal subgroup of
G of index 2 with Z(U) = Z(G) = C,, and assume
that G/Z(U) is a semidirect product G/Z(U) =
U/Z(U):(xZ(U)) and that the conjugacy class of
the complement zZ(U) of U/Z(U) in G/Z(U) is



unique. Then there are two isoclinic but noniso-
morphic groups containing U with index two, G

and the subcentral product H 2 G%Cﬁ;. If (xZ(U))
is a complement of U/Z(U) in G/Z(U)= H/Z(U),
the two groups G and H may be distinguished
by the isomorphism type of the group (x, Z(U)),
which is either Cy x Cy or C;. The group G is
called split if (x,Z(U)) = Cy x Cy, and nonsplit
if (x,Z(U)) = C,. If the complement zZ(U) of
U/Z(U) in G/Z(U) is not unique, but for all com-
plements z'Z(U) the groups (', Z(U)) < G are
isomorphic to (z, Z(U)), the isomorphism type of
the latter group also distinguishes the two groups
G and H and the same nomenclature of split and
nounsplit groups is used.

The next lemma is useful in verifying the unique-
ness of the complement of U/Z(U) in G/Z(U).

Lemma 1.12. Let G = U:(x) = U:Cy and H =
Vi(y) =2 V:Cy be semidirect products, where the
conjugacy class of the complement (x) of U in G
1s unique, and likewise the conjugacy class of the
complement (y) of V in H. Then there is a unique
conjugacy class of complements of U x V in the

Ca
subdirect product GKXH = (U xV):(zy) <G x H.

Proof. Let (a) = C, be a complement of (U x V') in
(U x V):(xzy). Then a = (ux)(vy) for some u € U
and v € V. Since 1 = a® = (ux)*(vy)? € U x V, we
get (uz)? = (vy)? =1. Hence (uz) is a complement
of U in G, and (vy) is a complement of V in H.
Therefore there are elements v’ € U and v' € V
with (uz)* =z and (vy)” =y, so a*”) = zy. O

The uniqueness condition of Remark 1.11 is in par-
ticular fulfilled for these pairs (G/Z(U),U/Z(U)):
(S, Alt,,) for n <5 (where the complement is gen-
erated by a transposition); (PGL2(g), PSL2(q)) for
¢ an odd prime power (where the complement is
generated by an element of order two correspond-
ing to an element in GL,(g) whose determinant is
not a square); and (Jy.2,J3). So it is well defined

to say that the two r.i.m.f. groups [2..J, 0] SLy(5)]24
and [SL2(13)2|%)SL2(3)]24 are split in the sense of
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Remark 1.11. For G := [(SLy(5) (1 SLu(5)):2Js,
where U = (SLy(5) O SLy(5)):2, the complement
of U/Z(U) in G/Z(U) is not unique, but all groups
(x, Z(U)) for x € G\ U such that 2 € Z(U) are iso-
morphic to Cy x Cy, so G is split. The correspond-
ing nonsplit group GC¢2 C, is a proper subgroup of
FEs. In this sense the group

2
[(SL2(5) O SL2(5)) 12 %Alt5]2471
is split and
2
[(SL2(5) O SL2(5)) 12 %Alt5]2472

is the corresponding nonsplit group.
Here is an important case where one obtains a
unique matrix group:

Lemma 1.13. Let U be a finite uniform subgroup of
GL,(Q). Fori=1,2, let G; := (U, x;) be absolutely
irreducible subgroups of GL,,(Q) containing U with
mdex 2, where x; and xy induce the same auto-
morphism on U. Then G, and G5 are conjugate in

GL,.(Q).

Proof. By [Plesken and Nebe 1995, Lemma I1.7],
dimg(Cgnx»(U)) equals 1 or 2. Since U is uniform,
this implies that the commuting algebra Cgnxx(U)
is either Q or isomorphic to an imaginary quad-
ratic number field K. Assume first that Cgnxn(U)
has dimension 2. Then the x; induce the Galois
automorphism on K. Since both elements x; in-
duce the same automorphism on U one has z,2, ' €
Cynxn(U) = K. Hence x; = kx, for some element
k € K of norm +1, the only elements of finite or-
der in @Q*. But the norm form of K is positive
definite, so the norm of £ has to be 1, and hence
23 = x3. Therefore the map ¢:UU{x,} = UU{zy}
with |y = id and ¢(z;) = x5 extends to a group
isomorphism G; — G5. Moreover the natural rep-
resentations of G; and (G5 are induced from the
same representation of the subgroup U of index 2,
so they are equivalent. Therefore G; and G5 are
conjugate in GL,(Q). If Coux.(U) = Q the lemma
follows similarly. O
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Definition 1.14 [Plesken 1991]. A finite irreducible
rational matrix group G < GL,(Q) is imprimitive
if there is m dividing n and H < GL,,(Q) such that
G is conjugate to a subgroup of the wreath product
H Sy, for k =n/m. (Elements of H1S), are k x k
block matrices with entries in H and at most one
nonzero entry in each row and column; formally,
H 1 S, is generated by elements diag(hy,...,h),
for h; € H, together with elements P® I,,,, for P a
k x k permutation matrix.) If G is not imprimitive,
we call it primative.

The imprimitive r.i.m.f. groups G have the form
G = H S, for some primitive r.i.m.f. group H <
GL,.(Q) with m = n/k and hence can easily be
constructed if the r.i.m.f. groups of degree m are
known for all proper divisors m of n. If X, is
a symbol for the primitive r.i.m.f. subgroup H of
GL,,(Q), the imprimitive group G = H 1 Sy, is de-
noted by X .

Remark 1.15. Let G < GL,(Q) be primitive and let
N < G be a normal subgroup of G.

(i) If N is abelian, then N is cyclic.

(i) If G: N = 2 then N is irreducible.

(iii) The natural representation of NV consists of pair-
wise equivalent irreducible representations.

(ivvIf 1 # N is a p-group for some prime p, then
p*(p — 1) divides n for some a > 0.

2. METHODS FOR DETERMINING THE R.I.M.F.
GROUPS

In determining the r.i.m.f. subgroups of GL,(Q)
it is crucial to be able to determine all r.i.m.f.
supergroups G of a given (irreducible) subgroup
U < GL,(Q). According to Remark 1.3, the group
G is of the form G = Aut(F, L) for some L € Z(U)
and F € F.,(U). Since each lattice L € Z(U) de-
fines an embedding U — GL,,(Z) and since GL,,(Z)
has only finitely many conjugacy classes of finite
subgroups (see [Buser 1985], for example), Z(U)
decomposes into finitely many orbits under the op-
eration of the normalizer Ny, ()(U) by multipli-
cation from the right.

Thus the main problem for nonuniform groups
U is to determine the relevant F € F.,(U).

If one only has to determine those r.i.m.f. super-
groups G of U, with dimJF(G) < 2, the following
theorem may be applied:

Theorem 2.1 [Nebe and Plesken 1995, Theorems I1.2
and 11.4].  Let G be a finite subgroup of GL,(Q)
with dimF(G) < 2. If G is irreducible, assume
that the class group of the mazimal real subfield
K of the center of Conxn(G) is generated by the
wdeal classes represented by prime ideals containing
|G|. Then for each L € Z(G) there exists a form
F € F.o(G) integral on L with det(F,L) having
only prime divisors dividing |G|.

Passing to the Bravais group B :=B(U), one can
often construct a bigger subgroup B < G such that
the commuting algebra Cgnx»(B) is commutative.
The next theorem deals with this commonly occur-
ring situation; in order to state it, we need some
additional notation for totally real fields.

Let K be a totally real number field. A finite set
of rational primes is denoted by II(K) if

(a) each ideal class of K has an integral ideal con-
taining [[;_, p* for some py, ..., p, € II(K) and
ao; € N) and

(b) for each © € K there is an integral y € K such
that zy is totally positive and the prime divisors
of the norm Ny /g(y) lie in II(K).

Note that there is a generating set {I;} of the nar-
row ideal class group of K [Hasse 1963] represented
by integral ideals I; such that the prime divisors
of the norm of the I; ly in II(K).

Theorem 2.2. Let G be a finite irreducible subgroup
of GL,.(Q), and let L € Z(G) be a ZG-lattice. As-
sume that C := Cguxn(G) is commutative, and let
K denote the maximal totally real subfield of C.
Then there exists F € F<o(G) primitive on L such
that the prime divisors of det(F, L) lie in the finite
set I1 := II(K) UII(|G|), where II(|G|) denotes the
set of prime divisors of |G|, and the set II(K) is as
described above.



Proof. Assume that F' € F.,(G) is integral and
primitive on L and that some prime p ¢ II divides
det(F, L). It suffices to show that F' can be modi-
fied to some F' € F.((G) in such a way that F’ is
integral on L, p{ det(F’, L), and any prime divid-
ing det(F”, L) either divides det(F, L) or lies in II.

Denote the completion at p of L by L, and let
ei,-..,e be the primitive idempotents of Q, @ C.
Since p 1 |G|, the lattice L, splits into a direct sum
of irreducible Z,G-lattices X;, for¢ =1,...,(, each
of which has only p* X, as Z,G-sublattices. Then
[ > 2, because p|det(F, L) and F' is primitive on L.

Let M' be the maximal order in C. Taking the
idempotents e; modulo p one gets primitive idem-
potents of M'/pM’. Hence the ideal pM' splits into
[ different prime ideals pM' =} ... m] that are per-
muted transitively by the Galois group Gal(C/Q)
[Lang 1970]. For the ideal pM in the maximal or-
der M of the maximal totally real subfield K the
following two situations may occur:

1) pM = 7, ... m where m;M' = 7!, or

2) pM =7y ... m» where mM' = 7, 7).

In the first case ¢, F': X; — Homy (X;,Z,) in-
duces a quadratic form on the lattice X;, for 1 <
i <I. The dual lattice L#¥) is of the form L#() =
p* X, B P p*X, for some o; € Z, for 1 <1 <.
Since II( K) satisfies condition (a), there are y; € M
with m; = (y;,p) such that the prime divisors of
the norm of y; lie in II U {p}, for 1 < i < [. De-
fine Fy :=y" ...y F. Then p does not divide the
determinant det(Fy, L) of F; on L and all prime di-
visors of det(Fy, L) either divide det(F, L) or lie in
I1. Because of condition (b) on IT one may choose
y € M such that yF; is positive definite and the
prime divisors of the norm of y lie in II. If the
endomorphism ring of L is not the maximal order
M' C C, then the form yF; need not be integral
on L. But then there is some m € N such that
F'":= myF] is integral on L and the prime divisors
of m divide the group order |G].

In the second case F' induces isomorphisms

le‘,l = HOHIZP(X%, Zp)

Hence the dual lattice L#() is of the form
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L) = p (X, & Xy) ® - @ p™2(X; 1 & X))
for some «; € Z. As in the first case one constructs
a G-invariant quadratic form F' € F.,(G) integral
on L, such that the prime divisors of det(F”, L)
either lie in IT or divide det(#, L) and p{det(F’, L).

