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Using a Cayley program, we get all firm, residually connected
geometries whose rank-two residues satisfy the intersection
property, on which Mj; acts flag-transitively, and in which
the stabilizer of each element is a maximal subgroup of M.

1. INTRODUCTION

This paper can be seen as a sequel to [Dehon 1994],
where a set of Cayley programs is presented in or-
der to classify all firm, residually connected and
flag-transitive geometries for a given group G, with
the additional restriction that the stabilizer of any
element is a maximal subgroup of G. In [Dehon
1994] these programs are applied to the automor-
phism group of PSU(4, 2), which has order 51840,
and a fairly wild list is obtained.

Here, the programs are applied to the case where
G is the Mathieu group Mj;. The number of non-
isomorphic geometries of ranks 1, 2, 3, and 4 sat-
isfying these conditions is equal to 5, 37, 78, and
30, and there are none of rank higher than four.
On the basis of this experience and that in [Dehon
1994], we found it interesting to test one further
condition, namely the intersection property for all
rank-two residues. This gives us 5, 8, 10, and 10
geometries of those ranks. We list these geometries
explicitly by their diagram, and determine further
properties of them.

The present work is also a step of the systematic
search advocated in [Buekenhout 1986]. Our re-
sult can be considered as a theorem about the spo-
radic group M;i;, obtained by computer research.
It confirms earlier observations of geometries made
for this group (see for instance [Buekenhout 1995,
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Chapter 22]) and it gives them an “objective” sta-
tus in view of the concise character of our lists.
We observe in particular the frequent occurence of
complete graphs and of the Petersen graph among
rank-two residues. Also, some of the geometries
collected are likely to occur as residues in many
interesting geometries for larger sporadic groups.
Finally, we observe that our conditions are real-
ized by pairs consisting of a building geometry and
a group of Lie type acting on it. Convenient gener-
alizations of buildings applicable to M;; may arise
from this and similar work.

2. DEFINITIONS AND NOTATION

Most of the following ideas arise from [Tits 1962];
see also [Buekenhout 1995, Chapter 3].

Let G be a group, together with a finite family
of subgroups (G;);c;. We define the pre-geometry
I' =T(G, (G)icr) as follows.

The set X of elements of I" consists of all cosets
gG;, for g € G and ¢ € I. We define an incidence
relation * on X by

glGi * g2Gj < Qle N gng # .

The type function t on I is defined by t(gG;) = 1.
The type of a subset Y of X is the set ¢(Y'); its rank
is the cardinality of ¢(Y"), and we call |I| the rank
of I'. A flag is a set of pairwise incident elements
of X, and a chamber of I is a flag of type I. An
element of type ¢ is also called an i-element.

The group G acts on I' as an automorphism
group, by left translation, preserving the type of
each element. Indeed, g € G maps ¢;G; onto
991G, and gg1G; * gg2G; amounts to ¢:G; * g.G;,
so the incidence relation is preserved. The action
involves a kernel K, which is the largest normal
subgroup of G contained in every G;, for i € I. In
this action, the subgroup G is the stabilizer of the
element of I identified with G; in the construction
of T.

As in [Dehon 1994], we call " a geometry if every
flag on I' is contained in some chamber, and we
call T' flag-transitive if G acts transitively on all

chambers of I', hence also on all flags of any given
type J, where J is a subset of I.

Assuming that I' is a flag-transitive geometry
and that F' is a flag of I, the residue of F is the
pre-geometry

FF:F( [ & <Gm( m)Gj))iel\t(F)>,

jet(F) JEHF

and we readily see that I'r is a flag-transitive ge-
ometry.

We call a geometry I' firm if every flag of rank
|I| — 1 is contained in at least two chambers. We
call I' residually connected if the incidence graph
of each residue of rank at least two is a connected
graph. We call I' primitive if G acts primitively on
the set of i-elements of I", for each 1 € I. We call
I residually primitive if each residue I'r of a flag
F' is primitive for the group induced on I'r by the
stabilizer Gg of F.

We also consider a variation of the latter con-
cept. We call I' weakly primitive if there exists
some ¢ € I such that G acts primitively on the set
of i-elements of I', and we call I' residually weakly
primitive if each residue I'r of a flag F' is weakly
primitive for the group induced on I'r by the sta-
bilizer G .

If I is a geometry of rank two with I = {0,1}
and such that each of its 0O-elements is incident with
each of its 1-elements, we call I a generalized digon.

We say that I' satisfies the rank-two intersection
property if, in every rank-two residue of I' other
than a generalized digon, any two elements of the
same type are incident with at most one element
of the other type.

