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Circle packings are configurations of circles with specified pat-
terns of tangency, and lend themselves naturally to computer
experimentation and visualization. Maps between them dis-
play, with surprising faithfulness, many of the geometric prop-
erties associated with classical analytic functions. This paper
introduces the fundamentals of an emerging “discrete analytic
function theory” and investigates connections with the clas-
sical theory. It then describes several experiments, ranging
from investigation of a conjectured discrete Koebe % theorem
to a multigrid method for computing discrete approximations
of classical analytic functions. These experiments were per-
formed using CirclePack, a software package described in the
paper and available free of charge.

1. INTRODUCTION

The topic of “circle packing” is of relatively recent
origin and is a natural one for computer experimen-
tation and visualization. What may be surprising,
however, are the deep connections it shares with
classical complex analysis. These connections are
the subject of our paper.

Circle packings were introduced by Thurston,
first in the construction of hyperbolic polyhedra
and only later in connection with complex analy-
sis. In particular, Thurston [1985] conjectured that
maps between certain packings could be used to ap-
proximate classical conformal mappings. This con-
jecture was proved in [Rodin and Sullivan 1987];
many additional connections with analytic func-
tions have emerged since then. This is fertile new
ground for computer experimentation in, among
other topics, geometry, combinatorics, probabil-
ity, numerical approximation, and discrete com-
plex analysis. Our purpose here is to demonstrate
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features of the emerging theory through several ex-
periments, conducted using CirclePack, a software
package developed by Stephenson (Section 6).

A circle packing is a configuration of circles hav-
ing a prescribed pattern of tangencies. Our in-
terest lies in maps from one circle packing to an-
other that preserve tangency relationships. These
maps exhibit two related but distinct connections
to complex analysis: approzrimation and analogy.
Avoiding formalities for now, let’s begin with the
seminal example of approximation.

Approximation

Thurston’s conjecture concerned the approxima-
tion of a conformal map F' from the unit disc D
onto a domain Q. (We want to have F(0) = 0
and F'(0) > 0, but we’ll suppress the issue of nor-
malizations.) Three pairs of circle packings giving
successively better approximants are illustrated in
Figure 1. In each case the packing P; on the right is
a portion of a regular hexagonal packing—namely,
those circles whose centers lie in &—while (); on
the left is a repacking of the same combinatoric
pattern (that is, the circles have changed sizes and
locations, but remain tangent to one another in the

same pattern as P;) and is extremal in the unit
disc. The existence of ); follows from the Koebe—
Andreev—Thurston Theorem quoted later.

Given any such pair @Q);, P;, one defines a piece-
wise affine mapping f; that identifies the center of
each circle of (); with the center of the correspond-
ing circle of P;. The Rodin-Sullivan Theorem tells
us that such maps f; (appropriately normalized)
approximate the classical conformal mapping from
D onto . In particular, as the radii of the cir-
cles used to form P; decrease to zero, the piece-
wise affine maps f; : Q; — P; converge uniformly
on compact subsets of ID to the classical conformal
map F : D — Q.

Discrete Analogy

The analogy aspect of our topic is suggested when
one looks at individual maps, such as the f;’s in
Figure 1. One finds that each, in isolation, al-
ready displays many geometric properties tradi-
tionally associated with analyticity. That is, each
individual map between circle packings seems to
present us with an object that behaves geometri-
cally like a discrete analytic function. This per-
spective, spelled out below, is at the heart of our

THE FUNDAMENTAL ANALOGY

Classical analytic functions may be treated geometrically as mappings between domains. Globally, they must
be continuous and orientation-preserving; however, the key conditions are entirely local: At a generic point the
mapping is locally one-to-one and “conformal”. This means angle-preserving, but is typically recast as “maps
infinitesimal circles to infinitesimal circles”. At isolated critical points the mapping may be branched, meaning
that it has the local mapping properties of z — (z — a)k for some integer k& > 1.

In the discrete setting, the domains and ranges are circle packings. A map f : @ — P is said to be a discrete
analytic function if it preserves tangency and orientation: that is, if tangency of ¢;,ce in @ implies tangency
of f(c1), f(c2) in P. This is the discrete version of continuity. Any mutually tangent triple of circles in P gets
mapped to such a triple in Q); orientation-preservation is simply the requirement (assumed in the sequel without
further comment) that if the former triple is positively oriented in @, then so is the latter in P. We find that
the “local” mapping conditions are quite automatic: A flower in P consists of a circle ¢, the “center”, and the
closed chain {ci,...,c,} of successively tangent neighbors, the “petals”, and comparing a flower in @ to its
image flower in P, one sees the local mapping behavior of f. At a branch point, for example, the petals of the
image flower wrap more than once around its center.

Summarized rather loosely: A classical analytic function is a continuous orientation-preserving map carrying
one pattern of infinitesimal circles to another, while a discrete analytic function is a continuous orientation-
preserving map carrying one pattern of real circles to another.
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experiments, and we want to establish it firmly
here at the beginning because it provides a familiar
context for the entire paper.

In classical function theory, the Uniformization
Theorem allows one to concentrate on functions de-
fined on the three standard domains: the unit disc
D, the plane C, and the Riemann sphere S?>. Qur
discrete experiments can be arranged analogously:
The Discrete Uniformization Theorem, discussed
later, tells us that given an appropriate abstract
pattern for a packing, encoded in an abstract com-
plex K, there is an essentially unique extremal cir-
cle packing P, termed the “maximal packing” for
K. TIts circles have mutually disjoint interiors and
pack one and only one of the spaces D, C, or S?, de-
pending on K. (For instance, in Figure 1, the @;’s
are the maximal packings in D associated with the
combinatorics of the P;’s.) Maximal packings serve
as the standard domains for our maps.

Experimental Setup

Each of the discrete analytic functions f we con-
sider will map a maximal packing Py for some sim-
ply connected complex K to another circle pack-
ing P having the same combinatorics: f : Px — P.
We adhere to the following standard normalization.
A distinguished vertex of K is designated as o and
the corresponding circle is centered at the origin

in both Px and P; in other words, f(0) = 0. An-
other distinguished vertex of K, designated -y, has
its circle centered on the positive y-axis.

Examples

We present several examples, classified according
to their classical models. When K triangulates a
sphere, for example, Px and P must both pack
S?, so f : Py — P is a discrete rational function.
We will not be working with packings of S? in this
paper, but the reader may enjoy the illustration
in Figure 2. The domain is the univalent max-
imal packing, while the range is a seven-sheeted
branched cover of S* with twelve branch points (the
shaded circles). The combinatoric pattern of these
packings happens to be dual to that of the buck-
minsterfullerene molecule Cg.

If Px packs C, then f is clearly a discrete en-
tire or entire meromorphic function, depending on
whether P is a planar or spherical packing. Liou-
ville’s Theorem holds, so P cannot lie in a bounded
region; in fact, Callahan and Rodin [1993] have
proved an analogue of Picard’s Theorem (for the
hexagonal case), stating essentially that P must
cover the sphere, with the possible exception of at
most two points. Examples are difficult to display,
but Figure 3 demonstrates packings for a discrete

FIGURE 2. A discrete rational function.
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analogue f of the complex sine function: the top
diagram shows a portion @ of the domain, which is
mapped by f to the upper half of the plane in the
bottom (a regular hexagonal packing); note that
f(0) =0 and f(m/2) = 1. The full domain fills C
and is generated by reflecting ) in the real axis and
then repeatedly reflecting the result in its vertical
sides. Simultaneously, f is extended by Schwarz
reflection in the range. The reader can confirm
that the mapping properties mimic those of sin z.

FIGURE 3. A discrete sine function.

One finds much more flexibility among discrete
analytic functions on the disc—when Px packs D—
and that is where most of our experiments take

place. Figure 4 illustrates three examples, all with
the same complex K (and therefore the common
domain Pg). The first, f;, has a range packing
whose circles have mutually disjoint interiors; we
call it univalent. The function f, has a range pack-
ing that twists back over itself, covering some parts
of its range twice; we say it is a locally univa-
lent, (globally) two-valent discrete analytic func-
tion. The third function f; is a branched two-
valent function; the branch point is associated with
a circle in its range packing P whose chain of neigh-
bors wraps twice around it. This behavior is diffi-
cult to see in Figure 4, but we investigate it more
closely in the next section.

These examples are intended to give the reader
a basic intuition about discrete analytic functions.
The emerging theory seems remarkably faithful to
its classical counterpart: certain topological under-
pinnings are pro forma, but the rigidity imposed
by the circles seems to force a geometric behav-
ior tantamount to discrete analyticity. In addi-
tion to the Uniformization, Liouville, and Picard
Theorems already mentioned, one finds in the lit-
erature geometrically precise discrete analogues of
the Schwarz and Pick Lemmas, of Dirichlet-type
boundary value problems and the Perron method,
of distortion theorems, discrete versions of famil-
iar classes of functions, polynomials, exponentials,
Blaschke products, analogues of Brownian motion
and harmonic measure, and so forth. Also, each
discrete analytic function f induces a “ratio func-
tion” f#, defined later, whose behavior is remark-
ably like that of the modulus of a classical deriva-
tive.

Outline of the Paper

We investigate both the approximation and anal-
ogy facets of discrete analytic functions. The pa-
per begins with the basics of circle packing: termi-
nology, notation, existence and uniqueness results,
and numerical algorithms. In Section 3 we formally
define discrete analytic functions, state analogues
of certain classical theorems, and give the funda-
mental approximation results.
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FIGURE 4. Discrete analytic functions on the disc.

The strong parallels with classical theory mo-
tivate three experiments on the analogy side, de-
scribed in Section 4. Experiment #1 is aimed at
Dieudonné’s extension of the Schwarz Lemma, #2
at the Koebe i Theorem, and #3 at generation
of a discrete entire function. The fact that dis-
crete functions also numerically approximate their
classical models motivates four experiments on the
approximation side, described in Section 5. Ex-
periments #4 and #5 approximate finite Blaschke
products and complex polynomials; #6 approxi-
mates disc algebra functions with specified bound-
ary curves; and #7 returns to the conformal map-
pings first proposed by Thurston, introducing a

“multigrid” method that shortens packing compu-
tations considerably.