U

As shown by the example of the two r.i.m.f. groups
[D129.C5]16,1 and [Di2g.Csli62 of GL16(Q) with 4-
dimensional spaces of invariant forms, the set II( K)
is necessary. The two r.i.m.f. groups leave invari-
ant no positive definite lattice whose determinant
is only divisible by primes < 11. The commuting
algebras of the above two groups are both isomor-
phic to Q[v/3, /5], a number field whose maximal
order contains no totally positive prime element
dividing 11.

Theorem 2.2 is applied via the following corol-
lary, which is also referred to as the m-parameter
argument, where m := [K:(Q] is the dimension of
F(U).

Corollary 2.3. Let U < GL,(Q) be a finite irreduc-
ible matriz group whose commuting algebra C :=
Conxn(U) is commutative. Let L € Z(U) be a ZU -
lattice and G < GL,(Q) a finite supergroup of U
acting on L. In the notation of Theorem 2.2, let K
be the mazimal totally real subfield of C, and de-
note by I = I(K, |G|) the union of II(K') over all
subfields K' of K. Then there exists F € F-(G),
primitive on L, such that the prime divisors of
det(F, L) lie in II.

Proof. The commuting algebra of G is a subfield
of C' and its maximal totally real subfield K’ is a
subfield of K. Hence ITI(K") C IT and the statement
follows from Theorem 2.2. O

Another important method deals with primitive
r.im.f. supergroups G of (reducible) subgroups N
of GL,(Q) containing N as normal subgroup. The
idea is to construct a G-invariant order Ay in the
enveloping algebra N containing the Z-order gen-
erated by the matrices in N. Since the Z-module
generated by Ay and the matrices in G is again an
order, there is a Ag-lattice on which G acts.
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We recall the radical idealizer process [Benz and
Zassenhaus 1985]. Let A be a Z-order in a sim-
ple Q-algebra A. The arithmetic (right) radical
AR, (A) of A is defined as the intersection of all
those maximal right ideals of A that contain the
discriminant ideal of A. The arithmetic radical is a
full Z-modulein A. Its (right) idealizer 1d,.(AR,.(A))
is defined as the set of all elements ¢ € A such
that AR, (A)a € AR,(A); this again is a Z-order
in A containing A. The repeated application of
Id, o AR, is called the radical itdealizer process. It
constructs a finite ascending chain of Z-orders in
A. The maximal element (Id, o AR,)>®(A) of this
chain is necessarily a hereditary order in A [Reiner
1975, pp. 356-358].

Definition 2.4. Let N < GL,(Q) be a finite group
and let F' € Foo(N). Assume that the algebra
N < Q" generated by the matrices in N is sim-
ple. Then the natural QN-module Q'*" decom-
poses into a direct sum of [ copies of an irreducible
QN-module V. Let Ay be the hereditary order in
N obtained applying the radical idealizer process
to the order (IV)z. Let Ly,..., L, CV be represen-
tatives of the isomorphism classes of the irreduc-
ible Ag-lattices in V. Then the generalized Bravais
group B°(N) of N is defined as the set of g € N
such that gF¢" = F and L;g = L; for 1 <1 < s.

Proposition 2.5 [Nebe and Plesken 1995, I1.10].  Let
G be a primitive r.i.m.f. group in GL,(Q) with N <
G. Then N <4 B°(N) < G. Moreover, if X is
a finite subgroup of the unit group N* of N with
N <X, then X < B°(N).

This proposition is a good criterion for deciding
which normal subgroups of primitive r.i.m.f. groups
may occur. It implies that a primitive r.i.m.f. group
has no normal subgroup N conjugate to Ly(8), 2.
Altg, Altg, 2.Altg or 2.Spg(2), where the natural
character of N is a multiple of the absolutely irre-
ducible rational character of degree 8 of N, since
N is not normal in B°(N) = 2.07 (2).2. Compare
Table 4.

3. RESULTS

Theorem 3.1. Up to conjugacy, there are 65 r.i..m.f.
subgroups of GLy2y(Q), of which 41 are primitive
groups. Four r.i.m.f. groups are not absolutely irre-
ducible, and three of them even have a two-dimen-
stonal space of invariant forms. Twenty-eight of
the r.o.m.f. groups leave modular lattices invariant.

These 65 groups are listed in Table 1, whose infor-
mation is arranged as follows.

In the first column, the number of the r.i.m.f.
group G = Aut(L) is given, followed by a name
for the group. The imprimitive groups (Defini-
tion 1.14) are the ones denoted by X%, where X, is
a name for a primitive r.i.m.f. subgroup of GL4(Q)
and dk = 24. The additional abbreviations (s) and
(ns) state whether the group G constructed accord-
ing to Definition 1.9 is split or nonsplit in the sense
of Definition 1.11. I thank a referee who encour-
aged me to make the description of some of the
r.i.m.f. groups precise in this way.

The next three columns of the table give infor-
mation about the G-invariant lattice L of minimal
determinant. First the isomorphism type of L#/L
is given. The information in this column also al-
lows us to recover the symbol of the invariant form
in the Witt ring W(Q), as proposed in [DeMeyer
et al. 1989, p. 9]; see [Plesken and Nebe 1995] and
[Nebe 1995]. The next column gives the minimum
of the lattice, and the following one the number of
shortest vectors of L decomposed into orbits un-
der G. The order of GG is then given. The column
headed “sparse?” shows the primes p for which the
group G is p-lattice sparse, or the word “yes” if the
group is lattice sparse. Finally, on lines 42, 59, 60,
and 65, the last column gives the isomorphism type
of the commuting algebra of G for the remaining
groups this information is omitted since they are
absolutely irreducible.

The groups are ordered with respect to connected
components in the simplicial complexes M (Q)
and M37"(Q) [Nebe 1995] and with respect to the
determinants of an invariant lattice of minimal de-
terminant.
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lattice L det L min | Linin | |[Aut(L)| sparse?
1 Boy 1 1 48 224.24] p#2
2 E3 1 2 720 243.316. 56.73 yes
3 [2.Co)a 1 4 196560 922.39.54.72.11.13-23  yes
4 [(SLy(5) O SLa(5)):2 % Alts]zq,2(ns) 28 4 3600+8640 29.33.53 p#5
5 F§ 212 2 144 216.314.5 yes
6 [6.@(3).25&5_33@(3)124 912 4 3024 912.38.5.7 p#£3
7 E¢ 34 2 288 235.317. 54 yes
8 [(£3).PGLy(9) 0 SLs(3)]os 34 4 12960+6480+2160 28.3%.5 p#2,3
9 [Sp,(3) %_3 (3472 :SLy(3))]24 38 4 2160 211.38.5 p#3
10 Al2 312 2 72 1212.12] yes
11 [6.U4(3).22]3, 312 4 1512 921.314.52.72 yes
12 Fy © Eq 212.3¢ 4 864 214.36.5 yes
13 [312:SLy(3) % SLa(3)]2, 212,38 4 432 915. 310 p#3
14 3.5 Dy]s 212,38 4 144 28.33.5 p#3
15 (Ay ® Fy)? 212.312 4 216 925.310 yes
16 [6.L5(4).2°C Do 212.312 g 3024+7560 211.33.5.7 yes
17 [(SL2(3) 004).22\%3%)%(3)]24 912.312 g 453646048 911.34.7 yes
18 Aoy 25 2 600 2-(25!) p#5
19 AS 56 2 120 928.38.57 yes
20 M{, 512 3 80 219.35.54 p#2
21 [(SLa(5) 1 SL2(5)): 2J3(s) 512 4 360 922.37.56 yes
22 [2..J5 B SLa(5)]24(s) 512 8 37800 211.34.53.7 yes
23 [+Dyg % Alts]2, 28.56 4 240+600 211.32.54 p#5
24 [SLy(5) 0 SLy(3)]2, 2158 4 720 913 31 52 p#£2
25 [SL2(5)Z§;2£+4’  Alts)os 28.58 6 2400 210.32.52 p#£2
26 [(SLa(5) O SLa(5)):2 % Altsloai(s)  28-5'2 8 1800 29.33.53 yes
27 Fy @ Mg 28.512 ¢ 240 210.33.5 p#2
28 [SLs(5) 8, (£312). GLs (3)]as .52 g 1080 28.35.5 p#3
29 (Ay @ Mg ) 312,512 ¢ 120 211.34.52 yes
30 [+3.Altg.22]%, 32512 g 540 213.36. 52 yes
31 Ay © [SLo(5) 0 STy (3)]12 24.312.58 g 1080 27.33.5 p#2
32 Al 7 2 168 923.39.54.74 yes
TABLE1. The r.i.m.f. groups of degree 24. The meaning of the columns is explained on the preceding page.
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lattice L det L min | Limin| |[Aut(L)] sparse? comm. alg.

33 [La(7)C Fils 74 4 1008+3024 211.33.7  p£2

34 (AP 712 4 168 923.35.74 yes

35 [Lo(7) 8 Fils 712 8 1008+3024 2L.33.7  p£2

36 [La(7)C Dsl2, 912,74 4 2.336 215.32.72 yes

37 Fy® Ag 912.74 1 504 211.34.5.7 yes

38 [La(7)5 Dyl ol2.712 g 2.336 915.32.72 yes

39 FyoAY 912.712 8 504 211.33.7 yes

40 [SLo(13) 13 SLa(3)]o4 (s) 1312 12 2.2184+8736 26.32.7.13  p#£2

41 [SLa(7 )x@( )24 26 4 2352+48064+14112  28.32.72  p#£7T

42 6 A1t7 2]24 212 4 3024 25.33.5.7 yes QlV-6]
43 [3. M1 5 SLo(3)]24 212512 8 1080 28.34.5 p#3

44 [Alts S(Cz'(gz)g))DS)]M 28.312.512 1 144 27.32.5  p#£2

45 [3.Mio® Dslas 912.312.512 16 1080+1080 28.33.5 yes

46 (A ® Ag)? 312.74 4 252 215.36.52.72  yeg

47 (A, @ AD)? 312.712 8 252 213.34.72 yes

48 Ay ® [La(7) 5 Dy)1o o12.312.74 g 2.504 28.32.7 yes

49 Ay o [Lo(T)D Dsls 212312712 16 2.504 28.32.7 ves

50 A2, 132 2 312 (2-131)2.2 yes

51 [(+L3(3)).2 1 C5)a 132 4 936+5616-+8424 27.34.13  p#£3

52 Ay © Apy 312.132 4 468 12-13! yes

53 [(+D7s).Cl2)24 312.132 6 624+936 24.32.13  p#£13

54 Ay © Eq 31.50 1 720 211.35.52 yes

55 (Ay @ Ag)? 31256 1 180 216.37.53 yes

56 [£3.PGLy(9) % Diolas 312.58 8 2700+2160+1080  27-3%.52  p#£5

57 Ay @ [+Dyo K Alts] 1o 28.312.56 8 3604900 26.32.52  p#£5

58 [£U4(2).2]4 28.310.5, 6 240-+1440 28.34.5 p#2

59 [SLy(7) O Salaa 7 4 2-1008+-2016 27.3%.7 p#2 Qlv2]
60 [SL2(7) & Q)24 26.74 4 336 28.3.7 yes Qv2]
61 Mg, 33 .79 1 252 216.34.73 yes

