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Using a Cayley program, we get all firm, residually connected

geometries whose rank-two residues satisfy the intersection

property, on which M11 acts flag-transitively, and in which

the stabilizer of each element is a maximal subgroup of M11.

1. INTRODUCTIONThis paper can be seen as a sequel to [Dehon 1994],where a set of Cayley programs is presented in or-der to classify all �rm, residually connected and
ag-transitive geometries for a given group G, withthe additional restriction that the stabilizer of anyelement is a maximal subgroup of G. In [Dehon1994] these programs are applied to the automor-phism group of PSU(4; 2), which has order 51840,and a fairly wild list is obtained.Here, the programs are applied to the case whereG is the Mathieu group M11. The number of non-isomorphic geometries of ranks 1, 2, 3, and 4 sat-isfying these conditions is equal to 5, 37, 78, and30, and there are none of rank higher than four.On the basis of this experience and that in [Dehon1994], we found it interesting to test one furthercondition, namely the intersection property for allrank-two residues. This gives us 5, 8, 10, and 10geometries of those ranks. We list these geometriesexplicitly by their diagram, and determine furtherproperties of them.The present work is also a step of the systematicsearch advocated in [Buekenhout 1986]. Our re-sult can be considered as a theorem about the spo-radic group M11, obtained by computer research.It con�rms earlier observations of geometries madefor this group (see for instance [Buekenhout 1995,
c
 A K Peters, Ltd.1058-6458/96 $0.50 per page



102 Experimental Mathematics, Vol. 5 (1996), No. 2

Chapter 22]) and it gives them an \objective" sta-tus in view of the concise character of our lists.We observe in particular the frequent occurence ofcomplete graphs and of the Petersen graph amongrank-two residues. Also, some of the geometriescollected are likely to occur as residues in manyinteresting geometries for larger sporadic groups.Finally, we observe that our conditions are real-ized by pairs consisting of a building geometry anda group of Lie type acting on it. Convenient gener-alizations of buildings applicable to M11 may arisefrom this and similar work.
2. DEFINITIONS AND NOTATIONMost of the following ideas arise from [Tits 1962];see also [Buekenhout 1995, Chapter 3].Let G be a group, together with a �nite familyof subgroups (Gi)i2I . We de�ne the pre-geometry� = �(G; (Gi)i2I) as follows.The set X of elements of � consists of all cosetsgGi, for g 2 G and i 2 I. We de�ne an incidencerelation � on X byg1Gi � g2Gj () g1Gi \ g2Gj 6= ?:The type function t on � is de�ned by t(gGi) = i.The type of a subset Y of X is the set t(Y ); its rankis the cardinality of t(Y ), and we call jIj the rankof �. A 
ag is a set of pairwise incident elementsof X, and a chamber of � is a 
ag of type I. Anelement of type i is also called an i-element.The group G acts on � as an automorphismgroup, by left translation, preserving the type ofeach element. Indeed, g 2 G maps g1Gi ontogg1Gi, and gg1Gi � gg2Gj amounts to g1Gi � g2Gj,so the incidence relation is preserved. The actioninvolves a kernel K, which is the largest normalsubgroup of G contained in every Gi, for i 2 I. Inthis action, the subgroup Gi is the stabilizer of theelement of � identi�ed with Gi in the constructionof �.As in [Dehon 1994], we call � a geometry if every
ag on � is contained in some chamber, and wecall � 
ag-transitive if G acts transitively on all