The paper’s experiments were carried out and
the images generated using CirclePack, a software
package developed by the second author (see Sec-
tion 6). The multigrid method is implemented us-
ing specialized routines by the first author, exe-
cuted through CirclePack. Needless to say, the
live experiments and animated sequences of im-
ages available using CirclePack are far more in-
formative than the few isolated images we could
present here. The reader is encouraged to acquire
the software by anonymous ftp (see the section on
Electronic Availability at the end). Accompanying
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scripts allow one to run through most of the exper-
iments and images of the paper using nothing more
than mouse clicks. For the more involved reader,
just a handful of rudimentary commands in Cir-
clePack will permit open-ended experimentation—
and there is a lot of new, unexplored territory.

2. BASIC CIRCLE PACKING

The key to working with circle packings lies in rec-
ognizing their dual natures: combinatoric on one
hand and geometric on the other. To illustrate
in a simple case, take the euclidean circle packing
of Figure 5 (left). Its (euclidean) carrier, denoted
carr P, is the geometric two-complex shown on the
right, formed by centers of circles, edges joining
the centers of tangent circles, and faces formed by
mutually tangent triples of circles. We encode the
combinatorics of the packing in the abstract sim-
plicial two-complex K that is simplicially equiva-
lent to carr P. The geometric information resides
in a vector R = {py, p1,...} that has a radius p,
for each vertex v; of K (that is, for each circle of
P). We call K(R) a labeled complex and write
P ~ K(R) to indicate the association with P. The

FIGURE 5.

centers of the circles would also seem to be impor-
tant in our bookkeeping; but in fact, as we will see,
they are essentially determined by K and R.

The labeled complex is the central organizing
mechanism for all our subsequent work. One typ-
ically does not expect things to be as straightfor-
ward as in Figure 5, however: Radii may be in one
of three different geometries; packings may twist
around, with carriers that overlap themselves; they
may have branch circles; they might even have in-
finitely many circles; and so forth. One can see
the potential variety from illustrations in Section 1.
The best way for the reader to develop intuition
is by hands-on manipulation using CirclePack—
which, incidentally, also uses labeled complexes for
its bookkeeping.

Two circle packings @ and P have the same com-
binatorics if they share the same complex K, and
in this case there is a natural circle packing map be-
tween them that identifies corresponding circles—
that is, circles associated with the same vertex of
K. These maps are the subjects of our experi-
ments. We work primarily in the euclidean plane
C and the hyperbolic plane, represented here as
the unit disc D with the Poincaré metric.

Left: A univalent euclidean packing. Right: The shaded object is the packing’s carrier.
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Combinatorics

The abstract pattern of tangencies in a packing—
which circles are supposed to be tangent to which
others—is referred to as the packing’s “combina-
torics” and is encoded in K. The appropriate con-
ditions on K are most easily captured as follows:
The complezx K is (simplicially equivalent to) a tri-
angulation of an oriented topological surface. Fur-
thermore, we restrict attention here to complexes
K that are simply connected and of bounded de-
gree; the latter condition means that there is a
finite bound on the number of vertices neighboring
any one vertex. Two technical conditions are also
assumed without further comment: namely, every
boundary vertex of K must have at least one inte-
rior neighbor, and the set of interior vertices must
be edge-connected.

When K is finite—as in any concrete experimen-
tal situation—it triangulates either a closed topo-
logical disc (the typical situation in this paper) or a
sphere (if it has no boundary). Infinite complexes
K that we encounter will be triangulations of open
topological discs.

Geometry

The geometry of an actual circle packing for K
resides in the radii and centers of its circles. In fact,
the bookkeeping is best handled by concentrating
on the radii, which may be treated as parameters.
In particular, let D denote one of the geometric
spaces S?, C, or D. A vector of positive numbers,
denoted R = {py, p1, ...} with an entry p; = R(v;)
for each vertex v; of K, is termed a label for K
(in the geometry of D), and we refer to K(R) as a
labeled complex. Of course, most labels R will not
be compatible collections of radii: circles of these
sizes just wouldn’t fit together in D according to
the prescription of K.

Necessary and sufficient conditions for geometric
compatibility are given in terms of angle sums: Fix
a vertex v of K. For each face (v,u,w) € K, circles
of radii R(v), R(u), R(w) may be arranged in the
prescribed geometry to form a mutually externally

tangent triple. The appropriate law of cosines then
gives an angle at v in the geometric face formed by
the centers of these circles. Summing the angles
over all faces of K containing v gives the angle
sum at v, denoted (v) = Or(v). If v is an interior
vertex, circles having the radii associated with v
and its immediate neighbors can be fit together in
D to form a coherent flower if and only if

Or(v) = 2mn for some integer n = ng(v) > 1.

(2.1)
This is known as the packing condition for R at
v. The integer n — 1 is called the order for v; the
neighbors of (the circle for) v wrap 7 times around
it. When the packing condition (2.1) holds for all
interior vertices v, we say that R is a packing label
for K.

Theorem. Suppose K 1is a simply connected com-
plex and R is a label for K in the space D. Then
R records the radit of some circle packing P for
K in D if and only if R is a packing label. The
packing P ~ K(R) is uniquely determined up to
automorphisms of D.

Given a packing label R for K, an associated cir-
cle packing P is easily constructed. We describe
the procedure as implemented in CirclePack: Re-
call that two distinguished vertices of K have been
designated as « and y. We build P by first cen-
tering a circle of radius R(«) at the origin. Next
a vertex v neighboring « is chosen (the default in
CirclePack is the first entry in the stored list of
all neighbors of @) and a circle of radius R(v) is
drawn tangent to the circle for a with center on the
positive x-axis. Now, remaining circles are added
successively, each placed (with proper orientation)
only after two contiguous neighbors have already
been drawn. The conditions on our complexes en-
sure that all circles may eventually be placed and
the packing condition (2.1) on interior radii guar-
antees that the order in which they are placed is
irrelevant. A final normalization rotates the whole
collection of circles so that the one associated with
vertex + is centered on the positive imaginary axis.
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(This seems to work best for visual clues to packing
symmetries.) The final configuration P is what we
term essentially unique, that is, it is determined
up to placement of the initial two circles (in other
words, up to an automorphism of the underlying
space D).

The natural simplicial map from K to carr P
provides an immersion of K in the space D. If v is
a vertex of K for which ng(v) = 1, the immersion
is locally univalent at v. If n > 2, the immersion
has multiplicity n at v, and v is said to be a branch
point (or branch vertex or branch circle) of order
n — 1. As we will see, different packing labels R
provide different immersions.

Maximal Packings

The above discussion begs the question of whether
there exist any packing labels for a given K. The
seminal result in the topic addresses this [Morgan
1984]:

Theorem (Koebe-Andreev-Thurston). Let K be a tri-
angulation of S?. There exists a circle packing Py
in S? whose carrier is simplicially equivalent to K.
Moreover, the circles of Px have mutually disjoint
interiors, and Pyg is unique up to automorphisms
and inversions of S?.

Generalizations and extensions of this theorem say
that for each (simply connected) complex K there

exists an essentially unique canonical packing de-
noted Py, which we call the mazimal packing for K
[Beardon and Stephenson 1990]. The appropriate
space, C, D, or §?, is determined by the combina-
torics of K, and we call K parabolic, hyperbolic, or
elliptic, accordingly. The maximal packing label
associated with Pg will be denoted by Rg. (Max-
imal packings may be defined using covering the-
ory even for nonsimply connected complexes; see
[Beardon and Stephenson 1990].)

Maximal packings enjoy the following properties:

e They are always univalent.

e When K triangulates the sphere, Px packs S?
and K is elliptic.

e When K is finite but has boundary vertices—
the situation that pertains in nearly all the pack-
ings of the paper—Px is the so-called Andreev
packing of D, in which all the boundary circles
are horocycles; in a completely natural way, a
horocycle in D may be treated as a circle hav-
ing infinite hyperbolic radius and center at the
point of tangency with the unit circle T. In
particular, for each vertex w € 0K, we have
Ry (w) = 0.

e Infinite complexes must be either hyperbolic or
parabolic. We will use only two parabolic com-
plexes in the sequel: the hexagonal complex H,
whose maximal packing is the familiar “penny
packing” of Figure 6, left, and the “ball bearing
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FIGURE6. Left: The penny packing Py. Middle: The maximal packing Pp of the ball-bearing complex. Right:

The regular heptagonal packing (of the hyperbolic plane).
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complex” B of Figure 6, middle. (The normal-
izations for Py and Py depend on the circum-
stances.) By way of contrast, the last part of
Figure 6 illustrates the regular heptagonal cir-
cle packing, which is infinite but hyperbolic.

Results

Here we accumulate the basic theoretical results
on circle packing that underlie our experiments.
(They represent a consolidation of results from a
variety of sources.) Assume that K is finite and
simply connected, with boundary—that is, it tri-
angulates a closed topological disc. Of first impor-
tance, of course, is the existence of an essentially
unique maximal packing Py, as noted previously;
in this instance, Pg packs D. Its “maximal” nature
is reflected in the first result:

Discrete Schwarz Lemma. If R is a hyperbolic pack-
ing label for K, then R(v) < Ry (v) for every ver-
tex v of K. Moreover, equality at a single interior
verter v implies R = Rx.

Global Monotonicity Lemma. Let R; and R, be pack-
ing labels for the (hyperbolic or euclidean) complex
K. If Ri(w) < Ry(w) for every boundary vertex w,
then R;(v) < Ry(v) for every vertex of K. More-
over, equality at a single interior vertex v implies

R] = Rg.

Dirichlet Boundary Radii. Let g be a positive func-
tion defined on the boundary vertices of K. Then
there exists a unique euclidean packing label R, for
K with the property that R,(w) = g(w) for every
boundary verter w. The analogous result holds for
hyperbolic packings, with the added feature that g
may assume the value oco.

Dirichlet Boundary Angle Sums. Let ¢ be a positive
function defined on the vertices of 0K, and assume
that there is some euclidean packing P ~ K(R)
such that o(w) < Or(w) for every w € OK. Then
there exists a unique packing label R' for K so that
Or (w) = @(w) for all w € OK. The analogous
result holds in the hyperbolic setting, with the added
feature that ¢ may assume the value 0.