62 Ay © Ag 5674 4 420 28.33.52.7  yes

63 Ay, ALY 59 . 712 8 420 28.32.5.7 yes

64 [SLy(11)5 SLa(3)]s 2121112 12 1320 26.32.5-11  p#2

65 [iL2(113/:?1]124 5-118 6 2-220+660 24.3.5-11 yes Q[V5)]




4. THE R.I.M.F. SUPERGROUPS OF IRREDUCIBLE
CYCLIC GROUPS

We now determine the r.i.m.f. supergroups of the
irreducible cyclic groups in GL24(Q). Since 40 of
the r.i.m.f. subgroups of GL24(Q) contain irreduc-
ible cyclic subgroups, Table 2 provides many short-
cuts, used in the main proof of the classification
theorem given in Section 6. The table is of inde-
pendent interest in view of the study of cyclotomic
lattices. Note that the unimodular lattices fixed by
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the irreducible cyclic subgroups of GL34(Q) have
already been determined in [Bayer-Fluckiger 1984].
Let £1 < U = (C,, be an irreducible subgroup
of GLy4(Q). Then m = 70, 78, 90, 52, 56, 72,
or 84. The isomorphism classes of ZU-lattices in
Q'*2* correspond to the ideal classes of the respec-
tive cyclotomic fields Q[(,.]. The respective class
numbers are 1, 2, 1, 3, 2, 3, 1 [Washington 1982].
For brevity’s sake, we restrict ourselves to a brief
discussion of the case U 22 Crg, which illustrates all

U II

r.im.f. supergroups

Cro  2,3,5,7

2.Co1]oa, [2.J2 CISLo(5)]sa, Ay ® Ag, Ay @ AP

Crs 2,3,7,11, 13

2.Cotlos, [SLo(13)13SLy(3)]as, [£L5(3).200Cs]os, As@Ays, [(+Dsg).Chalos

Co 2,3,5,7,13
[SLs(5)

00,3

B 5p® BBYSLa()he, [(SLa(5) BISLa(5)): 21,
(i31+2) GL3(3)]2s, Ay ® Eg, (Ay® Ay)?

Cs 2,3,7,11, 13

2.Co1]sa, [SLo(13) 13 SLo(3)]or, A2,

2
[2.001]247 N

[6.U4(3).2 BSLy(3)]as,

2(3)
[(SL2(3>OC4)-2U3(3)]247 Ag, [Lz

16.0,(3).22]2,,
2(2)
D& Py (AD) [Lo(7)B Filaa,

F4®E67

)
056 27 37 7 2(2) (2) 2

LT E D, Fi® As, (L8 Dy, Fi @ AP, [SLa(7) BLL(Mas,

[SL»(7) O 54]24; [SL»(7) 6 Q1624

B, FY, [6.Us(3).28SLa3)s, Bl [Spa(3) R(BLSLa(3), AR,
072 2, 3 V-3

[357%:SLy(3 )&SL2( Nias (A @ Fy)?

V-3
Csa 2,3,5,7

2.Co1lss, [6. U4( ) 9B SLo(3)]oa, [6.U4(3).2°]2,, [6.Ls(4
(SLa(3) 0 C)- 28 Us(3)las, (LoD Filas, [La(T) 8 Filaa, Fi Ay,

‘ . 2(2) 2(2)
F0A?, (A2®A6), (A0 AP, A, @[Lo(T)9 Dylisy Ay @[Ls(7) 5 Dylr

2(2
.28 Dylaa,

TABLE 2.

Supergroups of the irreducible cyclic subgroups of GL24(Q). The first column gives the irreducible

cyclic subgroup U < GL24(Q), the second column contains a set IT of primes, and the last column gives the
r.im.f. supergroups G of U such that either the prime divisors of |G| or those of the determinant of an integral

lattice (L,

F) € Z(G) x F>o(G) lie in II. It turns out that this list of r.i.m.f. supergroups in the third column

of the table is complete except for U = C56, which is also a subgroup of the r.i.m.f. group [2.J, % SL2(5)]24-
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the difficulties. The other six subgroups U can be
dealt with similarly. For a detailed discussion of
all seven cases see [Nebe 1995].

Let G be an r.i.m.f. supergroup of U := (g
such that either the prime divisors of |G| or those
of the determinant of an integral lattice (L, F') €
Z(G) x F-o(G) lie in II := {2,3,7,11,13}. Since
the class number of Q[(7s] is 2 [Washington 1982],
there are two isomorphism classes of ZU-lattices
in Q'***. Representatives L and L’ can be cho-
sen such that L contains L' of index 13. A conve-
nient method to see that the two lattices L and
L' are nonisomorphic is to compute the respec-
tive Bravais groups, which are B(U, L) 2 +Dg and
BU,L")=U.

One finds a form Fy € F.,(U) with det(Fy, L) =
132. The space F(U) may be identified with the
maximal totally real subfield K = Q[(rs + (73]
of Q[¢rs] via the Q-isomorphism K — F(U) map-
ping ¢ to cFy. The positive definite forms in F(U)
correspond to the totally positive elements in K.

By Corollary 2.3, G is of the form G = Aut(F, L)
or G = Aut(F, L") for some F' € F.o(U) such that

the prime divisors of det(F, L) or det(F,L’) lie in
the finite set IT := II(K, |G|). With KANT [Pohst
et al. 1993] one decides that IT may be chosen as
II := {2,3,7,11,13,17} if |G| only involves the
prime divisors 2, 3, 7, 11 and 13. A more detailed
analysis of the decomposition of 17 in the subfields
of K shows that the prime 17 can be omitted. The
primes 2, 7, and 11 are inert in K; 13 is totally
ramified since 13 = pi3e for some prime element p;3
and unit e € K, and 3 decomposes as 3 = p3(p})?
for some prime elements ps,p; € K. For both lat-
tices L and L' there is an element n € Ngp,,(z)(U)
conjugating the ideal generated by p; into the one
generated by p}. There is no totally positive prime
dividing 3 or 13, but p3, p; and p;3 can be chosen
such that psp;, pspis and pip;; are totally posi-
tive. The set I := {uFyu""F; ' | u € Z[(zs)*} forms
a subgroup of index two in the group of all totally
positive units of the maximal order of K. Note that
if = denotes the “complex conjugation” in Q[(rs],
that is, the automorphism defined by (s — (g,
then FouFy' = @ for all u € Q[(rs]. Since u
is an isometry between the lattices (L, uucFy) and

F Aut(F, L) Aut(vyF, L) Aut(F, L") Aut(vy F, L")
Fy Gs; 4 14976 Gs; 4 14976 By 4 936 B, 4 936
pisFy B, 6 8424 B, 6 8424 By 6 1248 B, 6 1248
i3 Fo B, 6 156 B, 6 156 Gy 12 13104 Gy 12 13104
P Fy Gs 4 196560 Gs 4 196560
p3pis Fo B3 8 468 B3 8 468 B; 10 468 B; 10 468

pgp?3F0 B3 12 468 B3 12 468

piFy B, 6 2028 B, 6 2964 B, 6 312 B, 6 312
pp3F, | B, 8 468 | B, 10 3276 | B, 12 2808 | B, 12 2808
papts Fy By, 12 156 By, 12 312 By 22 13104 By 22 13104
pip2F, Bs 6 26208 | Bs 6 26208
pgngo G52 4 468 G53 6 1560 B6 6 312 Bg 6 312
p3psp?s Fy B; 8 1170 Gs3 8 468 Bs 12 2028 Bg 12 2028
p3pspis Fo B; 12 936 Gsz 12 156 Bs 16 234 Bs 16 234
PsPspis Fo By 4 468 | By 4 468

TABLE 3.

For each relevant Z C7g lattice, the table shows the corresponding automorphism group, the minimum,
and the number of shortest vectors.



(L, cFy) for all totally positive ¢ € K, one only has
to consider representatives of the I-orbits on the
set of totally positive elements of K.

Let vy be any totally positive unit of K not con-
tained in I. Taking only normalized lattices, one
concludes that G is one of the groups in Table 3.

The subscripts ¢ of the groups G; refer to the
number of the r.i.m.f. group G; in Table 1. The
groups B; are not maximal finite; we have

By = Cuy.Cy 3 SLy(3),
By = (+C13:C3 ® S3).2
By = +Cy B (Cly: Cy)
B, = Cy.Cs O SLy(3)
Bs = SL,(13) O SLy(3)
Bs = +C13:C1, ® Cs
B; = £C13:C1, ® Ss.

with algebra Q[v/13],
with algebra K',

with algebra Q[v/'13],
with algebra Q[v/13],
with algebra Q[v/—3],

(Here we give, for the not absolutely irreducible
groups B;, the isomorphism type of the commuting
algebra; K' means the subfield of Q[(rs + (5] with
K:Q) = 4.)

Note that the isometric lattices (L', p2p; Fy) and
(L', vop2pi5 Fy) are extremal 3-modular lattices.

5. ESSENTIALLY SEMISIMPLE GROUPS

In this section we determine the primitive r.i.m.f.
groups G such that G(*) is an irreducible central
product of quasisimple groups.

Table 4 summarizes the information that we need
from the classification of finite simple groups. It
displays all quasisimple groups having an irreduc-
ible rational representation of degree d dividing
24. A list of candidates for quasisimple normal
subgroups N of the rim.f. groups G < GLy,(Q)
can be obtained from this table by taking those
groups N that are normal in their generalized Bra-
vais group B°(N) (Definition 2.4); this group is
given in the second column. The fourth column
fixes the notation for the natural character of NV <
GL4(Q), used in Section 6. The isomorphism type
of the commuting algebra Cgpaxa(N) is also given.
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The last column refers to the page in [Holt and
Plesken 1989] where a detailed description of the
Z N-lattice in Q'*¢ may be found.

That the table follows from the classification of
finite simple groups and from [Conway et al. 1985]
can be seen as follows. In [Landazuri and Seitz
1974; Seitz and Zalesskii 1993] it is shown that
most of the finite Chevalley groups having a pro-
jective representation of degree at most 24 are con-
tained in [Conway et al. 1985]. The exceptions are:

1. some linear groups that have no representation
of degree d |24 because of their group order and
the formula in [Schur 1905];

2. the group L,(49), whose 24-dimensional repre-
sentation has real Schur index 2; and

3. the group Sp,(7), for which the character field
of the two conjugate 24-dimensional representa-
tions is Q[v/—7] [Srinivasan 1968].