We call T locally 2-transitive if the stabilizer G
of any flag F of rank |I| — 1 acts 2-transitively on
the residue I'f.

The diagram of a firm, residually connected, flag-
transitive geometry I' is the graph whose vertices
are the elements of I, plus additional structure as
follows. To each vertex ¢ € I we attach the or-
der s;, which is |[I'r| — 1, where F is any flag of
type I\ {i}. We also attach to i the number n; of
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varieties of type %, which is the index of G; in G,
and the subgroup G;. Two vertices i, j € I are not
joined by an edge of the diagram if a residue I'r
of type {i,7} is a generalized digon. Otherwise, i
and j are joined by an edge endowed with three
positive integers d;;, g;;, and dj;. The gonality g;;
is equal to half the girth of the incidence graph of
a residue I'p of type {i,j}. The i-diameter d;; is
the greatest distance from some fixed i-element to
any other element in I'r, and the j-diameter dj; is
defined analogously.

On a picture of the diagram, this structure will
be depicted as follows:

dij gij dij .
si/ni/Gi (i) 79 % (3) 5i/n;/G;

In view of the rank-two intersection property, we
have g;; > 3. Moreover, g;; < d;;, g;; < dj;, and
|dij — dji| S 1. If gij = di]' = dji, we call FF a
generalized g-gon, and we don’t write d;; and d;;
on the picture. Observe that generalized digons
are characterized by g;; = d;; = d;; = 2.

Let J be a nonempty subset of the type set I.
The J-truncation of I' is the pre-geometry Jp =
L(G, (Gi)ies)-

Assuming that G acts with a trivial kernel on
the set X of elements of ', a correlation of the pair
(G,T) is an automorphism « of the incidence graph
(X, %) mapping the permutation group (G, X) onto
itself and such that t(z) = t(y) implies t(a(x)) =
t(a(y)) for any x,y € X. The group of all correla-
tions of (G,T") is called CorI'.

As to notation for groups, we follow the Atlas
[Conway et al. 1985]. The symbol : stands for a
split extension, the “hat” symbol - for a nonsplit
extension, and X for a direct product.

3. THE LIST OF GEOMETRIES

The following tables list the data for the five rank-
one geometries (Table 1), eight rank-two geome-
tries (Table 2), ten rank-three geometries (Table 3),
and ten rank-four geometries (Table 4). We recall
that each geometry is firm, residually connected,

T structure of Gy #I
1-1 My 11
1-2 L(2,11) 12
1-3 My : 2 55
14 Mg : S3 165
1-5 Ss 66

TABLE 1. Summary of rank-one geometries, that
is, maximal subgroups up to conjugacy. This is
Atlas information [Conway et al. 1985]. The last
column gives the number of elements of I'. We
note that Mg : S3 = 275;.

flag-transitive, and primitive, and that it satisfies
the rank-two intersection property.

We report on residual primitivity, residual weak
primitivity, and local two-transitivity (2T;). We
also give the structure of the Boolean lattice whose
members are intersections of some G;; in the lat-
tices, a bold line means maximal inclusion.

Whenever the diagram of the geometry has a
nontrivial automorphism, we give in the table cap-
tion the group of correlations Cor I'.

If the subgroup G; acts with a nontrivial kernel
K; on the residue of the element G; of I', we de-
scribe G; as .Gi/Ki, where the symbol . stands
for :, 2, or x.

A picture of the subgroup lattice of M;; can be
found in [Buekenhout 1986].

Table 5 shows how the geometries of different
rank are related by truncation.
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r structure of I' Nicr Gi RWP RP 2T
2-1 10/11/Mio () (O)1/12/L(2,11) As no no no
2-2 54/55/Mg:2 () (OH11/12/L(2,11) Dy, no no no
2-3 1/11/Myo (y222) 9/55/[Ms):2 M, yes ves ves
24 1/12/L(2,11) ( )—22+) 10/66/[A5):2 As yes yes yes
2-5 3/55/Mo:2 ()—2°—")8/165/[Mg]: S5 Mg:2 yes yes yes
2-6 3/55/My:2 ()2~ ) 11/165/My:Ss Diy no no no
2-7 3/66/S5 ( )—""—+)9/165/Ms:Ss Dis yes yes no
2-8 7/165/Ms: S5 ()——""—)7/165/Ms:Ss Ss no no no

TABLE 2. Summary of rank-two geometries. The last three columns say whether the geometry is residually

weakly primitive (RWP), residually primitive (RP), and locally two-transitive (2T;). See page 103 for other
notations. Remarks: Geometries 2-1 and 2-2 are generalized digons and correspond to factorizations M1, = GoG1
of [Liebeck 1990]; 2-3 and 24 are complete graphs, while 2-5 is a truncation of 3-1 (see next section). In 2-6
and 2-7, we have My : S5 =[2]:S;. Geometry 2-8 is self-dual, and its group of correlations is M;; x 2.