The Dirichlet results provide the theoretical basis
for most of our packings; note, in fact, that a max-
imal packing in ID is the solution of the hyperbolic
Dirichlet problem with boundary radii specified to
be infinity. Fortunately the solutions of these prob-
lems are effectively computable, meaning that one
can compute approximations to any desired degree
of accuracy. CirclePack employs an iterative algo-
rithm first proposed by Thurston: For instance, to
solve a typical boundary radius problem, one first
assigns the specified radii to boundary vertices of
K and arbitrary radii to the interior ones, giving
an initial label R;. Now, one repeatedly visits the
interior vertices and upon each visit adjusts that
component of the label so that the angle sum at
that vertex is 2w. The succession of adjusted la-
bels will converge to the desired packing label. (See
[Bowers 1993], for instance.) The algorithm is an
issue in Experiment #7; we also discuss CirclePack
further in Section 6. Finally, we point out that our
theoretical and computational results hold equally
well when the packings share a common branch set,
as described in the next section.

3. DISCRETE ANALYTIC FUNCTIONS

In spirit, a discrete analytic function f is a map
between circle packings that preserves tangencies
and orientation. Specifically, if @) and P are two
circle packings with the same combinatorics, then
f:Q — P is the map that identifies corresponding
circles. This is slightly abstract for our purposes,
however, so let’s establish notation and give a more
concrete definition.

Denote the vertices of K by {vg,v1, v, ...}, with
vp = «, the distinguished interior vertex used for
normalizations. In the domain packing ), denote
the circle associated with v; by Cj;, the radius of
C; by r;, and the center of C; by z;; in the range
packing P denote the analogous quantities by c;,
pj, and w;. (Note that the radii and centers de-
pend on the geometry; a packing in D, for instance,
might be treated as hyperbolic, euclidean, or spher-
ical depending on the circumstances.)
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Definition. A discrete analytic function f between
two circle packings ) and P sharing the same com-
plex K is a simplicial map

f :carr@Q — carr P

satisfying f(z;) = w; for j = 0,1,2,.... The asso-
ciated ratio function f# is the real function defined
on the centers by

#(y )= Pi_ TAdIUSC
() r;  radiusC;’

radiuse; g 01,2,

The key condition on f is that it map centers to
corresponding centers; from there, its simplicial na-
ture (i.e., mapping edges to edges and faces to
faces) can be arranged in various ways—for in-
stance, using some type of barycentric coordinates.
In any case, the resulting map f is continuous,
open, discrete, and orientation-preserving, impor-
tant mapping properties paralleling classical ana-
lytic functions. We will see that the ratio function
f#, which after all reflects the factor by which a
circle is stretched or shrunk under f, plays the role
of the modulus of the derivative of f; it too could
be extended in some ad hoc way to all of carr @,
but we only use its values at the centers z;.

As we have said, in spirit f is a map between
circle packings, and so, despite the formal defini-
tions, we will frequently abuse notation: In place
of f : carrQQ — carr P, we generally just write
f:Q — P. We may well say ¢; = f(C;), though
technically this is not true of the circles as point
sets under the map f between carriers. The vertex
v; of K, its circle C;, and the center z; of C; are
so strongly identified that we may refer to f(v;)
when we actually mean f(z;), and to f#(v;) when
we mean f#(z;). In discussing branching below,
we attach the same meaning to the statement that
“v; is a branch vertex of K” or “c; is a branch cir-
cle of P” as we do to the formally correct “z; is a
branch point of f”.

We are now in a position to state various results
in forms reminiscent of their classical models. For
instance, the existence and essential uniqueness of
the maximal packing Px may be interpreted as

a discrete version of the Uniformization Theorem:
Within the combinatoric regime dictated by K, we
may view P in the role of a general simply con-
nected Riemann surface. The packing Py is the
“standard” domain for K—packing one of S?, C,
or D, depending on K.

Discrete Uniformization Theorem. Assume that P is
a circle packing whose compler K is simply con-
nected. There exists a discrete analytic function
f : Px — P, where Px is (that is, packs) the
sphere, the plane, or the unit disc. The function f
is unique up to automorphisms of Pxk.

In our experiments, the domain packing @ is al-
ways Pk, the maximal packing for K in its native
geometry. The image packing P will be considered
in a geometry appropriate to the circumstances.
Our standard normalization places vertex « at the
origin in both Pg and P, so f(0) = 0, and places
the vertex v on the positive y-axis in both domain
and range.

The branch structure of f : Px — P requires
some explanation: Suppose v is an interior ver-
tex of K and {uj,us,...,u;} is the closed chain
of neighboring vertices. The associated circles of
Py form a necessarily univalent flower, with the
angle sum 0g,(v) = 27. In the range packing
P ~ K(R), however, the corresponding chain of
circles {¢, s, . . ., ¢t} may wrap some number 7 of
times around v, meaning Og(v) = (27)n; thus v is
associated with a branch point of order n—1 for f.
Figure 7 illustrates a flower from Py with six petal
circles and the corresponding branched flower from
P; in the latter, the petals wrap twice around the
shaded center (n = 2), for a simple branch point.

The collection § of branch vertices, each repeated
according to its order, is called the branch set of f.
Combinatoric necessary and suflficient conditions
on branch sets are described in [Dubejko 1995]: 8
is a branch set for some f if and only if every sim-
ple closed edge-path ¢ in K has at least 2k + 3
edges, where k is the number of points of § that o
encloses. This condition is easily verified when the
vertices of B are not too crowded together, and no
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FIGURE 7. Local behavior at a branch point.

difficulties arise in arranging the branch points in
our experiments.

The circle packing map f3 of Figure 4 has one
simple branch point; indeed, the flowers of Fig-
ure 7 are taken from its domain and range. The
structure of P; is actually not so complicated if
one views it as being comprised of two “sheets”, as
suggested in Figure 8: when these sheets are cross-
connected along the indicated branch cut ending
at the branch circle, they project to form P;.

FIGURE 8.

Sheets pasted to form a branched packing.

Discrete Analogy

We hope that the analogy with analytic functions
is clear to the reader. It might help to restate (and
extend) the Discrete Schwarz Lemma of the previ-
ous section in the new terminology.

Discrete Schwarz-Pick Lemma [Beardon and Stephen-
son 1990, Lemma 5]. Let f : Px — P be a discrete
analytic function with P C D and f(0) = 0. Then
F7(0) < 1, with equality if and only if f is an auto-
morphism of D. Moreover, if d denotes hyperbolic
distance in D, then

d(f(z), f(zx)) < d(zj, 21)

for any two interior centers z; and z, of Pk, with
equality if and only if f is an automorphism of D.

In Section 1, we mentioned several other specific
parallels, though in less precise terms. The Dis-
crete Liouville Theorem, for instance, would say
that there is no nontrivial discrete analytic func-
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tion defined on the plane (that is, with a parabolic
complex) whose image lies in a bounded region of
the plane. We leave formulations of other stated
results to the reader. Experiments with further
analogies are described in the next section.

Discrete Approximation

We are also in position, now, to quote the funda-
mental approximation result in the terminology of
discrete analytic functions. Here 2 is a bounded
simply connected domain in the plane with dis-
tinguished points a,b; the P;, for j = 1,2,..., are
univalent circle packings lying in Q2 with complexes
K;. Write f; for the univalent discrete analytic
functions f; : Pk, — P;.

Theorem. Using the notation established above, as-
sume the following conditions:

(1) The radius of the largest circle of P; goes to zero
as j goes to infinity.

(2) The carriers of the P; exhaust €.

(3) The degrees of the K; are uniformly bounded
above.

4) f;(0) — a as j goes to infinity.

(5) f]fl(b) >0 for all j.

Then the discrete analytic functions f; converge
uniformly on compact subsets of D to the classical
conformal mapping F : D — Q satisfying F(0) = a
and F~1(b) > 0. Moreover, the ratio functions f]#
converge uniformly on compact subsets of D to |F”|.

The convergence f; — F was proven in [Rodin and
Sullivan 1987] in the case that the K; are hexagonal
complexes, confirming Thurston’s 1985 conjecture.
It was extended to general complexes in [Stephen-
son 1990], though with an added assumption of a
uniform bound on the ratios of the radii of any two
circles from P;. The result as stated is proven in
[He and Rodin 1993].

Because analyticity is a local property, this orig-
inal conformal case has wider implications. By re-
laxing global univalence and incorporating branch
points, Dubejko has shown how to approximate,
first finite Blaschke products, then polynomials,

and thereby general analytic functions on D [Du-
bejko 1995; a]. Also, by results in [Dubejko and
Stephenson 1995|, convergence f; — F' in any of
these settings implies convergence fj# — |F'|. Our
experiments involving approximations are in Sec-
tion 5.

4. DISCRETE ANALOGY

Our first three experiments address analogies be-
tween discrete and classical analytic functions. Ba-
sic topological parallels—open mapping, discrete-
ness, orientation, and so forth—come free in the
discrete theory because we use simplicial maps. It
is only with the circles, however, that we acquire
the geometry and rigidity so reminiscent of classi-
cal analyticity.

Experiments #1 and #2 investigate fundamen-
tal geometric constants. Both suggest not only
that analogous constants exist in the discrete the-
ory, but that they may be quite close to their classi-
cal values. (We display only a representative sam-
ple of our experimental trials.) Of course, experi-
ments alone prove nothing. They can be valuable,
nonetheless, particularly since in some sense it is
“coarse” circle packings, those with small numbers
of circles, that should be considered; by the approx-
imation results, one expects the discrete analytic
functions based on very “fine” circle packings to
reflect the behavior of classical analytic functions.

Analogy is a two-way street, of course, and Ex-
periment #3 attempts to use classical motivations
to address an existence question in the discrete the-
ory.

Experiment #1: The Dieudonné-Schwarz Lemma
According to the classical Schwarz Lemma, if F' :
D — D is analytic with F'(0) = 0, then |F'(0)| < 1,
and we have seen the discrete version stated above.
However, there is an extension of the classical re-
sult due to Dieudonné that shows that

1 for |2] < v2 -1,

(1+12%)*

4)z|(1 - |z[?)