A case-by-case discussion using Theorem 2.1, Ta-
bles 2 and 4, and the inclusions of the finite sim-
ple groups from the lists of maximal subgroups in
[Conway et al. 1985] yields the following two propo-
sitions:

Proposition 5.1. Let G be a primitive r.i.m.f. sub-
group of GL,4(Q) such that G is irreducible and
quasisimple. Then G s conjugate to one of these
eight r.i.m.f. groups: [2.Coy]aq, [6.Alt7:2]sy, Aug,

[+U1(2)-20, SLa(D) O Silas, [SLa(7) O Quokas
2(2

[SL(13) T3 SLy (3)]aa, o7 [£Ly(11): 2],

Proposition 5.2. Let G be a primitive r.e.m.f. sub-
group of GLy4(Q) such that G is irreducible and
a central product of at least two quasisimple groups.
Then G is conjugate to one of these r.i.m.f. groups:

2 2
[SL2(7)%L2(7)]24, [(SL(5) O SLa(5)): Z%Alts]ﬁg,
) ‘
[2.J5 (3 SLy(5)]24, [(SL2(5) O SLy(5)): Q%Alts]%l,
A4 () E67 A4 ® AG; or A4 () AéZ)
As a referee pointed out, one might think that
other elements of the Suzuki chain in the Conway

group might give rise to r.i.m.f. groups G isoclinic
to a maximal subgroup of [2.Co;]24. That only the
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N B°(N) d character comm. alg. page
Alts +S;5 4 X4 Q 272
Alts +Alts 6 X3a + X3b QV3] 273
SLy(5) SLy(5) 8 2(X2a + X2b) Q5 00,00 275
SLs(5) SL(9) 8 2X4 Qoo,3 274
SLs(5) SLs(5) 12 2x6 Qe 2
Lo(7) +L(7) 6 X3a + X3b Qv 7] 290
Ly (7) +L5(7) 6 X6 Q 291
Ly(7) +L5(7):2 8 Xs Q 293
SLy(7) SLy(7) 8 Xaa + Xab Qv 7] 295
SLy(7) SLx(7) 24 2(X6a + Xob) Q/3,00,00
SLQ(Q) SLQ(Q) 8 2)(41L or 2X4b Qoo73 311
3. Altg +3. Altg 12 Xsat+XheF X3+ X5 QY5 V=3
3. Altg +3. Altg 12 X6 + X6 Qv 3]

6. Altg 6. Altg 24 Yeat+ Xea +Xes +Xe  QV2,V=3]

Ly(8) 2.05(2).2 8 Xs Q 328
L(11) LL,(11):2 24 Xiza + X125 Qv5]

SLy(11) SL,(11) 12 X6a + Xob Qlv-11]

SLo(13) SL(13) 24 2(X6a + Xe6b) Q13 00,00

Alt; +S7 6 X6 Q 316
2. Alt; 2. Alt; 8 Xta + Xab Q7] 317
3. Alt; 6.U4(3).2 12 X6 + X5 Qv -3

6. Alt; 6. Alty 24 Xeat Xea +Xeb + X QV2,v=3]

L;(3) +L3(3) 12 X12 Q

Us(3) +Us(3) 12 2X6 Qo3

SL,(23) SL,(23) 24 X12a + X125 Qv 23]

SL4(25) SL(25) 24 2X12 Qoo

2. Altg 2.05(2).2 8 Xs Q 320
6.Ls(4) 6.L;(4) 12 X6 + X6 Qv 3]

U4(2) :tU4(2) 12 6 X6 Q 336
Us(2) +U4(2):2 24 X24 Q

Sp,4(3) Sp4(3) O Cs 8 X4a + X4b Qv -3 338
U3(4) 2Gz(4) 24 2X12 Q0072

2.Mi» 2. Mo 12 X12 Q

Altg 2.05(2).2 8 Xs Q 323
2. Altg 2.05 (2).2 8 Xs Q 324
2. Jy 2.J 24 2(X6a + Xe6b) Q550,00

2.Spg(2) 2.05(2).2 8 X8 Q 340
6.U4(3) 6.U4(3).2 12 X6 + X5 Qv -3]

2.0 (2) 2.05(2).2 8 X8 Q 341
2Gz(4) 2Gz(4) 24 2X12 Q0072

Altys +S513 12 X12 Q

6.Suz 6.Suz 24 Y12 + Xio Qlv-3]

2.Coy 2.Coq 24 X 24 Q

Altos +So5 24 X24 Q

TABLE 4. The quasisimple irreducible rational matrix groups of degree d | 24. The meaning of the columns is
explained in the second paragraph of Section 5.



group [2..J, ] SL5(5)]24 turns up is explained by
Lemma 1.12, since the unique subgroup of index
two in the other absolutely irreducible maximal
subgroups of [2.Co,;],4 corresponding to elements
of the Suzuki chain is uniform.

6. PROOF OF THEOREM 3.1

We now complete the proof of the classification
in Theorem 3.1. The primitive r.i.m.f. groups are
built up using normal subgroups. Therefore the
proof is organized according to the possibilities for
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normal p-subgroups of the r.i.m.f. groups. The dif-
ferent primes p are dealt with in decreasing order,
always assuming that p is the biggest prime with
0O,(G) # 1. The ordering of the case-by-case dis-
cussion is adapted to the one in Table 5. In par-
ticular, the first eight possibilities for O,(G) are
excluded in Lemma 6.14 by a uniform argument.

Theorem 6.1. Let G be a primitive r.i.m.f. group in
GL24(Q) and let p is a prime such that N := O,(Q)
1s nontrivial. Then N s one of the groups listed in

Table 5.

N B°(N) degg comm. alg. Out(N)
Ci3 =N 12 Q[¢13] Ci2
Cr N 6 Ql¢7] Cs
Cs =N 4 QIés] Cy
Cy =N 6 Qléo] Cs
34 +N:SLy(3) 6 Qv =3 GLs(3)
Cs +N 2 Q[\/—_S] Cy
Qs O Qg @ Dg N . Altg 8 Q Sy
Qs OQs @ Cy N.Sg 8 Qv-1] Sg x C2
Q16 O Qs N.S3 8 Qv2] S3 x Oy X Co
QDle%Qs N.S3 8 QvV-2] Sz x O
Qs 2.Ci N.Ss 8 QGs) Sy x Cy x Cs
D3s N 8 QlGis + (56 Cy x O3
QD32 N 8 Ql¢16 — (6] Cy
Cie N 8 Q[C16] Cy x O
Dg ® Qg N.Alts 8 Q.2 Ss
Qs OQs N:(S3 x S3) = Aut(Fy) 4 Q S31C5
Qs O Cy N.S;3 4 Q[\/—_l] S3 x Cy
Q1 N 8 Q5 e Cy x Cy
D1 N 4 QlV2] Ca x Cy
QD16 N 4 Qv -2 Cy
Cs N 4 QI¢s] Cy x Cy
Qs N:Cs 4 Qoo Ss
Ds N 2 Q Cy
Cy N 2 Qv-1] Cy
Cs N 1 Q 1

TABLE 5. The first column shows the possibilities for the normal p-subgroups N of G. The second gives the
group B°(N) (Definition 2.4), which is, according to Proposition 2.5, also a normal subgroup of G. Columns 3
and 4 allow us to restrict the possibilities for the centralizer C;(N) = C(B°(N)). Since G/NCq(N) embeds
in the outer automorphism group Out(V) of N, this group is given in the last column.
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Proof. Let G < GL34(Q) be primitive and let p
be a prime such that N := O,(G) # 1. It fol-
lows from Remark 1.15 that all abelian charac-
teristic subgroups of N are cyclic. The possible
p-groups with this property were classified by P.
Hall [Huppert 1967, p. 357], and are either cyclic,
extraspecial of exponent p, or central products of
a cyclic and an extraspecial group. For p = 2 there
also occur dihedral, quasidihedral, and quaternion
groups, and central products of these groups with
extraspecial groups. Remark 1.15 also implies that
p—1 divides 24, so that p € {2, 3, 5, 7, 13}. Since
24 is not divisible by 5, 7, or 13, one has N = C,,
if p=25,7 or 13. In the case p = 3, either the
degree of the irreducible constituents of the natu-
ral representation of N is 2 and N 22 (s, or the
degree is 6 and NV is isomorphic to Cy or 3?2. In
the case p = 2 the degree of the irreducible con-
stituents of the natural representation of N divides
8 and the Theorem of P. Hall implies that /V is one
of the 2-groups in Table 5. The groups B°(V) can
be obtained by considering the lattice of invariant
lattices in the irreducible constituent module of the
natural QV-module in the respective cases. O

We now consider the various possibilities for prim-
itive r.i.m.f. groups G, according to the highest p
such that O,(G) # 1.

Case O3(G) # 1

Proposition 6.2. If G is a primitive r.i.m.f. group of
degree 24 with O13(G) # 1, then G is conjugate to
[(£Dz5).C12)24 and has a presentation

G = (a,b,c|

a™, b2, a’ = a~l, 2, af = a", b, = a23).

Proof. Let G be a primitive r.i.m.f. group of de-
gree 24 with O13(G) # 1. Theorem 6.1 implies
that O13(G) = Cy3. Since the centralizer C :=
Cs(013(G)) embeds in GLy(Q[¢13]), it is soluble.
Moreover O,(G) =1 for p # 2,3,13 and O2(G) -
03(G) = 0,(C) - O5(C) is one of these groups: Cy,
Cy, Dg, Qs, or Cs. Hence the prime divisors of |G|
are contained in {2,3,13}. If O5(G) - O3(G) # +1

then G contains an irreducible subgroup = Cs, or
Crg. Table 2 implies G = [(£D7g).Clz)e4 in this
case.

Otherwise O5(G) - O3(G) = 1 and C = (O
is a reducible normal subgroup of G. The factor
group G/C' is isomorphic to a subgroup of C}, =
Aut(C3). The split extension Cyg: Cy5 is reducible
and the unique maximal nonsplit extension Coyg.
C is a proper subgroup of [SLy(13) Zl%)SL2(3)]24.

O

Case O,(G) # 1, O;3(G) =1

Proposition 6.3. All primitive r.i.m.f. groups G <
GL2%(Q) satisfy O;(G) = 1.

Proof. Let G be a primitive r.i.m.f. group of GL,,(Q)
with O7(G) # 1. Theorem 6.1 implies O;(G) =
C7. The centralizer C' := C;(O7(G)) embeds in
GL4(Q[¢r]) and hence O,(G) = 0,(C) = 1 for all
primes p > 7.

If C is insoluble, C' contains one of these five
groups as its normal subgroup C(>): Alt,, SLy(5),
SL5(7), SL2(9), or 2. Alt; (see Table 4). In the first,
second, and fourth cases G contains an irreducible
subgroup = Cyy and the prime divisors of |G| are 2,
3, 5, and 7. Table 2 then shows that O;(G) =1. In
the third case G contains an irreducible subgroup
= (s and the prime divisors of |G| are 2, 3, and
7. Table 2 then shows that O;(G) =1 again.

Also in the last case G contains an irreducible
subgroup =2 Cs¢ but 5 divides the order of G. Since
0:(G)C™) is irreducible modulo 5, the determi-
nants det(F, L) are not divisible by 5 for all

(L, F) € 2(0:(G)C™)) x F(O-(G)C)

with F' primitive on L. Hence Table 2 shows that
O-;(G) =1 also in this case.

