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We consider Catalan’s equation xp � yq = 1 (where all vari-

ables are integers and p; q are greater than 1), which has the

obvious solution 9 � 8 = 1. Are there others? Applying old

and new theoretical results to a systematic computation, we

were able to improve on recent work of Mignotte and show

that Catalan’s equation has only the obvious solutions whenminfp; qg < 10651. Two crucial tools used are a new re-

sult of Laurent, Mignotte, and Nesterenko on linear forms of

logarithms, and a criterion obtained by W. Schwarz in 1994.

1. INTRODUCTION AND OVERVIEWIn 1843, Eug�ene Catalan considered the followingquestion: Are there pairs of consecutive integersthat are both powers, other than (�1; 0), (0; 1) and(8; 9)? The general opinion, known as Catalan'sconjecture, is that the answer is no. Formally, therelevant diophantine equation is xm� yn = 1, withx; y are integers and m;n integers greater than 1.Of course, we can assume that the exponents areprime numbers, and, possibly after interchangingthe two terms on the left, that x and y are bothnonnegative. Excluding the trivial case of x = 1and y = 0, the equation we are interested in isxp � yq = 1; (1.1)where p; q are prime numbers and x; y are integersgreater than 1.The main results toward the veri�cation of Cata-lan's conjecture are of relatively recent vintage (see[Ribenboim 1994] for a more detailed account). Animportant step was taken by Tijdeman [1976], whoproved that the problem is �nite: using Baker's re-sults on linear forms in logarithms, he showed that
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all unknowns are e�ectively bounded. The sameyear, Langevin [1977] obtained the explicit bound10110 for maxfp; qg, and enormous bounds for xand y. Since then progress on linear forms has ledto better bounds. Two years ago, it was possibleto prove maxfp; qg < 1021, and now it seems thatmaxfp; qg < 1018 could be proved. However, weshall not pursue upper bounds in the present pa-per, but will focus our attention on improving theknown lower bounds on minfp; qg.The �rst result in this direction [Nagell 1920] wasminfp; qg 6= 3. Almost half a century elapsed untilKo Chao proved that minfp; qg 6= 2 [Ko 1965]. Thebest result published since then [Mignotte 1994]had been minfp; qg � 13:Here we report a signi�cant advance, proving thatminfp; qg � 10651:This result was obtained thanks to several the-oretical advances and a lot of computation. Toexplain our strategy, it is convenient to generalize(1.1) slightly toxp � yq = "; with " = �1 and x; y > 1 (1.2)(still assuming p; q prime). This is so that we caninterchange the roles of (x; p) and (y; q) as needed.The �rst theoretical advance, discussed in Sec-tion 2, is a new lower bound for two linear formsin logarithms [Laurent et al.]. Applied to (1.2) fora �xed prime p, it leads to an upper boundq < qmax(p):We have made great e�orts to get a good valuefor this bound, in order to decrease computationtime for the present work and to help the futureimprovement of upper bounds on maxfp; qg. Inthe process (Section 2.1) we present a technical re-�nement of the congruences obtained in 1964 byHyyr�o.Then, for a �xed p, we have to consider therange q < qmax(p). For each pair (p; q) we haveseveral theoretical tools to attack (1.2), which in