F'(2)] <
=) < for vV2-1< 2| <1,
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and these bounds are sharp. Does this also carry
over to discrete analytic functions? In this section
we consider the inequality for |z| < v/2 — 1, and in
Section 5 the inequality for |z| > v/2 — 1. Since we
are following an experimental philosophy here, we
pose the question as a hypothesis:

Hypothesis. There exists a universal constant C; >
0 so that the following holds: If K is hyperbolic
and f : Px — P is a discrete analytic function
with P C D and f(0) = 0 and if z is the (hyper-
bolic) center of a circle of Px with |z| < Cy, then

Az <1

Figure 9 illustrates a simple prototype experiment.
The maximal packing Pk is on the left, the range
packing P on the right. CirclePack was used to
compute the ratio of euclidean radii of circles in P
to their counterparts in Px and to shade in the cir-
cles in Pk for which this ratio exceeds 1. The Hy-
pothesis concerns how closely the centers of these
shaded circles can approach the origin. For pur-
poses of reference, the classical “exclusion zone”,
the region wherein the modulus of the derivative
cannot exceed 1, is indicated by a circle of radius
V2 — 1 superimposed on Pk.

There is an endless supply of experiments to try:
different complexes, choices of branch point(s), and
choices of boundary radii. As a challenge, we de-
cided to fix a complex—the one underlying Fig-
ure 9—and see which circles we could force to be-
come shaded. Imagine this as a video game:

PackMan. The domain Px on the left of your screen
is fixed, and on the right is another hyperbolic
packing P for K. With your controls you can
change the boundary radii and/or branch structure
of P. With each change, CirclePack immediately
recomputes the new P and then shades any cir-
cle of Py that happens to be (euclideanly) smaller
than its new counterpart. Your goal is to manip-
ulate P so as to shade as many circles of Px as
possible (thereby saving the planet).

Figure 10 displays the accumulated results—we did
our best, but were not able to shade any circles
having centers of modulus less than v/2 — 1.
What’s your best strategy? How can you force
the shading closer to the origin? The game is quite
intriguing: The Discrete Schwarz Lemma implies
that a circle of P is hyperbolically smaller than its
counterpart in Pg; thus the only hope that it be

FIGUREY. Prototype of Experiment 1. The inner circle in the domain represents the exclusion zone, of radius

V2 1.
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FIGURE10. Accumulated PackMan trials with fixed K.

euclideanly larger is to force its center towards the
origin in P. There are two ways you might try to
arrange this: either by introducing branch points
in P, thus sweeping some of its circles towards the
origin, or by decreasing some boundary circles of
P, in the hope of pulling others towards the origin.

The first approach has a classical precedent: The
functions that show the sharpness of Dieudonné’s

FIGURE 11.

classical constant are twofold Blaschke products.
The discrete analogue would involve a packing P
having a single branch point and infinite boundary
radii. More about such functions in Section 5.

The second approach is a tricky balancing act:
When you reduce boundary circles, the repacking
computations (to form the new P) will bring circles
towards the origin while simultaneously shrinking
their hyperbolic radii. To see how delicate nature
is in balancing these competing effects, consider
the discrete analytic function f of Figure 11: The
packings Pk and P are quite similar. Visualize P
as being obtained from Px by pushing in to make a
small dent in D near w = . As one might expect,
reducing circles to make this dent while keeping
the origin fixed forces a stretching behavior on the
opposite side of the origin, and that is reflected in
the shaded circles of Px. Note that some of their
centers lie perilously close to the classical exclusion
zone.

All our experiments tend to support the exis-
tence of a discrete exculsion zone of some radius
C; about the origin, and only recently did we find
a situation that cracks the classical barrier, show-
ing that C;—if it exists—is necessarily less than
v/2—1. The example f is shown in Figure 12. The
range packing P has a branch circle far out near

A delicate balance.
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FIGURE 12.

the boundary, which accounts for the large horocy-
cle covering most of the disc. There is one vertex
v whose circle is shaded and penetrates the exclu-
sion zone, its center having modulus approximately
0.378; we point out, however, that it is a very near
thing since f#(v) = 1.0000112 just barely exceeds
1 in this example. (Our thanks to Richard Rupp
for running the experimental trials that suggested
this function.)

In summary, there seems to be a discrete exclu-
sion zone somewhat smaller than the classical one.

Experiment #2: Koebe’s | Theorem

The classical Koebe i Theorem may be restated
as follows: Let F' be analytic and univalent on the
unit disc D, with F(0) = 0. If its range F(D) fails
to contain the closed unit disc D, then |F'(0)] < 4;
this bound is sharp. Our experiments probe the
discrete analogue. For A > 0, let D()) denote the
disc {|z| < A}

Hypothesis. There exists a universal constant Cy so
that the following holds: Let K be hyperbolic and
let f : Pk — P be a univalent discrete analytic
function with f(0) = 0. Suppose carr Px contains
the disc D(X). If carr P fails to contain the closed
unit disc D, then f#(0) < Cy/A.

Penetrating the classical zone.

For the classical theorem (wherein ) is 1), the sharp
bound is 4. Is the discrete result true with C, equal
to 47 Approximation results imply that C,—if such
a constant exists—can be no smaller than 4.

This problem highlights some more-or-less typi-
cal discretization issues that can arise when mim-
icking a continuous theory. For instance, what do
we mean by the range of f?7 We have chosen to
interpret this as the carrier of P; in our runs, then,
we can avoid covering D by having some boundary
circle of P centered at the point w = 4. Like-
wise, we are forced to consider the carrier in the
domain, which is why the disc D(\) is needed in
the Hypothesis. Let Ax < 1 denote the supremum
of those A with D(A) C carr Px. Then Ak can
be arbitrarily small, depending on K and vy, and
we must account for it in the bound on f#(0)—
just consider that D(Ax) plays the role of domain
played by the unit disc D(1) in the classical setting.

Next, what is the most appropriate interpreta-
tion of univalence? In the Hypothesis, we mean
that the circles of P have mutually disjoint inte-
riors. However, that turns out to be difficult to
arrange computationally; there are as yet no uni-
valence criteria in circle packing (no analogues, for
example, of Nehari’s condition) that might tell you
from the radii alone whether a packing P will be
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FIGURE 13. Prototype of Koebe Experiment. The thick circle in the range is the unit circle.

univalent when laid out. For practicality’s sake, we
substitute the weaker condition of carrier univa-
lence, meaning that the carrier of P is univalently
immersed in C. This encompasses more functions,
so any constant obtained provides an upper bound
on the constant C, of the Hypothesis.

In the classical theory, the extremal functions are
derived from the Koebe function k(z) = z/(1—2)2.
Specifically, multiply this by 4 and rotate clockwise
by m/2 to get F(z) = —4ik(z), which is a classi-
cal univalent analytic function satisfying F'(0) = 0
and with range C\{iy : y € [1,00)}. Its image re-
gion, in essence, has had its boundary pushed off
to infinity, apart from a portion that sneaks in to
capture the point w = 4, thereby failing to cover D.
A computation shows that |F'(0)] = 4. We model
our discrete experiments on F'.

The prototype experiment is shown in Figure 13.
Here A\x =~ 0.82, so our aim is to compare f#(0)
to 4/Ak ~ 4.88. The carrier of P omits the imag-
inary axis from w = % up; our normalization and
the combinatoric symmetry of K were chosen to
aid the reader in interpreting the pictures. In this
instance, we forced P to form a deep notch by pre-
scribing certain boundary angle sum conditions:

(@) The bottom of the notch, enlarged in the right-
hand panel of Figure 13, was formed by two
neighboring boundary circles with angle sums
prescribed at 377.

(b) Each side of the notch was formed by two bound-
ary circles having prescribed angle sums of 7.

(c) The remaining boundary circles had no angle
sum constraints, but rather had large prescribed
radii.

This is a mixed Dirichlet problem. There exists
an essentially unique circle packing satisfying these
three conditions, and the approximate solution was
computed with CirclePack; normalization places
the proper circle at the origin and ensures that
the bottom of the notch reaches w =~ i. The re-
sult is the packing P displayed in Figure 13. Care
was taken in specifying the radii of condition (c) to
maintain univalence (and in this case, symmetry).

The value of f#(0) obtained is 2.36. It is clear,
however, that we can improve on this. The idea
is to further increase the circle at the origin by
tightening up conditions (a), (b), and (c): make
the notch sharper, include more circles in its sides,
and enlarge the remaining free boundary circles,
and do this while keeping the packing univalent.
Two additional trials are shown in Figure 14. The
values of f#(0) were increased to 3.06 (top row)
and 3.38 (bottom row).

We applied an additional technique, which was
suggested by one of the referees of this paper, to
get even more out of this same K. Namely, we aug-
mented K by adding seven edges, one to connect
each circle on the left side of the notch in Figure 14
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FIGURE 14. Two experiments to explore the bound in the circle-packing equivalent of Koebe’s theorem. On
the top, f#(0) = 3.06, and on the bottom, f#(0) = 3.38.
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FIGURE 15. Augmenting the complex pushes the bound further, to 3.68.
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(bottom) to its counterpart on the right; seven ad-
ditional vertices are thrown in to triangulate the
quadrilateral interstices thus formed. Any univa-
lent packing of the augmented complex yields a
univalent packing of K. The packing for this aug-
mented complex is shown in Figure 15, with the
new edges and circles appearing as dashed lines.
Comparison with Figure 14 (bottom) shows that
this technique draws the two sides of the notch
much closer together while preserving univalence.
By trying various boundary conditions, we have
been able to push the value of f#(0) to approxi-
mately 3.68.

The packing of Figure 16 is approaching the ex-
treme situation for the prototype complex using
our techniques: Some of its boundary circles over-
lap one another severely, but the packing remains
carrier-univalent. The notch is deep and straight
and the outer free boundary circles are huge. None-
theless, the value of f#(0) reaches only 3.84, still
well within the working bound of 4/\g ~ 4.88.

We have experimented with numerous complexes
and packings, but have yet to find one for which the
hypothesis fails with C, equal to the classical con-
stant 4. Large values for f#(0) seem to arise from
Koebe-like functions; attempts to vary from pack-
ings mimicking regions with single straight slits
have led invariably to smaller values.