Now assume that O3(C) = O5(G) > 1. Then
Os5(G) = Cs and G contains an irreducible self-
centralizing normal subgroup 22 C,. Hence the
only primes dividing |G| are 2, 3, 5, and 7, and
again Table 2 shows that O;(G) = 1.

Now let O3(C) = O3(G) > 1. Then O3(G) = Cj
and G contains a normal subgroup N = (Cs;. The



centralizer C(N) embeds in GL2(Q[(s1]), hence is
soluble, and O,(G) = O2(Cg(NN)) is one of Cy, Cy,
Dy, or Qs.

In the last three cases, G' contains an irreducible
subgroup = Cg,. Since |G| is only divisible by the
primes 2, 3, and 7, Table 2 shows that O;(G) = 1.

If O5(G) = Cs, G contains a self-centralizing nor-
mal subgroup Z = Cyy. The factor group G/Z is
isomorphic to a subgroup of Cs x Cy. Since the split
extension Z:(Cs x Cy) is reducible, the primitivity
of G implies that 2 divides G:Z and every sub-
group of index 2 of G is nonsplit over Z. But the
unique maximal extension with these properties is
imprimitive too, since it contains the reducible nor-
mal subgroup C;:C5 ® S5 of index 2.

Next assume that C' is soluble and O;(C) =
O3(C) =1. Then Oy(G) = O,(C) is one of Csy, Cy,
Ds, Qs, Cs, Dis, Qi6, QD1s, Qs O Cy, or Qg O Q5.

In the first case C'4 is a reducible self-centralizing
normal subgroup of G and G is reducible. In cases
5-8, G contains a self-centralizing irreducible nor-
mal subgroup = (U5 and is not maximal finite by
Table 2. In the second and third cases, O;(G) x
O2(G) = : N 4 G is a reducible normal subgroup
of index < 6 in G. Since the unique extension /V:
Cs is reducible this contradicts the primitivity of
G.

Now assume that N := Oy(G) x O;(G) is iso-
morphic to Qg ® C7. Since Q[(7] does not split
the quaternion algebra Q. », IV is irreducible with
commuting algebra Cgzax2a(N) = Q. », and has a
12-dimensional space of invariant forms. The Bra-
vais group B of a normal critical lattice is B :=
C7; ® SLy(3) and has the same commuting algebra
as N. Consider two cases:

(@) 3% divides |G|: Then Os73(G) is conjugate to
C7:C3®SLy(3) and has a 4-dimensional space of
invariant forms. The Bravais group of a normal
critical lattice is Ly(7) ® SLy(3), contradicting
the assumption O;(G) = C;.

(b) 3% does not divide |G|: Then B is a normal sub-
group of G with G/B < Cy x Cy. If G/B = (s,

G is not maximal, since we have, for example,
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G < G:C5 < GLyy(Q). Hence G/B = C, x C,
and G contains an irreducible subgroup = Csg.
Since the prime divisors of |G| are 2, 3, and 7,
Table 2 shows that O;(G) = 1.

Next assume that O»(G) X O7(G) = Dg @ Cyg = :
N 4 G. Then B°(N) =C; ® (SLy(3) 0 Cy).2 4G
and hence G contains an irreducible subgroup =
Csy. Since the prime divisors of |G| are 2, 3, and
7, Table 2 shows that O;(G) = 1.

IfOZ(G) X O7(G) = Q80Q8®C7 =:NdJ G, then
B°(N)=F,®C; 4G and G contains an irreducible
subgroup 2 Cgy. Since the prime divisors of |G| are
2, 3, and 7, Table 2 shows that O;(G) = 1. O

Case Os(G) # 1, O]3(G) — O7(G) — 1

Lemma 6.4. Let G be an r.i.m.f. group of degree 24

containing a subgroup U conjugate to Cis %Alt&
5

Assume that the prime divisors of |G| lie in the
set {2,3,5,7}, or that there is a lattice (L, F) €
Z2(G) x Foo(G@) with F integral on L, such that
the prime divisors of det(F,L) lie in {2,3,5,7}.
Then G 1is one of the following six r.1.m.f. groups:
[2.CoyJus, [(SLa(5) O SLy(5)):2 5 Alts]za s,

2
[2.J5 £1SLy(5)]245 [(SL2(5) O SLy(5)): 2 X Alts)og s,
2 2
A2 & [:t.D]_() A1t5]127 or [ﬂ:BPGLz(g) D10]24.

Proof. The commuting algebra of U is isomorphic to
Q[¢15] and U fixes up to isomorphism four lattices
Ly,...,Ly. The Bravais group B(U, L,) =B(U, L,)
is conjugate to +Djy O Alts, and B(U, L,) and

B(U, L;) are both conjugate to £3.Altg C’5. Us-

ing the 4-parameter argument (see Corollary 2.3
and the paragraph before it), one finds that the
r.i.m.f. supergroups of U are conjugate to A, ®

2 2
[ti ?% A1t5]12, [(SL2(5Z) O SL2(5)) 12 % A1t5]2471,
or [(SL2(5) O SL2(5)) : 2A1t5]2472 (On L]_ and .[/4)7

or [2.001]247 [2J2 li‘ SL2(5)]247 or [i?)PGLz(g)
D10]24 (On L2 and Lg) [l

7]
o
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Lemma 6.5. Let G be an r.i.m.f. group of degree 24
containing a subgroup U conjugate to Cyy & Alts.
5

Assume that the prime divisors of |G| lie in the
set {2,3,5,7}, or that there is a lattice (L, F) €
Z(G) x Foo(G) with F integral on L, such that the
prime divisors of det(F, L) lie in {2,3,5,7}. Then
G is one of these five r.i.m.f. groups: [2.Co1]a4,
[(SLs(5) O SLy(5)): 2 8 Alts]ag 5, [2.5 £ SLy(5)]as,

2 2
[:t_D]_O A1t5]%27 or [(SL2(5) O SL2(5)) : 2A1t5]2471.
Proof. Similar to the proof of Lemma 6.4. t

Proposition 6.6. Let G < GL4(Q) be a primitive
ra.m.f. group with O5(G) > 1. Then Os5(G) = Cs

and G is conjugate to either A, ® [+D, Alt5]12
5
2
+3. . X 24 -
or [ 3 PGLz(g)\’ngo]z4

Proof. Let G < GL34(Q) be a primitive r.ium.f.
group with O5(G) > 1. Theorem 6.1 implies that
Os(G) = Cs. Moreover the centralizer Cq(O5(G))
embeds in GLg(Q[¢5]).

Because of Proposition 6.3 one has O;(G) = 1.
Hence O,(G) =1 for all primes p > 5.

Assume first that O3(G) > 1. Then Theorem 6.1
implies that O3(G) = Cs, Cy, or 352

In the second case G contains an irreducible self-
centralizing normal subgroup = Cyg, and Table 2
then shows that O5(G) = 1.

In the third case G has a normal subgroup

B°(05(G) ® O5(@)) = £C5 @ 34+2:SLy(3).

Hence G contains an irreducible subgroup =2 Cy.
Since the prime divisors of |G| are 2, 3, and 5,
Table 2 then shows that O5(G) = 1.

Now assume O3(G) = (3. Since

C = Cs(05(G) x 05(G))

embeds in GL3(Q[(15]), the last term of the de-
rived series C(>) of C' is one of 1, Alts, or 3.Altg
(see Table 4). Furthermore G/C' is isomorphic to
a subgroups of Aut(Cy5) = Cy x Cs.

~

In the first case C is soluble, hence equal to =
Cso, and its irreducible constituents are of degree
8. Since G/C is a 2-group, G is reducible.

In the other two cases, G contains a subgroup U
conjugate to C; \(E%Alt& Hence Lemma 6.4 implies

that G is conjugate to A, ® [+D, Alt5]12 or [£3.
5

PGL,(9) %Dw]%

Now let O3(G) = 1. Then, by Theorem 6.1,
0,(@) is isomorphic to Cy, Cy, Dg, or Qg. In all
cases the centralizer C' := Cg(05(G) x O5(G)) is
not soluble, because otherwise G' contains a self-
centralizing normal subgroup B := B°(0,(G)) X
Os(G) conjugate to Cyy, Coy, Cs @ Dg, or Cj \%

SL5(3). The irreducible constituents of B are of
degree 4 or 8 over Q. Since B is of 2-power index
in G this implies that G is reducible.

If O5(G) # Cy, then C embeds in GL3(Q[(20]) or
GL3(Q[¢5]), and G contains a subgroup Cay %Alt5,

contradicting Lemma 6.5.
Hence O,(G) = +1 = (5 and

C = Cu(05(@)) — GLs(Q[¢5])

is a normal subgroup of index 1, 2, or 4 in G. Ta-

ble 4 implies that C(>) is one of the matrix groups

Alts, SLy(5) (2 groups), Alts EG}SLz(E)), Ly(7) (2
5

groups), Altz, Us(3), Us(2), or 2..J,. We take the
cases separately.

Assume first C(*) 22 Alt;. Then N := +0;(G) x
C(*) is reducible. The outer automorphism group
of N is isomorphic to Cy x Cs. Since G is primitive,
N is of index 4 or 8 in (. In particular, there is
an element z € G (of order 2 or 4) centralizing
C*) and inducing the automorphism of order 2
on O5(G).

If = is of order 2, the group (N,z) ~ +Alt; ®
Dy, is still reducible. Hence G: N = 8 and U :=
+Alty ® (C5: Cy) is an irreducible normal subgroup
of index 2 in G. The Bravais group of a normal
critical ZU-lattice is conjugate to (+Alt; %Dlo)z02

contradicting the primitivity of G.



Hence x is of order 4 and G contains an irreduc-
ible subgroup U := (N, z) ~ Alt5\<§/§gQ20. Using The-
5

orem 2.1 one gets a contradiction to C'(>) = Alt;.

Now assume that C(*) is conjugate to SL,(5),
where the restriction of the natural character of
G to C™) is 6(x2qa + X25)- Then G contains the
reducible normal subgroup N := O;(G) x C(**) with
index a 2-power. Since the irreducible constituents
of N are of degree 8, G is reducible.

If instead C(*°) is conjugate to SLy(5), where the
restriction of the natural character of G to C(*) is
4xs, then N := O5(G) x C*) is an irreducible
normal subgroup of G. The Bravais group of N
of a normal critical lattice is conjugate to Alts \%

(SLy(5) O SLy(5)):2, contradicting the fact that
C(=) = SL,(5).
If C(*) is conjugate to Alts \Q}SLZ(5) or 2.J,,
5

then G(*) is irreducible and Proposition 5.2 or 5.1
yield a contradiction to Os5(G) = Cs.

If O = U,(2), then N := O5(G) x C=) is
already irreducible with commuting algebra

Cernas (N) 2 Q[G].-

Using the 2-parameter argument one finds that G
is a proper subgroup of A, ® Eg.

In the remaining cases G contains an irreducible
subgroup & Cy. Since 2,3,5, and 7 are the only
prime divisors of |G|, one gets a contradiction with
Table 2. O

Case O5(G) # 1, 05(G) = O,(G) = O5(G) =1

Proposition 6.7. All primitive r.i.m.f. groups G <
GL24(Q) satisfy Og(G) % Cg.