most cases are su�cient to eliminate the possibil-ity of solutions. Speci�cally, for each prime p onecan de�ne two sets F (p) and H(p) such that a so-lution of (1.2) can only exist forq 2 F (p) [H(p):The �rst set corresponds to Fermat quotients:F (p) = �q : pq�1 � 1 mod q2	:Experiments show that this set is generally verysmall, but its computation takes a very long time.In our case, to compute all these sets for p < 10625took more than two weeks on a parallel computerwith 32 processors. The reason for the strangevalue 10625 is purely technical: the program waswritten in C, in double precision, and 10625 is thehighest value for which we can compute congru-ences mod q2 with this program.The second set H(p) is related to certain classnumbers, and comes from the �rst general alge-braic criterion on Catalan's equation, obtained byInkeri [1990]. Inkeri's criterion allows us to putH(p) = �q < qmax(p) : q divides h(K 0p)	; (1.3)where h(K) represents the class number of a num-ber �eld K andK 0p = � Q [p�p] if p � 3 mod 4,Q [e2i�=p ] if p � 1 mod 4.The case p � 1 mod 4 leads to very serious di�cul-ties; the class number of Q [e2i�=p ] is not known forp � 71. There is a way to overcome this problem:Given q, and setting hp = h�Q [e2i�=p ]�, there areprocedures that output either the answer \q doesnot divide hp" or \q may divide hp". But theseprocedures are very slow. In April 1993, Mignotte[1995] was able to replace the �eld K 0p in the pre-vious criterion byKp = the sub�eld of Q [e2i�=p ] of degree 2d,where 2d is the maximal power of 2 in p � 1. Formany values of p the degree of this new �eld Kp ismuch smaller than p� 1, and h(Kp) can be easily
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computed. But there are still di�cult examples,like p = 257, where this degree is 256.The newest result we use is from [Schwarz 1995],to the e�ect that in (1.3) we can replace h(Kp)by h�(Kp), the relative class number of Kp overK+p (that is, the quotient h(Kp)=h(K+p ); here K+pis the maximal real sub�eld of Kp). This rep-resents an enormous progress from the computa-tional point of view: one can compute h�(Kp) forany p [Washington 1982]. Without this improve-ment we had serious computational di�culties toget minfp; qg > 570, whereas now the most expen-sive computational step is computing the Fermatquotients.To summarize the discussion so far, we eliminatemost possibilities for (p; q) by using the bound q <qmax(p) and the following fact:
Criterion 1.1. Let p and q be odd prime numbers.Let p � 1 = 2d l, where l is odd . Let K = Kp bethe sub�eld of Q [e2i�=p ] of degree 2d. Denote byh�K the relative class number of K over K+. Then(1.2) has no solution when both of these relationsare satis�ed :q -h�K and pq�1 6� 1 mod q2:Now suppose that, for a given p, we want to ana-lyze a value of q that does not satisfy Criterion 1.1(that is, q 2 F (p) [ H(p)). We have two ways ofattack. The more natural, and generally quicker,way is to try Criterion 1.1 on the pair (q; p). Weillustrate with the �rst values of p. For p = 5,we have qmax(5) = 110000, F (5) = f20771; 40487g,and H(5) = ?; we therefore consider p = 20771and p = 40487, and examine the possibility ofq = 5. Since5 =2 F (20771); 5 =2 H(20771) = f41g;5 =2 F (40487); 5 =2 H(40487) = f179g;we conclude that (1.2) has no solution when p = 5.Similarly, for p = 7, we have qmax(7) = 110000,F (7) = f5g, and H(7) = ?; since we already knowthat p = 5 leads to no solution, we conclude thatp = 7 also leads to no solution.

Sometimes this strategy fails; the smallest ex-ample, already noticed by Inkeri [1964], is the pair(p; q)=(83; 4871), because4871 2 F (83) and 83 2 F (4871):In such cases, we try to use the following elemen-tary criterion from [Mignotte 1993]:
Criterion 1.2. Let p and q be odd prime numbers,and let l be a prime number such that l = hpq+ 1,with h a positive integer . Let a and b be integerssuch that ap � 1 mod l and bq � 1 mod l. Then(1.2) has no solution when all the following rela-tions are satis�ed : qhq 6� 1 mod l, php 6� 1 mod l,and �(1 + agjq)p � 1�hp 6� 1 mod lfor all j 2 f0; 1; : : : ; hp�1g, where g is a primitiveroot mod l.For all pairs (p; q) unresolved by the use of Crite-rion 1.1 (with p < 10651), the use of Criterion 1.2was su�cient to show the absence of solutions, ex-cept for the pair (2903; 18787). This last case couldbe solved by congruences mod 327231967 appliedto the formulas obtained during the proof of the�rst criterion of Inkeri; the details are too techni-cal to be given here.The conclusion of our computations is, therefore:
Theorem 1.3. Catalan's equationxp � yq = 1;where p and q are primes and x; y > 1 are inte-gers, has no solutions other than 9 � 8 = 1 whenminfp; qg < 10651.The computed data can be obtained from the au-thors.In Section 2 we derive the bound q < qmax(p)that makes the problem tractable. In Section 3we present a result that is not used in the proofof Theorem 1.3, but shows that the special case ofCatalan's equation with exponents congruent to 3mod 4 could be simpler than the general case.
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2. BOUNDING ONE EXPONENT AS A FUNCTION OF
THE OTHER