Experiment #3: The Error Function

It is evident that any attempt to study infinite cir-
cle packings would encounter experimental prob-
lems. However, there are also considerable theo-
retical hurdles. The fundamental issue for an in-
finite complex K concerns the existence and va-
riety of packings. The entries of the associated
infinite packing labels R = {p, p1,...} must sat-
isfy an infinite system of equations—namely, the
angle sums of interior vertices must be multiples
of 2. There are currently very few methods for
generating solutions. Indeed, the only examples so
far are these: Maximal packings for infinite com-
plexes; discrete polynomials created in [Dubejko al;
univalent packings filling simply connected plane
domains [He and Schramm)]; ad hoc constructions,
such as the sine function described in Section 1 (see
Figure 3); and “Doyle spirals”.

We restrict attention to the hexagonal case, with
complex H, where progress is most likely. If P is a
circle packing for H, the discrete analytic function
f : Pg — P would be an example of a discrete en-
tire function. We know some things, a priori, about
such packings P. For instance, by the discrete Pi-
card Theorem [Callahan and Rodin 1993] (which
can be extended to include branched packings), P
must cover all of C, with the possible exception of
one point.

FIGURE 16. Approaching the extremal for the prototype.
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FIGURE 17. A selection of Doyle spirals.

How many packings P are there for H? By Sul-
livan uniqueness, any univalent P is a Mobius im-
age of Pgy; that is, f is a linear polynomial. A
recent result [Dubejko 1996] yields the same con-
clusion if f# is bounded. As for nonunivalent pack-
ings, Dubejko created finitely branched packings P
whose carriers are finite valence (branched) covers
of C; these are discrete polynomials. An observa-
tion of Peter Doyle leads to a two-parameter fam-
ily of “Doyle spirals” like those shown in Figure 17;
the function f in each case behaves as a discrete
exponential function. There are as yet no other
packings known for H, and the search for further
examples motivates the experiments in this section.

We begin by looking more closely at the spirals.
First, note in Figure 17 that the packings are in-
deed hexagonal: every circle is tangent to six oth-
ers. The circles spiral in towards a point, which we
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take to be w = 0, and out towards infinity. These
spirals should be pictured as lying on the univer-
sal cover of C* = C\{0}; each circle is actually a
projection to C* of infinitely many circles on this
universal cover. In order to get reasonable illus-
trations we have chosen pairs of parameters which
cause the circles to line up with one another from
one sheet to the next. (See [Beardon et al. 1994]
for a complete analysis of Doyle spirals.)

Figure 18 shows the domain and range of one of
these discrete exponentials f; with the help of a
chain of shaded circles, one sees the familiar map-
ping properties of exponential functions, such as
range, periodicity, and local univalence. Moreover,
the growth of radii in P is precisely exponential,
as one would expect—after all, if f is supposed to
be a discrete exponential, then f# should be expo-
nential also.

FIGURE 18. A discrete exponential function.
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In a private communication, Peter Doyle posed
the following question:

Question. Do there exist any locally univalent circle
packings of H other than Mdbius images of Py or
Doyle spirals?

One might be skeptical for reasons involving the
distortions in flowers of the packing. Our experi-
ments suggest a more optimistic view, though they
are far from conclusive. We attempt to mimic the
simplest classical locally univalent entire function
after the exponential, namely, the error function

2 2
erf(z) = ﬁ/ e " dt.
0

For a classical description of the value distribu-
tion theory for this function, see [Nevanlinna 1970,
p. 168], for example.

Our aim here is to develop a circle packing P for
H whose associated discrete analytic function f
mimics erf. An opening is provided by our knowl-
edge of the derivative

erf'(z) = —=e™*.
()=
This should tell us something about f#, allowing
us to construct f by integration. Here is the ex-
periment:

e For the domain, take Py to have circles of radius
€ = 0.07, with the circle for vertex o centered at
the origin and that for v centered on the positive
y-axis.

e For each n > 1, let H™ denote the subcomplex
of H formed by vertices in generations 1,2, ...,
n from a. (The corresponding packings P;I")
taken from Py are shown in the first frame of
Figure 19, with their boundaries marked, for
n=2>5,7,9,11, and 13.)

e For fixed n, visit each vertex v; € H™, find
the center z; of its circle in Py (and P$Y) and
compute

pj = ‘erf’(zj)‘ €. (4.1

These values define a label R for H™ and if
they were used as radii for a new packing @,, of
H®™) then the function f, : PI({") — @, would
satisfy f# = |erf'| at all the points z;, a strong
sign that f, is the restriction to P;I") of the func-
tion f we’re looking for.

e Unfortunately, the label R will not be a pack-
ing label for H(™):; that is, circles with these radii
will not quite fit together. Therefore, we mod-
ify our procedure slightly: Compute the p; by
(4.1) only for the boundary vertices v; of H™.
Then solve the Dirichlet problem for the unique
interior radii that go with these to form a (un-
branched) packing label; call it R,,.

e Let P, be the resulting normalized circle pack-
ing of H™. The images become complicated as
n grows; more about that in a moment. (See
Figure 19.)

Repeating the experiment for successive integers
n, the hope is that the finite packings P, will con-
verge geometrically to an infinite packing P; equiv-
alently, that the packing labels on the H™ will
converge to a packing label on H. Presumably, if
P does not degenerate to a regular hexagonal pack-
ing, one could then show that P behaves like the
error function—certainly it would not be a Doyle
spiral.

Seeing the packings evolve graphically is fasci-
nating in several regards:

(1) From the very first image one sees that the
evolving mapping behavior of the f,,’s closely mim-
ics that of the error function. The image develops
two logarithmic branch values at approximately
w = =1, the two asymptotic values of erf. As
new generations of circles are added, the grow-
ing image flows out and around the singularities.
The static images in Figure 19 quickly become too
complicated to interpret; however, chains of circles
that seem to “wrap” around one singularity begin
to cover the other singularity (Picard’s Theorem
is not in danger). When running CirclePack, one
can selectively highlight portions of the packings to
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FIGURE 19. Towards a discrete error function. The first panel shows the packings Pf(In), forn=5,7,9,11, and
13; these packings are obtained by restricting Py according to the boundaries shown. The remaining panels
show P, for the same values of n.
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see the mapping behavior dynamically. It precisely
models the well-known behavior of erf.

(2) The speed with which CirclePack computes suc-
cessive packing labels is surprising. Recall that
upon adding a new generation (going from H™ to
H™) the new boundary radii are determined
by (4.1), then associated interior radii are com-
puted. When the second author first ran these
experiments, the packing radii from P, were re-
tained as the initial guess for the interior radii of
P, ;. After adding the new boundary, it was found
that no adjustments were needed in these interior
radii: the radii from each stage seemed to be cor-
rect for the successive stage. This persisted for
25 new generations! The implication was excit-
ing: perhaps the P, are nested pieces of an infinite
circle packing. On the 26th generation, however,
the recomputation mechanism of CirclePack kicked
in, showing that the earlier data had simply been
within acceptable error tolerances.

(3) Nonetheless, the stability of the successive pack-
ings is impressive, as can be judged in these trials
by watching one particular circle, say that at the
origin, as n grows. Does its radius have a posi-
tive and finite limit? For large n, computational
times and roundoff errors become problems. For
instance, flowers of P,, can become quite distorted
as one moves out in the generations from a because
the ratios between the radii of neighbors will grow
without bound. Figure 20 shows a central circle
and its six neighbors; the radii of the petals vary
enough to cause nonneighboring petals to overlap.

Aside from maximal packings and Doyle spirals,
there are as yet no known locally univalent discrete
entire functions based on any complex K, hexago-
nal or otherwise. Ultimately, experiments can only
suggest whether an approach has possibilities and
perhaps give clues to a rigorous solution. At a min-
imum, however, these trials mark the discrete er-
ror function as a frontrunner in addressing Doyle’s
question.

FIGURE 20. Distorted hex flower.

5. DISCRETE APPROXIMATION

The four experiments described in this section con-
cern approximation in the vein of the Theorem
at the end of Section 3; that is, we exploit the
propensity of discrete analytic functions to con-
verge to classical ones as their underlying circle
packings become “finer” (contain more numerous
and smaller circles).

To clarify the shift in emphasis, return for a mo-
ment to Experiment #3 on a discrete error func-
tion: We employed a parameter € that remained
fixed in those trials. Were we to make it succes-
sively smaller, the procedures there could produce
a sequence of discrete analytic functions on finite
subcomplexes of H that would converge uniformly
on compacts of C to erf. Our goal before, however,
was a single infinite packing whose associated map
mimics erf, rather than a succession of finite pack-
ings whose maps approximate it.

Parallels will probably continue to emerge, but
our aim now shifts to the generation of sequences
of discrete analytic functions approximating clas-
sical ones. The next three experiments involve ap-
proximation of functions from important families:
finite Blaschke products, polynomials, and disc al-
gebra functions. The last experiment suggests an
approach to speeding up circle packing computa-
tions.
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Experiment #4: Discrete Blaschke Products

The analytic functions known as finite Blaschke
products arise in several mathematical contexts,
perhaps because they enjoy such a variety of char-
acterizations: n-fold Blaschke products are pre-
cisely the n-valent proper (analytic) maps of D
onto itself. Within the important class of “inner”
functions in D, these are the finite valence ones
and the only ones that are continuous up to OD.
They play a role in iteration theory because they
restrict to locally one-to-one maps of the unit cir-
cle to itself. They arise frequently in applications
because, after a change of variables, they comprise
precisely the n-degree rational mappings of the left
half-plane onto itself.

In any serious discrete analytic function theory,
one would certainly hope for analogues of finite
Blaschke products. As it happens, circle packing
versions are particularly easy to generate and are
geometrically very faithful to their classical mod-
els. In particular, as in the classical case, they seem
to provide the extremal functions for a variety of
situations. Among these is the Dieudonné Schwarz
Lemma from Section 4, which we will revisit in a
moment.

The classical representation of a finite Blaschke
product B depends on its zeros (counting multi-
plicities) and takes the form

w0k 1T las| a; —2

B(z) =¢"z Ea—] =52
where 8 € R, k and m are nonnegative integers,
and {ai,...,a,} are nonzero points of D. The
function B is called an n-fold Blaschke product and
the points a; (along with the origin, if £ > 1) are
its zeros. Note that the zeros determine B, up to
a rotation.

For the discrete setting, the product construc-
tion is not available—indeed, we have no complex
arithmetic! However, there is an alternative: It is
well known that B has n — 1 branch points (count-
ing multiplicities) and that these points determine
B up to composition with an automorphism of D.