chambers of �, hence also on all 
ags of any giventype J , where J is a subset of I.Assuming that � is a 
ag-transitive geometryand that F is a 
ag of �, the residue of F is thepre-geometry
�F = �� \j2t(F )Gj; �Gi \ � \j2t(F )Gj��i2Int(F )�;and we readily see that �F is a 
ag-transitive ge-ometry.We call a geometry � �rm if every 
ag of rankjIj � 1 is contained in at least two chambers. Wecall � residually connected if the incidence graphof each residue of rank at least two is a connectedgraph. We call � primitive if G acts primitively onthe set of i-elements of �, for each i 2 I. We call� residually primitive if each residue �F of a 
agF is primitive for the group induced on �F by thestabilizer GF of F .We also consider a variation of the latter con-cept. We call � weakly primitive if there existssome i 2 I such that G acts primitively on the setof i-elements of �, and we call � residually weaklyprimitive if each residue �F of a 
ag F is weaklyprimitive for the group induced on �F by the sta-bilizer GF .If � is a geometry of rank two with I = f0; 1gand such that each of its 0-elements is incident witheach of its 1-elements, we call � a generalized digon.We say that � satis�es the rank-two intersectionproperty if, in every rank-two residue of � otherthan a generalized digon, any two elements of thesame type are incident with at most one elementof the other type.We call � locally 2-transitive if the stabilizer GFof any 
ag F of rank jIj � 1 acts 2-transitively onthe residue �F .The diagram of a �rm, residually connected, 
ag-transitive geometry � is the graph whose verticesare the elements of I, plus additional structure asfollows. To each vertex i 2 I we attach the or-der si, which is j�F j � 1, where F is any 
ag oftype I n fig. We also attach to i the number ni of
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varieties of type i, which is the index of Gi in G,and the subgroup Gi. Two vertices i; j 2 I are notjoined by an edge of the diagram if a residue �Fof type fi; jg is a generalized digon. Otherwise, iand j are joined by an edge endowed with threepositive integers dij, gij, and dji. The gonality gijis equal to half the girth of the incidence graph ofa residue �F of type fi; jg. The i-diameter dij isthe greatest distance from some �xed i-element toany other element in �F , and the j-diameter dji isde�ned analogously.On a picture of the diagram, this structure willbe depicted as follows:isi=ni=Gi j sj=nj=Gjdij gij dij
In view of the rank-two intersection property, wehave gij � 3. Moreover, gij � dij, gij � dji, andjdij � djij � 1. If gij = dij = dji, we call �F ageneralized g-gon, and we don't write dij and djion the picture. Observe that generalized digonsare characterized by gij = dij = dji = 2.Let J be a nonempty subset of the type set I.The J-truncation of � is the pre-geometry J� =�(G; (Gi)i2J).Assuming that G acts with a trivial kernel onthe set X of elements of �, a correlation of the pair(G;�) is an automorphism � of the incidence graph(X; �) mapping the permutation group (G;X) ontoitself and such that t(x) = t(y) implies t(�(x)) =t(�(y)) for any x; y 2 X. The group of all correla-tions of (G;�) is called Cor �.As to notation for groups, we follow the Atlas[Conway et al. 1985]. The symbol : stands for asplit extension, the \hat" symbol �̂ for a nonsplitextension, and � for a direct product.

3. THE LIST OF GEOMETRIESThe following tables list the data for the �ve rank-one geometries (Table 1), eight rank-two geome-tries (Table 2), ten rank-three geometries (Table 3),and ten rank-four geometries (Table 4). We recallthat each geometry is �rm, residually connected,

� structure of G0 #�1{1 M10 111{2 L(2; 11) 121{3 M9 : 2 551{4 M8 : S3 1651{5 S5 66
TABLE 1. Summary of rank-one geometries, thatis, maximal subgroups up to conjugacy. This isAtlas information [Conway et al. 1985]. The lastcolumn gives the number of elements of �. Wenote that M8 : S3 = 2 �̂S4.
ag-transitive, and primitive, and that it satis�esthe rank-two intersection property.We report on residual primitivity, residual weakprimitivity, and local two-transitivity (2T1). Wealso give the structure of the Boolean lattice whosemembers are intersections of some Gi; in the lat-tices, a bold line means maximal inclusion.Whenever the diagram of the geometry has anontrivial automorphism, we give in the table cap-tion the group of correlations Cor �.If the subgroup Gi acts with a nontrivial kernelKi on the residue of the element Gi of �, we de-scribe Gi as Ki :Gi=Ki, where the symbol : standsfor : , �̂, or �.A picture of the subgroup lattice of M11 can befound in [Buekenhout 1986].Table 5 shows how the geometries of di�erentrank are related by truncation.
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� structure of � Ti2I Gi RWP RP 2T12{1 10=11=M10 11=12=L(2; 11) A5 no no no2{2 54=55=M9:2 11=12=L(2; 11) D12 no no no2{3 1=11=M10 9=55=M9 :23 3 4 M9 yes yes yes2{4 1=12=L(2; 11) 10=66= A5 :23 3 4 A5 yes yes yes2{5 3=55=M9:2 8=165=M8 :S35 3 6 M8:2 yes yes yes2{6 3=55=M9:2 11=165=M8 :S34 3 4 D12 no no no2{7 3=66=S5 9=165=M8 :S35 3 5 D12 yes yes no2{8 7=165=M8 :S3 7=165=M8 :S35 3 5 S3 no no no
TABLE 2. Summary of rank-two geometries. The last three columns say whether the geometry is residuallyweakly primitive (RWP), residually primitive (RP), and locally two-transitive (2T1). See page 103 for othernotations. Remarks: Geometries 2{1 and 2{2 are generalized digons and correspond to factorizationsM11 = G0G1of [Liebeck 1990]; 2{3 and 2{4 are complete graphs, while 2{5 is a truncation of 3{1 (see next section). In 2{6and 2{7, we have M8 : S3 = 2 �̂S4. Geometry 2{8 is self-dual, and its group of correlations is M11 � 2.
� structure of � rank-2 residues lattice RWP RP 2T1