Arithmetical RelationsSuppose (x; y; p; q) is a solution to Catalan's equa-tion (1.2). Cassels [1960] proved that there existintegers r and s such thaty + " = spq and x� " = rqp :According to [Hyyr�o 1964], there exist also integersa0 � 1 and u0 � 2 such that a = qa0 � " andu = pq�1u0 + 1 satisfyx� " = pq�1aq and xp � " = (pua)q:(Hyyr�o gives additional relations satis�ed by thesenumbers, but we will not need them.)Since u > 2pq�1, we getxp � " > (2pqa)q � �2pq(q � 1)�q;so that xp � �2(q � 1)pq�q: (2.1)This impliesrq = p(x� ") > x� 1 � �(q � 1)pq�q=p � pq2=p;whence log r > qp log p: (2.2)This lower bound seems to be new. In any case, itis quite useful for the estimates in the remainderof this section.
A Crude BoundIt is easy to prove that s � 41=pq1=qr and r �41=pp1=ps, and also that the linear form� = p log p� q log qrpsp � q"satis�es 0 < j�j � 4p2r�q. Let's assume thatq > max�400 p log p; 90000 log p	: (2.3)Combined with (2.2), this implieslog j�j � �0:999999 q log r: (2.4)

We shall apply the following result from [Laurentet al.], where, for � an algebraic number, h(�) =logM(�)=deg� is the logarithmic height of � (hereM(�) is the Mahler measure of �, the de�nition ofwhich is recalled on page 267).
Theorem 2.1. Let �1, �2 be two multiplicatively in-dependent algebraic numbers with j�1j, j�2j � 1,and let log�1 and log�2 be any determination oftheir logs. Put� = b2 log�2 � b1 log�1;where b1 and b2 are positive integers. PutD = [Q (�1 ; �2) : Q ][R (�1 ; �2) : R ] :Let K be an integer � 2, let L, R1, R2, S1, S2 bepositive integers, and let � > 1 be a real number .Suppose thatR1S1 � L and R2S2 > (K � 1)L: (2.5)Put R = R1 +R2 � 1, S = S1 + S2 � 1,g = 14 � KL12RS ; (2.6)andb = �(R� 1)b2 + (S � 1)b1��K�1Yk=1 k!��2=(K2�K):Suppose also that(�� 1) log�i + 2Dh(�i) � ai for i = 1; 2;that the numbers rb2 + sb1, for 0 � r � R� 1 and0 � s � S � 1, are pairwise distinct , and thatK(L� 1) log �� (D + 1) logKL�D(K � 1) log(b=2)� gL(Ra1 + Sa2) > 0: (2.7)Then we have the lower boundj�0j � ��KL+ 12 ; (2.8)where�0 = �max�LSeLSj�j=(2b2)2b2 ; LReLRj�j=(2b1)2b1 � : �
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Before applying Theorem 2.1, we apply a corollaryof it [Laurent et al., Corollary 2], which is weakerbut much simpler to use.
Corollary 2.2. With the notations of Theorem 2.1,suppose moreover that �1 and �2 are positive realnumbers. Thenlog j�j��24:34D4�maxnlog b0+0:5; 21Do�2 logA1 logA2;wherelogAi � max� 1D; jlog�ijD ; h(�i)� for i = 1; 2,
and b0 = b1logA2 + b2logA1 : �We apply the corollary with b1 = q, b2 = p,�1 = qrp(sp � "q) ;�2 = p, and D = 1. Notice that �1 and �2 aremultiplicatively independent: otherwise � wouldbe an integer times log p, contradicting the trivialestimate 0 < j�j < 1.Notice also thatjlog�1j � p log pq + j�jq � pq log(p+ 1):Moreover,h(�1) � max�p log r + log q; log(sp + q)	� max�(p+ 1) log r; p log s+ 2�p	� (p+ 1) log r;since q � s. Clearly, log�2 = h(�2) = log p. Thuswe can apply Corollary 2.2 withlogA1 = (p+ 1) log r and logA2 = log p:(Note that to apply Corollary 2.2 we only have tochoose logA1 and logA2. Then b0 is de�ned interms of b1, b2, logA1 and logA2. The corollarygives a lower bound for � depending only on theseprevious quantities and on D.)Hence, by (2.3), we haveb0 = qlog p + p(p+ 1) log r � 1:001 qlog p :

We getlog j�j � �24:34 �maxf21; log(q=log p) + 0:51g�2� (p+ 1) log p log r:Comparing this inequality with (2.4) leads toq � 24:4 (p+1) log p�maxf21; log(q=log p)+0:51g�2:
(2.9)In particular, q � 170000 for p � 7.