Branching is a geometric feature and, as we saw
in Section 3, is available in the discrete setting. In
fact, this provides a pleasing counterpoint to the
classical theory, for we know of no practical clas-
sical methods for constructing Blaschke products
from their branch sets.

Given K, a discrete n-fold finite Blaschke prod-
uct is a discrete analytic function b : Px — P,
wherein P is a packing of K in D having n — 1
branch points (counting multiplicities) and having
all boundary circles of infinite (hyperbolic) radius.
The procedure for constructing such packings P
(in our examples we use only simple branch points)
goes as follows: Choose a set of n — 1 distinct inte-
rior vertices 8 = {vy,...,v, 1} forming a branch
structure as described in Section 3. Set the “aims”
(target angle sums) of the vertices v; to 4m; the
other interior vertices have their usual aims of 2.
Set the boundary radii of P to (hyperbolic) infin-
ity. Repack using CirclePack. The existence and
essential uniqueness of the resulting packing were
established in [Dubejko 1995].

Our prototype experiments involve fourfold dis-
crete Blaschke products based on hexagonal com-
plexes K. We assume that the desired branch set
consists of

z1 = 0.15 — 0.251,
2z = —0.15 — 0.257,
z3 = 0.54.

The maximal packing Py for a small hexagonal
complex is displayed in Figure 21 (left). No circles
are centered precisely at the z;, so we have chosen
three nearby ones as our branch circles, and shaded
them darkly in Figure 21. The image packing P in
the same figure, created using CirclePack, is diffi-
cult to interpret because its circles are four layers
deep. Circles corresponding to boundary vertices
of K are horocycles in both Pg and P: this is the
discrete version of the requirement that Blaschke
products map the unit circle to itself. With dili-
gence, one may be able to trace these boundary
circles in P as they wind four times about the in-
side of the unit circle. (While running CirclePack,
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FIGURE 21. A fourfold Blaschke product. The dark circles in the domain are the branch circles, and the lightly
shaded ones are those whose image in P contains 0 (they are easy to pick out using CirclePack).

one can graph the domain and range in various
ways to better decipher the mapping properties.)
A larger example is illustrated in Figure 22. The
packing Pk is much finer (1657 circles) and as be-
fore we have chosen three branch circles (darkly
shaded) near z;, z, and z3. In the range, the cir-
cles are again four layers deep; we display only the
boundary circles, which wrap four times around,
and the three branch circles (the small points near
the origin). It was recently shown [Dubejko 1995]

that discrete Blaschke products approximate clas-
sical ones. To test this, we estimated (using eu-
clidean barycentric coordinates) the zeros for the
b of Figure 22, used them to construct a classical
Blaschke product B, and computed the zeros of B’'.
We get

Zy ~ 0.138 — 0.2453,
Zy =~ —0.138 — 0.2451,
Z3 ~ 0.000 + 0.488%,

FIGURE 22. A finer fourfold Blaschke product. The shaded circles have the same meaning as in Figure 21, but

otherwise only the boundary circles are shown.
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FIGURE 23. Extremal discrete Blaschke product. The dots in the domain represent = and y (nearer the origin).

values that are in fair agreement with the pre-
scribed branch points z;, z,, and z; of b.

Let’s apply finite Blaschke products in a further
probe of the Dieudonné-Schwarz Lemma of Ex-
periment #1 (where we already encountered a dis-
crete finite Blaschke product in Figure 12). Now
we are interested in that portion of Dieudonné’s re-
sult that applies for v/2—1 < |z| < 1. His extremal
functions are twofold Blaschke products. In par-
ticular, suppose for convenience that z = z, a real
number with /2 — 1 < z < 1. Then the Blaschke
product

z+h 1— 3z?
B(z) = z2—— ith h=———=
(2) Trne ™ z(1l+ x2)
will achieve precisely Dieudonné’s bound, namely
1 + m2)2
B, = T prmy 7( .
(z) dz(1 — z?)

A computation [Carathéodory 1960, §291] shows
that the (unique) critical value of B is

VIR -1
y=——

A prototype experiment in the discrete setting
is illustrated in Figure 23. We begin with a more
or less random maximal packing Px and proceed

as follows: First, choose a circle of Pg centered at
a real number z satisfying v2 — 1 < x < 1 (the
outer dot in Figure 23). Observing that in this in-
stance ¢ =~ 0.69032, we see that Dieudonné’s clas-
sical bound on derivatives at = is M, =~ 1.50834.
Computation also gives the auxiliary values h =
—0.42150 and y =~ 0.22105 (the inner dot in Figure
23) associated with z.

We cannot precisely mimic the classical extremal
function for this x because Px has no circle cen-
tered at y. However, we can choose a nearby branch
circle. The resulting map b : Px — P is a dis-
crete twofold Blaschke product. CirclePack tells
us that b#(z) ~ 1.4522, which is within the clas-
sical bound M,. Further experiments with this
complex K suggest that b is indeed the discrete
extremal for the ratio function at z—for instance,
moving the branch point to various other circles
results in smaller ratio functions—so Dieudonné’s
bound seems to hold there. Of course, there are
other points z and other complexes to check, and
we have uncovered instances in which Dieudonné’s
bound is violated by small margins. Nonetheless,
the preliminary evidence is that the qualitative fea-
tures in the discrete setting mimic the classical case
and that there are likely to be discrete bounds on
ratio functions that are close to the classical ones.
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Experiment #5: Discrete Polynomials

Dubejko [1995; a] investigated infinite branched
circle packings. In particular, he proved the ex-
istence of a full set of discrete polynomials and
showed that any classical complex polynomial can
be approximated by these discrete ones uniformly
on compacts of C. Indeed, this result implies that
a wide variety of analytic functions on many do-
mains are subject to such approximation. How-
ever, since discrete polynomials involve infinite cir-
cle packings, this has little practical value. In what
follows we will describe a constructive method for
approximation that uses finite branched hexagonal
packings like those of Experiment #4 above.

Let £/ : C — C be a complex polynomial. We
assume that the critical set of F', which we denote
br F = {t1,...,tn} (with repeats to account for
multiplicities), is known. We further assume, for
convenience, that F'(0) = 0 and F(1) = 1. We
construct discrete approximants f, of F' that are
defined on finite portions of the hexagonal complex
H. As we go along, we will illustrate with a simple
prototype experiment:

-3
Prototype: F(z) = 2722 with br FF = {1, —1}.

7

e%e20%e

Sas0s00s
205626
/s

FIGURE 24.

First, let’s establish notation: Let Py denote the
maximal packing for H, normalized to give all cir-
cles radius % and to center circles at z = 0 and
at z = 1. For positive integers n, define D(n) =
{|z| < n}; scale Py by the factor 1/n and let @,
consist of the circles of Py /n lying inside D(n).
Write K, for the complex of @,. Figure 24 illus-
trates the prototype case n = 3.

For n sufficiently large, br F' will lie in D(n) and
we may choose a set V,, = {vi(n),...,vn(n)} of
distinct vertices of K, that forms a branch struc-
ture for K,. Our strategy is to choose V,, in such
a way that the centers z;(n) of the corresponding
circles of @),, approximate br F'. More precisely, we

want
zj(n) — t; as n — oo for each j =1,2,...,m.

(The specific conditions on branch structures were
described earlier; these conditions and the one just
given are very easily arranged if n is sufficiently
large.)

For each (sufficiently large) m, construct a new
packing P, for K, as was done in the previous
experiment. That is, assign angle sum 47 to the
vertices of the set V,, C K,, assign infinite hy-
perbolic radii to the boundary vertices of K,,, and

D3

Qs (left, shaded region) and its complex K3 (right).
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FIGURE 25.
and the (extremely small) branch circles are shown.

compute the resulting branched packing P, C D.
Let g, : Q.. — P, denote the discrete analytic func-
tion; the prototype gs is illustrated in Figure 25.
The branch vertices v;(3) and v,(3) are associated
with the shaded circles in the domain; these are
the ones centered nearest (in fact, at) 1.

The construction of P, is carried out in the unit
disc because the Dirichlet problem is conceptually
and numerically easy to solve in hyperbolic geom-
etry. However, the function f,, approximating F
requires one final normalization: Define f,, = Ag,,
where the complex number A is chosen so that
fa(1) = 1. In other words, f, : Q, — AP,.

As n goes to infinity, the domains of the f, ex-
haust C and the branch points of the f,, converge
to the branch points of F'. All the while, f,(0) =0
and f,, (1) = 1. In separate work, the second author
has proved what the experiments suggest; namely,
that the f,, will converge uniformly on compacts of
C to F'. Figure 26 is obtained from f3; and f; in our
prototype case: The domains ()3 and ()4 are shown
with the branch circles shaded; the image packings
are too confusing for static display, but we have
shown the images under f3 and f; of a represen-
tative closed curve o, a regular hexagon. One can

The intermediate function gs3. The range packing P is 3 circles deep, so only the boundary circles

compare these images to F'(o) (the dashed curves
in Figure 26) to get some feel for the accuracy of
the approximations.

The constructions of f, for even larger values of
n are relatively easy in CirclePack and the behav-
ior of F' emerges fairly rapidly. It is clear, however,
that one would not choose this method to approxi-
mate polynomials in any practical situation. None-
theless, it does work, and in slightly altered circum-
stances, circle packing might bring something new
to the table. The next experiment may be a case
in point.

Experiment #6: Prescribed Boundary Curves

Throughout this discussion, v will denote a closed
plane curve that intersects itself only transversely,
if at all, and that has no triple points. We say
that v is admissible if it is the image of the unit
circle under a function F' = F., in the disc algebra
A(D), that is, a function F' that is analytic in D
and continuous on D. Marx [1974] characterized
admissible curves by their winding numbers and
crossing behavior. In this section we describe a
circle packing method for approximating F'. This
is an extension of the scheme of Thurston, which
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FIGURE 26. The approximating functions f3 and f.

applies when v is a Jordan curve (and hence au-
tomatically admissible). However, in general the
function F' will necessarily have branch points; our
method permits specification of the branch sets so
that we may approximate, uniformly on compacts
of D, any desired classical solution.