3{1 1=11=M10 1=55=M9:2 8=165=M8 :S33 3 3 4 M10 M9:2 M8:S3M9 M8:2 M8:2M8 = Q8 yes yes yes
3{2 2=11=M10 3=165=M8:S3 3=55=M9:23 3 4 5 3 5 M10 =3=45=M8:2 3=45=M8:25 3 5 M10 M8:S3 M9:2M8:2 M8:2 D1222 no no no
3{3 2=55=M9:2 2=165=M8:S3 3=66=S55 3 5 3 3 4 S5 =2=10=D12 2=10=D125 3 5 M9:2 M8:S3 S5M8:2 D12 D1222 no no no
TABLE 3. Summary of rank-three geometries. See page 103 for notations. Remarks: In 3{2 and 3{3, we haveM8 : S3 = 2 �̂S4. The S5 in 3{3 is Desargues's con�guration [Buekenhout et al. 1995].
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� structure of � rank-2 residues lattice RWP RP 2T1
3{4 2=55=M9:2 2=165=M8:S3 3=12=L(2; 11)7 5 7 3 3 4 L(2; 11) =2=55=D12 2=55=D127 5 7 M9:2 M8:S3L(2; 11)M8:2 D12 D1222 no no no
3{5 2=11=M10 2=165=M8:S3 7=165=M8:S34 3 4 5 3 6 M8:S3 =2=8=S3 2=8=S34 3 4

M10 =2=45=M8:2 7=120=S35 3 6
M10 M8:S3M8:S3M8:2 S3 S32 no no no

3{611=12=L(2; 11) 1=11=M10 9=55=M9:23 3 4 L(2; 11)M10 M9:2A5 D12 M9S3 no no no
3{7 4=66=S5

1=11=M10
4=66=S55 3 54 3 3 3 3 4 M10 =4=36=5:4 4=36=5:45 3 5 M10 S5 S55:4 5:4 D84 yes no yes

3{8 1=11=M10
8=165=M8 :S3

1=11=M1033 3 4 4 3 3 M10 M10 M8:S3M9 M8:2 M8:2M8 yes yes yes

3{9 2=165=M8:S3
1=12=L(2; 11)

2=66=S57 5 76 5 5 3 3 4 L(2; 11) =2=55=D12 2=55=D127 5 7 M8:S3L(2; 11) S5D12 D8 D1222 yes no yes

3{10 2=66=S5
2=66=S5

2=66=S54 3 46 3 5 5 3 6 S5 =3=15=D8 3=15=D84 3 4
S5 =2=15=D8 3=20=S35 3 6

S5 S5 S5D8 S3 D82 no no no
TABLE 3. Summary of rank-three geometries (continued). Remarks: In 3{4 and 3{9, we have M8 : S3 = 2 �̂S4.Geometries 3{7, 3{8, and 3{10 are self-dual, and their correlation group is M11 � 2.
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� structure of � rank-3 residues
4{1 1=11=M10 1=55=M9:2 2=165=M8:S3 3=66=S53 3 4 3 3 4

4{2 1=11=M10 1=55=M9:2 2=165=M8:S3 3=12=L(2; 11)5 5 6 3 3 4 L(2; 11) =1=11=A5 1=55=D12 2=55=D125 5 6

4{3 1=12=L(2; 11) 2=66=S5 2=66=S5 1=12=L(2; 11)5 5 6 5 3 5 6 5 5 L(2; 11) =1=11=A5 2=55=D12 2=11=A55 5 6 5 3 5

4{4
1=11=M10

1=11=M10 2=165=M8:S3 3=66=S53 3 3 43 3 4 5 3 5 M10 =1=10=M9 2=45=M8:2 3=30=S43 3 4 3 3 4 S5 =1=5=S4
2=10=D12

1=5=S433 3 4 4 3 3

4{5
1=11=M10

4=165=M8:S31=66=S5 1=12=L(2; 11)334 34 3 3 4 M10 =4=45=M8:2 1=36=5:4 1=12=A54 3 3 4
M8:S3 =1=3=M8:2 1=6=D8 1=4=D123 4 L(2; 11) =1=11=A5

4=55=D12
1=11=A533 3 4 4 3 3

TABLE 4. Summary of rank-four geometries. See page 103 for notations. Remarks: Geometry 4{1 is theSteiner system S(4; 5; 11). In 4{2, each L(2; 11)-element is incident with each M10-element and with each
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lattice RWP RP 2T1M10 M9:2 M8:S3 S5M9 M8:2 S4 M8:2 D12 D12M8 S3 22 222
no no no

M10 M9:2 M8:S3 L(2; 11)
M9 M8:2 A5 M8:2 D12 D12M8 S3 22 222

no no no
L(2; 11) S5 S5 L(2; 11)