A Sharper BoundIn this section we assume p � 11. We can applyTheorem 2.1 witha1 = 2(p+ 1)�1 + (�� 1)4q � log rand a2 = (�+ 1) log p. We shall take 17 � � � 25.By (2.2) and (2.3), we have a1 > 2q log p, so thata1 > 1:03�105, a2 > 43:16, and a1a2 > 3:51�107.Then, to satisfy condition (2.5), we takeR1 = 1; S1 = L;R2 = �p(K � 1)La2=a1 �+ 1;S2 = �p(K � 1)La1=a2 �+ 1:We suppose that 7 � L � 5 log p. We take K =[�2La1a2] + 1, where � is some real number to bechosen later, satisfying 0:2 � � � 0:5; thusK � 0:22 � 7� 1:03� 106 � 43:16 > 1:24� 107:If there exist two integers r0 and s0, with jr0j <R and js0j < S, such that r0b2 + s0b1 = 0, then qdivides r0, so thatq < R � 1:5�L(�+ 1)p< 1:5� 0:5� 5� 26� p log p < 100 p log p;which contradicts (2.3). Hence, the numbersrb2 + sb1;for 0 � r � R� 1 and 0 � s � S � 1, are pairwisedistinct.We have the following general upper bound for b[Laurent et al., Lemma 6]:
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b � �(R� 1)b2 + (S � 1)b1�K � 1� exp�32 � log(2�(K � 1)=pe)K � 1 + logK6K(K � 1)�:Thanks to our hypotheses on L and K, this leadstolog b�1:5+log�pL(pK+1)(b1pa1=a2+b2pa2=a1)�� log(K�1)� log(3:8K)K�1�1:5+log� pLpa1a2(�+1)(pK�1)�+log b0� log(3:8K)K�1�1:5� log�(�+1)��+log b0+ 1pK�1� log(3:8K)K�1�1:5� log((�+1)�)+log qlog p+ (�+1)p2q2 + 1pK�1� log(3:8K)K�1 ;since nowb0 = (�+ 1)� b1a2 + b2a1�� qlog p + p(�+ 1)2 (p+ 1) log r � qlog p�1 + (�+ 1)p2q2 �:
Now we consider the quantity g of (2.6). Fromthe relationsR = R1 +R2 � 1 �p(K � 1)La2=a1;S = S1 + S2 � 1 � L+p(K � 1)La1=a2;we getgL(Ra1 + Sa2)= 14L(Ra1 + Sa2)� KL212 �a1S + a2R �
� 14L2a2 + 12L3=2p(K � 1)a1a2 � KL212 �a1S + a2R � :(2.10)