r structure of T’ rank-2 residues lattice RWP RP 2T,
M10 M9:2 Mg:S3
>
3-1 O——0O2220 My, Mg:2 Mg:2 ves yes
1/11/Myo  1/55/Mo:2  8/165/[Mg):Ss M
8 = s
M10 Mg:Sg, M9:2
[><T"><
3-2 OO0 My = O=2220) Mg:2 Mg:2 Dy, no mo
2/11/Myy 3/165/Mg:Ss 3/55/My:2 3/45/Ms:2 3/45/Mg:2 " 22/
M9:2 Mg:S3 S5
3-3 Q 535 O 834 Q S5 == O&O M8:2 D12 D12 no no
2/55/My:2 2/165/Mg:Ss 3/66/Ss 2/10/D12  2/10/Drz I
2
TABLE 3. Summary of rank-three geometries. See page 103 for notations. Remarks: In 3-2 and 3-3, we have

Mg : Sz =[2]2S4. The S5 in 3-3 is Desargues’s configuration [Buekenhout et al. 1995].
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r structure of I rank-2 residues lattice RWP RP 2T,
M9:2 Mg:Sg L(2,11)
34 OO 0O L2,1) =)  Ms2 D, Dy 1o no no
2/55/Mo:2 2/165/Mjg:Ss 3/12/L(2,11) 2/55/D1z 2/55/D1z e L
2
M8y = QﬂO MI‘Q\MS:%:%?:S?’
3-5 Q 134 O 536 Q 2/8/8s 2/8/8s  Mg:2 S Ss no no no
536
2/11/Myy 2/165/Mg:Ss  7/165/Mg:Ss Mo = O——0O
2/45/Ms:2 7/120/S3 2
L(2,11) M]O M9:2
3-6 O QLALO As D1y My no no no
11/12/L(2,11) 1/11/Myy  9/55/Mg:2 \IS
3
1/11/M
/11/M1o Mo S5 Ss
37 M= (2220 5:4  5:4 \D‘g yes no yes
4/36/5:4  4/36/5:4 ~ ]
535 1
4/66/Ss 4/66/ S5
8/165/| Ms|:S
165/ M .5 Myo Mo M;g:S;
=
3-8 My DMg:2 Mg:2 yes yes yes
\‘/
1/11/Myy  1/11/Mag Ms
1/12/L(2,11) Mg:S5 L(2,11) Sg
3-9 L(2,11):Q£O Dy, Dg Di; 7yes no yes
2/55/D12  2/55/D12 ~ ]
2
2/165/Mg:Ss  2/66/Ss 2
2/66/55 s 434 Ss S5  Ss
52() () Cieerl Tieelld
3-10 3/15/Ds  3/15/Ds Dy 83 Dg mno no no
536 -
434 Ss = (O————C) \2
2/66/Ss 2/66/Ss 2/15/Dg  3/20/S3

TABLE 3. Summary of rank-three geometries (continued). Remarks: In 3—4 and 3-9, we have Mg : S3 = [2]25,.

Geometries 3-7, 3-8, and 3-10 are self-dual, and their correlation group is M;; x 2.
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r structure of I rank-3 residues

B N 334 N 334
41 O W, W, O
1/11/Myo  1/55/Mg:2  2/165/Mg:S; 3/66/Ss

B OO O e 9
1/11/Myo  1/55/Mg:2  2/165/Ms:Ss 3/12/L(2,11) R
3 O=>-0O-0O>0 1(2,11) = 022402220
1/12/L(2,11)  2/66/Ss 2/66/Ss  1/12/L(2,11) 1/11/As  2/55/D1a  2/11/As
1/11/M;yo
2/10/D12
B 334 334 _ L 3oXs
4-4 My = O—0O—0O %= A g
_ 1/10/My  2/45/Ms:2  3/30/S
7165/Mg:Ss  3/66/Ss 9 8 4 v/5/5 3 1/5/84
1/11/Myg
1/11/Myg
My = OO0 o
. ) 4 )4
45 A/45/Me:2 /3650 AA2/As g 1y o 530K3,
3 4
1/66/Ss  1/12/L(2,11) pfe:8y = O—2(O—2) 11/as 1A