Proof. Let G be an r.i.m.f. group of degree 24 with
O3(G) = Cy. Because of Proposition 6.6 one has
O,(G) =1 for all primes p > 3. Since the central-
izer C' := Cg(03(G)) embeds in GL4(Q[¢o]), the
possibilities for C(*) are 1, Alts;, SLy(5), SLy(9),
or Sp,(3) (see Table 4).

In all cases where C(*) 1, the group G contains
an irreducible subgroup = Cy,. Since 2, 3, and 5
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are the only prime divisors of |G|, the assumption
O3(G) = Cy contradicts Table 2.

If C(**) =1 then G is soluble and the possibilities
for 02(G) are Cy, Cy, Dg, Qs, Cs, D1s, Qi6, QD1s,

Qs O Cy, s O Qs, and Dy @ Qs.
In the last seven cases the normal subgroup

B°(0:(G)) x 05(G) 2 G

contains an irreducible subgroup = C7y (or = Cy,
in the last case). Since the prime divisors of |G|
are 2 and 3 (also 5 in the last case) one gets a
contradiction to Table 2.

If O,(G) is isomorphic to Cy, Cy, or Dg, then
Aut(O5(G)) is a 2-group. Therefore G contains
the reducible normal subgroup O(G) x O3(G) of
index 2 and hence is imprimitive.

Finally assume that Oy(G) = Qs. Then B :=
B°(O2(G))\;®_3C9 < G is a reducible normal sub-

group of G. The factor group G/B is isomor-
phic to a subgroup of Out(B) = C, x S;. Since
O3(G) = Cy and O3(G/B) centralizes the nor-
mal subgroup B°(0,(G)) it follows that 31 [G: B].
Hence the primitivity of G' implies that G/B =
Cy x Cy. Therefore Cg(0O3(G)) is isomorphic to
one of GLy(3) x Cy or Sy x Cy. In particular G
contains an irreducible subgroup = Cy,. Since 2
and 3 are the only prime divisors of |G|, one gets
a contradiction to Table 2. 0

Proposition 6.8. Let G < GL24(Q) be a primitive

r.a.m.f. group with O3(G) = 312, Then G is either

[Sp4(3) B (3172:SLy(3))]as or [SLa(5) 1 (+3172).

-3 00,3

GL2(3)]24-

Proof. Let G be an r.i.m.f. group of degree 24 with
O3(G) =31 Since B°(03(G)) =3.:SLy(3) 4 G
contains a subgroup =2 Cy, the same arguments
as in the proof of Proposition 6.7 show that G is
conjugate to one of the two desired groups. O

Lemma 6.9. Let G be a primitive 1.i.m.f. group of
degree 24 with O3(G) = Cs. Then O5(G) is one of
027 047 D87 or QS'
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Proof. Let G be a primitive r.i.m.f. group of de-
gree 24 with O3(G) = C3. The centralizer C :=
Cs(05(G)) embeds in GL12(Q[¢3]) and is a normal
subgroup of index < 2 in G. The primitivity of G
implies that C is irreducible. According to Theo-
rem 6.1, the possibilities for O,(G) = O,(C) are
Ca, Cy, Dg, Qs, Cs, D1g, QD1s, Qs O Cy, Qg O Qs,
Q16, or Dg ® Qs.

Let B := B°(02(G)) x O3(G). If O5(G) is not
conjugate to one of the four groups of the lemma,
N := Cy(B) embeds in GL3(Q[v/—3,(s]). In par-
ticular, N is soluble and O,(N) =1 for all primes
p > 3. Hence N < B and B is a normal subgroup
of 2-power index in G. Since 3 does not divide
the degrees of the irreducible constituents of the
natural representation of B, this implies that G is
reducible. 0

Using the 2-parameter argument one gets the fol-
lowing two lemmas:

Lemma 6.10. Let G < GL2y(Q) be an r.i.m.f. group.
If G contains a subgroup conjugate to SLy(5):2 ®
Cs, then G is one of these three groups: [(SLy(5) O

SLQ(S)) 12 %Alt5]2471, [SL2(5)28)SL2(3) %2, or A2 X
2(2)
[SL(5) ) SLa(3)]1o.

Lemma 6.11. Let G < GL2y(Q) be an r.i.m.f. group.
If G contains a subgroup conjugate to SLy(5).2®C}
(nonsplit extension), then G is one of these five

2
groups: [2.Co1]2a, [(SL2(5) O SLy(5)): 2%A1t5]2472,
[6. Alt: 2]s, [SLo(5)0)SLo(3)2,, or
[SLa(5)'5 2 Al Jas.

Proposition 6.12. Let G be a primitive r.i.m.f. group
of degree 24 with O3(G) =2 Cs and Oy(G) > +1.
The possibilities for G are [6.U4(3).2\;§_LBSL2(3)]24,
2(2) 2(2)
[(£3). PGLy(9) C'SLa(3)]aa, [3.55° S Dilas,
2%) 2
[6L3(4)2 D8]247 [3.M108L2(3)]24,

2(2) 2 2(2)
Ay © [SLa(5)SLo(3)]1s, [Alt8(Co 5 Dy o,

2(2) 2(2)
(3. Mo 2O Ds(]2)47 Ay ® [Ly(7) é Dgl12, or
2(2
A2 X [Lz(?) O D8]12-

Proof. Because of Proposition 6.2 and 6.3 we have
0O,(G) =1 for all primes p > 3. Lemma 6.9 implies
that O,(G) is one of the three groups Cy, Dg, or
Qs. Let N := 0,(G) x O3(G). As in the proof
of Lemma 6.9 one gets that C' := Cg(NV) is not
soluble. Hence C(*) is one of Alts, SLy(5), Lo(7)
(2 matrix groups), 3.Alts (2 matrix groups), Altr,
3. Alt7, Us(3), 6.L3(4), Uy(2), or 6.U,(3) (see Ta-
ble 4).

If C*) is isomorphic to one of L,(7), Alts, 3.
Alt,, Us(3), 6.L3(4), or 6.U4(3), the group G con-
tains an irreducible subgroup = Cgs. Since all
primes dividing |G| are < 7, Table 2 implies that

G is conjugate to one of [6.U4(3).2\;éSL2(3)]24,
-3

[6.L3(4).2°E Dylas, Ay © [Lo(7)® Dylia, or Ay ®
[Lo(7) ' Dy

Now assume that C() = Alt,. If O,(G) =
C, or Dg, then G contains an irreducible normal
subgroup conjugate to Alt; ® Ci,. Using the 4-
parameter argument one finds that G is conjugate
to [Alt; B (Cs B Dg)au. It O5(G) = Qs then G con-
tains an irreducible normal subgroup conjugate to
Alts ® SL,(3) O Cys. The Bravais group of a normal
critical lattice is conjugate to Fy ® Alts contradict-
ing O3(G) > 1.

Now let C(>) = SL,(5). If 0,(G) = C,, or Dy,
then G contains an irreducible normal subgroup
conjugate to SL2(5)\§%CH' The Bravais group of a

normal critical lattice is conjugate to 2'°. Altg.2? &
(12, contradicting the primitivity of G. If, on the
other hand, O,(G) = Qs, then G contains a uniform
normal subgroup conjugate to SL2(5)\;®78L2(3) @)
Cs. In this case one finds that G is corijugate to
2(2)

Ay ® [SLo(5)° S La(3)]1s

Next assume that C(°) = 3. Alts, where the nat-
ural character of C*) is 2(xs, + X5, + X35 + Xbs)-
Then G contains a subgroup 3.Altg ® C;. An ap-
plication of the 4-parameter argument yields the



conclusion that G is one of [3.M;, \c;lzlSLz(3)]24 or
-3

[3. My 8 Dylas.

Assume instead that C(*) = 3.Alty, where the
natural character of C(*) is 2(x +x4). If O5(G) =
C, or Dyg, then G has an irreducible normal sub-
group 3. Altg®Cy. With the 2-parameter argument

one finds that G is conjugate to [3.S6Zg)D8]24. If

05(G) = Qg, then G has a uniform normal sub-

group 3.Alt6\;&SL2(3). One finds that G is conju-
-3

gate to [(£3).PGL2(9 é))SL2 (3)]24-

Finally assume that C=) 2 U,(2). If 0,(G)=C,
or Dg, then G has an irreducible normal subgroup
Uy(2) ® C15. The Bravals group of a normal criti-
cal lattice is 6.U4(3).2 3 C, contradicting C(*°) =~
Us(2). If O5(G) = Qs, then G has a uniform nor-
mal subgroup U (2) ® SL»(3) O Cs, Whose r.im.f.

supergroups are Fs @ Fy and [6.U,(3). ZISLZ(S)]M,

a contradiction with either O3(G) = C3 or C(>) =~
Us(2). U

Proposition 6.13. If G < GLx(Q) is a primitive
r..m.f. group with O3(G) = C; and O4(G) = +1,
then G is conjugate to one of these six groups: [6.

2 2
Alty: 2]y, [if.PGLz(Q)Dm], A2®[iD10Alt5]12,
[(£L3(3)).2 O C3)a4, A2 @ A1z, or [(£Drs).Chaloa.

Proof. If O,3(G) > 1, Proposition 6.2 implies that G
is conjugate to [(£D7g).C12]24. Because of Propo-
sition 6.3 one has O;(G) = 1. If O5(G) > 1, Propo-
sition 6.6 1mphes that G is conJugate to elther [£3.

PGL2( ) g DlO] or A2 X [iDlo IZ A1t5]12 Assume

for the rest of the proof that O ,(G) =1 for all
primes p > 3. The centralizer C' := C¢(O3(G)) em-
beds in GL12(Q[(3]) and, being a normal subgroup
of index < 2 in @, it is an irreducible subgroup
of GL24(Q). The last term of the derived series
C(*) is a central product of quasisimple groups
with center < Cj. Let A denote the natural repre-
sentation of G. The primitivity of G implies that
A|c = k- T for some rational irreducible repre-
sentation I': O — GL4(Q) with d = 24/k.
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Since all subgroups of GL3(Q) are soluble, d > 3.

If d = 4, then C>) is conjugate to Alt; and C
is reducible.

If d = 6, the possibilities for C(>) are Alts, L (7)
(2 matrix groups), Alt;, or Uy(2).

In all cases the index of N := B°(C(>)) ® 03(G)
divides the order of Out(C*Os(G)), which di-
vides 4. Hence G: N = 4, and all proper super-
groups of N (in particular C') are irreducible. Since
C*) © 85 is reducible, G contains the irreducible
normal subgroup

M = C®)Cy(C>)) = ) x S,
of index 2.
If C(oo) = A1t57 then C' = (ﬂ:Alt5)2 X 03 is re-

ducible and hence G is imprimitive.

Now assume C(*) = [,(7), where the natural
character of C(*°) is 4(xs, + X35). Since Q[v/—7]
splits the quaternion algebra Q. 3 the group M is
reducible and hence G is imprimitive.