For our prototype experiment, let v be the ori-
ented curve of Figure 27 (left). This was chosen
because it is evidently admissible—in fact, the im-
age Riemann surfaces of the solutions in A(D) are
fairly easy to visualize. One of the legal branch

sets consists of a simple branch point with image
w; and a double branch point with image w», and
this is the particular solution F., we choose to ap-
proximate. For the sake of variety, we will use the
infinite ball-bearing complex B in place of hexag-
onal combinatorics.

Write Q. for the maximal packing of B scaled
so that the larger circles have radius €. Overlay
with @), as shown in Figure 27. Let a; and a, des-
ignate two smaller circles nearest w; and w,. We
build a range circle packing P = P. whose carrier
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o> )

FIGURE 27. An admissible curve v, and the portion of the ball-bearing packing it encloses. The shaded circles
a1 and ay are those nearest the points w; and wo.

approximates the image Riemann surface of f by
pasting together various pieces of .. The carrier
pieces and their edge identifications are displayed
in Figure 28. We omit the details because the anal-
ogous constructions are quite standard in geomet-
ric function theory. We point out, however, that
the resulting geometric complex G is a simply con-
nected branched covering of a portion of the plane.

The circles associated with the faces of G form
P, which may be pictured as a branched covering
over a portion of Q. (some circles have as many
as three circles of P lying over them). Note that
although P has only one circle lying over each of a;
and a., the pastings give eight petals for the flower
of a; and twelve for that of a,; this is where the
branching occurs.

The complex K for P is simplicially equivalent
to G, hence is simply connected. Let the maximal
packing Px in D be normalized in the usual way.
The map f = f. : Px — P is the discrete analytic
function that approximates F. In Figure 29, the
circles of Px and P associated with the branching
are shaded for reference.

As e goes to zero, one can show that the sim-
plicial maps associated with the f. converge uni-
formly on compacts of D to an analytic function
F mapping the unit circle to v and having the FIGURE 28.

Constructing the range packing.



Dubejko and Stephenson: Circle Packing: Experiments in Discrete Analytic Function Theory 337

FIGURE 29.

specified branch values w;,w,. This, of course,
is the desired map F,. The proof techniques are
basically those of the conformal setting, though
one must work outside small neighborhoods of the
branch points and fill those in as removable singu-
larities at the last [Dubejko 1995].

This construction process could be completely
automated; Chad Sprouse, a 1993 Summer REU
student of the second author, developed a very
clever scheme for carrying out the cut/paste op-
erations. This has not yet been implemented, but
the eventual goal would be to generate the f. by
providing nothing more than a parameterization of
~ and a choice of branch points.

Experiment #7: Multigrid Packing Algorithms

Rodin and Sullivan’s proof [1987] of Thurston’s
conjecture immediately raised questions about the
potential of circle packing as a practical numeri-
cal technique. It is not yet competitive in terms
of accuracy and speed with more classical numeri-
cal methods, such as implementations of Schwarz—
Christoffel or more recent zipper methods of [Mar-
shall]. Nonetheless, circle packing may ultimately
have advantages on certain parallel computer ar-
chitectures, such as massively parallel machines;

The approximating map.

for multiply connected regions; for regions under-
going dynamical change; or even as a preproces-
sor feeding into a classical method. Also, as our
earlier experiments show, circle packing extends to
branched and multivalent situations, and even per-
haps to maps between Riemannian surfaces. (Cer-
tainly, in an increasingly “quantum” world, there
is some place for quantum complex analysis!)

The algorithm currently used in CirclePack for
computing (approximate) packing labels is the it-
erative method of Thurston described at the end of
Section 2—it is roughly analogous to the “method
of relaxation” (or Gauss-Seidel) for the Dirichlet
problem in classical discrete potential theory. But,
whereas this latter problem permits much more ef-
ficient algebraic methods, circle packing problems
are highly nonlinear and no replacement for relax-
ation has been found.

A potential advantage in circle packing, however,
lies in the faithful way in which discrete analytic
functions on even coarse packings mimic classical
functions. We exploit that here to implement a
multigrid method for computing approximate con-
formal mappings. We describe it by means of a
relatively simple prototype experiment and then
give some results in more substantial trials. The
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same technique can be applied in nonunivalent and
branched setting, such as those discussed in Exper-
iments #4—#5.

Our goal in this section is to approximate the
classical conformal mapping F' from D onto a given
simply connected domain €2 in the plane, F' : D —
Q. The approach was outlined in Section 1 and
illustrated there by Figure 1: one fills 2 with a
portion P of some regular hexagonal circle packing
and computes the associated maximal packing Pk;
the desired approximant is the piecewise affine map
associated with f : P — P. Using successively
finer packings improves the approximation.

At each stage, the packing P and its complex
K are easily determined; the real work enters in
computing the maximal packing label Ry, which
easily yields Px. We assume hereafter that Q lies
in D and carry out all computations in hyperbolic
geometry. Thurston’s algorithm proceeds from an
initial guess Ry to Rk using iterative relaxation.

The direct method generates R; by simply as-
signing to interior vertices the current (hyperbolic)
radii of their circles in P C 2 C D and assigning
infinite radii to boundary vertices, since we know
that they will be horocycles in Py . CirclePack then
cycles repeatedly through the list of interior ver-
tices, making adjustments until it reaches an ap-
proximation to Ry within assigned tolerance. Of
course, most radii change considerably from their
values in R;, and the direct method may converge
relatively slowly. Our aim is to improve efficiency
by making a more informed choice of the initial
label R;.

As its name suggests, the multigrid method at-
tempts to use information gleaned from coarser cir-
cle packings to shorten computations on finer ones.
Two stages of the prototype experiment are illus-
trated in Figure 30.

Assuming that f; : Px, — P; is known, we want
to compute f, : Px, — P,. In other words, Pg,,
P, and P, are known, and we seek Pk,, the max-
imal packing at the finer stage. Our opening is
provided by the ratio functions: Since f; approx-
imates F' (albeit not very well), its ratio function

f# approximates |F'|. As f¥ will also approxi-
mate |F'|, we see that f{ gives some preliminary
information about the (as yet unknown) f,.

Strategy. Use the ratio function for a known ap-
proximation f; to set the initial radii for computa-
tion of a finer approximation f,.

Here’s the central idea: Suppose v is an interior
vertex of K, whose associated circles are C' € Pk,
(unknown) and ¢ € P,. Choose a vertex v' € K,
with associated circles C' € Pk, and ¢’ € P, so that
¢ is as close as possible to ¢ in €2; see Figure 30.
The radius of C, rad C, is unknown. We expect
C to be near C' in D, but more importantly, we
expect fI (v) to approximate fi(v'):

radc rad ¢’

radC ~ rad C'

)= ffe) =

Note that since we are working in I, the appropri-
ate radii and ratio functions are all hyperbolic. We
conclude from the implication above that

rad ¢ radc

radC =~ r = (rad¢’)/(rad C") = fl#(v’)

(5.1

We take r to be our initial guess for the label at
v: that is, we set R;(v) = r. If we do likewise for
all interior vertices v of K> and set the label to co
for all boundary vertices, we have our initial label
R;. CirclePack then takes over to compute Rk,,
and thereby Pk,.

In our practical implementation of this idea, we
employ hexagonal packings, arranged so that at
each successive stage the radii are cut in half. For
instance, Figure 31 superimposes the packings P,
and P, of Figure 30. Carr P; is actually a refine-
ment of carr P;, and each vertex of K; may be iden-
tified with one from K.

Here, then, is the specific procedure for choosing
R; for K,:

e If v is a boundary vertex of K,, then obviously
set Ry(v) = oo.
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FIGURE 31. P; and P> superimposed.

e If v is an interior vertex of K, that is identified
with an interior vertex v’ of K, then in accor-
dance with (5.1), set

_ Ry(v)
HaCON

where R, is the hyperbolic label for P,.

e If v is an interior vertex of K, that is not iden-
tified with a vertex in K; but that is the mid-
point of some segment vw, where v' and w’
are neighboring interior vertices of K, choose
Ri(v) = 1(Ry(v) + Ra(w)).

o If v is any other vertex of K, choose R;(v) =
In(2) (which happens to be the maximal hyper-
bolic radius of the central circle in any univalent
flower having six petals).

R;(v)

Of course, this whole process may now be repeated
through a cascade of successively finer packings.
The first author developed code to do this, using
a link to CirclePack for the computations at each
stage. Stages 2, 3 and 4 for the prototype experi-
ment are illustrated in Figure 32; they involve 500,
1992, and 7990 circles. We computed a fifth stage
also, but it has more circles (32001) than can rea-
sonably be displayed here.

How efficient is this multigrid approach? We
have accumulated rudimentary data in Table 1 con-
cerning the discrete maps of D onto an ellipse 2.
The three middle stages of the cascade are shown
in Figure 33. Roughly speaking, the multigrid ap-
proach cut by a factor of five the time needed to
compute the finest maximal packing label.

Remarks

There are numerous open, and largely unexplored,
issues in the numerics of circle packing, having to
do, for example, with algorithms, strategies, accu-
racy, and rates of convergence.

Most intriguing is the computation of packing
labels. The equations they must satisfy are horri-
bly nonlinear. There may well be efficient, indirect
approaches to solving them, such as vector-valued
Newton’s method [Carter 1989] or the minimiza-
tion approach of [Colin de Verdiere 1991]. How-
ever, for us the more interesting questions arise
when the “labels” are associated directly with the
geometry—that is, when they’re thought of as radii
subject to adjustment—and when features of dis-
crete analyticity can be brought to bear. In this
vein, our multigrid method, coupled with the iter-
ative algorithm of Thurston, raises many fascinat-
ing questions. (See [Stephenson 1990], for instance,
where radius adjustments, tied to the movement of
hyperbolic area, are modeled by means of Markov
processes.) Moreover, the iterative algorithm and
multigrid method both fit quite beautifully with
the massively parallel architectures of certain com-
puters. Numerical efficiency has not been a high
priority in CirclePack, but we are currently porting
the algorithms to a MasPar MP-2, and we antici-
pate a powerful packing engine that can be linked
to CirclePack, allowing a closer study of packing
algorithms and the associated dynamics of circle
packings.