1/3/Msg:2 1/6/Dg 1/4/D12
4/165/M853

TABLE 4. Summary of rank-four geometries. See page 103 for notations. Remarks: Geometry 4-1 is the
Steiner system S(4,5,11). In 4-2, each L(2,11)-element is incident with each Mjg-element and with each
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lattice RWP RP 2T
M10 Mg:2 Mg:Sg, 55
~ S [ ]
Mg M8:2 S4 M8:2 D12 D12
) - no no no
My S3 22 22
2
M10 M9:2 Mg:Sg L(2, 11)
S
Mg M8:2 A5 M8:2 D12 D12
S - ' no no no
) 2
L(2,11) S5 Ss  L(2,11)
As D2 As Dg D2 As
yes no yes
22 S3 S3 22
2
Myy Myg:Ss Ss My
no no no
M, 54 A5 Dy Dy A
\:“1::: — no no no
4 22 Do 22
2

(My:2)-element. Geometries 4-3 and 44 are self-dual, and their group of correlations is Mj; x 2; for the Sy in
4-4, see [Buekenhout et al. 1995]. In 4-1, 4-2, 4-4, and 4-5, we have My:S3 = [2]2(22:S53).
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r structure of I rank-3 residues

2/165/M8153

L(2,11) = O——0O=>2>220 2/55/ D12
6 6
4-6 1/11/As  1/55/D12  2/55/D12 L(2,11) = 55 5,
3 3
1/66/S5  1/12/L(2,11) Mg:S5 = O——O——0O V114, 1/11/4s
1/4/D1;  1/6/Ds  1/4/Dis
1/12/L(2,11)
1/11/Myo
2/55/D12
6( )6
4-7 My = O340 L(2,11) = 5577\%;
) 1/10/My  2/45/Ms:2  3/12/A
5/165/Ms:Ss 3/12/L(2,11) 5 s 5 D Thua
1/11/Mo
1/11/Myy  1/66/Ss
6 1/8/Ss 1/8/53 1/36/5:4
gt — 6 334 6
5= O—0O——=0 V i
3 . 3
48 , 3 1/6/5:4  1/15/Ds 3/10/D1a My:Ss — 3 My = ® 3
4 4
st= O 3 :334: __
334 1/6/5:4 1/15/Dg 3/20/S3 1/4/D12 1/36/5:4 3/120/S3
1/66/Ss  3/165/Ms:Ss
1/11/Myy  3/66/Ss
1/36/5:4
434 ~ 433 3% |4
19 IGEIIIGELITG o= 3
4

1/5/Ss  3/30/22  1/5/S4

3/30/S4 483 1/10/ My
3/66/Ss  1/11/Myg

1/12/L(2,11)  1/12/L(2,11)

1/4/ D12 5 1/4/D12 1/11/As
3 3 5
4-10 Mg:Sg =3 L(2, 11) = 5
6
556
556 1/4/ D12 1/11/A5 2/55/ D12

1/12/L(2,11)  2/165/M;:Ss

TABLE4. Summary of rank-four geometries (continued). Remarks: In 4-6 and 4-7, we have Mg:S3 = [2]2(2%:S53).
Geometries 4-7 and 4-9 are self-dual, with CorI" = M;; x 2, while 4-10 has CorI' = M;; x S3. The symbols
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lattice RWP RP 2T,
L(2,11) Ms:S; Ss L(2,11)

Do Do As Dg Do As

‘ — yes no yes
22 22 S3 22
2
M10 Mg:Sg L(2,11) M10

Mg:2 A5 Mg D12 M8:2 A5
no no no
no no no
no no no
yes no yes

1 and { in the nodes of the diagram in 4-8 and 4-9 serve to distinguish between the respective entries on the

top row of the intersections lattice and (in 4-8) between rank-three residues.
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Ty Ty subgroups removed

4-1 3-1 Ss

41 33 My

42 31 L(211)

42 34 My

4-2 36 Ms . S3

4-3 24 L(2,11), S5 (any (5,5,6)-edge)
4-4 3-8 Ss

44 27 M, My

4-5 2-1 S5, Mg : Sg

4-5 24 MlOa Mg : S3

4-6  3-9 L(2,11) (the vertex of degree 1)
46 24 L(2,11), Mg : S3 (the (5,5,6)-edge)
47 3-8 L(2,11)

4-7 2-1 My, Mg : S3 (any (5,5,6)-edge)
4-8 3-7 Mg : 53

4-8 2-7 My, Ss (the (6)-edge)

3-1 2-3 Mg . 53

31 25 M

32 26 My

3-3 25 S

3-3 2-7T My:2

34 2-2 Mg . S3

3-4 25 L(2,11)

3-5 28 M

36 2-1 My:2

36 22 My

36 23 L(211)

TABLE5. For each row of the table, the truncation
obtained from I'; by deleting the elements corre-
sponding to the subgroup(s) mentioned is isomor-

phic to I's.
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