If C(>) 2 [,(7), where the natural character of
C(®) is 4xg, then M is conjugate to Ly(7) @ S;
and already uniform. One finds that the r.i.m.f.
supergroups are [6.U4(3).2°[,, (A2 ® Ag)*, and

A, ® [Ly(7 é@ Dy, contradicting O,(G)03(G) =
Cs.

In the last two cases, C(>) = Alt; or Uy(2), we
get N = +S5; x C3 or N = +U,(2):2 x Cs, respec-
tively, so N is reducible and G is imprimitive.

Now consider the case d = 8. Table 4 implies that
C(*) is conjugate to one of SL;(5), SLy(5) OSLy(5),
SL(9), or Sp,(3). In all cases Out(O5(G) x C(=))
is a 2-group, and therefore G is reducible.

If d = 12, Table 4 implies that the possibili-
ties for C*) are SLy(5), 3.Altg (2 matrix groups),
SLo(11), L3(3), Us(3), 6.L3(4), 2. M5, 6.U4(3), or
Altys.

If C(>) 22 SL,(5), then C is conjugate to either
SL2(5):2®C5 or SLy(5).2®C3. Using Lemma 6.10
or 6.11, respectively, we obtain a contradiction with
C(*) =2 ST, (5).

If C) = 3. Altg then C(>®) = O5(G)C>) and
G /+C*) is isomorphic to a subgroup of the group
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Out(C=)) = O, x C,. If the natural character
of C) is 2(Xsa + X + Xsb + Xb), then C>)
is reducible and the primitivity of G implies that
G /(£C>)) is isomorphic to C, x Cy. In particular
G contains one of the isoclinic groups +(3.S5s) or
£3.S56 of index 2. Since both groups are reducible
this contradicts the primitivity of G.

If the natural character of C*) is 2(xs + X5),
then again C(*) is reducible and as above G con-
tains one of the isoclinic groups +(3.Ss) or £3.Ss
of index 2. Since the split extension +(3.Ss) is re-
ducible, G contains the uniform group U := £3. S;.
The only primitive r.i.m.f. supergroup of U is [3.
5'62 2)D8]24, contradicting Ox(G) = +1.

Now assume that C(>) & SL,(11). Then N :=
C(*)03(G) = SLy(11) ® C5 is an irreducible normal
subgroup of G. Using the 2-parameter argument
one gets that the r.i.m.f. supergroups of N are con-

jugate to [2.Coy]as, AS?, or [SL2(11)2§)) SL(3)]a4,
V=11

contradicting O3(G) = Cs.

If C(*) = [4(3), then C*) ® Cj is already uni-
form and its r.i.m.f. supergroups are conjugate to
[2.C01 )24, Az ® Ay, or [(£L5(3)).2 01 Cs)aq. Hence
G is conjugate to [(+L3(3)).2 N Cj3)24 in this case.

In the case C(®) = Us(3) the group C has to
be isomorphic to the nonsplit extension (+U3(3)).
2 x Cs, because the split extension Uz(3):2 x Cj
is reducible. Using the 2-parameter argument one
finds that the r.i.m.f. supergroups of C' are con-
jugate to [2.Co1]24, [6.U4(3)‘.22]fz, [(SLa(3) O Cy).
2%:2%(3)]24, or [6.U4(3). 28 SL(3)]as, which is
contradiction.

Next assume that C(>) 22 6. L;(4). Then C(>) =
C(*)03(@) is reducible and G/C™) = C, x C,.
Hence G contains one of the isoclinic groups U; :=
6.L3(4):2, or Uy := 6.L3(4).2, (nonsplit exten-
sion). Since the commuting algebra of U, is iso-
morphic to Q3 the group U; is uniform. The
Z.U;-lattices having a maximal order as endomor-
phism ring, they are imprimitive, whereas the au-
tomorphism groups of the other ZU,-lattices are

conjugate to [6.L3(4).22<%)D8]24—a contradiction.

The group U, is reducible and hence G is imprim-
itive in this case.

If C(>) =2 2.M,,, then G contains a uniform
normal subgroup isomorphic to 2. M, X C3 whose
r.i..m.f. supergroups are [2.Co, ]y, and A3%.

If C(>) =2 6.U,(3), then O5(G)C>) = C=) is
reducible and therefore G/C(*) = C, x Cy. In
particular G contains one of the isoclinic groups 6.
Uy(3):2; or 6.U4(3).2, (nonsplit extension). Since
the first group contains the group U; of the case
C(*) 22 6. L5(4) and the second group is reducible,
one gets a contradiction to the primitivity of G.

If C>) = Alts, then Alt;3 ® C5 is a uniform
normal subgroup of G and G is conjugate to A, ®
Aps.

In the case d = 24, the group G is already
irreducible. Using Propositions 5.1 and 5.2 one
gets the statement of Proposition 6.13. a

Case O,(G) = 1 for All Odd Primes p

Lemma 6.14. If G < GLyy(Q) is a primitive r.i.m.f.
group then O,(G) is one of Dy ® Qg, Qs O Qs,
QS O 047 087 D167 QD167 Q167 Q87 04, D87 or CZ'
Moreover, Cq(0O2(G)) £ O2(G).

Proof. Set B := B°(02(G)). If O(G) is conjugate
to one of the other 2-groups of Table 5, then NV :=
Ce(B) embeds in GL3(Q[(16]). In particular N is
soluble and O,(N) =1 for all odd primes p. Hence
N < B. Since Out(B) is a 2-group, B is of 2-power
index in G and therefore G is reducible. Also in
the other cases, Out(B) is a 2-group and therefore

Ca(0:(Q)) £ 05(G). O

To finish the proof of Theorem 3.1 it remains to de-
termine those primitive r.i.m.f. groups G such that
O5(@G) is one of the 11 groups listed in Lemma, 6.14.
The same lemma also implies that the centralizer
Cs(0O2(G)) contains a normal subgroup that is a
central product of some of the quasisimple groups
listed in Table 4. For the rest of this section,
assume that G is a primitive r.i.m.f. group with
O,(G) =1 for all odd primes p.



Proposition 6.15. If O,(G) = Dg ® Qs, then G is
conjugate to [SL2(5)2§;21_+4’.A1‘55]24.

Proof. The normal subgroup B := B°(0,(G)) is
conjugate to 2174 Alt;. The centralizer

+1 # Ca(B)

embeds in GL3(Q., »). Table 4 implies that

Ca(B)>) = SLy(5).

Hence G contains the uniform normal subgroup
SL2(5) 21+4 Alts and is conjugate to [SLy(5 é)
21,+4’ .A1t5]24.

Lemma 6.16. The r.i.m.f. supergroups of
U .= Alt7 &K Cg

are Ag @ Fy and Aj.

Proof. U fixes four lattices up to isomorphism. The
Bravais groups are conjugate to Sy ® Dys. The
Lemma follows with the 2-parameter argument. [

Proposition 6.17. If O,(G) = Qs O Qs, then G is
conjugate to one of Fy @ Eg, Fy @ Mg », [L2(7) éé)
Fylog, [Ly(7) @ Fyloa, Fy @ Ag, or Fy ® Ae

Proof. The normal subgroup B := B°(02(G)) of G
is conjugate to F;. The centralizer +1 # Cg(B) =
C embeds in GLg(Q). With Table 4 one finds that
C(*) is one of Alts, Ly(7) (2 matrix groups), Alty,
or Uy(2).

If C(>) = [,(7), then C(*)B contains an irre-
ducible subgroup = Cs¢. Since 2, 3 and 7 are the
only primes dividing |G|, Table 2 implies that G
is conjugate to [L2(7)25)F4]24, [L(7) 2) Fylos, or
F,® AP,

If C(>) 2 Alt,, then C*) B contains an irreduc-
ible subgroup Alt; ® Cs. From Lemma 6.16 one
concludes that G is conjugate to F, ® Ag.

If C(>) = Alt,, then C*) B is irreducible with
commuting algebra = Q[v/5]. With the 2-parameter
argument one gets that G is conjugate to Fy @ Mg ».
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If =) = U,(2), then C*)B is uniform and
lattice sparse and hence has a unique r.i.m.f. su-
pergroup. This is F; ® Eg. O

Proposition 6.18. If O,(G) = Qg O C,, then G is
conjugate to [(SLy(3) O 04).2f§l3l)U3(3)]24.
S}

Proof. The normal subgroup B := B°(0,(G)) is
conjugate to (SLy(3) O C}).2. The centralizer +1 #
Cg(B) = : C embeds in GLg(Q[v/—1]). Hence C>)
is one of Alts, SLy(5), L2(7) (2 matrix groups),
Alty, Us(3), or Uy(2).

If C>) 22 [,(7) or Us(3), the group C*) B con-
tains an irreducible subgroup = Css. Since 2, 3,
and 7 are the only prime divisors of |G|, Table 2

implies that G is conjugate to [(SLy(3) O 04).22\9/8
-1

Us(3)]24-
If O(=) = Alt;, then C*)B contains the sub-

group Alt; ® Cys contradicting Lemma 6.16.

If C(>) = Alt,, then OB is already irreduc-
ible. The Bravais group B(C(*)B, L) of a normal
critical lattice L is conjugate to Fy ® Alts, contra-
dicting O5(G) = Qs O C4

If () = SL,(5) or = U,(2), the group C'*'B

is uniform and one arrives at a contradiction. O

Proposition 6.19. If O,(G) = C, D167 QDg, or Qus,
then G is conjugate to [SLy(7) & Q16)24-

Proof. In all cases, G contains a normal subgroup
N 2 (Cg. The centralizer 1 # Cg(N) = : C embeds
in GLg(Q[¢s])- Table 4 implies that C(*°) is one of
Alts, SLy(5), L2(7) (2 matrix groups), Alt;, Us(3),
or Uy(2).

If C) 22 [,(7) or Us(3), then C>)N contains
an irreducible subgroup 2 Cs¢. Since the prime
divisors of |G| are 2, 3, and 7, one concludes from
Table 2 that G is conjugate to [SLy(7) 3 Q16)24-

If C(>) =~ Alt;, then C(®)N is conjugate to
Alt; ® Cs contradicting Lemma 6.16.

If (=) = Alt,, then C(*)N is irreducible. Ap-
plying the 4-parameter argument one gets a con-
tradiction.
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If C*=) = SL,(5), the Bravais group of C(*)N
of a normal critical lattice is conjugate to SL»(5).
Cy O 5'4, contradicting the fact that NV < G.

If C(*) =2 U,(2), then C®)N is irreducible. An
application of the 2-parameter argument yields a
contradiction. O

Lemma 6.20. Let U := Ly(7) ® SL2(3), and assume
that the commuting algebra of U is isomorphic to
Qs 2. Then the r.i.m.f. supergroups of U are con-

jugate to [2.Coulaa, [6.Us(3). 28SLy(3)as, [La (7))
Fylos, or Fy @ As.

Proof. Since U is already uniform, the lemma fol-
lows by an easy inspection of the ZU-lattices. [

Proposition 6.21. If O,(G) = Qg, then G is conju-
gate to [SLy(7) O Sylas, [SLa(11) e} SL2(3)]24, or
V11

[SLy(13) 13 SL (3)]s.