This is not to say that circle packing will soon
reach a practical stage. In regard to speed, a cur-
sory glance at the Table shows that circle packing is
slow: the CPU time needed for the finest multigrid
approximation, for instance, was over two hours.
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FIGURE 32. Stages 2, 3, and 4 for the prototype domain.
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FIGURE 33. Stages 2, 3, and 4 for an ellipse.
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multigrid method direct method
stage circles tolerance time riffles time rifles | factor
1 173 10—4 0.69 1445 1.28 2719 0.54
2 709 10—4 6.76 19615 13.10 36313 0.62
3 2814 10— 69.28 220766 216.62 672822 0.36
4 11277 10 1473.94 5440000 3808.87 13387000 0.41
) 45062 10~ 6441.00 23234000 49014.00 163130000 0.16
Total 7991.67 28915826
TABLE 1. Running times for the determination of the discrete maps from a disk into an ellipse (Figure 33),

with and without the multigrid approach. The computations were carried out using CirclePack on a Sun
SPARCstation 10, model 40. Tolerance indicates by how much angle sums of interior vertices were allowed to
differ from 27. Time refers to CPU user time required, in seconds. Riffles is the number of circle adjustments
required during the iterative computation. Factor gives, for each stage j, the ratio between the time for the
multigrid method (accumulated from stages 1 through j) and the time for the direct method at Stage j.

Don Marshall’s Zipper program, which uses tra-
ditional algorithms to compute conformal maps,
handles this ellipse in less than a minute. Classical
numerical methods seem likely to retain a speed ad-
vantage in situations where they apply. However,
with modest improvements in packing efficiency,
circle packing may have a role in approximating
more general functions, as suggested in our earlier
experiments. There are also potential applications
in graph embedding (see [Mohar 1993; Miller and
Thurston 1990], for example) and in grid genera-
tion.

FIGURE 34. Left:

Roundoff is another issue: as the number of cir-
cles in a packing grows, errors can begin to affect
the packing’s integrity. A detail of one small por-
tion of the stage 5 packing for the region 2 of Fig-
ure 32, highlighted in Figure 34, shows this. The
global properties of the maximal packings remain
remarkably stable despite these errors in the outer
reaches, plus there are some randomization tech-
niques that should ameliorate this particular prob-
lem. Nonetheless, questions on the effects of accu-
mulated errors as well as on the ultimate accuracy
of the discrete approximations remain open.

Detail of the stage-5 maximal packing calculated for the region Q2 of Figure 32; accumulated

errors have led to fissures and misplaced circles. Right: Corresponding portion of the range packing in 2.
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FIGURE 35.

Comparison of images for the sine map from Figure 3. Left: We choose one flower in the domain.

Right: This flower’s image under the sine function (solid curves) is compared with the corresponding circles

(dashed) from the regular hex packing.

Some sense of the faithfulness of circle packing
maps can be gained with direct comparisons to
their classical analytic counterparts. Suppose, for
instance, that f : Q — P is a discrete analytic
function that mimics a classical function F' defined
on some open set () containing ). Each circle C of
Q@ has, as a closed curve in €2, a closed image curve
F(C). Of course, F(C) will in general not be a
circle. How close is it to a circle? In particular,
how close is it to the corresponding actual circle
f(C)? The paper provides many opportunities for
such comparisons, but we illustrate with just two
examples and leave additional comparisons to the
reader.

The classical sine function is so familiar that we
decided to run our first comparison with the pack-
ings of Figure 3. Applying the function sin to the
circles in the upper half of Figure 3, we intended to
obtain a set of image curves that we could juxta-
pose with the circles of the lower half. However, we
were surprised to find that the two images are in-
distinguishable at the resolution of the figure. Even
when we concentrate on one flower and magnify
(Figure 35), the image under the true sine function
differs from the image under the discrete analogue
by only about 1/500, and the images under sin
are indistinguishable from circles. Considering the
rather coarse nature of the domain packing here,

the similarity of these range images seems remark-
able.

For our second comparison (Figure 36), we chose
the discrete conformal mapping f; of Figure 30.
We obtained our conformal map F : D — Q (also
an approximation, of course) by using Don Mar-
shall’s Zipper conformal mapping package. Again,
the images F~*(C) appear indistinguishable from
circles. Inaccuracies in the locations are not sur-
prising, and their pattern makes sense if one refers
to Figure 30. Two large boundary horocycles of
the maximal packing are a mere three generations
from the circle at the origin. They can’t provide
much sensitivity for an important (in the sense of
harmonic measure) section of 02, and they seem
to have pushed the other circles toward —1 with
respect to their conformally “correct” locations.

6. ABOUT CIRCLEPACK

For readers who would like to experiment with cir-
cle packings on their own, here are some technical
details about CirclePack, the software used for this
paper. CirclePack allows the creation, manipula-
tion, color display, printing, and storage of circle
packings in any of the three standard geometries
(the spherical routines are in an early stage of de-
velopment). In addition to the tangency packings
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FIGURE 36.

Comparison of images for the discrete conformal map fo of Figure 30. Left: Twelve circles were

chosen from the packing of the region Q. Right: The corresponding circles in the maximal packing (dashed
curves), and inverse images of the shaded circles under the conformal map taking the disk to € (solid curves).

discussed in this article, CirclePack is capable of
handling packings with overlap angles specified in-
dividually for edges of K. The complexes K under-
lying the packings may be simply connected, like
those in this article, or multiply connected; planar
or nonplanar; with or without boundary. Pack-
ings of up to 100,000 circles are possible, depend-
ing on machine resources. Parameters for the pro-
gram’s operation are in a configuration file, allow-
ing various defaults and features to be tailored to
the user’s needs. User-developed remote routines
may be called from within CirclePack; some exam-
ples, along with basic code segments and header
files, are provided in the distribution. All data
files have ASCII formats. Postscript is used for
printable output.

CirclePack is written in C, runs under X-Win-
dows, and is built on the XView graphical user in-
terface. User commands are implemented through
command-line arguments, mouse-based actions, or

[1]:= act 0; infile_read Q3.p;
[2] := copy 2; act 2; geom_to_h;
[3]:=

with prepared scripts. Figure 37 illustrates a typ-
ical screen. A detailed help file, accessible from
within CirclePack, provides context-sensitive help.

The lines from a typical script are shown below.
The first line activates Pack 0 (each packing being
identified by a number); it then reads in a set of
circle packing data, sets the screen size, and dis-
plays the packing. The next line sends a copy of
the data to Pack 2, activates Pack 2, converts its
packing to hyperbolic geometry, and sets two of its
vertices’ “aims” to 4.0 (to create branch points).
The last line sets the boundary radii of Pack 2 to
infinity, tells the program to repack using up to
20,000 iterations of Thurston’s algorithm; recom-
putes the circle centers, and displays the packing.
All these commands and many others can be is-
sued individually by typing them on a command
line or by using mouse operations, but it is partic-
ularly helpful to run through sample scripts to get
a feeling for how things work.

set_screen -h 7; disp -w -c;

set_aim -d; set_aim 4.0 26 33;

set_rad -.1 b; repack 20000; fix; disp -w -u -c b -cf 26;

Sample CirclePack script
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| cmdtool (CONSOLE) - Zust/local/bin/tcsh el Script Window — ./cp_tour.cmd -
> - - ~ = . iahli
I I1<9Jns@mathsun4 #ud -root Ut .'/C1P$|/cpe screed -><Wd 2 dad - pxped Execute next cmd ) Highlight next cmd ) Reset to top ) Close )
] Pack 2: Owl.p (hyp) expec
expe ‘[S]:= infile_read -p1 carbong0.p;disp -p1 -w -c -f -t Combinatorics dual to

Fullerene.;

« »|

[?]:=infile_read winding_road.p ;disp -w -¢ -t Embedding of a winding road.;

fa 7\

LW AN
RN
o,

L
S

[TTaMStT TPT W TT e O CPE=amTaT. 109
mathsun4: fusers/faculty/kens/CPE>d
dvips CPE-anal.dvi
This is dvips 5.47 Copyright 1986-91 Radical Eye Software
 TeX output 1995.07.27:1718" -> CPE-anal

i pro> g<cpe-d

v CirclePack:

" | Pack 1: spiral.p (eucl)

It Same road, but now an

lus.;

"Doyle spiral” -- hexagonal

her type of spiral.;
-t A snowflake.;

r1apping circles to get a

v
in/tcsh

Pack 0: annulus.p (hyp)

Pack 0: annulus.p (hyp) ‘ Pack 1: spiral.p (euch | Pack 2: Owl.p thyp)

_Read/write Files ] COMBINATORIC changes | Command Line ... )

Misc Computations )

_Open Canvases |  RADIUS changes ) _Config Window .. ] Pack COLOR Coding )
_Line Commands )  ANGLE SUM changes ) _Script Window ..)  Postscript Printing )
_Pack Inquiries ) OWERLAP ANGLE changes )  History Window .. ]  Special Routine Calls )

Help Window .. ) uiT )

| p ) QuiT)

rl Command:

"5 Messages/Errors: K
Read into 0 succeeded. (2 cmds) 5
Read into 1 succeeded. (2 cmds)
Read into 0 succeeded. (2 cmds)
Read into 1 succeeded. (2 cmds) =
Read into 0 succeeded. (2 cmds)

Read into 1 succeeded. (2 cnds) (2 cnds),
-
FIGURE 37. Sample CirclePack screen under X-Windows.

CirclePack was developed by Stephenson on a
Sun SPARCstation with equipment and research
support provided, in part, by the National Science
Foundation and the Tennessee Science Alliance.

Retrieval information is given on the next page.
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Electronic Availability

CirclePack is available by anonymous ftp from the host
archives.math.utk.edu (Mathematics Archives), in the
directory software/multi-platform/circle.packing. It oc-
cupies approximately 10 Meg when installed. The dis-
tribution contains all source code, executables for Sun
SPARCstations, help files, numerous packing data sets,
and prepared command scripts. A makefile is provided
and should permit recompilation on other platforms,
though help from someone having systems experience
is recommended.

The distribution also contains, in subdirectory CPE,
scripts that run through several of the experiments de-
scribed in this paper. For instance, to generate the
packings of Figure 26, run CirclePack using the script
CPE-5-poly.cmd. The “script window” (seen in the up-
per right hand corner of Figure 37) will appear, and you
can run through the sequence of prepared commands by
simply clicking on the button “Execute next cmd”.
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