A5 D12 A5 D8 D12 A522 S3 S3 222
yes no yes

M10 M8:S3 S5 M10M8:2 S4 M9 D12 M8:2 S422 M8 S3 222
no no no

M10 M8:S3 S5 L(2; 11)
M8:2 5:4 A5 D8 D12 A54 22 D10 222

no no no
(M9:2)-element. Geometries 4{3 and 4{4 are self-dual, and their group of correlations is M11 � 2; for the S5 in4{4, see [Buekenhout et al. 1995]. In 4{1, 4{2, 4{4, and 4{5, we have M8:S3 = 2 �̂(22:S3).
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� structure of � rank-3 residues
4{6

2=165=M8:S3

1=12=L(2; 11)1=66=S5 1=12=L(2; 11)655 6 5 53 3 L(2; 11) =1=11=A5 1=55=D12 2=55=D123 5 5 6
M8:S3 =1=4=D12 1=6=D8 1=4=D123 3 L(2; 11) =1=11=A5

2=55=D12
1=11=A535 5 6 6 5 5

4{7
1=11=M10

1=11=M10 2=165=M8:S3 3=12=L(2; 11)3 5 5 65 5 6 3 3 4 M10 =1=10=M9 2=45=M8:2 3=12=A55 5 6 3 3 4 L(2; 11) =1=11=A5
2=55=D12

1=11=A535 5 6 6 5 5

4{8
1=11=M10

1=66=S5

1=66=S5

3=165=M8:S3
6

3 3 4
3 3343y

z Sy5 =1=6=5:4 1=15=D8 3=10=D126 3 3 4
Sz5 =1=6=5:4 1=15=D8 3=20=S33 3 3 4 M8:S3 =

1=8=S3
1=4=D12

1=8=S363 3 M10 =1=36=5:4
1=36=5:4

3=120=S33 3 4
3343

4{9
1=11=M10

3=66=S5

3=66=S5

1=11=M10
3 3 4
4 3 3

434 4344 3 4y
z S5 =1=5=S4 3=30=22 1=5=S44 3 4 4 3 3 M10 =3=30=S4

1=36=5:4
1=10=M94 3 3

4344 3 4

4{10
1=12=L(2; 11)

1=12=L(2; 11)

1=12=L(2; 11)

2=165=M8:S3
3

5 5 6
3 5563

5 5 6 M8:S3 =
1=4=D12
1=4=D12

1=4=D1233 3 L(2; 11) =1=11=A5
1=11=A5

2=55=D125 5 6
5563

TABLE 4. Summary of rank-four geometries (continued). Remarks: In 4{6 and 4{7, we have M8:S3 = 2 �̂(22:S3).Geometries 4{7 and 4{9 are self-dual, with Cor � = M11 � 2, while 4{10 has Cor� = M11 � S3. The symbols
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lattice RWP RP 2T1L(2; 11) M8:S3 S5 L(2; 11)
D12 D12 A5 D8 D12 A522 22 S3 222

yes no yes
M10 M8:S3 L(2; 11) M10M8:2 A5 M9 D12 M8:2 A522 M8 S3 222

no no no
M10 Sy5 Sz5 M8:S35:4 5:4 S3 D8 D12 S34 2 2 2

1
no no no

M10 Sy5 Sz5 M10S4 5:4 M9 22 5:4 S42 4 4 2
1

no no no
L(2; 11) L(2; 11) L(2; 11) M8:S3A5 A5 D12 A5 D12 D12S3 22 22 222

yes no yes
y and z in the nodes of the diagram in 4{8 and 4{9 serve to distinguish between the respective entries on thetop row of the intersections lattice and (in 4{8) between rank-three residues.
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�1 �2 subgroups removed4{1 3{1 S54{1 3{3 M104{2 3{1 L(2; 11)4{2 3{4 M104{2 3{6 M8 : S34{3 2{4 L(2; 11), S5 (any (5,5,6)-edge)4{4 3{8 S54{4 2{7 M10, M104{5 2{1 S5, M8 : S34{5 2{4 M10, M8 : S34{6 3{9 L(2; 11) (the vertex of degree 1)4{6 2{4 L(2; 11), M8 : S3 (the (5,5,6)-edge)4{7 3{8 L(2; 11)4{7 2{1 M10, M8 : S3 (any (5,5,6)-edge)4{8 3{7 M8 : S34{8 2{7 M10, S5 (the (6)-edge)3{1 2{3 M8 : S33{1 2{5 M103{2 2{6 M103{3 2{5 S53{3 2{7 M9 : 23{4 2{2 M8 : S33{4 2{5 L(2; 11)3{5 2{8 M103{6 2{1 M9 : 23{6 2{2 M103{6 2{3 L(2; 11)
TABLE 5. For each row of the table, the truncationobtained from �1 by deleting the elements corre-sponding to the subgroup(s) mentioned is isomor-phic to �2.
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