Proof. G has a normal subgroup B := B°(0:(G))
conjugate to SLy(3). Since the centralizer +1 #
Cu(B) = :C embeds in GLg(Q., 2) the group C(*)
is one of Alts, Alts %SL2(5), SLy(5), La(7) (2 ma-

trix groups), SL2(7), SLy(11), SL2(13), Alt7, Us(3),
Ui(2), Us(4), 2.5, or 2.G5(4) (see Table 4).
If C(=) = Alt, \(E/QQSL2(5), SLy(7), SLy(13), Us(4),
5

2..Jy, or 2.G4(4), then G(*) = C(=) is already irre-
ducible. Propositions 5.2 and 5.1 imply that G is
conjugate to either [SLy(7) O Sy]os or [SLy(13) 28)
SLy(3)]24-

If O(=) = Alt,, then C(*®)B is irreducible with
commuting algebra isomorphic to Q 5 . The
Bravais group on a normal critical lattice is conju-
gate to 2..Jy O SLy(5), contradicting O»(G) = Qs.

If C(>) = SL,(5), then G is imprimitive, be-
cause it contains the reducible normal subgroup
B(C*) B) = SLy(5) 0 SLy(3) of index two.

Now assume that C(*) 2 L, (7), where the natu-
ral character of C(*) is 4(xs, + X35). Since Q[v/—7]
does not split the quaternion algebra Q. ., the
group C*) B is an irreducible subgroup of GL,4(Q)
with commuting algebra Q = , ,. Moreover, G con-

tains C(*) B of index < 4 and one of the following
possibilities occurs:

(i) G is conjugate to one of the three groups Ly(7):
2 ® SLy(3), (iL2(7).2)\;®_SL2(3), or the split ex-
-1

tension L,(7) 5 SL,(3).
(ii) G is conjugate to the nonsplit extension L, (7) %
SL,(3).
(iii) G contains a subgroup conjugate to L,(7) ®
GL,(3) or Ly(7) ® S..
V-7

In the first case G is a subgroup of F} ®Ag2), and in

the second case G is a subgroup of [L2(7)25)F4]24.
In the last case G contains an irreducible subgroup
= (56, contradicting Table 2.

If C(>) = [,(7), where the natural character
of C(*) is 4y, then G contains the subgroup U
of Lemma 6.20 and one gets a contradiction to
0:(G) x 03(G) = Qs.

If C(>) 22 SL,(11), then C*) B is uniform fixing
the same lattices as its unique r.i.m.f. supergroup
[SL2(11)SL2(3)]24. Hence G is conjugate to this
latter groullg.

If C(>) = Alt;, then G contains the subgroup
U of Lemma 6.20 and one gets a contradiction to
0:(G) x 03(G) = Qs.

Now assume C(*) = Uy(3). Then C*)B is an
irreducible normal subgroup of G with commuting
algebra = Q, 5. Moreover |G/C(*)B| < 4, and one
of the following possibilities occurs:

(i) G is conjugate to Us(3): 2%SL2(3).
(i) G is conjugate to (£U3(3).2) O SL2(3) or to the
split extension Us(3) ) SL»(3).

V-1
(iii) G is conjugate to the nonsplit extension

Us(3) Jéé;TSLx?»)-

(iv) G has a subgroup conjugate to Us(3) @ GLy(3)
V-2
or U3(3)o(o®35’4

In the last case G contains an irreducible subgroup
> (6. Since 2, 3, and 7 are the only prime divisors



of |G|, this contradicts Table 2. In the first case
G is a proper subgroup of [6.U4(3).ZSL2(3)]24,

in the second case a subgroup of [(SLy(3) O Cy).
2(3
Z\D;ll)Ug(?))]M, and in the third case a subgroup of
-1
[2.Coy]24, contradicting the maximality of G.
In the last case C(*) = U,(2), the group C*)B
is already uniform fixing three lattices up to iso-
morphism. Since their automorphism groups are

conjugate to Fy ® Es and [6.U4(3).ZSL2(3)]24,
this is a contradiction to Oy(G) x O5(G) = Qs. O

Proposition 6.22. O,(G) is not isomorphic to Cy or
Ds.

Proof. In both cases G contains a normal subgroup
N = C,. The centralizer C' := Cg(N) embeds in
GL12(Q[v/—1]). Let A denote the natural repre-
sentation of G. The primitivity of G implies that
Alg=) = k- T for some rational irreducible repre-
sentation I': O — GL4(Q) with d = 24/k.

Since all subgroups of GL3(Q) are soluble, d > 3.

If d = 4, then C*>) is conjugate to Alts, and C
is reducible.

If d = 6, the possibilities for C*) are Alt;, L,(7)
(2 matrix groups), Alt;, or Uy(2). In all cases,
O,(G)C™) is reducible and [G:0,(G)C*)] < 2;
therefore G is imprimitive.

If d =8, then C(*) is conjugate to one of SLy(5)
or SLy(9) (see Table 4). Since Out(C*)) is a 2-
group, G is reducible.

If d = 12, then C(>) is conjugate to one of
SLy(5), SLa(11), L3(3), Us(3), 2. M, or Alty; (see
Table 4).

In the first case, C(>) 22 SL,(5), the group C(*) N
is reducible. The primitivity of G implies O,(G) =
Dg and G contains the uniform normal subgroup
C(*)0,(G) of index 2. Since the automorphism
group on a normal critical lattice is conjugate to

[SL2(5)2§>;21,+41 .Alts]a4, this is a contradiction.

If C=) = SL,(11), then C*)N is irreducible
with commuting algebra isomorphic to

QVIL, v=T].
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Applying the 2-parameter argument one gets a con-
tradiction to NV < G.

If C(*°) 2 [4(3), then C(*) N is already uniform.
Its unique r.i.m.f. supergroup is conjugate to A?,
contradicting the primitivity of G.

If (=) =2 Uy(3), then C(*)N is reducible. The
primitivity of G implies that O5(G) = Dy and the
uniform group C(*)0,(G) is of index 2 in G. The
group C(*®)0,(G) fixes up to isomorphism three
lattices and its unique primitive r.i.m.f. supergroup

is conjugate to [(SLy(3) O C4).22§13)U3(3)]24 contra-
-1

dicting O5(G) = Ds.

If () > 2. M;,, then C(*) N is already uniform.
Since the automorphism group of a normal critical
lattice is imprimitive, one gets a contradiction.

In the last case, C(*) = Alt,5, the group C(*) N
is uniform fixing up to isomorphism four lattices.
Its unique r.i.m.f. supergroup is conjugate to A%,
and imprimitive.

If d = 24, then O™) = G(*) is already irreduc-
ible. Propositions 5.1 and 5.2 yield a contradiction
to the assumption on Ox(G). O

Proposition 6.23. If G < GL34(Q) is a primitive
r..m.f. group with largest soluble normal subgroup
+1, then G is conjugate to one of these 12 r...m.f.

groups: [2.Coq]aq, [(SL2(5) O SLy(5)): 2%A1t5]24,1,
[(SLa(5) OSLy(5)): 2 % Alts)aass [SLo(13) 13 SLa(3)as,
[+Ls(11): 254, [2.Jo CISLa(5)]24, [SLo(7) ﬁL2(7)]24,

-7

[:I:U4(2).2]247 A24 , A4 ®A67 A4 ®Aé2), or A4 ®E6

Proof. Let A denote the natural representation of
G. The primitivity of G implies that A|g~) =
k-T for some rational irreducible representation I':
C*>) — GL4(Q) with d = 24/k. The assumption
on the Fitting group of G implies that C(G(*)) C
iG(OO)‘

Since all subgroups of GL3(Q) are soluble, d > 3.

If d = 4, then C) is conjugate to Alts, and C
is reducible.

If d = 6, one has the following possibilities for
C(®): Alt;, Ly(7) (two matrix groups), Alt;, or
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Uy(2). In all cases the group O,(G)C(™®) is re-
ducible and [G:0,(G)C™)] < 2; therefore G is
imprimitive.

If d = 8, then C(*) is conjugate to one of SLy(5)
or SL,(9) (see Table 4). Since Out(C(*)) is a 2-
group, G is reducible.

If d =12, then C*>) is conjugate to one of SLy(5),
SLy(11), L3(3), Us(3), 2. Mis, or Alty3 (see Table 4.
In all cases one has |Out(G(*))| = 2 and hence G
is imprimitive.

If d = 24, then G is already Q-irreducible
and the statement of the proposition follows from
Proposition 5.1 and 5.2. O
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F‘I
o
Qg
Qa,p,q
In
G/
G(=)
0,(G)
Op:(G)
o7 (G)
Cn
D>,
Qan
QDsx
SL, (q)
Alt,,
21+2n
p}l_+2n

S6(2), Us(2), ..
A B

C
AAB
AY B

o
A9eB
Out(Q)
1.1 F(G)
11 Fso(G)
1.1 2(@)
1.2 Aut(F,L)
12 B(9,L)
12 B(G, L)
1.4 L#(F)
1.4 ()
14 det(F,L)
1.8 An,...,Es
1.8 MY,
1.8 A
1.8 +A
1.8 N:H
1.8 N.H
1.8 AQB
1.9 A é@ B,

. generalized quasidihedral group of order 2" with presentation (a,b | a2 b*" ", b

field with ¢ elements

primitive m-th root of unity

quaternion algebra over QQ ramified at p and ¢ (with Hasse invariant %)

quaternion algebra over Qo] ramified at places over p and ¢ (with Hasse invariant })
n X n-unit matrix

derived subgroup of the group G

last term of the derived series of the group G

biggest normal p-subgroup of G

biggest normal subgroup of G of order prime to p

smallest normal subgroup of G with index prime to p

cyclic group of order n

dihedral group of order 2n

generalized quaternion group of order 2n

a_ b71+2"—2>
group of n X n-matrices over F, with determinant +1

Alternating group of degree n

central product of n copies of Dg

extraspecial p-group of prime exponent p # 2

. groups of Lie type in the notation of [Conway et al. 1985]

wreath product of the group A with B

subdirect product of the groups A and B amalgamated over the common factor group C
central product of the groups A and B with identified central subgroup C

subcentral product of the groups A and B amalgamated over the common factor group C
the outer automorphism group of G
space of G-invariant quadratic forms
positive definite cone in F(G)

set of G-invariant lattices
automorphism group of the pair (F, L)
Bravais group of F with respect to L
Bravais group of G with respect to L
dual lattice of L (with respect to F)
even sublattice of L (with respect to F)
determinant of L (with respect to F)) = |L#(F) /L]
root systems

lattices of Lo(p) of degree p + 1

lattices of Lo(p) of degree p — 1 (Craig lattices)
<A7 _I>

semidirect product of N with H

extension of N with H (usually nonsplit)

A %)B A z’S)B A8, A8B, A8 B, ete.

TABLE 6. Notations used in this article.
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The invariant forms of the primitive r.i.m.f. subgroups of GL4(Q) with d dividing 24 that are not

tensor products of forms of smaller dimension. For compactness, we write —x as .

TABLE 7.
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