We have 1R � 1p(K � 1)La2=a1 ;and the identity1x+ y = 1x � yx2 + y2(x+ y)x2

implies1S � 1p(K � 1)La1=a2 � L(K � 1)La1=a2+ a2L2a1(K � 1)L�L+p(K � 1)La1=a2 � :Hence we obtain the lower boundKL2 �a1S + a2R � � (K � 1)L2 �a1S + a2R �� 2L3=2p(K � 1)a1a2 � a2L2
+ a2L3L+p(K � 1)La1=a2 :Plugging this into (2.10) givesgL(Ra1 + Sa2) � 13L3=2p(K � 1)a1a2+ 13L2a2 � a2L312�L+p(K � 1)La1=a2 � :Ignoring the last term, we getgL(Ra1 + Sa2) � 13L3=2p(K � 1)a1a2 + 13a2L2:Besides, since log r > (q=p) log p, we havea2a1 � (�+1) log p2(p+1) log r < (�+1) log p2(p+1)(q=p) log p < �+12 q :Using these remarks, we see that condition (2.7)is satis�ed if, putting � = log �, we have0<K(L�1)�+(K�1) log 2�2 log(KL)� 13L3=2p(K�1)a1a2� 13a2L2� (K�1)�1:5� log((�+1)�)+ log� qlog p�+ (�+1)p2q2 + 1pK�1 � log(3:8K)K�1 �: (2.11)Now the right-hand side of (2.11) is greater thanor equal to � + �, where� = K(L�1)�+K log 1:999� 13L3=2p(K � 1)a1a2� (K � 1)�1:5� log�(�+ 1)��+ log� qlog p��
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and� = 5K�10�4� log(KL2)�K (�+ 1)pq2 �pK� 13a2L2:It is easy to verify that � is positive. Indeed,(�+1)pq2 � 2690000�400� log2 p < 2�10�7;pKK � 2:84�10�4;log(KL2)K < 3logKK < 4�10�6;13a2L2K � a2L2352La1a2 = L352a1 � 5 log p6�0:22�q log p< 56�0:22�200000 < 1:1�10�4;so � � K(5 � 4:6) � 10�4 > 0. Then, dividing �by La1a2, we see that condition (2.7) is satis�edwhen��(L�1)�+log 1:999�1:5+log(�+1)� log qlog p�+ � log�� 13L � 0: (2.12)In such a case, by (2.8) and the inequality R+S �K, we getlog j�j � �KL log �� log(KL):Comparing this inequality with (2.4) givesq � 2:0001�2L2(�+ 1)(p+ 1) log p log �:Now we can describe the procedure used to getan upper bound qmax(p) for the exponent q in (1.2),when p is �xed. We �rst apply condition (2.9) toget a �rst upper bound, say q0, for this exponent.Then, for a suitable choice of � and L, we use thisupper bound to �nd a value � for which (2.11)holds. Then (2.11) gives an upper bound q1 � q0.If q1 < q0 we repeat this process using the new up-per bound q1 and some choice of � and L (possiblythe same as before), which gives an upper boundq2 � q1. We continue in this way, and stop after

a certain number of tries, obtaining a value q1.Finally we takeqmax(p) = max�90000 log p; 400 p log p; q1	;in order to respect (2.3). Notice that qmax(p) =90000 log p for p � 53.Since � = log p, condition (2.12) is equivalent to��L log ���+log�1+ 1���log qlog p�+� log�� 13L � 0;where we put � = 1:5� log 1:999. This can also bewritten asL(� log �� 13) � ��� � log�1 + 1��+ log qlog p�:We choose � = 23 log � ;then the previous condition becomesL � 3� 23 log ��� � log�1 + 1��+ log qlog p�:For � = 22:9 (so that � = 0:2129 : : : 2 [0:2; 0:5]),we �nd that this inequality holds ifL � 0:6388(log q � log log p+ 0:765);and we can takeL = [0:6388 log(q=log p) + 1:49]:(We verify the condition 7 � L � 5 log p. From(2.3), we haveL � 0:6388 log 90000 > 7:Put z = q=log p; then (2.3) implies z > 11:407 andmaxf21; log(q=log p) + 0:51g < 1:841 z;thus (2.9) givesz � 24:4� 1:8412 (p+ 1) log2 z;which leads tolog z < log 82:7 + log(p+ 1) + 2 log log zand log z < 1:746 log�82:7 (p+ 1)�:
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Then an elementary numerical study shows thatL < 4 log p for p � 11. This ends the veri�cation.)Thus we getq � 6:7853 (p+1)�0:6388 log(q=log p)+1:49�2 log p;which impliesq � 2:769 (p+1)�log(q=log p)+2:333�2 log p (2.13)for p � 11; thusq � 2:77 p�log(q=log p) + 2:333�2 log p (2.14)for p � 3000.On the range 11 � p < 10651, we have com-puted the best possible value qmax(p) obtained byTheorem 2.1. Inequality (2.14) is given as a refer-ence for possible further computations. Example:for p < 104 we have qmax(p) < 8:7� 107.
3. AN APPLICATION OF INKERI’S FIRST CRITERIONWe now prove a result that is not used in the proofof Theorem 1.3, but shows that the special case ofCatalan's equation with exponents congruent to 3mod 4 could be simpler than the general case.Instead of (1.2) we will work with the equationxp � yq = 1, where q > p > 1 are positive integersand x, y are (possibly negative) integers with jxj,jyj > 1. We will in fact assume that p > 50.We recall briey the work in [Inkeri 1964]. For pprime, with p � 3 mod 4, suppose that a runs overthe quadratic residues mod p and that b runs overthe nonresidues. PutA(X) =Ya (X � �a); B(X) =Yb (X � �b);
where � = e2i�=p. Then4 Xp � 1X � 1 = 2A(X) � 2B(X) = Y 2(X) + pZ2(X);where Y (X) = A(X) +B(X);Z(X) = �B(X)�A(X)�=p�p:

The polynomials Y and Z have integer coe�cients.Clearly, deg Y = 12(p� 1) andY (X) = 2X(p�1)=2 + � � � ;L(Y ) � L(A) + L(B) � 2(p+1)=2;where L(P ) denotes the length of the polynomial P(that is, the sum of the modules of its coe�cients).From the formula on Gauss sums,Xa �a �Xb �b = p�p;
we see that degZ = 12(p� 3) and thatZ(X) = X(p�3)=2 + � � � ;L(Z) � �L(A) + L(B)�=pp � 2(p+1)=2=pp:Now, by Hyyr�o's theorem (see the beginning ofSection 2), there exist integers a and u such thatjxj � 1 = pq�1aq and jxjp � 1 = (jxj � 1)puq:Thus 4puq = Y 2 + pZ2 and, if Y1 = Y=(2p) andZ1 = 12Z, thenuq = (Z1 + Y1p�p)(Z1 � Y1p�p);moreover Y1 and Z1 are coprime integers [Inkeri1964]. In the quadratic �eld Q (p�p), this impliesa relation (Z1 + Y1p�p) = bq;where b is some ideal of this �eld. If we assumethat q does not divide the class number of Q (p�p),there exists an algebraic integer �, belonging tothis �eld, such thatZ1 + Y1p�p = �q:Hence, �q� ��q = 2Y1p�p and �q+ ��q = 2Z1. Put� = j�jei�, with j�j � �. Then

cot(q�) = i �q + ��q�q � ��q = Z(jxj)ppY (jxj) :
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Using the previous estimates relative to Y and Z,we getjcot(q�)j < pp jxj(p�3)=2 + 2(p+1)=2jxj(p�5)=22jxj(p�1)=2 � 2(p+1)=2jxj(p�3)=2= pp 1 + 2(p+1)=2=jxj2jxj�1� 2(p+1)=2=jxj� < 2pp3jxj ;since jxj > pp by an argument like the one leadingto (2.1). Thus there exists an integer k such thatthe linear form � := ki� � q(2i�) satis�esj�j < 2ppjxj :We now use [Laurent et al., Theorem 3]:
Theorem 3.1. Let � be an algebraic number of mod-ulus 1 that is not a root of unity , let b1 and b2 betwo positive integers, and set � = b1i� � b2 log�.Put D = 12 [Q (�) : Q ],t�max�20; 12:85 jlog�j+Dh(�)	;H =maxn17; D log� b12a + b225:7��+4:6D+3:25o:Then log j�j � �9tH2. �In our case we take b1 = k, b2 = q, � = �=�� = e2i�,and D = 1.For an algebraic number , let M() denote theMahler measure of , that is, the product

ja0j dYj=1maxf1; jjjg;
where a0 is the leading coe�cient and the j theroots of an irreducible polynomial with integer co-e�cients of which  is a root. We have the esti-mates M(�) = j�j2 � (jZ1j+ jY1jpp)2=q� �x(p�1)=2�2=q = x(p�1)=q;or, in terms of the height,h(�) � p� 12q log x:

This implies, with the notation of Theorem 3.1,that 12:85� 2� + p� 12q log x < p2q log x;indeed, (2.1) says that jxj > pq2=p, so that12q log jxj > 12:85� 2�because of (2.3). Thus we can taket = p2q log x(which implies t > 12q log p), and then we haveH � max�17; log q + 3:46	:(Proof: We have 0 < k < q and t > 12q log p, soD log� b12a + b225:7��+ 4:6D + 3:25< log� q25:7��+ 25:7�2a + 7:85< 3:459;which proves that H � maxf17; log q + 3:46g.)Comparing the lower bound of log j�j with its up-per bound, after some easy simpli�cations, we getq � 4:51 pH2 = 4:51 p (maxf17; log q + 3:46g)2 :This upper bound, like (2.13) and (2.14), is derivedhere as a reference for possible further computa-tions. Note that it is better than (2.13) for p � 31.
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